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We consider repeated measurement designs when a residual or
carry-over effect may be present in at most one later period. To
avoid too rough a model, we assume that there are interactions be-
tween carry-over and direct treatment effects. When the aim of the
experiment is to study the effects of a treatment used alone, we ob-
tain universally optimal approximate designs. We also propose some
efficient designs with a reduced number of subjects.

1. Introduction. In repeated measurement designs or crossover de-
signs, interference is often observed between a direct treatment effect and
the treatment applied in the previous period. We denote by ξuv the effect of
treatment u when it is preceded by treatment v. There are several ways to
model such effects. The simplest one is to assume that there is no interfer-
ence. In that case, ξuv = τu, the direct treatment effect.

For a parsimonious interference model, we may assume that the direct
and the carry-over effects are additive. In that case, ξuv = τu + λv, where
τu is the direct effect of treatment u and λv is the carry-over effect due to
treatment v. In practice, this model is often unrealistic.

Kempton et al. (2001) propose an interference model in which a treatment
which has a large direct effect will also have a large carry-over effect. More
precisely, they assume that the carry-over effect is proportional to the direct
effect. Bailey and Kunert (2006) obtain optimal designs under this model.

Afsarinejad and Hedayat (2002) proposed another way to enrich the ad-
ditive models: they assume that the carry-over effect of a treatment de-
pends on whether that treatment is preceded by itself or not. In that case
ξuv = τu + λv + χuv, where χuv = 0 if u 6= v and χuu represents the specific
effect of treatment u preceded by itself. For that model, optimal designs are
obtained by Kunert and Stufken (2002) when the parameters of interest are
the direct treatment effects, and by Druilhet and Tinsson (2009) when the
parameters of interest are the total effects τu + λu + χuu.
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The finest possible model, proposed by Sen and Mukerjee (1987), assumes
full interactions between carry-over and direct treatment effects, which means
that no constraints on ξuv are assumed. For a full interaction model, there
is no natural way to define a direct treatment effect. For example, Park et
al. (2011) obtained efficient designs when the parameters of interest are the
standard least-squares means of treatments, i.e. t−1 ∑

v ξuv for 1 ≤ u ≤ t,
where t is the number of treatments to be compared. Under a full inter-
action model, the contrasts of the least-squares means depend on all the
other treatment effects through their interactions.

When the aim of the experiment is to select a single treatment which will
be used alone, i.e. preceded by itself, the relevant effects to be considered
are total effects φu = ξuu for 1 ≤ u ≤ t, which correspond to the effect of a
treatment preceded by itself: see Bailey and Druilhet (2004) for a review of
situations where total effects have to be considered.

In this paper, we propose optimal designs for total effects under the full
interaction interference model. We generalize Kushner’s methods to this
case, and we also propose efficient designs of reduced size.

2. The designs and the model. We consider a design d with n sub-
jects and k periods. Let t be the number of treatments. For 1 ≤ i ≤ n and
1 ≤ j ≤ k, denote by d (i, j) the treatment assigned to subject i in period j.
We assume the following full treatment × carry-over interaction model for
the response yij :

(1) yij = βi + ξd(i,j),d(i,j−1) + εij ,

where βi is the effect of subject i and ξuv is the effect of treatment u when
preceded by treatment v. For the first period, we assume a specific carry-over
effect that can be represented by a fictitious treatment labelled 0: ξu0 repre-
sents the effect of treatment u with no treatment before. The residual errors
εij are assumed to be independent identically distributed with expectation
0 and variance σ2.

In vector notation, the model can be written:

Y = Bβ + Xdξ + ε,

where Y is the nk-vector of responses with entries yij in lexicographic order,
and β is the n-vector of subject effects. The entries of the t(t+1)-vector ξ are
denoted by ξuv, also sorted in lexicographic order. The matrices associated
with these effects are respectively given by B and Xd. Note that B = In⊗Ik,
where In denotes the identity matrix of order n, the symbol ⊗ denotes the
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Kronecker product and Ik is the k-dimensional vector of ones. We have
E(ε) = 0 and Var (ε) = σ2Ink.

We denote by φ the t-vector of total effects, which corresponds to the
situation where a treatment is preceded by itself. We have φu = ξuu, for
u = 1, . . . , t. Denote by K the t(t + 1) × t matrix with entries Kw

uv = 1 if
u = v = w and 0 otherwise for u,w = 1, . . . , t and v = 0, . . . , t, where w is
the single index for the columns and uv is the double index for the rows,
similar to the index for the vector ξuv. We have

(2) φ = K ′ξ.

In most applications, a period effect is included in the model. It will be
seen in Section 3.3 that optimal designs found for Model (1) are also optimal
for a model with a period effect.

3. Information matrices for total effects.

3.1. Information matrix for ξ and φ. Put ωB = B (B′B)−1 B′, which is
the projection matrix onto the column space of B, and ω⊥B = Ink − ωB =
In ⊗ Qk with Qk = ω⊥Ik = Ik − k−1Jk, where Jk = IkI′k. The information
matrix Cd [ξ] for the vector ξ is given by (see e.g. Kunert, 1983):

Cd [ξ] = X ′
d ω⊥B Xd.

Denote by Xdi the k × t(t + 1) design matrix for subject i and by Cdi[ξ] =
X ′

di Qk Xdi the information matrix corresponding to subject i alone. We
have X ′

d = (X ′
d1, . . . , X

′
dn) and

Cd [ξ] =
n∑

i=1

Cdi[ξ] =
n∑

i=1

X ′
di Qk Xdi.

Note that Xdi and therefore Cdi[ξ] depend only on the sequence of treat-
ments applied to subject i. Denote by S the set of all sequences of k treat-
ments. For a design d and a sequence s ∈ S, denote by πd(s) the proportion
of subjects that receive s, and denote by Xs and Cs[ξ] the associated ma-
trices. We have

(3) Cd [ξ] = n
∑

s∈S
πd(s) Cs[ξ] = n

∑

s∈S
πd(s) X ′

s Qk Xs.

The information matrix for the parameter of interest φ = K ′ξ may be
obtained from Cd[ξ] by the extremal representation (see Gaffke, 1987 or
Pukelsheim, 1993):

(4) Cd [φ] = Cd

[
K ′ξ

]
= min

L∈LK

L′Cd [ξ]L,
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where LK = {L ∈ Rt(t+1)×t | L′K = It} and the minimum is taken relative
to the Loewner ordering. The minimum in (4) exists and is unique for a
given design d. Put Ed = {L ∈ LK | L′Cd[ξ]L = Cd[φ]}.

In the sequel, the entries of L, or, more generally, of any matrix of size
t(t+1)×t, will be denoted by Lw

uv, for u,w = 1, . . . , t, and v = 0, . . . , t, where
w is the column index and uv is the double index for the rows, similar to the
vector ξ or the matrix K. The t× t matrix L′K has entries (L′K)uv = Lu

vv,
for u, v = 1, . . . , t.

Lemma 1. For any design d, the row and column sums of Cd[φ] are zero.

Proof. Since Cd[φ] is symmetric, we have to prove that I′tCd[φ]It = 0.
Consider the t(t+1)× t matrix L such that Lu

vw is equal to 1 if u = v and 0
otherwise. The matrix L satisfies L It = It(t+1) and the constraint L′K = It.
It follows from (4) that I′t Cd[φ] It ≤ I′t L′ Cd [ξ] L It = I′t(t+1) Cd [ξ] It(t+1).
The result follows from the fact that Cd[ξ]It(t+1) = 0.

For a design d, denote by L∗ a matrix in Ed. Since, for any given L,
L′Cd [ξ] L is linear in Cd [ξ], we have by (3):

(5) Cd[φ] = L∗′ Cd [ξ] L∗ = n
∑

s∈S
πd(s) L∗′ Cs[ξ] L∗.

This linearization is the basis of Kushner’s methods.

3.2. Approximate designs and symmetric designs. An exact design is
characterized, up to a subject permutation, by the proportions of sequences
that appear in it. These proportions are multiples of n−1. If we allow the
proportions to varying continuously in [0, 1] with the only restriction that
the sum must be equal to 1, we obtain an approximate design. By definition,
the information matrices of ξ and φ for an approximate designs are given by
(3) and (4) as for an exact design. The second idea of Kushner’s method is
to find a universally optimal design in the set of approximate designs using
the linearized expression (5). If the optimal approximate design is not an
exact design, one can calculate a sharp lower bound for efficiency factors of
competing exact designs.

We now recall the concepts of permuted sequence, symmetric design and
symmetrized design as introduced by Kushner (1997). Let σ be a permu-
tation of the treatment labels {1, . . . , t} and s a sequence of treatments.
The permuted sequence sσ is obtained from s by permuting the treatment
labels according to σ. Similarly, the design dσ is the design obtained from
the design d by permuting the treatment labels according to σ. A design d is
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said to be a symmetric design if, for any sequence s and any permutation σ,
πd(sσ) = πd(s). For such a design, d and dσ are identical up to a subject
permutation, which may be written d = dσ. From a design d, we define the
symmetrized design d̄ by

(6) πd̄(s) =
1
t!

∑

σ∈St

πd(sσ), ∀s ∈ S,

where St is the set of all permutations of {1, . . . , t}. It is easy to see that
the symmetrized design d̄ is a symmetric design.

To a permutation σ of treatment labels, we may associate a permutation
σ∗ of the carry-over effect labels {0, 1, . . . , t} where σ∗(0) = 0 and σ∗(u) =
σ(u) for u = 1, . . . , t. We also associate a permutation σ̃ of {1, . . . , t} ×
{0, . . . , t} defined by σ̃(u, v) = (σ(u), σ∗(v)). We denote by Pσ, Pσ∗ and Pσ̃ =
Pσ⊗Pσ∗ the corresponding permutation matrices: for example, Pσ(u, v) = 1
if σ(u) = v and Pσ(u, v) = 0 otherwise.

For L ∈ LK , put Lσ = P ′
σ̃
LPσ. It can be checked that P ′

σ̃
KPσ = K (see

also the definition of the matrix L(1) below).

Lemma 2. For any design d and any permutation σ in St, we have

Cdσ [ξ] = Pσ̃ Cd[ξ] P ′
σ̃
;(7)

Cdσ [φ] = Pσ Cd[φ] P ′
σ;(8)

Cd̄[ξ] =
1
t!

∑

σ∈St

Pσ̃ Cd[ξ] P ′
σ̃
;(9)

Cd̄[φ] ≥ 1
t!

∑

σ∈St

Pσ Cd[φ] P ′
σ w.r.t. the Loewner ordering;(10)

and L ∈ Ed if and only if Lσ ∈ Edσ .

Proof. By definition of Pσ̃, Xdσ = XdP
′
σ̃
, and so Cdσ [ξ] = X ′

dσ
ω⊥B Xdσ =

Pσ̃X ′
d ω⊥B XdP

′
σ̃

= Pσ̃ Cd[ξ] P ′
σ̃
, which corresponds to (7). If L ∈ LK then

L′Cdσ [ξ]L = L′Pσ̃Cd[ξ]P ′
σ̃
L = PσL′σCd[ξ]LσP ′

σ. Now L′σK = P ′
σL′Pσ̃P ′

σ̃
KPσ =

P ′
σL′KPσ. If L ∈ LK then L′K = It, so L′σK = It and Lσ ∈ LK . The same

argument with σ−1 shows that if Lσ ∈ LK then L ∈ LK . The Loewner
ordering is unchanged by permutations, so

Cdσ [φ] = min
L∈LK

(
L′Cdσ [ξ]L

)
= Pσ

(
min

Lσ∈LK

L′σCd[ξ]Lσ

)
P ′

σ = Pσ Cd[φ] P ′
σ,

and (8) is established. Moreover, L ∈ Ed if and only if Lσ ∈ Edσ . Formula
(9) follows directly from (7) and (6). Formula (10) follows from (9) and the
concavity of the minimum representation (4).
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We recall that a t × t matrix C is completely symmetric if C = a It +
b Jt for some scalars a and b or, equivalently, if Pσ C P ′

σ = C for every
permutation σ in St.

Lemma 3. If d is a symmetric design then Cd[φ] is completely symmet-
ric.

Proof. Since d is symmetric, dσ = d. By (8), Cd[φ] = Cdσ [φ] = Pσ Cd[φ] P ′
σ

for any permutation σ in St. Therefore Cd[φ] is completely symmetric.

The key point to obtain an optimal design is to identify the structure of
the t(t + 1)× t matrix L∗ defined in (5), whose entries are denoted by L∗wuv .

Lemma 4. If d is a symmetric design then the matrix L∗ in (5) can be
chosen so that it satisfies

(11) L∗σ = L∗, ∀σ ∈ St,

or, equivalently,

(12) L
∗σ(w)
σ(u)σ∗(v) = L∗wuv , ∀σ ∈ St.

Proof. If σ ∈ St then dσ = d, so Edσ = Ed and Lemma 2 shows that
Lσ ∈ E . Put L∗ =

(∑
σ∈St

Lσ
)
/t!, which satsifies (11). Since E is closed

under taking averages (see Druilhet and Tinsson, 2009, proof of Lemma
A1), L∗ also belongs to E .

A consequence of (12) is that the entries L∗wuv are constant for (u, v, w)
belonging to the same orbit of the permutation group {(σ̃, σ)}σ∈St acting
on {1, . . . , t} × {0, . . . , t} × {1, . . . , t}. There are seven distinct orbits:

• O1 = {(u, u, u) | u = 1, . . . , t},
• O2 = {(u, v, u) | u, v = 1, . . . , t, u 6= v},
• O3 = {(u, v, v) | u, v = 1, . . . , t, u 6= v},
• O4 = {(u, v, w) | u, v, w = 1, . . . , t, u 6= v 6= w 6= u},
• O5 = {(u, 0, u) | u = 1, . . . , t},
• O6 = {(u, 0, w) | u,w = 1, . . . , t, u 6= w},
• O7 = {(u, u, w) | u,w = 1, . . . , t, u 6= w}.

For q = 1, . . . , 7, denote by L(q) the t(t+1)×t matrix with entries Lw
(q)uv = 1

if (u, v, w) belongs to the orbit Oq and 0 otherwise. Note that L(1) = K.
By construction of L(q), we have

(13) P ′
σ̃

L(q) Pσ = L(q), ∀σ ∈ St and q = 1, . . . , 7.
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Proposition 5. For a symmetric design d, the matrix L∗ in Lemma 4
may be written as

(14) L∗ = Lγ = L(1) +
6∑

q=2

γqL(q),

where γ = (γ2, . . . , γ7) is a vector of scalars.

Proof. Since L∗ satisfies (11), it is a linear combination of the matrices
L(q): L∗ =

∑7
q=1 γqL(q). It can be checked that L′(1)K = K ′K = It, L′(7)K =

Jt− It and L′(q)K = 0 for q = 2, . . . , 6. Consequently, the constraint L∗′K =
It may be written γ1 = 1 and γ7 = 0.

3.3. The model with period effects. We consider here the same model as
in Section 2 with the addition of a period effect. Since a period effect is
meaningless for approximate designs, we consider only exact designs. The
response for subject i in period j is given by:

(15) yij = αj + βi + ξd(i,j),d(i,j−1) + εij ,

where αj is the effect of period j. In vector notation, we have

(16) Y = Aα + Bβ + Xdξ + ε,

with A = In ⊗ Ik, where α is the k-vector of period effects. Denote θ′ =
(ξ′, α′). The information matrix for θ is given by:

C̃d[θ] =

(
Cd[ξ] Cd12

Cd21 Cd22

)
=

(
X ′

d ω⊥B Xd X ′
d ω⊥B A

A′ ω⊥B Xd A′ ω⊥B A

)
,

where Cd[ξ] is the information matrix for ξ obtained in the model without
period effects and Cd22 = nQk.

The t-vector φ of total effects defined by (2) may also be seen as a sub-
system of the parameter θ, because φ = K̃ ′θ with K̃ ′ = (K ′, 0t×k). The
information matrix C̃d[φ] for φ under Model (15) may be obtained from
C̃d[θ] by the extremal representation:

C̃d [φ] = min
L̃∈L

K̃

L̃′Cd [θ] L̃,

where L
K̃

= {L̃ ∈ R(t(t+1)+k)×t | L̃′K̃ = It}. Partitioning L̃′ as (L′ | N ′)
with L and N of sizes t(t + 1)× t and k × t, we have

(17) C̃d [φ] = min
(L′|N ′)′∈L

K̃

(
L′Cd [ξ]L + L′Cd12N + N ′Cd21L + N ′Cd22N

)
.
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Note that (L′ | N ′)′ ∈ L
K̃

is equivalent to L ∈ LK for L and N with
suitable dimensions. Choosing N = 0 in (17), we have C̃d[φ] ≤ Cd[φ] with
respect to the Loewner ordering, where Cd[φ] is the information matrix
for φ under the model without period effects, as defined in (4). Therefore
I′t C̃d[φ] It ≤ I′t Cd[φ] It = 0. Hence the row and column sums of C̃d[φ] are all
zero, and so QtC̃d[φ]Qt = C̃d[φ].

For σ ∈ St, define the permutation σ̄ of {1, . . . , t} × {0, . . . t} × {1, . . . k}
by σ̄(u, v, j) = (σ(u), σ∗(v), j). The associated permutation matrix Pσ̄ is the
block diagonal matrix with diagonal blocks Pσ̃ and Ik. For L̃ in L

K̃
, put

L̃σ = P ′̄
σL̃Pσ. If L̃′ = (L′ | N ′) then L̃′σ = (L′σ | N ′

σ), where Nσ = NPσ.

Lemma 6. For any design d and any permutation σ of treatment labels,
we have

Cdσ12 = Pσ̃ Cd12;(18)

C̃dσ [φ] = Pσ C̃d[φ] P ′
σ.(19)

Proof. Equation (18) follows from the fact that Xdσ = Xd P ′
σ̃
. The proof

of (19) is similar to the proof of (8), replacing ξ, L, LK and K by θ, L̃, L
K̃

and K̃ respectively.

A design is said to be strongly balanced on the periods if it satisfies the
following conditions:

(i) for the first period, each treatment appears equally often,
(ii) for any given period, except the first one, each treatment appears

preceded by itself equally often,
(iii) for any given period, except the first one, the number of times a treat-

ment, say u, is preceded by another treatment v does not depend on
u or v.

Note that a symmetric exact design is strongly balanced on the periods.

Lemma 7. If a design d is strongly balanced on the periods and σ ∈ St

then P ′
σ̃X ′

dA = X ′
dA.

Proof. The (uv, j)-entry of X ′
dA is equal to the number of times that

treatment u occurs in period j preceded by treatment v. Strong balance
implies that there is a single value for v = 0, another single value for v = u,
and another single value for v /∈ {0, u}. Permutation of the treatments does
not change this.
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Given a design d, let Gd be the subgroup of St consisting of those per-
mutations σ satisfying dσ = d (up to a subject permutation). Note that a
symmetric design may be characterized by Gd = St. The subgroup Gd is
said to be transitive on {1, . . . , t}, if, given u, v in {1, . . . , t}, there is some
σ in Gd with σ(u) = v. The subgroup Gd is doubly transitive if, given u1,
u2, v1, v2 with u1 6= u2 and v1 6= v2 there is some σ in Gd with σ(u1) = v1

and σ(u2) = v2.

Proposition 8. If d is an exact design with strong balance on the pe-
riods and with transitive group Gd, then the information matrix for φ is the
same under Models (1) and (15), that is

C̃d[φ] = Cd[φ].

In particular, this is true if d is an exact symmetric design.

Proof. The method of proof of Lemma 4 shows that the matrix L̃ used
for minimizing may be chosen to satisfy P ′̄

σL̃Pσ = L̃ for all σ in Gd. This
means that L = Lσ and N = Nσ = NPσ for all σ in Gd. If NPσ = N for all
σ in Gd and Gd is transitive then every row of N is a multiple of I′t.

We have Cd12 = X ′
dω

⊥
BA = X ′

dAQk. Lemma 7 shows that if L = Lσ then
L′Cd12 = L′σX ′

dAQk = L′σP ′
σ̃X ′

dAQk = P ′
σL′Cd12. If Gd is transitive then

every column of LCd12 is a multiple of It.
Therefore, the expression in (17) is equal to L′Cd[ξ]L+c(L,N)Jt for some

scalar c(L,N). Hence

C̃d[φ] = Qt C̃d[φ] Qt = Qt

(
min

(L′|N ′)′∈L
K̃

L′Cd[ξ]L + c(L,N)Jt

)
Qt

= min
(L′|N ′)′∈L

K̃

(
QtL

′Cd[ξ]LQt
)

= Qt

(
min

L∈LK

L′Cd[ξ]L
)

Qt

= QtCd[φ]Qt = Cd[φ].

For any design d whose Gd is doubly transitive, Cd[φ] is completely sym-
metric (replace St by Gd in the proof of Lemma 3). Double transitivity
implies strong balance on the periods, so then C̃d[φ] is also completely sym-
metric, by Proposition 8. In Section 5.6 we give some examples that show
that strong balance on the periods is not sufficient for C̃d[φ] to be completely
symmetric.



10 R. A. BAILEY AND P. DRUILHET

4. Universally optimal approximate designs. From Kiefer (1975),
a design d∗ for which the information matrix Cd∗ [φ] is completely symmetric
and that maximizes the trace of Cd[φ] over all the designs d for t treatments
using n subjects for k periods is universally optimal.

4.1. Condition for optimal designs. The following proposition shows that
a universally optimal approximate design may be sought among symmetric
designs.

Proposition 9. A symmetric design for which the trace of the informa-
tion matrix is maximal among the class of symmetric designs is universally
optimal among all possible approximate designs.

Proof. For any design d, taking the trace in (10), we have tr(Cd̄[φ]) ≥
tr(Cd[φ]). Since, by Lemma 3, Cd̄[φ] is completely symmetric, d̄ is always
better than d with respect to universal optimality. If d∗ maximizes the trace
among the set of symmetric designs, then for any design d, tr(Cd∗ [φ]) ≥
tr(Cd̄[φ]) ≥ tr(Cd[φ]). Since Cd∗ [φ] is completely symmetric and maximizes
the trace, d∗ is universally optimal.

For any sequence s, and 1 ≤ p, q ≤ 7, put cspq = tr
(
L′(p) Cs[ξ] L(q)

)
. Then

combining (5), (4) and (14), we have for a symmetric design,

tr(Cd[φ]) = min
γ2,...,γ6

∑

s∈S
n πd(s)

6∑

p=1

6∑

q=1

γpγq cspq with γ1 = 1.

Lemma 10. For a sequence s and a permutation σ on the treatment
labels, we have:

csσpq = cspq.

Proof.

csσpq = tr(P ′
σ L′(p) Csσ [ξ] L(q)Pσ), since tr(AB) = tr(BA),

= tr(P ′
σ L′(p)Pσ̃ Cs[ξ]P ′

σ̃
L(q)Pσ), by (7),

= tr(L′(p) Cs[ξ] L(q)) = cspq, by (13).

Two sequences are said to be equivalent if one can be obtained from the
other one by some permutation of treatment labels. We denote by C the set
of all possible equivalence classes. From Lemma 10, cspq depends only on the
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equivalence class ` to which s belongs, and will be therefore denoted c` pq.
To each equivalence class `, we may also associate the non-negative convex
quadratic polynomial with five variables γ = (γ2, . . . , γ6):

h`(γ) =
6∑

p=1

6∑

q=1

γpγq c` pq where γ1 = 1.

For a symmetric design, we may write π` for the proportion of sequences
which are in the equivalence class `. Then

tr(Cd[φ]) = min
γ

∑

`∈C
n π` h`(γ).

Therefore, we have the following proposition:

Proposition 11. An approximate symmetric design d∗ with proportions
{π∗` }`∈C that achieves

(20) max
{π`}`∈C

min
γ

∑

`∈C
π` h`(γ)

is universally optimal among all possible designs.

4.2. Determination of optimal proportions. We propose now the follow-
ing method derived from Kushner (1997). Consider

h∗(γ) = max
`∈C

h`(γ).

We use the following procedure:

• find γ∗ that minimizes the function h∗(γ) and denote h∗ = h(γ∗) the
minimum;

• select the classes ` of sequences such that h`(γ∗) = h∗ and denote C∗
this set;

• solve in {π` | ` ∈ C∗} the linear system,
∑

`∈C∗ π`
d h`
dγ (γ∗) = 0, for

0 < π` < 1 and
∑

`∈C π` = 1; denote π∗ = {π∗` | ` ∈ C∗} the solution
(not necessarily unique);

• the symmetric designs such that π` = π∗` for ` ∈ C∗ and 0 otherwise
are universally optimal.

5. Examples of optimal and efficient designs. For some values of
k and t, we give optimal approximate designs. For each given k, the first
table gives the optimal proportions and the second table gives the efficiency
factor for a symmetric design generated by a single sequence.
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Denote by ψ(Cd[φ]) a real-valued criterion. The efficiency factor of a de-
sign d is defined by

effψ(d) =
ψ(Cd[φ])
ψ(Cd∗ [φ])

where d∗ is the optimal approximate design with the same values of k, n and
t. The efficiency factor for a design d is defined by eff = tr(Cd[φ])/ tr(Cd∗ [φ]).

When Cd[φ] is completely symmetric, eff is also the efficiency factor for
the well known D-, A- and E-criteria (see Shah and Sinha, 1989 or Druilhet,
2004).

We write 0+ or 1− when a value is within 0.005 of 0, 1 respectively. For
some values of k and t the optimal proportions have been calculated with
formal calculus when tractable; all others have been obtained by numerical
optimisation.

The values h∗ displayed correspond to those defined in Section 4.2 for an
optimal design. The information matrix for a symmetric optimal approxi-
mate design with n subjects is therefore

Cd[φ] =
n h∗

t− 1
Qt.

5.1. 3 periods. Optimal proportions for some values of t:

t 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Prop. [ 1 1 2 ] 1
2

5
13

1
3

7
23

2
7

3
11

5
19

11
43

1
4

13
53

7
29

5
21

4
17

17
73

3
13

Prop. [ 1 2 2 ] 1
2

8
13

2
3

16
23

5
7

8
11

14
19

32
43

3
4

40
53

22
29

16
21

13
17

56
73

10
13

h∗ 1
3

16
39

4
9

32
69

10
21

16
33

28
57

64
129

1
2

80
159

44
87

32
63

26
51

112
219

20
39

Efficiency of symmetric designs generated by a single sequence:

t 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

eff. [ 1 1 2 ] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

eff. [ 1 2 2 ] 0 0.61 0.75 0.81 0.84 0.86 0.87 0.88 0.89 0.89 0.90 0.90 0.91 0.91 0.91

Example of universally optimal design for t = 4:

(
1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4 4 1 1 1 2 2 2 3 3 3 4 4 4
2 2 3 3 4 4 1 1 3 3 4 4 1 1 2 2 4 4 1 1 2 2 3 3 1 1 1 2 2 2 3 3 3 4 4 4
2 2 3 3 4 4 1 1 3 3 4 4 1 1 2 2 4 4 1 1 2 2 3 3 2 3 4 1 3 4 1 2 4 1 2 3

)
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5.2. 4 periods. The optimal approximate designs are generated by the
single sequence [ 1 1 2 2 ] for 2 ≤ t ≤ 30. It is conjectured that this is true
for any value of t.

5.3. 5 periods. Optimal proportions for some values of t:

t 2 3 4 5 6 7 8 9 10 15 20 30

Prop. [ 1 1 2 2 2 ] 1
2

7
9

17
19

47
49

0.98 0.98 0.98 0.98 0.98 0.97 0.97 0.97

Prop. [ 1 1 1 2 2 ] 1
2

2
9

2
19

2
49

0 0 0 0 0 0 0 0

Prop. [ 1 1 2 3 3 ] 0 0 0 0 0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.03

h∗ 7
5

68
45

148
95

388
245

1.60 1.61 1.62 1.63 1.63 1.64 1.65 1.66

Efficiency of symmetric designs generated by a single sequence:

t 2 3 4 5 6 7 8 9 10 15 20 30

Eff. [ 1 1 2 2 2 ] 0.95 0.99 0.998 1− 1− 1− 1− 1− 1− 1− 1− 1−

Eff. [ 1 1 1 2 2 ] 0.95 0.91 0.89 0.88 0.87 0.87 0.87 0.87 0.87 0.86 0.86 0.85

Eff. [ 1 1 2 3 3 ] − 0.77 0.82 0.84 0.85 0.86 0.86 0.86 0.86 0.87 0.88 0.88

Example of universally optimal symmetric design for t = 3:



1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 3 3 3 3 3 3 3 1 1 1 1 1 1 1 3 3 3 3 3 3 3
2 2 2 2 2 2 2 3 3 3 3 3 3 3 1 1 1 1 1 1 1 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 1 1 1 2 2 2 2 3 3 3 3
3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 1 1 1 2 2 2 2 3 3 3 3
3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 3 3 1 1 3 3 1 1 2 2
1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 3 3 1 1 3 3 1 1 2 2
1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 3 3 1 1 3 3 1 1 2 2




5.4. 6 periods. Optimal proportions for some values of t:

t 2 3 4 5 6 7 8 9 10 15 20 30

Prop. [ 1 1 1 2 2 2 ] 1 0.81 0.66 0.55 0.48 0.42 0.38 0.35 0.32 0.23 0.19 0.15

Prop. [ 1 1 2 2 3 3 ] 0 0.19 0.34 0.45 0.52 0.52 0.62 0.65 0.68 0.77 0.81 0.85

h∗ 2 2.11 2.16 2.19 2.21 2.22 2.23 2.24 2.25 2.26 2.27 2.28

Efficiency of symmetric designs generated by a single sequence:

t 2 3 4 5 6 7 8 9 10 15 20 30

Eff. [ 1 1 1 2 2 2 ] 1 0.99 0.99 0.98 0.98 0.97 0.97 0.97 0.97 0.97 0.96 0.96

Eff. [ 1 1 2 2 3 3 ] − 0.95 0.97 0.98 0.99 0.99 0.99 0.99 1− 1− 1− 1−
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5.5. 7 periods. Optimal proportions for some values of t:

t 3 4 5 6 7 ≤ t ≤ 30

Prop. [ 1 1 1 2 2 2 2 ] 0.57 0.19 0 0 0

Eff. [ 1 1 1 2 2 3 3 ] 0 0 0.09 0+ 0

Prop. [ 1 1 2 2 3 3 3 ] 0.43 0.81 0.91 1− 1

h∗ 2.60 2.70 2.76 2.80 2.82

Efficiency of symmetric designs generated by a single sequence:

t 3 4 5 6 7

Eff. [ 1 1 1 2 2 2 2 ] 0.98 0.96 0.95 0.94 0.94

Eff. [ 1 1 1 2 2 3 3 ] 0.98 0.99 0.98 0.98 0.98

Eff. [ 1 1 2 2 3 3 3 ] 0.98 1− 1− 1− 1

5.6. Efficient designs with t(t − 1) subjects. For k = 6 or k = 7, we
saw that efficient symmetric designs may be obtained from single sequences
having three treatments by permuting all the treatment labels. Such designs
require t(t − 1)(t − 2) subjects, which may be too large. We can construct
efficient designs that are strongly balanced on the periods, are generated by
a single sequence, and require only t(t− 1) subjects, as follows.

Step 1 We start from a binary balanced incomplete-block design with block-
size 3 such that for any two different periods j1 and j2 and any two
different treatments u and v, there exists exactly one subject that
receives treatment u in period j1 and treatment v in period j2. (This
is called an orthogonal array of type I and strength two: see Rao, 1961.)

– If t is odd, use all the triplets [u, u + v, u + 2v] modulo t, for
u = 0, . . . , t− 1 and v = 1, . . . , t− 1.

– If t is even, use the preceding construction for t − 1 and replace
each triplet of the form [u, u + 1, u + 2] by the three sequences
[t, u + 1, u + 2], [u, t, u + 2] and [u, u + 1, t].

Step 2 Then, we construct a design with k periods by replicating the three
treatments in each triplet in such a way that we obtain a sequence
in the same equivalence class as the one that generates the efficient
design.

For example, take k = 7 and t = 5 with generating sequence [ 1 1 2 2 3 3 3 ].
The starting design with three periods is:

(
1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5
2 3 4 5 3 4 5 1 4 5 1 2 5 1 2 3 1 2 3 4
3 5 2 4 4 1 3 5 5 2 4 1 1 3 5 2 2 4 1 3

)
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The resulting design with seven periods generated by [ 1 1 2 2 3 3 3 ] is




1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5
1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5
2 3 4 5 3 4 5 1 4 5 1 2 5 1 2 3 1 2 3 4
2 3 4 5 3 4 5 1 4 5 1 2 5 1 2 3 1 2 3 4
3 5 2 4 4 1 3 5 5 2 4 1 1 3 5 2 2 4 1 3
3 5 2 4 4 1 3 5 5 2 4 1 1 3 5 2 2 4 1 3
3 5 2 4 4 1 3 5 5 2 4 1 1 3 5 2 2 4 1 3




The following table displays the A-, D-, E-efficiency factors for designs
with 6 periods and t(t− 1) subjects generated by the sequence [ 1 1 2 2 3 3 ]
using the method described above.

t 4 5 6 7 8 9 10

A-efficiency 0.951 0.977 0.973 0.978 0.974 0.970 0.968

D-efficiency 0.951 0.977 0.973 0.978 0.974 0.970 0.968

E-efficiency 0.951 0.977 0.951 0.978 0.950 0.950 0.949

We may note that this method is interesting only for t = 7 or t = 8. For the
other values of t, the symmetric design with t(t− 1) subjects generated by
the sequence [ 1 1 1 2 2 2 ] is more efficient.

The following table displays the A-, D-, E-efficiency factors for designs
with 7 periods and t(t−1) subjects generated by the sequence [ 1 1 2 2 3 3 3 ]
using the method described above.

t 4 5 6 7 8 9 10

A-efficiency 0.974 0.990 0.982 0.983 0.978 0.973 0.971

D-efficiency 0.974 0.990 0.982 0.983 0.978 0.973 0.971

E-efficiency 0.974 0.990 0.961 0.983 0.955 0.954 0.954

For t = 4, 5, 7, the information matrices are completely symmetric. For t ≥ 5
and when the number of subjects is t(t− 1), these designs are preferable to
symmetric designs generated by the sequence [ 1 1 1 2 2 2 2 ]. This is not
the case for for t = 4.

If t = 4 or t is an odd prime, this method always gives a design d for
which Gd is doubly transitive and so C̃d[φ] is completely symmetric. If t is
any prime power, there is a second method which gives a design d in t(t−1)
periods for which Gd is completely symmetric.

Step 1 Identify the treatments with the elements of the finite field GF(t)
of order t.

Step 2 Form any triplet [x, y, z] of distinct treatments.
Step 3 Use this to produce all triplets of the form [ax + b, ay + b, az + b]

for which a and b are in GF(t) and a 6= 0.
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Step 4 Use these triplets to construct a design from the desired sequence
just as in the previous method.

For example, when t = 8, one correspondence between {1, . . . , 8} and
GF(8) gives the following starting design with three periods.

(
8 7 1 3 2 6 4 5 8 1 2 4 3 7 5 6 8 2 3 5 4 1 6 7 8 3 4 6 5 2 7 1
7 8 3 1 6 2 5 4 1 8 4 2 7 3 6 5 2 8 5 3 1 4 7 6 3 8 6 4 2 5 1 7
1 3 8 7 4 5 2 6 2 4 8 1 5 6 3 7 3 5 8 2 6 7 4 1 4 6 8 3 7 1 5 2

8 4 5 7 6 3 1 2 8 5 6 1 7 4 2 3 8 6 7 2 1 5 3 4
4 8 7 5 3 6 2 1 5 8 1 6 4 7 3 2 6 8 2 7 5 1 4 3
5 7 8 4 1 2 6 3 6 1 8 5 2 3 7 4 7 2 8 6 3 4 1 5

)

The design obtained from this starting design and the generating sequence
[ 1 1 2 2 3 3 ], respectively [ 1 1 2 2 3 3 3 ], has efficiency factor equal to
0.977, respectively to 0.981.

For t = 9, we obtain the following starting design.
(

1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 1 1 4 4 7 7 2 2 5 5 8 8 3 3 6 6 9 9
2 3 1 3 1 2 5 6 4 6 4 5 8 9 7 9 7 8 4 7 1 7 1 4 5 8 2 8 2 5 6 9 3 9 3 6
3 2 3 1 2 1 6 5 6 4 5 4 9 8 9 7 8 7 7 4 7 1 4 1 8 5 8 2 5 2 9 6 9 3 6 3

1 1 5 5 9 9 2 2 6 6 7 7 3 3 4 4 8 8 1 1 6 6 8 8 2 2 4 4 9 9 3 3 5 5 7 7
5 9 1 9 1 5 6 7 2 7 2 6 4 8 3 8 3 4 6 8 1 8 1 6 4 9 2 9 2 4 5 7 3 7 3 5
9 5 9 1 5 1 7 6 7 2 6 2 8 4 8 3 4 3 8 6 8 1 6 1 9 4 9 2 4 2 7 5 7 3 5 3

)

The design obtained from this starting design and the generating sequence
[ 1 1 2 2 3 3 ], respectively [ 1 1 2 2 3 3 3 ], has efficiency factor equal to
0.950, respectively to 0.954.
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