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Abstract: A classification of all possible icosahedral viral capsids is proposed.
It takes into account the diversity of hexamers’ compositions, leading to definite
capsid size. We show how the self-organization of observed capsids during their
production results from definite symmetries of constituting hexamers. The division
of all icosahedral capsids into four symmetry classes is given. New subclasses im-
plementing the action of symmetry groups Z2, Z3 and S3 are found and described.
They concern special cases of highly symmetric capsids whose T = p2 + pq + q2-
number is of particular type corresponding to the cases (p, 0) or (p, p).
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1 Introduction

1.1 Capsid viruses

One of the outstanding features of nature is its extraordinary economy of
means. Nature seems to be very parsimonious, no matter whether the econ-
omy concerns some fundamental laws processes, or more complicated phe-
nomena including life and evolution.

In the inanimated world this parsimony can be found in the least ac-
tion principle and the minimization of free energy or free enthalpy in ther-
modynamical equilibrium. In biology one can often observe extraordinary
efficiency of organisms which adapt themselves to various conditions by min-
imizing their energy loss and maximizing their survival probability.

One of the important ways to ensure minimal or maximal value of essential
parameters is the use of symmetries. It is not a coincident that the least
surface area and the greatest volume of a convex three-dimensional body is
attained by the most symmetric one, which is the perfect sphere. In living
organisms one is often amazed by the utter economy and efficiency, by perfect
hydrodynamical properties of the fish and the aerodynamics of birds’ wings.

There is also an fantastic ability to pack a maximal amount of information
into smallest volumes available, which is done by the DNA dense packing in
chromosomes. This spectacular ability to store information in an optimal
way can be observed in viruses, in particular in the so-called capsid viruses,
especially in their icosahedral capsid variety. Capsids play an essential role in
viruses’ survival, protecting the DNA, which is the acting part of the virus,
from external dangers like chemical attacks or solar radiation. The capsids’
sizes are optimally adapted to the size of the DNA to be packed within,
and when a mutation occurs leading to a longer DNA chain, the size of the
capsid must follow in order to be able to contain it. The information ruling
capsids’ construction and build-up is contained in the DNA or both in DNA
and RNA, depending on virus type. It is encoded in the particular type of
coat proteins, and can be reduced using the possibilities offered by the high
degree of symmmetry displayed by the icosahedral shape.

In what follows, we present the generalization of the model of assembly
schemes of viral capsid symmetries successfully applied to icosahedral capsids
in our previous papers ([21], [2], [3], [4]) based on the analysis of the protein
content of the elementary building blocks, the five- and six-fold capsomers
displaying different internal symmetries.
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A very large class of viruses build protection shells called capsids, made
of special coat proteins and produced during the reproduction cycle inside an
infected cell.

Figure 1: Papilloma viruses A herpes virus with its tegument

During infection, the capsid is left behind, while the DNA strain is in-
jected into cell’s nucleus. Later on, the DNA multiplies itself using the
genetic material of the cell; parallelly, special coat proteins are synthetized,
with which new capsids are constructed inside the infected cell. Then the
newly produced complete DNA strains are packed into the empty capsids,
and newly born viruses leave the cell, infecting its neighbors.

Figure 2: The stages of viral reproduction of the HSV virus.

A better knowledge of capsids’ structure and symmetries can be helpful
in understanding evolutionary trends and kinship between different virus
species. The building schemes for capsids made of coat proteins are ruled by
and encoded in the RNA and DNA molecules.
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1.2 Triangular number

The triangular number T is determined by two non-negative integers, (p, q),
via the simple formula:

T (p, q) = p2 + pq + q2.

All possible icosahedral structures made of 12 perfect pentagons and an
appropriate number of perfect hexagons have been found by Coxeter in the
middle of last century. Coxeter’s classification was based on the notion of an
elementary triangle, defined as follows.

Given two numbers (p, q) and a perfect hexagonal grid, we start by picking
up a hexagon and transform it into a perfect pentagon. Then make p steps
to the right, then q steps at the angle of 120o, and plac the second pentagon
there. Then repeat the same operation once more, and get the elementary
triangle. Here are the examples of how this prescription works:

Figure 3: (p, q) = (1, 1); T = 3, and (p, q) = (2, 0); T = 4.

Figure 4: (p, q) = (2, 2);T = 12,, with its triangle; (p, q) = (3, 2), T = 19.

Let us show the schematic representations of icosahedral capsids. Due to
the symmetry T (p, q) = T (q, p), it is enough to consider pairs with p ≥ q. The
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smallest icosahedral capsids correspond to triangular numbers T = 1, T = 3
and T = 4.

Figure 5: The smallest capsids: T = 1, T = 3, T = 4

The next three icosahedral capsids are generated by triangular numbers
T = 7, T = 9 and T = 12.

Figure 6: Capsids with T = 7, T = 9 and T = 12.

It is also useful to observe that the total number N6 of hexamers in a
capsid with a given T -number is given by the formula N6 = 10(T − 1).

2 Agglomeration

2.1 Random versus programmed agglomeration

The growth of icosahedral capsids via random agglomeration of capsomers
seems highly unprobable. Were it really so, the final yield would be close to
zero (something like 2−23 ' 10−8. This is so because in a random agglom-
eration process the error rate at each elementary step consisting in adding a
new capsomer would be close to 50%, as it is shown in the next figure (7).
The observed efficiency of capsid construction from campsomers produced in
infected cells is close to 100%
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Figure 7: Random agglomeration of 5- and 6-sided capsomers

The most natural conclusion is that instead of random agglomeration of
capsomers, what takes place is a very strict assembling process, with exclusive
sticking rules. At least in the species whose triangular number is not too high,
up to Adenoviridae (T = 25): this is the most plausible explanation of the
observed full use of capsomers, with almost no waste.

For very large icosahedral capsids the agglomeration is less successful, and
displays less ordered character In this case the driving forces for assembly
in a particularly symmetric way are most probably of entropic and energetic
nature.

As already stated above, the information about icosahedral capsid’s struc-
ture is encoded in its basic triangle, twenty identical copies of which form an
icosahedron. Consider the simplest case (besides a dodecahedron, with no
hexamers at all, observed in Microviridae). The T = 3 capsid is quite com-
mon, namely in Cowpea and in the group Paroviridae.

Figure 8: Basic triangle of the T = 3 icosahedral capsid

2.2 Capsomer differentiation

Sometimes the capsids are assembled with dimers and trimers, but the re-
sulting pattern is the same, as shown in the Figure (9): In the Adenovirus
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Figure 9: T = 3 and T = 4 capsids realized with dimers and trimers.

capsid hexamers occupying different positions in the capsid must differ from
each other. There are four different types, as dictated by symmetry of the
capsid, plus the twelve pentagons.

We therefore must conclude that hexamer differentiation is necessary in
order to ensure the right agglomeration scheme. Had hexamers all their sides
equivalent, nothing would stop the formation of undesirable clusters which
cannot lead to the correct construction of the Adenovirus capsid, as shown
in the figure below:

Figure 10: The adenovirus, T = 25; Capsomer differentiation

Figure 11: allowed forbidden
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3 Symmetries

3.1 The simplest discrete groups

Capsomers, which are the building blocks from which capsids are assembled,
display various internal symmetries due to differentiation of coat proteins
forming them. Pentamers and hexamers can be made of one, two, three or
more different proteins.

Figure 12: Being a prime number, 5 is divisible only by 1 and itself, giving rise to
two admissible configurations: all sides identical, or all sides different. A hexagon
displays a much higher symmetry.

The internal symmetries of capsomers can be analyzed with the help of
simplest discrete groups, known as permutation groups. Denoted by Sn, they
consist of all permutation operations acting on any set containing n items.
The dimension of an Sn group is therefore equal to n!. Cyclic permutations
of n elements form an n-dimensional subgroup of Sn denoted by Zn.

The S2 group contains only two elements, the identity keeping two items
unchanged, and the only non-trivial permutation of two items, (ab) → (ba).
This permutation is cyclic, so the S2 group coincides with its Z2 subgroup.
The simplest representations of the Z2 group are realised via its actions on
the complex numbers, C1. Three different inversions can be introduced, each
of them generating a different representation of Z2 in the complex plane C1:

i) the sign inversion, z → −z;
ii) complex conjugation, z → z̄;
iii) the combination of both, z → −z̄.
One should not forget about the fourth possibility, the trivial representa-

tion attributing the identity transformation to the two elements of the group,
including the non-trivial one:

iv) the identity transformation, z → z.
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The Z2 group can be implemented on a plane with two different actions:
We shall denote the first realization by ZI

2 , and the second by ZR
2 .

Figure 13: Inversion Rotation by 180o

Two simple discrete groups next in row after Z2 are of particular interest
to us: The symmetric S3 group and its cyclic subgroup Z3.

The symmetric group S3 containing all permutations of three different
elements is a special case among all symmetry groups SN . It is exceptional
because it is the first in the row to be non-abelian, and the last one that
possesses a faithful representation in the complex plane C1.

It contains six elements, and can be generated with only two elements,
corresponding to one cyclic and one odd permutation, e.g. (abc) → (bca), and
(abc) → (cba). All permutations can be represented as different operations
on complex numbers as follows.

The cyclic group Z3 has a natural representation on the complex plane.
Let us denote the primitive third root of unity by j = e2πi/3. Let the per-
mutation (abc) → (bca) be represented by multiplication by j. Then the
three cyclic permutations can be represented via multiplication by j, j2 and
j3 = 1 (the identity), corresponding to the rotation by 120o, 240o and 360o

(the identity transformation, equivalent to the rotation by 0o).
Odd permutations must be represented by idempotents, i.e. by oper-

ations whose square is the identity operation. We can make the following
choice: let the odd permutation (abc) → (cba) be represented by the complex
conjugation z → z̄, or the reflection with respect to thge real axis.

Then the six S3 symmetry transformations contain the identity, two rota-
tions, one by 120o, another one by 240o, and three reflections, in the x-axis,
in the j-axis and in the j2-axis. The Z3 subgroup contains only the three
rotations, as shown in the following figure (14):

9



Figure 14: Rotations by 120o and 240o (left) and the full S3 group.

3.2 Internal symmetries of hexamers

The symmetry of a hexamer is dictated by the place it occupies in the icosa-
hedral capsid. It may lie on one of the symmetry axes, which may be two- or
three-fold. A three-fold symmetry is realized by hexamers with the ababab
coat proteinscheme, while a 2-fold symmetry can be realized in many ways,
e.g. with abcabc scheme.

Let us proceed to the analysis of discrete symmetries that can occur in
various hexamers. We shall start with the least symmetric one, which has
totally differentiated sides according to the scheme (abcdef), then proceed
to the more symmetric cases. The abcdef scheme is shown below: The next

Figure 15: The hexamer with totally differentiatesd sides - six different proteins.

example is provided by a hexamer admitting only one symmetry ZR
2 . Its sides

are labeled according to the scheme (abcabc). Another simplest example is
a hexamer admitting only one symmetry ZI

2 . Its sides are labeled according
to the scheme (bdffdb). A third possibility of hexamer admitting only one
symmetry ZI

2 is given below. Its sides are labeled according to the scheme
(abcdcb). More elaborated hexamers schemes can admit two ZI

2 symmetries.
In such a case hexamer sides are labeled according to the scheme (bbccbb).
Next example is provided by a hexamer admitting the Z3 symmetry. Its sides
are labeled according to the scheme (ababab). With this in mind, we can
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Figure 16: Partially differentiated sides - three different proteins.

Figure 17: Partially differentiated sides - three different proteins.

Figure 18: Partially differentiated sides - four different proteins.

Figure 19: Partially differentiated sides - two different proteins.

explore the symmetries of capsids constructed with various hexamer types.
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Figure 20: Partially differentiated sides - two different proteins.

4 Classification

4.1 Affinity matrices

In what follows, we shall mark the five pentagon forming proteins with letter
“p”, and the sides of chosen hexamers that stick to pentamers’ sides with
letter “a”.

The information concerning the agglomeration scheme can be encoded
in a corresponding affinity matrix, which is a square table whose lines and
columns are labeled with different letters denoting all different protein types.
In the intersection of lines and columns we put 1 if the corresponding protein
types stick together, and 0 if the corresponding agglomeration is forbidden.
This can be also interpreted as a matrix of probabilities, 1 for the 100%
probability of sticking together, and 0 when sticking together is totally ex-
cluded. The first example is provided by agglomerating pentamers with only
one type of hexamers, containing only two types of coat proteins: The next

Figure 21: The assembly scheme and affinity matrix of a T = 3 capsid; a real
example: the human Hepatitis virus.

example is given by a bit more diversified hexamers containing threee types
of coat proteins: The next T -number is 7. It admits two isomers, left and
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Figure 22: The assembly scheme and affinity matrix of a T = 4 capsid

right, and is found in Papiloviridae. Here is the left-oriented isomer.

Figure 23: The assembly scheme and affinity matrix of a T = 7 capsid (left)

Figure 24: The assembly scheme and affinity matrix of a T = 7 capsid (right)

New hexamers are needed to continue the game. For larger capsids, in
which the rate of pentamers is lower, one cannot obtain proper assembling
rules unless more than one type of hexamer is present, out of which only one is
allowed to agglomerate with pentamers. In the case of two different hexamer
types one obtains either the T = 9 capsid, or, with one totally differentiated
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hexamer and two hexamers, one of the (ababab) type and another of the
(abcabc) type, the T = 12 capsid.

Figure 25: The assembly schemes of T = 9 and T = 12 capsids

To get the T = 25 adenovirus capsid, one must introduce no less than
four different hexamers, all of the being of the (abcdef) type, out of which
only one type can agglomerate with pentamers. As 25 is a square of prime
number, each of these four types contains 6 different sides (proteins).

Counting in the unique protein found in pentamers, we get the result
that the triangular number defines at the same time the number of different
proteins participating in the construction.

The “affinity matrices” giving the links between various proteins belong
the the set of the so-called circulant matrices, characterized by the fact that
there is only one unit in each row and in each column, the rest of the entries
being equal to 0

The square of any such matrix is the unit matrix, and its eigenvalues are
1 or −1. Due to this circumstance, each protein appears exactly 60 times in
the fully built capsid.

4.2 General scheme with three hexamer types

In this section we consider only three hexamer types, (ababab), (abcabc) and
(abcdef). We can organize all the capsids obtained with these hexamers
in a single table below. To each value of triangular number T corresponds
a unique partition into 1 + (T − 1) where the “1” represents the unique
pentamer type and (T − 1) is partitioned into a sum of certain number of
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different hexamer types, according to the formula

(T − 1) = 6 α + 3 β + 2 γ

with non-negative integers α, β and γ, of which β and γ can take on only the
values 0 or 1.

Type (p,q) T = p2 + pq + q2 N6 T decomposition

(1,1) 3 20 1 + 2

(2,0) 4 30 1 + 3

(2,1) 7 60 1 + 6

(3,0) 9 80 1 + 6 + 2

(2,2) 12 110 1 + 6 + 2 + 3

(3,1) 13 120 1 + 6 + 6

(4,0) 16 150 1 + 6 + 6 + 3

(3,2) 19 180 1 + 6 + 6 + 6

(4,1) 21 200 1 + 6 + 6 + 6 + 2

(5,0) 25 240 1 + (4× 6)

Table II: Classification of icosahedral capsids. The last column gives

the number and type of hexamers needed for the construction
To each value of the triangular number T corresponds a unique partition

into 1 + (T − 1), where the “ 1” represents the unique pentamer type and
(T−1) is partitioned into a sum of certain number of different hexamer types
according to the formula:

(T − 1) = 6 α + 3 β + 2 γ

with non-negative integers α, β and γ, the numbers β and γ taking on exclu-
sively the values 0 or 1. This leads to four different classes, according to the
choices:

A : β = 0, γ = 0; B : β = 1, γ = 0;
C : β = 0, γ = 1; D : β = 1, γ = 1.

This classification is based on the fact that the corresponding hexamers
are centered on a three-fold or a two-fold symmetry axis, so that the first
type must be found at the center of icosahedron’s triangular face, whereas
the second type must be found in the center of an edge between elementary
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triangles. The number α of maximally differentiated hexamers follows then
from the corresponding partition of a given triangular number, as shown in
the following table (Fig.26).

Figure 26: Left: Classification of icosahedral capsids ) up to T = 81.

It is easy to see what is the arithmetic nature of triangular numbers of
each group.

- The first column (type A) the triangular number T must be either a
prime number, or a square of a prime number.

- The T -numbers in the second column (type B) are divisible by 3;

- The T -numbers in the third column (type C) are multiples of 4;

- The fourth column (type D) contains triangular numbers divisible
both by 3 and by 4, i.e. their T -numbers are multiples of 12.
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T, (p,q) A(6) B(6 + 2) C(6 + 3) D(6 + 2 + 3)

1, (1,0) (1,0,0,0)

3, (1,1) (1,0,1,0)

4, (2,0) (1,0,0,1)

6 − − − (1, 0, 1, 1)

7, (2,1) (1,1,0,0)

9, (3,0) (1,1,1,0)

10 − − (1, 1, 0, 1) −
12, (2,2) (1,1,1,1)

13, (3,1) (1,2,0,0)

15 − (1, 2, 1, 0) − −
16, (4,0) (1,2,0,1)

18 − − − (1, 2, 1, 1)

19, (3,2) (1,3,0,0)

21, (4,1) (1,3,1,0)

22 − − (1, 3, 0, 1) −
24 − − − (1, 3, 1, 1)

25, (5,0) (1,4,0,0)

27, (3,3) (1,4,1,0)

28, (4,2) (1,4,0,1)

30 − − − (1, 4, 1, 1)

31, (5,1) (1,5,0,0)

33 − (1, 5, 1, 0) − −
34 − − (1, 5, 0, 1) −

36, (6,0) (1,5,1,1)

Table III: Periodic Table of icosahedral capsids.

The four types, A,B, C and D are put in separate columns.
A good example of predictive ability of our scheme is the analysis of the

Herpes virus T = 16 capsid.
The total number of major capsid proteins (capsomer forming blocks) can
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Figure 27: The Herpesvirus and its basic triangle with different hexamer types

be easily found via the construction algorithm. It is confirmed by observa-
tions, as has been found by B.L. Trus and al., ([15])

The T = 16 capsid’s basic triangle contains two totally differentiated
hexamers (blue and yellow), and one “axially symmetric” hexamer (red). It
is quite easy now to proceed to the following protein counting:

Indeed, inside the basic triangle there are three copies of “ 6A”, three
copies of “ 6B” hexamers, which amounts to 3× (6 + 6) = 36 proteins, and
three halves of type “3” hexamers, i.e. 3× 3 = 9 proteins, giving altogether
45 proteins; there are also three “p” proteins coming from pentamers (3/5)
fragments, giving the total of 48. The capsid contains 20 such triangles, i.e.
20× 48 = 960 major proteins.

5 Symmetric reduction

5.1 Higher symmetries

The classification scheme presented above is based on the exclusive use of
three types of hexamer symmetries, (ababab), (abcabc) and (abcdef). How-
ever, among the capsids with all possible values of triangular number T there
are two classes that display an extra internal symmetry. These are the ones
corresponding to the particularly symmetric choice of two integers (p, q).
Capsids with T -numbers generated by combinations (p, 0) and (p, p) display
an additional symmetry of the edges, which may contain hexamers of other
types than the three ones used up to now: (abbabb), (abccba), etc.

New internal symmetries are displayed in the figure (28) below. Let us
consider the edge symmetry. The first case when such symmetry occurs is
in T = 4 capsids. The second case with additional symmetry on the edge
can be realized under the condition that the b-sides are polarized so that
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Figure 28: Two symmetric capsids: (p, q) = (5, 0), T = 25 and (p, q) = (3, 3), T =
27. One can observe the position of two-fold symmetry (on the edge) and the
three-fold symmetry (in the center of basic triangle).

Figure 29: Two possible symmetries of the T = 4 capsid: with the Z3 symmetry,
and with the S3 × ZI

2 symmetry. 3 different proteins instead of 4.

they can stick together only with one of the two possible polarizations: In

Figure 30: allowed forbidden

most icosahedral virus capsids the polarized character of major building coat
proteins is indeed the case.

5.2 Reduction of coat proteins number

Almost all non-chiral capsids, especially the “perfect” ones corresponding to
triangular numbers givenb by pairs (p, 0) or (p, p) admit higher degrees of
symmetry, and therefore, the reduction of number of different coat proteins
needed for their construction. It can be seen on the following examples of
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Figure 31: Two versions of the T = 9 capsid: the first one with Z3 symmetry
and 9 different coat proteins, the second one with the S3×Z2 symmetry and
with 6 different coat proteins.

Figure 32: The T16 capsid symmetries: with Z3 only and with S3×Z2 group

T = 9 and T = 16 capsids. The most symmetric capsids display a full
S3 × Z2 symmetry:

Figure 33: The T = 12 capsid with six symmetry axes; 9 different proteins instead
of 12. same for the T = 16 capsid 10 different proteins instead of 16.
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5.3 The T = 25 example

The best way to see how the reduction due to the additional symmetry does
work is to consider a gradual construction respecting the full symmery group,
which in this case will be Z3 × Z2 × Z2.

Let us do it on the example of the T = 25 viruses: the Adenovirus and
the PRD1 virus, both having the same T -number equal to 25, but not the
same number of different coat proteins, as can be seen in the next two figures,
(34) and (35): The adenovirus structure is well known, and it is based on

Figure 34: The T = 25 Adenovirus capsid and its coat proteins.

Figure 35: The T = 25 PRD1 virus capsid and its coat proteins.

four species of totally differentiated hexamers. Its symmetry group is Z3.
The complete analysis of the PRD1-capsid symmetry shows how the

number of different coat proteins can be reduced due to the consequent use
of symmetry.
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Figure 36: The T = 25 PRD1 capsid. If protein “b” is placed next to “a”, it
must be repeated in all other positions obtained via symmetry transforma-
tion.

Figure 37: The T = 25 PRD1 capsid. With proteins “c” and “d”, hexamers
adjacent to pentamers are complete. fre.

Figure 38: The T = 25 capsid. With new proteins “x”, “y” and “z”, the
central hexamers are complete.
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Figure 39: The T = 25 capsid. With all proteins placed, the capsid is
complete.

6 Conclusions

From the point of view of the symmetrical reduction icosahedral capsids can
be divided in three categories:

The irreducible ones, with T = a prime number 6n + 1.

T = 3, 7, 13, 19, 31, 37, 43, 61, 67, 73, ...

The reducible ones, with T = a square

T = 4, 9, 16, 25, 36, 49, 64, 81...

The reducible ones, with T = 3× n2

T = 12, 27, 48, 75, 108, 147...

and the rest:

T = 21, 28, 39, 52, 63, 76...

The total number of basic coat proteins remains the same, and in all cases
is equal to

Np = T.

As a consequence, in the case of the reduced number of different proteins
due to symmetry reduction, the total number of those which appear not
three, but six times in the elementary triangle, is equal to 120. It seems

23



plausible that the three types are genetically related, because they display a
similar hexamer structure:

all hexamers maximally differentiated in the first case, and symmetrically
reduced in the second and third cases.

The families with additional symmetries are liable to possess some evolu-
tionary kinship.

The viruses with capsids having a prime number T should be also geneti-
cally close: T = 7, 13, 19, 31, 37, ...

The two schemes, the less symmetric and the maximally symmetric one,
may have their own advantages and shortcomings. The first one displays
the same number of copies of each particular coat protein, i.e. 60, which
supposedly simplifies their chain production. In the second case the number
of different coat proteins is reduced, but they must be produced in different
amounts, some in 60, some in 120 copies. It would be interesting to know
why certain types of icosahedral capsid viruses choose the particular scheme
between these two possibilities.
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