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Abstract. Given a compact basic semi-algebraic set K ⊂ Rn×Rm, a simple

set B (box or ellipsoid), and some semi-algebraic function f , we consider sets
defined with quantifiers, of the form

Rf := {x ∈ B : f(x,y) ≤ 0 for all y such that (x,y) ∈ K}
Df := {x ∈ B : f(x,y) ≤ 0 for some y such that (x,y) ∈ K}.

The former set Rf is particularly useful to qualify “robust” decisions x ver-
sus noise parameter y (e.g. in robust optimization) whereas the latter set

Df (a projection) is useful in design optimization when one does not want to

work with its lifted representation {(x,y) ∈ K : f(x,y) ≥ 0}. We provide a
systematic procedure to obtain a sequence of explicit inner (resp. outer) ap-

proximations that converge to Rf (resp. Df ) in a strong sense. An additional

feature is that each approximation is the sublevel set of a single polynomial
whose vector of coefficients is an optimal solution of a semidefinite program.

Several extensions are also proposed, and in particular, approximations for

sets of the form

RF := {x ∈ B : (x,y) ∈ F for all y such that (x,y) ∈ K}
where F is some other basic-semi algebraic set, and also sets defined with two
quantifiers.

1. Introduction

Consider two sets of variables x ∈ Rn and y ∈ Rm coupled with a constraint
(x,y) ∈ K, where K ⊂ Rn × Rm is some compact basic semi-algebraic set defined
by:

(1.1) K := {(x,y) ∈ Rn × Rm : x ∈ B; gj(x,y) ≥ 0, j = 1, . . . , s}

for some polynomials gj , j = 1, . . . , s, and let B ⊂ Rn be a simple set (e.g. some
box or ellipsoid).

With f : K → R a given semi-algebraic function on K (that is, its graph
{(x, f(x)) : x ∈ K} is a semi-algebraic set), and

(1.2) Kx := {y ∈ Rm : (x,y) ∈ K },

consider the two sets:

(1.3) Rf := { x ∈ B : f(x,y) ≤ 0 for all y ∈ Kx },
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and

(1.4) Df := { x ∈ B : f(x,y) ≤ 0 for some y ∈ Kx }.

Both sets Rf and Df which include a quantifier in their definition, are semi-
algebraic and are interpreted as robust sets of variables x with respect to the other
set of variables y, and to some performance criterion f .

Indeed, in the first case (1.3) one may think of “x” as decision variables which
should be robust with respect to some noise (or perturbation) y in the sense that
no matter what the admissible level of noise y ∈ Kx is, the constraint f(x,y) ≤ 0
is satisfied whenever x ∈ Rf . For instance, such sets Rf are fundamental in robust
control.

On the other hand, in the second case (1.4) the vector x should be interpreted as
design variables (or parameters), and the set Kx defines a set of admissible decisions
y ∈ Kx within the framework of design x. And so Df is the set of robust design
parameters x, in the sense that for every value of the design parameter x ∈ Df ,
there is at least one admissible decision y ∈ Kx with performance level f(x,y) ≤ 0.

Notice that D−f ⊇ B \Rf , and in a sense robust optimization is dual to design
optimization.

The semi-algebraic function f as well as the set K can be fairly complicated
and therefore in general both sets Rf and Df are non convex so that their exact
description can be fairly complicated as well! Needless to say that robust opti-
mization problems with constraints of the form x ∈ Rf , are very difficult solve. In
principle when K is a basic semi-algebraic set1, quantifier elimination is possible
via algebraic techniques; see e.g. Bochnak et al. [2]. However, in practice quantifier
elimination is very costly and untractable.

On the other hand, design optimization problems with a constraint of the form
x ∈ Df can be formulated directly in the lifted space of variables (x,y) ∈ Rn×Rm
(i.e. by adding the constraints f(x,y) ≤ 0; (x,y) ∈ K) and so with no approxima-
tion. But sometimes one may be interested in getting a description of the set Df

itself in Rn because its “shape” is hidden in the lifted (x,y)-description, or because
optimizing over K ∩ {(x,y) : f(x,y) ≤ 0} may not be practical. However, if the
projection of a basic semi-algebraic set (like e.g. Df ) is semi-algebraic, it is not
necessarily basic semi-algebraic and could be a complicated union of several basic
semi-algebraic sets (hence not very useful in practice). So in this case one wishes
to obtain a relatively simple and tractable description of Df .

So a less ambitious but more practical goal is to obtain tractable approxima-
tions of such sets Rf (or Df ). Then such approximations can be used for various
purposes, optimization being only one potential application.

Contribution. In this paper we provide a hierarchy (Rk
f ) (resp. (Dk

f )), k ∈ N,

of inner approximations for Rf (resp. outer approximations for Df ). These two
hierarchies have three essential characteristic features:

1A basic semi-algebraic set is the intersection ∩mj=1{x : gj(x) ≥ 0} of super level sets of finitely

many polynomials (gj) ⊂ R[x].
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- (a) Each set Rk
f ⊂ Rn (resp. Dk

f ), k ∈ N, has a very simple description in

terms of the sublevel set {x : pk(x) ≤ 0} (resp. {x : pk(x) ≤ 0}) associated with a
single polynomial pk (resp. pk).

- (b) Both hierarchies (Rk
f ) and (Dk

f ), k ∈ N, converge in a strong sense since we

prove that (under some conditions) vol (Rf \Rk
f ) → 0 (resp. vol (Df \Dk

f ) → 0)

as k → ∞ (and where “vol(·)” denotes the Lebesgue volume). In other words, for
k sufficiently large, the inner approximations Rk

f (resp. outer approximations Dk
f )

coincide with Rf (resp. Df ) up to a set of very small Lebesgue measure.
- (c) Computing the vector of coefficients of the above polynomial pk (resp. pk)

reduces to solving a semidefinite program whose size is parametrized by k.
Hence for instance, the constraint pk(x) ≤ 0 (resp. pk(x) ≤ 0) can be used in

any robust (resp. design) polynomial optimization problem on B, as a substitute
for x ∈ Rf (resp. x ∈ Df ), thereby eliminating the variables y. One then obtains a
standard polynomial optimization problem P for which one may apply the hierarchy
of semidefinite relaxations defined in [9] to obtain a sequence of lower bounds (and
sometimes an optimal solution if the size of the resulting is moderate or if some
sparsity pattern can be used for larger size problems). For mored details, the
interested reader is refereed to [9] (and Waki et al [12] for semidefinite relaxations
that use a sparsity pattern). But the sets Rk

f can also be used in other applications

to provide a certificate for robustness as membership in Rk
f is easy to check and

the approximation is from inside.
We first obtain inner (resp. outer) approximations of Rf (resp. Df ) when f

is a polynomial. To do so we extensively use a previous result of the author [8]
which allows to approximate in a strong sense the optimal value of a parametric
optimization problem. We then extend the methodology to the case where f is
a semi-algebraic function on K, whose graph Ψf is explicitly described by a ba-
sic semi-algebraic set2. This methodology had been already used in Henrion and
Lasserre [3] to provide (convergent) inner approximations for the particular case of
a set defined by matrix polynomial inequalities. The present contribution can be
viewed as an extension of [3] to the more general framework (1.3)-(1.4) and with f
semi-algebraic.

Finally, we also provide several extensions, and in particular, we consider:
- The case where one also enforces the computed inner or outer approximations

to be a convex set. This can be interesting for optimization purposes but of course,
in this case convergence as in (b) is lost.

- The case where f(x,y) ≤ 0 is now replaced with a polynomial matrix inequality
F(x,y) � 0, i.e., F(·, ·) is a real symmetric m ×m matrix such that Fij ∈ R[x,y]
for each entry (i, j). A converging hierarchy of inner approximations for Rf has
been already provided in [3].

- The case where Rf is now replaced with the set RF defined by:

RF = {x ∈ B : (x,y) ∈ F for all y such that (x,y) ∈ K},

where F is some basic-semi-algebraic set. And a similarly extension is also possible
for sets Df defined accordingly.

2That is, Ψf = {((x,y), f(x,y))) : (x,y) ∈ K} = {(x,y, vr) : (x,y) ∈ K; h`(x,y,v) ≥ 0, ` =

1, . . . , s}, for some polynomials h` ∈ R[x,y,v], and where v ∈ Rr.
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- The case where we now how have two quantifiers, so that for instance,

Rf = {x ∈ Bx : ∃y ∈ By s.t. f(x,y,u) ≤ 0, ∀u : (x,y,u) ∈ K},

for some boxes Bx ⊂ Rn, By ⊂ Rm, and some compact set K ⊂ Rn × Rm × Rs.

2. Notation and definitions

Let R[x] denote the ring or real polynomials in the variables x = (x1, . . . , xn),
and let R[x]d be the vector space of real polynomials of degree at most d. Similarly,
let Σ[x] ⊂ R[x] denote the convex cone of real polynomials that are sums of squares
(SOS) of polynomials, and Σ[x]d ⊂ Σ[x] its subcone of SOS polynomials of degree
at most 2d. Denote by Sm the space of m × m real symmetric matrices. For a
given matrix A ∈ Sm, the notation A � 0 (resp. A � 0) means that A is positive
semidefinite (resp. positive definite), i.e., all its eigenvalues are real and nonnegative
(resp. positive).

Moment matrix. With z = (zα) being a sequence indexed in the canonical basis
(xα) of R[x], let Lz : R[x]→ R be the so-called Riesz functional defined by:

f (=
∑
α

fα xα) 7→ Lz(f) =
∑
α

fα zα,

and let Md(z) be the symmetric matrix with rows and columns indexed in the
canonical basis (xα), and defined by:

(2.1) Md(z)(α, β) := Lz(xα+β) = zα+β , α, β ∈ Nnd
with Nnd := {α ∈ Nn : |α| (=

∑
i αi) ≤ d}.

If z has a representing measure µ, i.e., if zα =
∫

xαdµ for every α ∈ Nn, then

〈f ,Md(z)f〉 =

∫
f(x)2 dµ(x) ≥ 0, ∀ f ∈ R[x]d,

and so Md(z) � 0. In particular, if µ has a density h with respect to the Lebesgue
measure, positive on some open set B, then Md(z) � 0 because

0 = 〈f ,Md(z)f〉 ≥
∫
B

f(x)2 h(x)dx ⇒ f = 0.

Localizing matrix. Similarly, with z = (zα) and g ∈ R[x] written

x 7→ g(x) =
∑
γ∈Nn

gγ xγ ,

let Md(g y) be the symmetric matrix with rows and columns indexed in the canon-
ical basis (xα), and defined by:

(2.2) Md(g z)(α, β) := Lz

(
g(x) xα+β

)
=
∑
γ

gγ zα+β+γ , ∀α, β ∈ Nnd .

If z has a representing measure µ, then 〈f ,Md(g z)f〉 =
∫
f2gdµ, and so if µ is

supported on the set {x : g(x) ≥ 0}, then Md(g z) � 0 for all d = 0, 1, . . . because

(2.3) 〈f ,Md(g z)f〉 =

∫
f(x)2g(x) dµ(x) ≥ 0, ∀ f ∈ R[x]d.
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In particular, if µ is the Lebesgue measure and g is positive on some open set B,
then Md(g z) � 0 because

0 = 〈f ,Md(g z)f〉 ≥
∫
B

f(x)2 g(x)dx ⇒ f = 0.

3. main result

Let K be the basic semi-algebraic set defined in (1.1) for some polynomials
gj ⊂ R[x,y], j = 1, . . . , s, and with simple set (box or ellipsoid) B ⊂ Rn.

Denote by L1(B) the Lebesgue space of measurable functions h : B→ R that are
integrable with respect to the Lebesgue measure on B, i.e., such that

∫
B
|h|dx <∞.

Given f ∈ R[x,y], consider the mappings Jf : B → R ∪ {−∞} and Jf : B →
R ∪ {+∞}, respectively defined by:

x 7→ Jf (x) := sup
y
{f(x,y) : y ∈ Kx }, x ∈ B.(3.1)

x 7→ Jf (x) := inf
y
{f(x,y) : y ∈ Kx }, x ∈ B.(3.2)

The function Jf (resp. Jf ) is upper (resp. lower) semi-continuous. We will need

the following intermediate result.

Theorem 3.1. Let K ⊂ Rn × Rm be compact. If Kx 6= ∅ for every x ∈ B, there
exists a sequence of polynomials (pk) ⊂ R[x] (resp. (pk) ⊂ R[x]), k ∈ N, such that
pk(x) ≥ f(x,y) (resp. pk(x) ≤ f(x,y)) for all y ∈ Kx, x ∈ B, and such that

lim
k→∞

∫
B

| pk(x)− Jf (x)| dx = 0 [Convergence in L1(B)](3.3)

lim
k→∞

∫
B

|Jf (x)− pk(x) | dx = 0 [Convergence in L1(B)](3.4)

Proof. To prove (3.3) observe that Jf being bounded and upper semi-continuous
on B, there exists a nonincreasing sequence (fk), k ∈ N, of bounded continuous
functions fk : B→ R such that fk(x) ↓ Jf (x) for all x ∈ B, as k →∞. Moreover,
as k →∞, by the Monotone Convergence Theorem:∫

B

fk(x) dx →
∫
B

Jf (x) dx as k →∞,

and so ∫
B

|fk(x)− Jf (x)| dx =

∫
B

(fk(x)− Jf (x)) dx → 0 as k →∞,

that is, fk → Jf for the L1(B)-norm. Next, by the Stone-Weierstrass theorem, for
every k ∈ N, there exists pk ∈ R[x] such that supx∈B |pk − fk| < (2k)−1 and so

pk := pk + k−1 ≥ fk ≥ Jf on B. In addition,

lim
k→∞

∫
B

|pk(x)− Jf (x)| dx = lim
k→∞

∫
B

|pk(x)− fk(x)|︸ ︷︷ ︸
≤k−1

+|fk(x)− Jf (x)| dx

≤ lim
k→∞

(
k−1vol(B) +

∫
B

|fk(x)− Jf (x)| dx
)

≤ lim
k→∞

∫
B

|fk(x)− Jf (x)| dx = 0
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�

3.1. Robust optimization. Let Rf be as in (1.3) and let B ⊂ Rn be the set in
Theorem 3.1, assumed to have nonempty interior.

Theorem 3.2. Let K ⊂ Rn×Rm in (1.1) be compact and Kx 6= ∅ for every x ∈ B.
Assume that {x ∈ B : Jf (x) = 0} has Lebesgue measure zero.

Let Rk
f := {x ∈ B : pk(x) ≤ 0}, where pk ∈ R[x] is as in Theorem 3.1. Then

Rk
f ⊂ Rf for every k, and

(3.5) vol
(
Rf \Rk

f

)
→ 0 as k →∞.

Proof. By Theorem 3.1 pk → Jf in L1(B). Therefore by [1, Theorem 2.5.1], gk
converges to Jf in measure, that is, for every ε > 0,

(3.6) lim
k→∞

vol
(
{x : |pk(x)− Jf (x)| ≥ ε}

)
= 0.

Next, as Jf is upper semi-continuous on B, the set {x : Jf (x) < 0} is open and

as the set {x ∈ B : Jf (x) = 0} has Lebesgue measure zero,

vol(Rf ) = vol
(
{x ∈ B : Jf (x) < 0}

)
= vol

( ∞⋃
`=1

{x ∈ B : Jf (x) ≤ −1/`}

)
= lim

`→∞
vol
(
{x ∈ B : Jf (x) ≤ −1/`}

)
= lim

`→∞
vol (Rf (`)) , .(3.7)

where Rf (`) := {x ∈ B : Jf (x) ≤ −1/`}. Next, Rf (`) ⊆ Rf for every ` ≥ 1, and

vol (Rf (`)) = vol (Rf (`) ∩ {x : pk(x) > 0}) + vol (Rf (`) ∩ {x : pk(x) ≤ 0}) .

Observe that by (3.6), vol (Rf (`) ∩ {x : pk(x) > 0})→ 0 as k →∞. Therefore,

vol(Rf (`)) = lim
k→∞

vol (Rf (`) ∩ {x : pk(x) ≤ 0})︸ ︷︷ ︸
=Rk

f

(3.8)

≤ lim
k→∞

vol (Rk
f ) ≤ vol (Rf ).

As Rk
f ⊂ Rf for all k, letting ` →∞ and using (3.7) yields the desired result. �

3.2. Design optimization. Let Df be as in (1.4) and let B ⊂ Rn be the set in
Theorem 3.1, assumed to have nonempty interior.

Corollary 3.3. Let K ⊂ Rn × Rm in (1.1) be compact and Kx 6= ∅ for every
x ∈ B. Assume that {x ∈ B : Jf (x) = 0} has Lebesgue measure zero.

Let Dk
f := {x ∈ B : pk(x) ≤ 0}, where pk ∈ R[x] is as in Theorem 3.1. Then

Dk
f ⊃ Df for every k, and

(3.9) vol(Df \Dk
f ) → 0 as k →∞.
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Proof. The proof uses same arguments as in the proof of Theorem 3.2 with −f in
lieu of f . Indeed, Df = B \∆f with

∆f := {x ∈ B : −f(x,y) < 0 for all y ∈ Kx}
= {x ∈ B : sup

y
{−f(x,y) : y ∈ Kx} < 0}

= {x ∈ B : J−f (x) < 0} = {x ∈ B : Jf (x) > 0}

and since {x ∈ B : Jf (x) = 0} has Lebesgue measure zero,

vol(∆f ) = vol
(
{x ∈ B : J−f (x) ≤ 0}

)
= vol

(
{x ∈ B : Jf (x) ≥ 0}

)
.

Hence by Theorem 3.2 applied to −f ,

lim
k→∞

vol
(
{x ∈ B : pk(x) ≥ 0}

)
= vol (∆f ) ,

which in turn implies the desired result

lim
k→∞

vol
(
{x ∈ B : pk(x) ≤ 0}

)
= lim

k→∞
vol
(
{x ∈ B : pk(x) < 0}

)
= vol (B \∆f ) = vol (Df ) .

because vol
(
{x ∈ B : pk(x) = 0}

)
= 0 for every k. �

Hence for robust polynomial optimization problems where one wishes to optimize
over the set Rf , one may reinforce the complicated (and untractable) constraint
x ∈ Rf by instead considering the inner approximation obtained with the two much
simpler constraints x ∈ B and pk(x) ≥ 0. Similarly, for design problems where one
wishes to work with Df and not its lifted representation {f(x,y) ≥ 0; (x,y) ∈ K},
one may instead use the outer approximation {x : pk(x) ≤ 0}. In both cases, if
k is sufficiently large then the resulting conservatism (resp. laxism) introduced by
these respective approximations is negligible.

3.3. Practical computation. In this section we follow [8] and show how to com-
pute a sequence of polynomials (pk) ⊂ R[x], k ∈ N, as defined in Theorem 3.2. (As
expected, a similar procedure also applies to compute a sequence of polynomials
(pk) ⊂ R[x], k ∈ N, as defined in Corollary 3.3.)

With K ⊂ Rn × Rm as in (1.1) and compact, we assume that we know some
M > 0 such that M − ‖y‖2 ≥ 0 whenever (x,y) ∈ K. Next, and possibly after
re-scaling of the gj ’s, we may and will set M = 1, B = [−1, 1]n. Next, let

(3.10) γα :=

∫
B

xα dλ(x) = := vol(B)−1

∫
B

xα dx, α ∈ Nn,

be the moments of the (scaled) Lebesgue measure λ on B, which are easy to com-
pute. Moreover, letting gs+1(y) := 1−‖y‖2, and xi 7→ θi(x) := 1−x2

i , i = 1, . . . , n,
for convenience we redefine K ⊂ Rn × Rm to be the basic semi-algebraic set

(3.11) K = { (x,y) : gj(x,y) ≥ 0, j = 1, . . . , s+ 1; θi(x) ≥ 0, i = 1, . . . , n}.
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With vj := ddeg(gj)/2e, j = 0, . . . ,m, and for fixed k ≥ maxj [vj ], consider the
following optimization problem

(3.12)

ρk = min
p,σj ,ψi

∫
B

p(x) dλ(x)

s.t. p(x)− f(x,y) =

s+1∑
j=0

σj(x,y) gj(x,y) +

n∑
i=1

ψi(x,y) θi(x)

p ∈ R[x]2k; σj ∈ Σk−vj [x,y], j = 0, . . . , s+ 1
ψi ∈ Σk−1[x,y], i = 1, . . . , n.

The above optimization problem (3.12) is a semidefinite program. Indeed :
- The criterion

∫
B
p(x) dx is linear in the coefficients p = (pα), α ∈ Nn2k, of the

unknown polynomial p ∈ R[x]k. In fact,∫
B

p(x) dx =
∑
α∈Nn2k

pα

∫
B

xα dλ(x)︸ ︷︷ ︸
γα

=
∑
α∈Nn2k

pα γα.

- The constraint

p(x)− f(x,y) =

s+1∑
j=0

σj(x,y) gj(x,y) +

n∑
i=1

ψi(x,y) θi(x),

with p ∈ R[x]2k; σj ∈ Σk−vj [x,y], j = 0, . . . , s, and ψi ∈ Σk−1[x,y], k = 1, . . . , n,
reduces to

• linear equality constraints between the coefficients of the polynomials p, σj
and ψi, to satisfy the identity, and
• Linear Matrix Inequality (LMI) constraints to ensure that σj and ψi are all

SOS polynomials of degree bounded by 2(k− vj) and 2(k− 1) respectively.

The dual of the semidefinite program (3.12) reads:

(3.13)

ρ∗k = min
z

Lz(f)

s.t. Mk−vj (gj z) � 0, j = 0, . . . , s+ 1
Mk−1(θi z) � 0, i = 1, . . . , n
Lz(xα) = γα, α ∈ Nn2k,

where z = (zαβ), (α, β) ∈ Nn+m
2k , and Lz : R[x,y] → R is the Riesz functional

introduced in §2. Similarly, Mk(gj z) (resp. Mk(θi z)) is the localizing matrix
associated with the sequence z and the polynomial gj (resp. θi), also introduced in
§2.

Next we extend [8, Theorem 3.5] and prove that both (3.12) and its dual (3.13)
have an optimal solution whenever K has nonempty interior.

Theorem 3.4. Let K be as in (3.11) with nonempty interior, and assume that
Kx 6= ∅ for every x ∈ B.

Then there is no duality gap between the semidefinite program (3.12) and its dual
(3.13). Moreover (3.12) (resp. (3.13)) has an optimal solution p∗k ∈ R[x]2k (resp.
z∗ = (z∗αβ), (α, β) ∈ Nn+m

2k ). Moreover,

(3.14) lim
k→∞

∫
B

|p∗k(x)− Jf (x)| dx = 0 [Convergence in L1(B)].
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Proof. As K has a nonempty interior it contains an open set O ⊂ Rn × Rm. Let
Ox ⊂ B be the projection of O onto B, so that its (Rm) Lebesgue volume is positive.
Let µ be the finite Borel measure on K defined by

µ(A×B) :=

∫
A

φ(B |x) dλ(x), A ∈ B(Rn), B ∈ B(Rm),

where for every x ∈ Ox, φ(dy |x) is the probability measure on Rm, supported on
Kx, and defined by:

φ(B |x) = vol (Kx ∩B)/vol(Kx), ∀B ∈ B(Rm)

(and where here vol(·) denotes the Lebesgue volume in Rm). And on B \ Ox, the
probability φ(dy |x) is an arbitrary probability measure on Kx.

Let z = (zαβ), (α, β) ∈ Nn+m
2k , be the moments of µ. As K ⊃ O, Mk−vj (gj z) � 0

(resp. Mk−1(θi z) � 0) for j = 0, . . . , s+1 (resp. for i = 1, . . . , n). Indeed otherwise
suppose that Mk−vj (gj z)u = 0 for some non trivial vector u. Then one obtains
the contradiction

0 = 〈u,Md−vj (gj z)u〉 =

∫
u(x)2gj(x)µ(dx) >

∫
O

u(x)2gj(x)µ(dx) > 0.

Moreover, by construction of µ, its marginal on B is the (scaled) Lebesgue measure
λ on B and so

Lz(xα) =

∫
B

xα dλ(x) = γα, α ∈ Nn2k.

In other words, z is a strictly feasible solution of (3.13), i.e., Slater’s condition
holds for the semidefinite program (3.13). By a now standard result in convex
optimization, this implies that ρk = ρ∗k, and (3.12) has an optimal solution if ρk is
finite. So it remains to show that indeed ρk is finite and (3.13) is solvable.

Observe that from the constraint Mk−1(gs+1 z) � 0, and Mk−1(θi z) � 0, i =
1, . . . , n, we deduce that any feasible solution z of (3.13) satisfies:

Lz(y2k
` ) ≤ 1, ∀` = 1, . . . ,m; Lz(x2k

i ) ≤ 1, ∀i = 1, . . . , n.

Moreover, we also have Lz(1) = γ0, and so by [7, Lemma 4.3, p. 111] this implies
|zαβ | ≤ max[γ0, 1] for all (α, β) ∈ Nn+m

2k . Therefore, the feasible set is compact
as closed and bounded, which in turn implies that (3.13) has an optimal solution
z∗. And as Slater’s condition holds for (3.13) the dual (3.12) also has an optimal
solution. Finally (3.14) follows from [8, Theorem 3.5] �

Remark 3.5. In fact, in Theorem 3.2 on may impose the sequence (pk) ⊂ R[x],
k ∈ N, to be monotone, i.e., such that Jf ≤ pk ≤ pk−1 on B, for all k ≥ 2.
And similarly for Corollary 3.3. For the practical computation of such a monotone
sequence, in the semidefinite program (3.12) it suffices to include the additional
constraint (or positivity certificate)

p∗k−1(x)− p(x) =

n∑
i=0

φi(x) θi(x), φ0 ∈ Σ[x]k, φi ∈ Σ[x]k−1, i ≥ 1,

where θ0 = 1 and p∗k−1 ∈ R[x]k−1 is the optimal solution computed at the previous

step k − 1. In this case the inner approximations (Rk
f ), k ∈ N, form a nested

sequence since Rk
f ⊆ Rk+1

f for all k. Similarly the outer approximations (Dk
f ),

k ∈ N, also form a nested sequence since Dk+1
f ⊆ Dk

f for all k.
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4. Extensions

4.1. Semi-algebraic functions. Suppose for instance that given q1, q2 ∈ R[x,y],
one wants to characterize the set

{x ∈ B : min [q1(x,y), q2(x,y)] ≤ 0 for all y ∈ Kx},

where Kx has been defined in (1.2), i.e., the set Rf associated with the semi-
algebraic function (x,y) 7→ f(x,y) = min[q1(x,y), q2(x,y)]. If f would be the
semi-algebraic function max[q1(x,y), q2(x,y)], characterizing Rf would reduce to
the polynomial case (with some easy adjustments). But for f = min[q1, q2] this
characterization is not so easy, and in fact is significantly more complicated. How-
ever, even though f is not a polynomial any more, we shall next see that the above
methodology also works for semi-algebraic functions, a much larger class than the
class of polynomials. Of course there is no free lunch and the resulting computa-
tional burden increases because one needs additional lifting variables to represent
the semi-algebraic function.

With S ⊂ Rn being semi-algebraic, recall that f : S→ R is a semi-algebraic func-
tion if its graph {(x, f(x)) : x ∈ S} is a semi-algebraic set. And in fact, the graph
of every semi-algebraic function is the projection of some basic semi-algebraic set
in a lifted space. For more details the interested reader is referred to e.g. Lasserre
and Putinar [10, p. 418].

So with K ⊂ Rn × Rn as in (1.1), let f : K → R be a semi-algebraic function
whose graph Ψf = ((x,y), f(x,y)) is the projection {(x,y, vr) ∈ Rn ×Rm ×R} of

the basic semi-algebraic set K̂ ⊂ Rn × Rm × Rr defined by:

(4.1) K̂ := {(x,y,v) : (x,y) ∈ K; h`(x,y,v) ≥ 0, ` = 1, . . . , N},

for some polynomials (h`) ⊂ R[x,y,v]. That is,

Ψf = {(x,y, vr) : (x,y,v) ∈ K̂}.

For every x ∈ B, the set Kx in (1.2) can be rewritten in the equivalent form:

(4.2) K̂x := {y ∈ Rm : (x,y,v) ∈ K̂ }, x ∈ B.

Then the functions Jf and Jf defined in (3.1)-(3.2) become

x 7→ Jf (x) := sup
y
{vr : y ∈ K̂x }, x ∈ B.(4.3)

x 7→ Jf (x) := inf
y
{vr : y ∈ K̂x }, x ∈ B.(4.4)

And Theorem 3.1 now reads:

Theorem 4.1. Let K̂ as in (4.1) be compact. If Kx 6= ∅ for every x ∈ B, there
exists a sequence of polynomials (pk) ⊂ R[x] (resp. (pk) ⊂ R[x]), k ∈ N, such that
pk(x) ≥ f(x,y) (resp. pk(x) ≤ f(x,y)) for all y ∈ Kx, x ∈ B, and such that

lim
k→∞

∫
B

| pk(x)− Jf (x)| dx = 0 [Convergence in L1(B)](4.5)

lim
k→∞

∫
B

|Jf (x)− pk(x) | dx = 0 [Convergence in L1(B)](4.6)
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Proof. Let λ be the Lebesgue measure on the box B ⊂ Rn, scaled to be a probability

measure, and let M(K̂) be the set of finite Borel measures on K̂ ⊂ Rn+m+r, and
consider the following infinite-dimensional linear programs P:

(4.7) ρ := sup
µ∈M(K̂)

{∫
K̂

vr dµ(x,y,v) : π µ = λ

}
,

and its dual P∗:

(4.8) ρ∗ := inf
h∈C(B)

{∫
B

h dλ : p(x)− vr ≥ 0, ∀(x,y,v) ∈ K̂

}
,

where C(B) is the Banach space of continuous functions on B, equipped with the
sup-norm.

Recall that vr = f(x,y) whenever (x,y,v) ∈ K̂, and so for every feasible solution
µ of (4.7) one has∫

K̂

vr dµ(x,y,v) ≤
∫
K̂

Jf (x) dµ(x,y,v) =

∫
B

Jf (x) dλ(x),

and so ρ ≤
∫
B
Jfdλ.

As f is continuous on K and Kx 6= ∅ for every x ∈ B, Jf (x) = f(x,y∗(x)) for
some y∗(x) ∈ Kx, and for all x ∈ B. So for every x ∈ B, let ∆∗(x) := {(y,v) ∈
Kx×Rr : vr = f(x,y∗(x)) = Jf (x)}, which is nonempty. Define the Borel measure

µ∗ ∈M(K̂) as ϕ(d(y,v)|x)λ(dx), where ϕ(·|x) is a stochastic kernel (or conditional
distribution given x ∈ B) uniformly supported on ∆∗(x), for every x ∈ B. Then
by construction πµ∗ = λ and

∫
K̂

vr dµ
∗(x,y,v) =

∫
B

(∫
∆∗(x)

vrϕ(d(y,v)|x)

)
dλ(x) =

∫
B

Jf (x) dλ(x) ≤ ρ,

where the last inequality is because µ∗ is admissible for P. And so ρ =
∫
B
Jfdλ.

Next, proceeding exactly as for the proof of [8, Lemma 2.5], one may show that
there is no duality gap between P and its dual P∗. So consider a minimizing
sequence (hk) ⊂ C(B), k ∈ N, with limk→∞

∫
B
hkdλ = ρ, and hk(x) ≥ vr for all

(x,y,v) ∈ K̂, or equivalently, hk ≥ Jf on B.
As B is compact, by the Stone-Weierstrass theorem, for each k, let pk ∈ R[x]

be such that sup {|hk(x) − pk(x)| : x ∈ B} < 1/k. Then pk(x) := 1/k + pk(x) ≥
hk(x) ≥ Jf (x) for all x ∈ B, and so

lim
k→∞

∫
B

pk dλ = lim
k→∞

∫
B

hk dλ =

∫
B

Jf dλ = ρ.

And so one obtains the desired L1(B)-convergence,
∫
B
|pk − Jf | dλ→ 0 as k →∞,

i.e., (3.3) holds. And (3.4) is obtained in a similar fashion. �
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And so Theorem 3.2, Corollary 3.3, Theorem 3.4 and Theorem ?? all apply,
where the semidefinite program (3.12) now reads:

(4.9)

ρk = min
p,σj ,ψi,χ`

∫
B

p(x) dx

s.t. p(x)− vr =

s+1∑
j=0

σj(x,y,v) gj(x,y)

+

n∑
i=1

ψi(x,y,v) θi(x) +

N∑
`=1

χ`(x,y,v)h`(x,y,v)

p ∈ R[x]2k; σj ∈ Σk−vj [x,y,v], j = 0, . . . , s+ 1
ψi ∈ Σk−1[x,y,v], i = 1, . . . , n.
χi ∈ Σk−q` [x,y,v], ` = 1, . . . , N.

where q` = ddeg(h`)/2e, ` = 1, . . . , N .

Example 1. For instance suppose that f : Rn × Rm → R is the semi-algebraic
function (x,y) 7→ f(x,y) := min[q1(x,y), q2(x,y)]. Then using a ∧ b = 1

2 (a + b −
|a− b|) and |a− b| = θ ≥ 0 with θ2 = (a− b)2,

K̂ = {(x,y,v) : (x,y) ∈ K; v2
1 = (q1(x,y)− q2(x,y))2; v1 ≥ 0;

2v2 = q1(x,y) + q2(x,y)− v1} ,
and

Ψf = {((x,y), f(x,y))} = {(x,y, v2) : (x,y, v1, v2) ∈ K̂}.

4.2. Convex inner approximations. It is worth mentioning that enforcing con-
vexity of inner approximations of Rf is easy. But of course there is some additional
computational cost and the convergence in Theorem ?? is lost in general.

To enforce convexity of the level set {x ∈ B : p∗k(x) ≤ 0} it suffices to require
that p∗k is convex on B, i.e., adding the constraint

〈u,∇2p∗k(x) u〉 ≥ 0, ∀(x,u) ∈ B×U,

where U := {u ∈ Rn : ‖u‖2 ≤ 1}. The latter constraint can in turn be enforced by
the Putinar positivity certificate

(4.10) 〈u,∇2p∗k(x) u〉 =

n∑
i=0

ωi(x,u) θi(x) + ωn+1(x,u) θn+1(x,u),

for some SOS polynomials (ωi) ⊂ Σ[x,u] (and where θn+1(x,u) = 1− ‖u‖2).
Then (4.10) can be included in the semidefinite program (3.12) with ω0 ∈

Σ[x,u]k, and ωi ∈ Σ[x,u]k−1, i = 1, . . . n + 1. However, now z = (zα,γ,β),
(α, β, γ) ∈ N2n+m, and so solving the resulting semidefinite program is more de-
manding.

4.3. Polynomial matrix inequalities. Let Aα ∈ Sm, α ∈ Nnd , be real symmetric
matrices and let B ⊂ Rn be a given box. Consider the set

(4.11) S := {x ∈ B : A(x) � 0},
where A ∈ R[x]m×m is the matrix polynomial

x 7→ A(x) :=
∑
α∈Nnd

xα Aα.
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If A(x) is linear in x then S is convex and (4.11) is an LMI description of S which
is very nice as it can be used efficiently in semidefinite programming.

In the general case the description (4.11) of S is called a Polynomial Matrix
Inequality (PMI) and cannot be used as efficiently as in the convex case. Indeed
S is a basic semi-algebraic set with an alternative description in terms of the box
constraint x ∈ B and m additional polynomial inequality constraints (including
the constraint det(A(x)) ≥ 0). However, this latter description may not be very
appropriate either because the degree of polynomials involved in that description
is potentially as large as dm which precludes from its use for practical computation
(e.g., for optimization purposes).

On the other hand, for polynomial optimization problems with a PMI constraint
A(x) � 0, one may still define an appropriate and ad hoc hierarchy of semidefinite
relaxations, as described in Hol and Scherer [5, 6], and Henrion and Lasserre [4].
But even if more economical than the hierarchy using the former description of S
with m (high degree) polynomials, this latter approach may not still be ideal. In
particular it is not clear how to detect (and then take benefit of) some possible
structured sparsity to reduce the computational cost.

So in the general case and when dm is not small, one may be interested in a
description of S simpler than the PMI (4.11) so that it can used more efficiently.

Let Y := {y ∈ Rm : ‖y‖2 = 1} denote the unit sphere of Rm. Then with
(x,y) 7→ f(x,y) := −〈y,A(x)y〉, the set S has the alternative and equivalent
description

(4.12) S = {x ∈ B : f(x,y) ≤ 0, ∀y ∈ Y} =: Rf ,

which involves the quantifier “∀”. Therefore the machinery developed in §3 can be
applied to define the hierarchy of inner approximations Rk

f ⊂ S in Theorem 3.2,

where for each k, Rk
f = {x ∈ B : pk(x) ≤ 0} for some polynomial pk of degree k.

Observe that if x 7→ A(x) is not a constant matrix, then with

x 7→ Jf (x) := sup
y
{f(x,y) : y ∈ Y}, x ∈ B,

the set {x : Jf (x) = 0} has Lebesgue measure zero because Jf (x) is the largest
eigenvalue of −A(x). Hence by Theorem 3.2

vol
(
Rk
f

)
→ vol(S), as k →∞.

Notice that computing pk has required to introduce the m additional variables y
but the degree of f is not larger than d+2 if d is the maximum degree of the entries.

Importantly for computational purposes, if the polynomial x 7→ f(x,y) has some
structured sparsity3 then (x,y) 7→ f(x,y) inherits the same structured sparsity (but
with now ∪pj=1(xj ,y) in lieu of ∪pj=1xj). And so in particular, for computing pk one
may use the sparse version of the hierarchy of semidefinite relaxations introduced
in Waki et al. [12] which permits to handle problems with a significantly large
number of variables.

3That is, f(x,y) =
∑p

j=1 fj(xj ,y) where xj = (xi1 , . . . , xij ), with {i1, . . . , ij} ⊂ {1, . . . , n}.
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Example 2. The following illustrative example is taken from Henrion and Lasserre
[3]. With n = 2, let B ⊂ R2 be the unit disk {x : ‖x‖2 ≤ 1}, and let

A(x) :=

[
1− 16x1x2 x1

x1 1− x2
1 − x2

2

]
; S := {x ∈ B : A(x) � 0}.
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Figure 1. Example 2: R1
f (left) and R2

f (right) inner approxi-

mations (light gray) of S (dark gray) embedded in unit disk B
(dashed)
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Figure 2. Example 2: R3
f (left) and R4

f (right) inner approxi-

mations (light gray) of S (dark gray) embedded in unit disk B
(dashed).

In Figure 1 is displayed S and the degree two R1
f and four R2

f inner approxima-

tions of S, whereas in Figure 2 are displayed the R3
f and R4

f inner approximations

of S. One may see that with k = 4, R4
f is already a quite good approximation of

S.
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4.4. Several functions f . We now consider sets of the form

RF := {x ∈ B : (x,y) ∈ F for all y such that (x,y) ∈ K}

where F ⊂ Rn × Rm is a basic-semi algebraic set defined by

F := {(x,y) ∈ Rn × Rm : f`(x,y) ≤ 0, ∀` = 1, . . . , q},

for some polynomials (f`) ⊂ R[x,y], ` = 1, . . . , q. Of course it is a particular case
of the previous section with the semi-algebraic function f = f1 ∨ f2 · · · ∨ fq, but in
this case a simpler approach is possible.

Let pk` ∈ R[x] be the polynomial in Theorem 3.1 associated with Jf` , ` =
1, . . . , q, and let the set Rk

F be defined by

Rk
F := {x ∈ Rn : pk`(x) ≤ 0, ` = 1, . . . , q} =

q⋂
`=1

Rk
f`
,

where for each ` = 1, . . . , q, the set Rk
f`

is defined in the obvious manner.

The sets (Rk
F ) ⊂ RF , k ∈ N, provide a sequence of inner approximations of RF

with the nice property that

lim
k→∞

vol
(
Rk
F

)
= vol (RF ) ,

whenever the set

{x ∈ B : sup
y
{max

`
f`(x,y) : y ∈ Kx} = 0}

has Lebesgue measure zero.

4.5. Sets defined with two quantifiers. Consider three types of variables (x,y,u) ∈
Rn × Rm × Rs, a box Bx ⊂ Rn, a box By ⊂ Rm, and a set K ⊂ Bx ×By ×U. It
is assumed that for each (x,y) ∈ Bxy (= Bx ×By),

Kxy := {u ∈ U : (x,y,u) ∈ K} 6= ∅.

Sets with ∀, ∃. Consider a set D′f of the form

(4.13) D′f := {x ∈ Bx : ∃y ∈ By such that f(x,y,u) ≤ 0 for all u ∈ Kxy}.

Such a set is not easy to handle, in particular for optimizing over it. So it is highly
desirable to approximate as closely as possible such a set D′f with a set having a
much simpler description, and in particular a description with no quantifier. We
propose to use the methodology of §3 to provide such approximations.

One proceeds as follows. First define the function Jf : Bxy → R by:

Jf (x,y) := sup
u
{f(x,y,u) : (x,y,u) ∈ K},

so that D′f = {x ∈ Bx : ∃y ∈ By such that Jf (x,y) ≤ 0}.
By Theorem 3.2 (adapted to the present context), the function Jf can be ap-

proximated by some polynomial pk ∈ R[x,y] such that pk(x,y) ≥ Jf (x,y) for all

(x,y) ∈ Bxy. Then as pk ≥ Jf on Bxy for all k, one has the inclusions

D′f ⊃ Dk
f := {x ∈ Bx : ∃y ∈ By such that pk(x,y) ≤ 0}, ∀k.
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With no loss of generality one may and will assume that for every k ≥ 1,

Jf (x,y) ≤ pk(x,y) ≤ pk−1(x,y), ∀(x,y) ∈ Bxy.

(See Remark 3.5.) Hence D′f ⊃ Dk
f ⊃ Dk−1

f for all k ≥ 2, i.e., the (Dk
f ), k ∈ N, is

a monotone non decreasing nested sequence.

Lemma 4.2. Let D′f be as in (4.13) and assume that the set

{(x,y) ∈ Bxy : Jf (x,y) = 0}

has Lebesgue measure zero. Then

lim
k→∞

vol ({(x,y) ∈ Bxy : pk(x,y) ≤ 0}) = vol
(
{(x,y) ∈ Bxy : Jf (x,y) ≤ 0}

)
Therefore we have obtained a convergent hierarchy of inner approximations

Hk
xy,f := {(x,y) ∈ Bxy : pk(x,y) ≤ 0}, k ∈ N,

of the lifted representation Hxy,f := {(x,y) ∈ Bxy : Jf (x,y) ≤ 0} of D′f . Each set

Hk
xy,f has a very simple description in terms of the sublevel set of some polynomial

and with no quantifier.

But one may even obtain approximations of D′f itself rather than approximations
of its lifted representation Hxy,f . Following §3 again, for each k ∈ N, one may
construct outer approximations

Dk`
f := {x ∈ Bx : pk`(x) ≤ 0 } ⊃ Dk

f , ∀`,

for some polynomial pk` ∈ R[x] such that pk`(x) ≤ pk(x,y) for all (x,y) ∈ Bx×By,
and all k, `. Moreover, for every k, if vol ({x ∈ Bx : pk(x,y) = 0}) = 0 then

lim
`→∞

vol
(
Dk`
f

)
= vol

(
Dk
f

)
.

But in general we will not have: lim
k→∞

vol
(
Dk
f

)
= vol

(
D′f
)

as k →∞.

Sets with ∃, ∀. Consider now a set R′f of the form

(4.14) R′f := {x ∈ Bx : ∀y ∈ By, ∃u ∈ Kxy such that f(x,y,u) ≤ 0}.

As for D′f , such a set is not easy to handle, in particular for optimizing over it.

So again it is highly desirable to approximate as closely as possible such a set R′f
with a set having a much simpler description, and in particular a description with
no quantifier. So proceeding In a similar fashion as before, first define the function
Jf : Bxy → R by:

Jf (x,y) := inf
u
{f(x,y,u) : (x,y,u) ∈ K},

so that R′f = {x ∈ Bx : Jf (x,y) ≤ 0 for all y ∈ By}.
By Corollary 3.3 (adapted to the present context), the function Jf can be ap-

proximated by some polynomial pk ∈ R[x,y] such that pk(x,y) ≤ Jf (x,y) for all

(x,y) ∈ Bxy. Then as pk ≤ Jf on Bxy for all k, one has the inclusions

R′f ⊂ Rk
f := {x ∈ Bx : pk(x,y) ≤ 0 for all y ∈ By}, ∀k.

And so we have the following analogue of Lemma 4.2
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Lemma 4.3. Let R′f be as in (4.14) and assume that the set

{(x,y) ∈ Bxy : Jf (x,y) = 0}

has Lebesgue measure zero. Then

lim
k→∞

vol
(
{(x,y) ∈ Bxy : pk(x,y) ≤ 0}

)
= vol

(
{(x,y) ∈ Bxy : Jf (x,y) ≤ 0}

)
Therefore we have obtained a convergent hierarchy of outer approximations

∆k
xy,f := {(x,y) ∈ Bxy : pk(x,y) ≤ 0}, k ∈ N,

of the lifted representation ∆xy,f := {(x,y) ∈ Bxy : Jf (x,y) ≤ 0} of R′f . Again,

each set ∆k
xy,f has a very simple description in terms of the sublevel set of some

polynomial and with no quantifier.

But one may even obtain approximations of R′f itself rather than approximations
of its lifted representation ∆xy,f . Following §3 again, for each k ∈ N, one may
construct inner approximations

Rk`
f := {x ∈ Bx : pk`(x) ≤ 0 } ⊂ Rk

f , ∀`,
for some polynomial pk` ∈ R[x] such that pk`(x) ≥ pk(x,y) for all (x,y) ∈ Bxy,

and all k, `. Moreover, for every k, if vol
(
{x ∈ Bx : pk(x,y) = 0}

)
= 0 then

lim
`→∞

vol
(
Rk`
f

)
= vol

(
Rk
f

)
.

But in general we will not have: lim
k→∞

vol
(
Rk
f

)
= vol

(
R′f
)

as k →∞.
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