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We introduce a phenomenological theory for a new class of soft active fluids, with the ability
to synchronise. Our theoretical framework describes the macroscopic behaviour of a collection of
interacting anisotropic elements with cyclic internal dynamics and a periodic phase variable. This
system (i) can spontaneously undergo a transition to a state with macroscopic orientational order,
with the elements aligned: a liquid crystal, (ii) attain another broken symmetry state characterised
by synchronisation of their phase variables or (iii) a combination of both types of order. We derive
the equations describing a spatially homogeneous system and also study the hydrodynamic fluctu-
ations of the soft modes in some of the ordered states. We find that synchronisation can promote
the transition to a state with orientational order; and vice-versa. Finally, we provide an explicit
microscopic realisation : a suspension of micro-swimmers driven by cyclic strokes.

Active materials are composed of self-driven units, ac-
tive particles, each capable of converting stored or ambi-
ent free energy into systematic movement and performing
work on their surrounding environment [1]. The interac-
tion of active particles with each other, and with the
medium they live in, gives rise to highly correlated col-
lective motion. Examples include micro-swimmers sus-
pended in a fluid [2], motor protein-filaments mixtures,
such as those forming the cell cytoskeleton [3–6] and cells
forming tissues [7]. They have non-conventional proper-
ties, such as anomalous viscosities [8, 9], and the abil-
ity to self-organise into ordered states [10], with local
alignment, forming patterns [11] and favouring collective
transport on scales larger than individual [12]. There
is wide and growing body of theoretical work focussed
on investigating the collective dynamics, picturing the
individuals as static force-multipoles [4, 5, 13, 14] inter-
acting in a fluid or by generic rules of alignment [15].
However at the microscopic level, the dynamics of active
individuals is often time-dependent and cyclic - breaking
time-translational invariance. The effect of this on their
collective behaviour is much less well understood. Re-
cently, this has been studied for swimmers with identical

cycles by coarse-graining simple dynamical microscopic
models [16]. Whilst this has provided insight, linking
the static force multipoles to time averages over the in-
ternal cycles, it is missing an important property of the
system. In reality the cycles of the individual elements
are only identical to within an arbitrary phase revealing
another symmetry. Therefore the active constituents typ-
ically have the ability to vary their dynamic cycles and
synchronise their phases via hydrodynamic (or other) in-
teractions thus breaking this phase symmetry. The effect
on the macroscopic behaviour of active fluids of this pos-
sible broken symmetry is the subject of this letter. We
note that the subject of hydrodynamic synchronisation of
micron-sized oscillators is a major topic in its own right
with a long history going back to studies of the coordina-
tion of pairs of beating flagella or arrays of cilia beating in
a fluid [17, 18]. There have been an increasing number of
recent experimental studies of systems investigating the

phenomenon in-vivo [19, 20], in vitro [21] and in minimal
artificial systems [22, 23]. This has been paralleled by a
recent upsurge in theoretical interest [18, 24–29],

In this letter we address the interplay of phase-
synchronisation and orientational dynamics in soft ac-
tive fluids considering a minimal model which consists of
active elements with both an orientation and an inter-
nal cycle. The cycle is characterised by a phase variable
which varies slowly with time. We define synchronisation
with reference to the phase dynamics and say it has oc-
curred when the phases of different individuals are locked
at a fixed phase difference. Here we shall consider only
in-phase synchronisation, with the phases fixed at the
same value, i.e. the phase difference is zero. Synchroni-
sation thus viewed is then simply a type of long range
order. Hence, in addition to the usual slow (Nambu-
Goldstone) modes describing liquid crystalline fluids and
gels [5, 6, 30], which are associated with broken rotational
symmetry, a theory taking account of synchronisation of
the active elements requires another slow mode which is
associated with the broken symmetry of the phase and
has no classical equilibrium analogue.

We identify the order parameters of the system (from
the possible broken internal symmetries - U(1) × SO(d)
in d-dimensions) and the conserved quantities, then ob-
tain the phenomenological equations for their dynamics
by including all the terms allowed by symmetry. We dis-
cuss the interplay of synchronisation and orientational
dynamics and find that each type of order may promote
the occurrence of the other. This is supported by a par-
ticular microscopic realisation of the system : a suspen-
sion of model swimmers driven by internal cycles with
varying phase interacting via hydrodynamic interactions.

a. Systems where phase and orientation dynamics are

uncoupled To start, we consider a system with both ori-
entational and phase dynamics but where the two are de-
coupled. For concreteness, we focus on polar fluids [5, 6],
characterised by a mean orientational axis P describ-
ing states that are not invariant under transformations
P → −P. A nematic system, whose mean orientational
axis n̂ is invariant under transformations n̂ → −n̂, can
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be dealt with using similar techniques [31]. We consider
a large number N of microscopic elements, at positions
rk(t), k = 1, . . .N in a volume V . Each one is charac-
terised by both fluctuating orientations ûk(t) and phases
φk(t) ∈ (0, 2π). The source of fluctuations is in general
a combination of thermal and non-thermal effects. A
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FIG. 1. (a) The phase variable φ associated with the internal
cycle. Two elements with orientations û1 and û2 and phases
φ1, φ2. To visualise the phase we schematically represent it
as the length of the arrow.

local measure of orientational order is the polar vector,

P(r, t) := 〈 1
N

∑N
k=1 ûk(t)δ(r−rk)〉 where 〈〉 represents an

average over the fluctuations. Similarly a local measure
of synchronisation is the complex-valued quantity [29, 32]

Φ(r, t) := 〈 1
N

∑N
k=1 e

iφk(t)δ(r − rk)〉. In this letter, we
only consider situations where the density, ρ := N/V is
constant.
The average (bulk) dynamics of the polar active sys-

tem is captured by P0(t) =
∫

r
P(r, t) with an equation

of motion [5, 6, 16], ∂tP0 = bP0 − b
′

‖P0‖
2
P0. The co-

efficients b, b
′

are real valued quantities. b may depend
on the density. For swimmers it may also depend on the
sign of the average force-dipole [16] of the individuals,

while b
′

> 0 stabilises the magnitude, P := ‖P0‖ which
measures the amount of orientational alignment of the
elements, i.e. polar order. The transition to order is de-
termined by the sign of the coefficient b [6, 16]: the value
b = 0 defines the boundary between the orientational dis-
ordered phase, where b < 0 and the fixed point P = 0
is stable; and polar phase, where b > 0 the fixed point
P = 0 becomes unstable. A generic equation describ-
ing bulk synchronisation, Φ0(t) =

∫

r
Φ(r, t) previously

considered by us [29], is ∂tΦ0 = aΦ0 − a
′

|Φ0|
2Φ0. The

coefficients a, a
′

, are complex valued quantities [29]. For
the following analysis it suffices to focus on their real part
ζ := Re[a] and ζ′ := Re[a

′

]. ζ can depend on the density
as well as on the isochrony [33] of the oscillations [29].
ζ′ > 0 is a stabilising term. Writing Φ0 = MeiQ, the
magnitude M is a measure of amount of synchronisation
of the elements and quantifies this type of order. When
ζ < 0 the fixed point M = 0 is stable and the synchro-
nisation occurs when ζ > 0 and M 6= 0. Hence ζ = 0
is the boundary between non-synchronised and synchro-
nised states. The result of this uncoupled dynamics can
be conveniently summarised as a phase diagram in the
plane (ζ, b), where each phase (disordered, polar, syn-
chronised & polar, synchronised) occupies exactly one

quadrant, starting from (ζ < 0, b < 0) in clockwise order.
The interplay of orientational dynamics and synchroni-
sation can shift some of the boundaries of such a phase
diagram, as we will discuss below.
b. Systems where phase and orientation dynamics are

coupled We consider now the average dynamics for this
more general case. This system is characterised by the
density, ρ, the polar vector, P0(t), and the global phase
Φ0(t) defined above. In addition, we must introduce
the complex-valued phase-orientation vector Π(r, t) :=

〈 1
N

∑N
k=1 e

iφk(t)ûk(t)δ(r− rk)〉 which encodes the phase-
orientation coupling. As before we can define a bulk
value, Π0(t) =

∫

r Π(r, t). We can understand its physi-
cal significance as follows. When (i) all the orientations
are identical, ûk(t) ≡ û(t) or (ii) when all the phases are
locked, eiφk(t) = eiφ(t) ∀ k, Π0(t) ≡ Φ0(t)P0(t). How-
ever, when there is partial order of both of the fields,
Π0(t) 6= Φ0(t)P0(t). A simple example showing that Π0

may be non-zero, despite having P0 = 0 and Φ0 = 0 is a
system of 2 particles with values û1(t) = −û2 = û(t) and
eiφ1(t) = −eiφ2(t) = eiφ(t). The variablesP0(t), Φ0(t) and
Π0(t) are dynamically coupled. Equations of motion can
be obtained by including all the possible terms allowed by
the symmetries. For simplicity we shall restrict ourselves
to the leading order coupling terms, which are quadratic
functions.
In presence of coupling to orientational dynamics, the

equation for Φ0 becomes

∂tΦ0 = aΦ0 − a
′

|Φ0|
2Φ0 + gP0 ·Π0 + . . . (1)

Here g is a complex-valued coefficient. As eq (1) describes
a scalar quantity, all its terms can be understood us-
ing configurations where the particles are aligned. Since
it is quadratic, the last term can be understood us-
ing 2 particles. A finite P0 means that the configu-
rations (a) û1(t) = û2(t) = û(t), of fig 2(a), and (b)
û1(t) = −û2(t) = û(t), of fig 2(b), both of which have
phases φ1(t), φ2(t), should contribute differently to the
equation. Using the definitions above, in case (a) one
findsP0·Π0 = P 2

0Φ0; whereas in case (b), P0·Π0 = 0[34].
The dynamics of the polar vector becomes
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FIG. 2. Elements that are aligned but have different phases.
(a) and (b) contribute differently to Π0 ·P0.

∂tP0 = bP0 − b
′

‖P0‖
2
P0 + hΦ∗

0Π0 + h∗Φ0Π
∗

0 + . . .
(2)

where h is a complex-valued coefficient. Finally, we in-
troduce the equation for the complex polar vector Π0

∂tΠ0 = qΠ0 − q
′

‖Π0‖
2
Π0 +mΦ0P0 + . . . (3)
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Here the coefficients q, q
′

,m are complex-valued quan-
tities. q may depend on the density and we consider
Re[q

′

] > 0 providing a stabilising term. We can get a
simple explanation of the last term in eq (2), coupling
Φ0, Π0, and the last term in eq (3), coupling P0, Φ0, by
considering 2 particles, with orientations û1(t), û2(t) and
phases φ1(t), φ2(t). Then using the definition of P0 and

Π0 and taking the time derivatives, ∂tP0 = 1
2 [
˙̂u1 + ˙̂u2]

and ∂tΠ0 = 1
2

∑N
k=1 e

iφk [ ˙̂uk + iφ̇kûk], which combines
both the rotational dynamics [16] and the phase dynam-

ics [29]. Similarly, ∂tΦ0 = i
2 [
∑

k=1,2 e
iφk φ̇k]. We note the

dynamics of orientations and phases will be of the form

φ̇k = Ωk + G(k)(φ1 − φ2, û1, û2) and ˙̂uk = U
(k)(φ1 −

φ2, û1, û2), because of time-translation invariance. The
symmetry of the problem suggests an expansion in a ba-
sis of functions given by products of ei(φ1−φ2) and or-
thogonal Cartesian tensors constructed from û

1, û2. The

lowest order terms are U
(1) ∼ û2(1 + λ+ cos(φ1 − φ2) +

λ− sin(φ1 − φ2)) where the dynamics of one orientation
is determined only by the interactions with the other el-

ement. U
(2) is obtained by exchanging 1 ↔ 2. Similarly

G(1) ∼ [1+(û1 ·û2)](1+ν+ cos(φ1−φ2)+ν− sin(φ1−φ2))
and G(2) is obtained by exchanging 1 ↔ 2. Inserting these
expressions into the equations above and using the def-
initions of P0,Π0 and Φ0, we get the last terms on the
rhs of eqs. (1) (2) and (3).
Instead of analysing the complex dynamics resulting

from the system of eqs. (1) (2), (3), we focus here on
a particular subset of their state space, analysing the
behaviour around the fixed points of synchronisation and
polar order. To this end, we eliminate the field Π0 in
favour of P0 and Φ0, by setting ∂tΠ0 = 0 in eq (3). This
generates higher order terms in the equations for P0 and
Φ0, using Π0 = −m

q Φ0P0 (and Π
∗

0 = −m∗

q∗ Φ∗

0P0). We

proceed as above, writing Φ0 = MeiQ and P0 = P P̂

hence obtain coupled equations for the magnitudes M
(synchronisation) and P (polar order)

∂tM = [ζ − ζ
′

M2 + ξP 2]M

∂tP = [b− b
′

P 2 + vM2]P (4)

where s := −gm
q and v := −2Re[hm

q ] and ξ := Re[s].

Here we assume Re[q] < 0. Setting ξ = v = 0, the terms
associated with them being higher order than those with
ζ, ζ

′

and b, b
′

, we obtain the unperturbed fixed points
of equations (4). These are: (M0, P0) = (0, 0), the disor-

dered phase ; (M0, P0) = (M̃, 0), the synchronised phase;

the polar phase (M0, P0) = (0, P̃ ) and the synchronised

& polar phase (M0, P0) = (M̃, P̃ ). In all these cases,

M̃ := ζ

ζ′ (with ζ > 0) and P̃ := b
b′

(with b > 0). The

linearised dynamics of eq (4) around the fixed points can
be studied by considering small deviations δP := P −P0

and δM := M −M0. In the synchronised phase , δM re-
laxes to zero. The transition to polar order, however, sig-
nalled by an instability for δP , occurs when b+ ζ

ζ′ v > 0.

Remarkably, synchronisation may promote polar order

which can occur even for b < 0, a region forbidden for
the uncoupled system, provided v > 0. An analogous
behaviour is seen in the polarised phase where δP re-
laxes to zero but an instability for δM , indicating the
synchronisation transition, occurs when ζ + b

b′
ξ > 0 and

can happen even in the formerly forbidden region ζ < 0,
provided ξ > 0. A phase diagram is shown in figure 3,
which also covers the regime when both ξ, v < 0.

polar
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FIG. 3. Phase diagram, in the plane (ζ, b): interplay between
phase & orientation dynamics. We discuss 3 important cases.
(I) Polar order promotes the transition to synchronisation
in region which is forbidden if they are decoupled provided
ξ > 0. (II) Likewise, synchronisation promotes the transition
to polar order in a region which is forbidden to the decoupled
system, provided v > 0. In both cases the region of both
synchronisation & polar order is widened. (III) The opposite
situation arises when ξ, v < 0: there synchronisation inhibits
the transition to polar order; similarly, the polar order works
against synchronisation. As a result the region with both
synchronisation and polar order is reduced compared to the
uncoupled system. Other intermediate cases are also possible.

c. Hydrodynamic modes & stability of bulk states
Broken symmetry states have slow dynamics of their
soft modes. A full description involves studying 2d − 1
modes in d-dimensions so we restrict ourselves to one
illustrative case. A state with macroscopic fixed polar-
ity P,Π and synchronisation Φ0 (with Π 6= Φ0P). We
choose w.l.g the phases of Φ0,Π to be zero and explore
the soft modes associated with synchronisation alone,
Φ(r, t) = Φ0e

iφ(r,t). We consider a collection of nonlinear
oscillating force dipoles with frequency ω, amplitude A
and friction coefficient γ suspended in an incompressible
viscous fluid in creeping flow. In this oscillating state, the
fluid velocity, v(r, t) =

∑

∞

n=0 v
(n)(r) sin(2ωnt+ 2φn(r))

by the Floquet-Bloch theorem. The local phase dynamics
is governed by (v(n) = 0, n 6= 2) [1, 29]

η∇2
v(r, t) −∇p = ∇ · σa ; ∇ · v = 0 (5)

Dtφ+ PiωijΠj = λPiuijΠj + λ′PiuijPj +Dφ∇
2φ (6)

where Dtg(r, t) = ∂tg + (v + βP + β′
Π) · ∇g, ωij =

1
2 (∂ivj − ∂jvi) and uij = 1

2 (∂ivj + ∂jvi). The oscillating

active stress, σa
ij(t) = PiPj

(

α+ 1
2A

2ργω sin(2ωt+ 2φ)
)
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implies φ = φ2, and α = F̄d is the average force
dipole [29]. An instructive case has P = P ẑ and
Π = Π x̂. With units s.t. P = Π = 1, a lin-
earized analysis of these equations then reveals modes
φk(t) =

∫

r φ(r, t)e
ik·r,vk(t) =

∫

r v
(2)(r, t)eik·r which re-

lax as φk(t) = φk(0)e
−t/τφ(k),vk(t) = vk(0)e

−t/τv(k),
where τ−1

v (k) = τ−1
φ (k) = iβkz + iβ′kx + Dφk

2 + Λ(k),

with Λ(k) = α′

(

k̂xk̂z(1 + λ(1 − 2k̂2z)) + 2λ′k̂2z(1− k̂2z)
)

where k̂i = ki/|k| and α′ = 1
2ηA

2ργω. The synchronised

state has a long wavelength instability to propagating
phase fluctuations reminiscent of metachronal waves [35].
It is interesting that the propagation direction is inter-
mediate between Π and P, as metachronal waves tend
to propagate at an angle to the beating direction [35].
d. Microscopics A microscopic picture of the sys-

tem is provided by a dilute collection of micro-swimmers,
for simplicity confined to a plane. A minimal swim-
mer has an oscillating force dipole in an incompressible,
three-dimensional fluid (velocity v(r, t)) of viscosity η
and Re=0. A concrete example is given by the three-bead
swimmer [36]. The swimmer with centre of mass at r, ori-
ented along û, is made up of three collinear spheres, of
radius a, with coordinates x1, x2, x3 and linked together
by extensible links with negligible effect on the fluid.
The spheres are subject to collinear forces f1, f2, f3 with
f1 + f2 + f3 = 0 (force-free). The links, Lj := xj+1 − xj ,
for j = 1, 2, have dynamics Lj = li + dj(t) where dj(t)
represent the swimming stroke. The forces and displace-
ments are related by ḋi =

1
γFi + û · (v(r, t)− ṙ), i = 1, 2

with γ = 6πηa and F1 = −[2f1+f3] ≡ F, F2 := [f1+2f3]
(d1 ≡ d). The force F evolves according to [29]

dF/dt = −kd/τ + µ(1 − σd2)F/γ + αd3 , (7)

leading to spontaneous oscillations. To study the dynam-
ics of d(t) we introduce a complex amplitude A = Reiϕ,

d(t) = 1
2 [Ae

iωt +A∗e−iωt] ⇒ ḋ(t) = iω
2 [Aeiωt −A∗e−iωt].

R,ϕ ∈ R
1 are the amplitude, phase of the oscillations.

d2(t) is a prescribed function of time: d2(t) = d sin(ωt+

ϕ), and Ḟ2 ≈ γd̈2(t). By averaging over the fast oscil-
lation period T = 2πω−1 we obtain an effective descrip-
tion [16, 29, 37] in terms of the orientation û, phase ϕ
and amplitude R. Next we eliminate the amplitude R
keeping only the slower phase ϕ [29] and hence define
X ≡ (û, ϕ, r). We consider N such objects characterised
byXk(t). To obtain averages we use the one-particle con-

centration c(X, t) := 〈N−1
∑N

k=1 δ(X−Xk(t))〉, the den-
sity of elements with X at time t. Performing averages
over c [6], we can obtain the quantities Φ(r, t), P(r, t)
and Π(r, t) introduced above. For this model both v > 0
and ξ > 0, when R ≫ d.
In conclusion, we have extended the study of active

systems to include collections of orientable units with an
internal cycle characterised by a single phase variable.
These show two different types of order: synchronisa-
tion where the individual phases are correlated and liquid
crystalline order where their orientations are correlated.
We derived phenomenological equations describing the
dynamics of a spatially homogeneous mixture with hy-
drodynamic interactions, focussing on the interplay of
phase and orientation. Our study reveals that each type
of order can promote the transition to a state where both
types of order are present, in a region of the parameters
space that would be inaccessible if the two dynamics were
decoupled. This is supported by a microscopic model of
swimmers able to synchronise. From the theoretical point
of view, the symmetry breaking associated with the syn-
chronisation transition presents analogies with the phys-
ical mechanism yielding the Meissner effect in supercon-
ductivity or the Higgs mechanism in particle physics. A
natural future direction is a complete description of the
coupled hydrodynamic modes.
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