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1. Introduction

1.1. Invariant theory

Group theory is the natural mathematical framework to describe the consequences of

symmetry. It was introduced in physics by Weyl [1] and Wigner [2] to efficiently treat

problems with symmetry emanating from quantum mechanics. One typical use of group

theory is the development of phenomenological descriptions. Theoretical assumptions

or experimental data often lead to consider a symmetry group G. The issue is then to

build a quantity transforming according to an irreducible representation Γf of group G

from basic elements that span a possibly reducible representation Γi.

In molecular physics, the symmetry of a quasi–rigid linear polyatomic molecule in its

equilibrium configuration is either the C∞v or D∞h point group [3, 4]. These two groups

are respectively isomorphic to the orthogonal O(2) and O(2)×Z2 abstract groups. They

both admit the special orthogonal group SO(2) as a proper subgroup. A quasi–rigid

linear molecule with n atoms has n−2 doubly degenerate vibrational bending modes [5].

The displacement vectors of these modes are contained in planes perpendicular to the

symmetry axis of the molecule and enter as basic elements in the construction of

invariants such as the effective Hamiltonian or covariants such as the electric dipole

moment. The carbon dioxide CO2 [6] and acetylene C2H2 [7] are two examples of linear

molecules where the theory of effective operators [8, 9, 10] was successfully employed to

analyze high–resolution rotation–vibration spectra. Similar considerations with respect

to the O(2) orthogonal group occur in a transversely isotropic material [11]. A privilegied

axis exists and the properties are the same in all directions of an isotropy plane normal

to this axis. Such a material is axially symmetric and the group SO(2) is a subgroup of

its symmetry group.

The invariant or covariant functions are typically generated through a lengthy step

by step approach that constructs all possible terms of degree n compatible with the

final representation of the symmetry group from simpler terms of lower degree [12, 13].

Invariant theory [14] is a branch of mathematics based on group theory and algebra

which gives an alternative way to construct these objects. Its main concern is the global

description of the structure of the ring R = C [x1, . . . , xn]Γ0 of G–invariant polynomials

in the variables xi. The symbol Γ0 represents the totally symmetric irreducible

representation of group G. The extension of invariant theory to covariant polynomials

considers the modules of covariants. Invariant theory has been applied successfully

in numerous fields of physics: molecular physics [15], crystallography [16, 17], liquid

crystals [18], continuum mechanics [19, 20, 21], high–energy physics [22, 23], theory of

qubits [24, 25], and qualitative analysis of physical systems [26, 27].

1.2. Representation theory and Molien function

The Taylor expansion of the Molien function MG (Γf ; Γi; λ) at λ = 0 gives information

about the number ck of linearly independent objects of degree k transforming as the
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irreducible representation Γf of group G that can be built up from elementary objects

that span the n–dimensional Γi representation [28, 29]:

MG (Γf ; Γi; λ) =
∞∑

k=0

ckλ
k.

Counting the number of linearly independent objects of degree k generated at the

end of the step by step construction evocated in section 1.1 returns the ck value.

Molien however found that the generating function could be directly determined without

requiring any construction of the final objects [30]. Equation (1) states that the Molien

function of a finite group G of order |G| depends on the character χ (Γf ; g) of the final

irreducible representation and on the n × n matrices M (Γi; g) of the initial reducible

linear representation:

MG (Γf ; Γi; λ) =
1

|G|

∑

g∈G

χ̄ (Γf ; g)

det (1n×n − λM (Γi; g))
. (1)

The bar over the character χ refers to the complex conjugation, 1n×n denotes the n× n

unit matrix and the sum runs over all the elements of the group G. The determinant

in the denominator assures that the Molien function is independent of the basis chosen

to write the matrix representation of Γi. For continuous groups, the discrete sum over

the group elements g is replaced by an integration over the continuous parameters of

the group [2]. Two different symbolic interpretations of the right–hand side of (1) have

arisen along the development of invariant theory.

1.3. Method of syzygies

The first point of view deals with a set of polynomial generators γ1, . . . , γs of the

ring of invariants [31]. Any invariant polynomial of the ring of invariants decomposes

as a (possibly non–unique) polynomial in these generators. The γi are algebraically

independent in the special case of groups generated by reflections. The Molien function

for the ring of invariants is then simply given by (2), where each generator of degree di

contributes to a factor
(
1 − λdi

)
in the denominator of the rational function MG.

MG (Γ0; Γi; λ) =
1

∏s
i=1 (1 − λdi)

. (2)

In the general case, however, the generators are often algebraically dependent, i.e.

there exist first–order syzygies σi (γ1, . . . , γs) = 0 where σi is a polynomial of degree fi.

The decomposition of any invariant as a polynomial in the generators is then not unique.

One invariant may be counted several times in the Taylor expansion of (2). Taking into

account the first–order syzygies of degree fi among the generators implies to correct

the numerator of the Molien function (2) as
(
1 −

∑
λfi

)
to eliminate the overcounting.

The syzygies σi themselves may not be algebraically independent and second–order

syzygies occur between them. Too many polynomials have then been removed and the

numerator of the Molien function should now be corrected as
(
1 −

∑
λfi +

∑
λgi

)
. The
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construction is continued as necessary with even higher–order syzygies. The Hilbert

syzygy theorem [32, 33] assures that the procedure finishes after a finite number of

steps and implies that the numerator is a finite polynomial in λ. The method of syzygies

results in a ratio of a polynomial with alternating coefficients in λ over a product of
(
1 − λdi

)
terms:

MG (Γ0; Γi; λ) =
1 −

∑
λfi +

∑
λgi − · · ·

∏s
i=1 (1 − λdi)

.

1.4. Integrity basis

A second point of view interprets the Molien functions in term of integrity bases [34],

also called homogeneous systems of parameters [31]. Such bases are often associated

with Cohen–Macaulay rings of invariants [31]. Such a ring presents the remarkable

structure of a free module M (Γ0) over a subring R1 ⊂ R of invariants, where (M (Γ0) , +)

is an additive group of polynomial invariants. This decomposition is known in the

mathematical literature as an Hironaka decomposition [35]. The corresponding integrity

basis contains D algebraically independent denominator invariant polynomials θk that

generate the subring D and N linearly independent numerator invariant polynomials ϕk

that span the vector space (Minvar, +). The denominator and numerator polynomials

are also named primary and secondary invariants by other authors [35]. Any invariant

polynomial in x1, . . . , xn is uniquely decomposed as a polynomial in the numerator and

denominator polynomials [28]:

N∑

k=1

ϕk (x1, . . . , xn) × pk (θ1 (x1, . . . , xn) , . . . , θD (x1, . . . , xn)) , (3)

where the pk are polynomials in D variables. The two different roles of the denominator

and numerator polynomials clearly appears in (3). The denominator polynomials can

be exponentiated to any non–negative integer while the numerator polynomials only

occur linearly.

It is straightforward to write a Molien function that admits a symbolic

interpretation when the algebraic structure of the ring of invariants or the module of

covariants is known. The reverse problem guesses the set of denominator and numerator

polynomials from the expression of the Molien function. This question is more important

for physical applications. An integrity basis may be suggested when the Molien function

is appropriately expressed as a ratio of a numerator polynomial with non–negative

coefficients in λ over a denominator written as a product of
(
1 − λδk

)
terms:

MG (Γf ; Γi; λ) =

∑k=N

k=1 λνk

∏k=D
k=1 (1 − λδk)

, νk ∈ N, δk ∈ N0 = N\ {0} , (4)

where the integers δk and νk are respectively the degree of the polynomials θk and

ϕk. The number D of denominator polynomials in the right–hand side of equation (4) is

generally different from the number s of generators considered in the method of syzygies.
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The above description of a Cohen–Macaulay ring of invariants is valid too for

a free module of covariants transforming according the irreducible representation Γf .

The algebraic structure of a free module of Γf–covariants is a module M (Γf) over a

subring R1 ⊂ R of invariants where (M (Γf) , +) is an additive group of Γf–covariant

polynomials. The denominator polynomials of the Molien function (4) are still invariant

polynomials but the numerator polynomials are now Γf–covariants. Not all the modules

of covariants are free however. The present paper shows in the case of the action of the

orthogonal group on n planar vectors that a generalized integrity basis can still be

proposed when the module of covariants is non–free.

1.5. Example of integrity bases with one planar vector

We give an example of integrity bases by presenting the action of the SO(2) group

on the ring P1 = C[x, y] of polynomials that depend on the x, y components of one

planar vector. A point M of coordinates (x, y) is rotated under the action of the

SO(2) group by an angle ϕ in the (Ox, Oy) plane. The action of the element gϕ of

SO(2) on the (x, y) coordinates is simply related to a rotation matrix: gϕ ⋄ (x, y) =

(x cos ϕ − y sin ϕ, x sin ϕ + y cos ϕ). The action of gϕ on any polynomial p ∈ P1 is then

defined by:

(gϕ • p) (x, y) = p
(
g−1

ϕ ⋄ (x, y)
)

= p (x cos ϕ + y sin ϕ,−x sin ϕ + y cos ϕ) .(5)

The irreducible representations of the SO(2) group are all unidimensional and are

labelled as (m) with m ∈ Z a relative integer. Equation (5) shows that the action of the

SO(2) group on the polynomials of degree one π (x, y) = x − iy and µ (x, y) = x + iy is

diagonal (i is the imaginary number defined by i2 = −1):

(gϕ • π) (x, y) = eiϕπ (x, y) , (6a)

(gϕ • µ) (x, y) = e−iϕµ (x, y) . (6b)

The π and µ functions transform respectively as the (+1) and (−1) irreducible

representations and the pair of functions (π, µ) span a two–dimensional reducible

representation Γ1 = (−1) ⊕ (+1) of the SO(2) group.

A monomial πn1µn2 is invariant under the SO(2) group action if n1 = n2. As a

consequence, we can construct one invariant of degree two, πµ, one invariant of degree

four, π2µ2,. . . . The polynomial 1 is an invariant of degree zero. The corresponding

Molien function is:

MSO(2) ((0) ; Γ1; λ) = 1 + λ2 + λ4 + λ6 + · · · =
1

1 − λ2
. (7)

The integrity basis for the invariants can now be read from (7): it contains one

denominator polynomial of degree 2 and one numerator polynomial of degree 0. They

are respectively chosen as πµ and 1.

A monomial πn1µn2 is (1)–covariant if n1 = n2 + 1. The (1)–covariant of lowest

degree is π1, the next one is π2µ of degree three. The Molien function (8) suggests
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one denominator polynomial of degree 2 and one numerator polynomial of degree 1,

respectively chosen as πµ and π.

MSO(2) ((1) ; Γ1; λ) = λ + λ3 + λ5 + · · · =
λ

1 − λ2
. (8)

This last result can be generalized to the set of (m)–covariants, m ≥ 1. The Molien

function (9) suggests one denominator polynomial of degree 2, which is chosen as πµ,

and one numerator polynomial of degree m, which is chosen as πm.

MSO(2) ((m) ; Γ1; λ) = λm + λm+2 + λm+4 + · · · =
λm

1 − λ2
, m ≥ 1. (9)

1.6. Outline of the paper

Section 1.5 demonstrates that the Molien function for the ring of polynomial invariants

and for the modules of polynomial (m)–covariants built from the pair of components

(x, y) of one planar vector can be written as a single rational function which admits

a symbolic interpretation in term of integrity basis. This paper considers the ring of

polynomial invariants and modules of polynomial (m)–covariants constructed from the

components of n planar vectors under the SO(2) and O(2) group actions. The Molien

function MSO(2) ((m) ; Γi; λ) is introduced in section 2, where two different forms of

the Molien function, M
SO(2)
α and M

SO(2)
β , are presented and discussed. Their explicit

expressions for two, three and four vectors and 0 ≤ m ≤ 5 are given. The extension to

the O(2) group is presented in section 3. The ring of invariants and modules of (m)–

covariants decomposes under SO(2) as free modules when 0 ≤ m ≤ n− 1. The rational

fraction M
SO(2)
α admits a standard symbolic interpretation in term of integrity basis

for these irreducible representations but negative coefficients appear in the numerator

for m ≥ n. This paper shows the remarkable result that a symbolic interpretation

of the Molien function can still be given for m ≥ n if the M
SO(2)
β form is used. It is

an expansion as a sum of several rational functions with different numbers of terms

in the denominator. This remarkable decomposition has not yet been discussed in the

literature. The module of the corresponding (m)–covariants is non–free and we show

that representations with lattices help to better understand the difference between the

free and non–free situations. Section 4 presents integrity bases for the polynomials built

from two vectors at low m. This work is extended to three vectors in section 5 and to

four vectors in section 6. Finally, section 7 generalizes the results to the O(2) orthogonal

group.

2. Molien functions for n planar vectors under SO(2)

2.1. Computation of the Molien functions via an integral

Let us consider n planar vectors of components (xi, yi)1≤i≤n, and the ring Pn =

C [x1, y1, x2, y2, · · · , xn, yn] of polynomials in these 2n components. The aim of this paper

is to propose integrity bases for the ring of invariants P(0)
n ⊂ Pn and the modules of
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(m)–covariants P(m)
n ⊂ Pn under the SO(2) symmetry. The disjoint union ∪m∈ZP

(m)
n of

all the subsets P(m)
n , m ∈ Z simply equals the Pn set of all polynomials in 2n variables.

As discussed in section 1.5, each pair of functions πj = π (xj , yj) = xj − iyj, µj =

µ (xj , yj) = xj + iyj spans a two–dimensional reducible representation Γ1 = (−1)⊕ (+1)

of the SO(2) group. The n two–dimensional vectors span a reducible representation

which is the direct sum of the representations of each πj, µj:

Γn = Γ1 ⊕ · · · ⊕ Γ1
︸ ︷︷ ︸

n times

.

The initial representation Γn contains n times the (+1) representation and n times

the (−1) representation. The Molien functions MG (m; Γn; λ) and MG (−m; Γn; λ) are

identical and the integrity basis associated with the second Molien function is the

complex conjugate of the integrity basis associated with the first Molien function. The

integer m is considered from now on to be non–negative: m = 0, 1, 2, · · ·. We deduce the

Molien generating function for the action of the SO(2) group on the space Pn from the

general formula (1) adapted to the continuous groups and the characters of the SO(2)

group:

MSO(2) ((m) ; Γn; λ) =
1

2π

∫ 2π

0

e−imϕ

(1 − λeiϕ)n (1 − λe−iϕ)n dϕ. (10)

Evaluating the integral in equation (10) with the theorem of residues (the detailed steps

of the derivation are given in supplementary data XXX) gives an explicit expression for

the Molien function:

MSO(2) ((m) ; Γn; λ)

=
λ2(n−1)+m

(1 − λ2)2n−1

n−1∑

k=0

(

n − 1 + m

k

)(

2 (n − 1) − k

n − 1

)(
1 − λ2

λ2

)k

. (11)

It is noteworthy that the arguments of both binomial coefficients are all non–negative

for n ≥ 1 and m ≥ 0. Furthermore, the numerator of each binomial coefficient is greater

or equal than the corresponding denominator. This is the standard domain of definition

of the binomial coefficient

(

n

k

)

with 0 ≤ k ≤ n. Equation (11) is thus well defined

for all values of n and m.

The Taylor expansion of the Molien function (11) gives the number of invariant

or (m)–covariant polynomials of a given degree. No direct symbolic interpretation

can however been given to expression (11). Two other equivalent expressions of the

Molien function are proposed in section 2.2 and section 2.3. They have the same Taylor

expansion as (11) and, furthermore, a symbolic interpretation in term of integrity bases

is possible for M
SO(2)
α on the range 0 ≤ m ≤ n − 1 and M

SO(2)
β when m ≥ n.

2.2. Molien function as one rational function

The Molien function (11) can be rewritten as a ratio M
SO(2)
α ((m) ; Γn; λ) =

Nα (n, m; λ) / (1 − λ2)
2n−1

, between two polynomials in λ, with the polynomial Nα
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defined as:

Nα (n, m; λ) = λm

n−1∑

k=0

(

n − 1 + m

k + m

)(

n − 1 − m

k

)

λ2k.

The function M
SO(2)
α is exactly the same function as (11) provided the generalized

definition of binomial coefficients to negative integer arguments defined in [36, 37, 38]

is adopted. This extended definition is consistent with the one employed by the Maple

computer algebra system [39]. The numerator Nα is a polynomial in λ of degree

2 (n − 1) − m for 0 ≤ m ≤ n − 1 and of degree 2 (n − 1) + m for m ≥ n.

The form M
SO(2)
α is appealing when 0 ≤ m ≤ n − 1. The four arguments in the

binomial coefficients of Nα are non–negative in such a case. Furthermore, a binomial

coefficient

(

n

k

)

vanishes for 0 ≤ n < k, and the sum over k needs only to range from 0

to n−1−m. The coefficients of the λi terms in the numerator Nα are all non–negative.

The form of the Molien function M
SO(2)
α is identical to the standard form (4) and it can

be used to suggest integrity bases in the range 0 ≤ m ≤ n − 1.

The sum over k of all the binomial coefficients entering the numerator Nα is a

central binomial coefficient:
n−1∑

k=0

(

n − 1 + m

k + m

)(

n − 1 − m

k

)

=

(

2 (n − 1)

n − 1

)

. (12)

While the left hand side of (12) depends on n and m, the right hand side depends

only on n and is independent of the label m of the final irreducible representation.

The binomial coefficient in the right–hand side of (12) is the number of multivariate

monomials of degree n − 1 in n variables.

2.3. Molien function as a sum of rational functions

The Molien function (11) can be written as a sum of n rational functions,

M
SO(2)
β ((m) ; Γn; λ) =

∑n−1
k=0 Nβ (n, m; k; λ) / (1 − λ2)

2n−1−k
, where the numerators Nβ

are polynomials of degree m:

Nβ (n, m; k; λ) =

(

2 (n − 1) − k

n − 1

)(

m − n + k

k

)

λm.

The powers in the denominators of M
SO(2)
β range from n to 2n − 1.

The form M
SO(2)
β is appealing for m ≥ n: the two binomial coefficients appearing in

Nβ (n, m; k; λ) are always positive, whereas they can be non–positive for 0 ≤ m ≤ n−1.

For m ≥ n, the form M
SO(2)
β is a sum of n rational functions where all the numerators

have non–negative coefficients. Each term in the sum is a rational function that gives

a partial contribution to the generalized integrity basis construction. It is noteworthy

that the number of terms in the denominators of these n rational functions ranges from
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n to 2n− 1. Such form of a Molien function was not yet suggested in the mathematical

or physics literature as a form suitable for symbolic interpretation.

The total number of numerator polynomials is given by the sum of all the binomial

coefficients that appear in Nβ (n, m; k; λ):

n−1∑

k=0

(

2 (n − 1) − k

n − 1

)(

m − n + k

k

)

=

(

n − 1 + m

m

)

. (13)

The right–hand side corresponds to the number of multivariate monomials of degree m

in n variables.

2.4. Expressions of the Molien functions M
SO(2)
α and M

SO(2)
β for n = 2, 3, 4 and low m

The explicit expressions of the M
SO(2)
α and M

SO(2)
β Molien functions for n = 2, 3, 4

and 0 ≤ m ≤ 5 are given in table 1. It is easy to check the property expressed by

equation (12). The sum of the coefficients of the numerator polynomial of Mα depends

on n but is independent of m.

3. Molien functions for n planar vectors under O(2)

The irreducible representations of the O(2) group are the two one–dimensional

representations A1 and A2 and an infinite number of two–dimensional representations

Em. The reflection in a line ∆ (ϕ) that makes an angle ϕ with the Ox axis acts on the

coordinates as: g∆(ϕ) ⋄ (x, y) = (x cos 2ϕ + y sin 2ϕ, x sin 2ϕ − y cos 2ϕ), and the action

of g∆(ϕ) on any polynomial p ∈ P1 is:

(
g∆(ϕ) • p

)
(x, y) = p

(

g−1
∆(ϕ) ⋄ (x, y)

)

= p (x cos 2ϕ + y sin 2ϕ, x sin 2ϕ − y cos 2ϕ) .

Each pair of functions πj = π (xj , yj) = xj−iyj , µj = µ (xj , yj) = xj+iyj transforms

as
(
g∆(ϕ) • π

)
(x, y) = e−2iϕµ (x, y) ,

(
g∆(ϕ) • µ

)
(x, y) = e2iϕπ (x, y) ,

and spans a two–dimensional irreducible representation Γ1 = E1 of the O(2) group and

the initial representation Γn is again the direct sum of the Γ1. The expressions of the

Molien functions for the O(2) point group can be constructed from the Molien functions

of the SO(2) group:

MO(2) (A1; Γn; λ) =
1

2

(

MSO(2) ((0) ; Γn; λ) +
1

(1 − λ2)n

)

,

MO(2) (A2; Γn; λ) =
1

2

(

MSO(2) ((0) ; Γn; λ) −
1

(1 − λ2)n

)

,

MO(2) (Em; Γn, λ) = MSO(2) ((m) ; Γn; λ) .

The sum MO(2) (A1; Γn; λ) + MO(2) (A2; Γn; λ) of the Molien functions for the final

A1 and A2 representations of the O(2) group gives back the Molien function for the (0)
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Table 1. Expressions of M
SO(2)
α (Γf ; Γn; λ) and M

SO(2)
β (Γf ; Γn; λ) Molien functions

for n = 2, 3, 4 planar vectors and final Γf = (m), 0 ≤ m ≤ 5 irreducible representations

of SO(2). The distinct contributions of the A1 and A2 invariants of O(2) are separated

in the numerator of the rational function for SO(2)–invariants.

n Γf M
SO(2)
α (Γf ; Γn; λ) M

SO(2)
β (Γf ; Γn; λ)

2 (0)
(1)

A1
+(λ2)

A2

(1−λ2)3

2 (1) 2λ

(1−λ2)3

2 (2) 2λ2

(1−λ2)3
+ λ2

(1−λ2)2

2 (3) 2λ3

(1−λ2)3
+ 2λ3

(1−λ2)2

2 (4) 2λ4

(1−λ2)3
+ 3λ4

(1−λ2)2

2 (5) 2λ5

(1−λ2)3
+ 4λ5

(1−λ2)2

3 (0)
(1+λ2+λ4)

A1

+(3λ2)
A2

(1−λ2)5

3 (1) 3λ+3λ3

(1−λ2)5

3 (2) 6λ2

(1−λ2)5

3 (3) 6λ3

(1−λ2)5
+ 3λ3

(1−λ2)4
+ λ3

(1−λ2)3

3 (4) 6λ4

(1−λ2)5
+ 6λ4

(1−λ2)4
+ 3λ4

(1−λ2)3

3 (5) 6λ5

(1−λ2)5
+ 9λ5

(1−λ2)4
+ 6λ5

(1−λ2)3

4 (0)
(1+3λ2+6λ4)

A1

+(6λ2+3λ4+λ6)
A2

(1−λ2)7

4 (1) 4λ+12λ3+4λ5

(1−λ2)7

4 (2) 10λ2+10λ4

(1−λ2)7

4 (3) 20λ3

(1−λ2)7

4 (4) 20λ4

(1−λ2)7
+ 10λ4

(1−λ2)6
+ 4λ4

(1−λ2)5
+ λ4

(1−λ2)4

4 (5) 20λ5

(1−λ2)7
+ 20λ5

(1−λ2)6
+ 12λ5

(1−λ2)5
+ 4λ5

(1−λ2)4

representation of the SO(2) group. The expressions of these functions are given in table 1

for n = 2, 3, 4. Terms in the numerator of MO(2) (A1; Γn; λ) are labelled as (x)A1
and a

similar notation is followed for A2. The Molien function for the Em representation of

O(2) is identical to the Molien function for the (m) representation of SO(2). We can

associate to each (m)–covariant its complex conjugate (which is a (−m)–covariant) and

the pair transforms according to representation Em.

4. Integrity bases for two planar vectors under SO(2)

4.1. Invariants

The Molien function MSO(2) ((0) ; Γ2; λ) for the construction of SO(2)–invariants from the

Γ2 representation suggests an integrity basis composed of three denominator polynomials

and two numerator polynomials. The polynomials πiµj, 1 ≤ i, j ≤ 2 are manifestly

SO(2)–invariant. They are the generators of the ring of invariants P(0)
2 [14]. The four
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generators may be alternatively chosen as scalar products r1 = r1 · r1, r2 = r2 · r2,

s1,2 = r1 · r2 and z–components t1,2 of vector products between two planar vectors r1

and r2 [14, 28]:

r1 = π1µ1 = x2
1 + y2

1,

r2 = π2µ2 = x2
2 + y2

2,

s1,2 = (π1µ2 + π2µ1) /2 = x1x2 + y1y2,

t1,2 = (π1µ2 − π2µ1) /(2i) = x1y2 − x2y1.

(16)

The first numerator polynomial is the polynomial 1 of degree zero while the second one

is a quadratic polynomial of symmetry A2 in O(2). It is natural to choose it as t1,2. The

three algebraically independent quadratic denominator polynomials are selected as r1,

r2 and s1,2. Furthermore, the Molien function MSO(2) ((0) ; Γ2; λ) can be written as the

rational function (1 − λ4) / (1 − λ2)
4
. This expression admits a symbolic interpretation

in the spirit of the method of syzygies of section 1.3. The four terms in the denominator

correspond to the four generators. The λ4 term in the numerator indicates that the

quartic polynomial in the coordinates of the planar vectors vanishes [14].

4.2. Free module of (1)–covariants

The three denominator invariants are chosen to be the same r1, r2 and s1,2 polynomials as

in the analysis of invariants. The two linearly independent (1)–covariants of degree one

suggested by the numerator of M
SO(2)
α ((1) ; Γ2; λ) are selected as π1 and π2. To describe

the structure of the free module of (1)–covariants, we remark that any (1)–covariant

decomposes as a linear combination of an infinite set of (1)–covariants:
∑

(n1,n2,n3)∈N3

c(1)
n1,n2,n3

rn1

1 rn2

2 sn3

1,2π1 +
∑

(n1,n2,n3)∈N3

c(2)
n1,n2,n3

rn1

1 rn2

2 sn3

1,2π2. (17)

The coefficients c
(1,2)
n1,n2,n3

in the decomposition are complex numbers. The monomials

rn1

1 rn2

2 sn3

1,2π1,2 constitute the C–basis of the module of (1)–covariants. Any (1)–covariant

decomposes as a C–linear combination of elements in the corresponding C–basis. The

C–basis is different from the concept of basis of a free module. The module structure

described by (17) consists of a ring of invariant polynomials and two (1)–covariant

polynomials, the rank of the module is the cardinality of the basis and is here equal to

two.

A geometric picture of the C–basis is given by lattices of points. Two three–

dimensional sets of points N3 are considered, one for π1 and one for π2. To the

rn1

1 rn2

2 sn3

1,2πi polynomial is associated a point of coordinates (n1, n2, n3). For example,

the point in figure 1a represents the polynomial r2
1r

2
2s1,2π1, while the point in figure 1b

represents the polynomial r1r
2
2s

2
1,2π2. The C–basis of the (1)–covariants is then viewed

as the lattice of points of figure 2.
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n1

n3

n2

n1

n3 n3

n2 n2

n1

n3

n1

n2

π1 π2 π1 π2b)a)

2

2
1

2

2
1

Figure 1. a) Polynomial r2
1r

2
2s1,2π1. b) Polynomial r1r

2
2s

2
1,2π2.

n2

n3

n1

n3

n2

n1

π1 π2

Figure 2. Lattices for the C–basis of (1)–covariants built from two planar vectors.

4.3. Non–free module of (m)–covariants, m ≥ 2

The structure of the (m)–covariants, m ≥ 2, is more involved. The α form of the Molien

function, M
SO(2)
α ((m) ; Γ2; λ) = [(m + 1)λm − (m − 1) λm+2] / (1 − λ2)

3
, suggests three

denominator polynomials, chosen as r1, r2 and s1,2. The first term in the numerator,

(m + 1) λm corresponds to the (m + 1) linearly independent (m)–covariants of degree

m. The second term in the numerator, [− (m − 1)λm+2], refers to (m − 1) relations of

degree m + 2 between the r1, r2, s1,2 denominator invariants and the m + 1 numerator

(m)–covariants of degree m. We detail in the next subsections the algebraic structure

of the non–free modules of (m)–covariants, m ≥ 2.

4.3.1. Non–free module of (2)–covariants The expression of the β form of the Molien

function M
SO(2)
β ((2) ; Γ2; λ) is given by 2λ2/ (1 − λ2)

3
+ λ2/ (1 − λ2)

2
. The set N 2,2 =

{π2
1, π1π2, π

2
2} contains three linearly independent (2)–covariants of lowest degree. They

are all three chosen as numerator polynomials in order to span the three–dimensional

vector space of (2)–covariants of degree two. However, they cannot be multiplied by

arbitrary polynomials of three invariants like in (18) because this leads to the Molien

function 3λ2/ (1 − λ2)
3
. which counts some (2)–covariants several times due to relation

2s1,2π1π2 − r1π
2
2 − r2π

2
1 = 0 among r1, r2, s1,2, π2

1 , π1π2, and π2
2 .

p1 (r1, r2, s1,2) π2
1 + p2 (r1, r2, s1,2)π1π2 + p3 (r1, r2, s1,2) π2

2, (18)
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The overcounting problem is eliminated by substituting every rn
1 π2

2 term that appear

in expansion (18) with its equivalent expression 2rn−1
1 s1,2π1π2 − rn−1

1 r2π
2
1. Any (2)–

covariant is then uniquely decomposed according to equation (19):

p2,0 (r1, r2, s1,2) π2
1 + p1,1 (r1, r2, s1,2) π1π2 + p0,2 (r2, s1,2)π2

2 . (19)

The (2)–covariants π2
1 and π1π2 are multiplied by polynomial functions in the three

denominator polynomials while the (2)–covariant π2
2 is multiplied by a polynomial

function of r2 and s1,2 only. The first two terms in the sum (19) are a product of

a polynomial in three variables with a (2)–covariant: they are associated with the

2λ2/ (1 − λ2)
3

part of the Molien function M
SO(2)
β ((2) ; Γ2; λ). The last term is a

product of a polynomial in two variables with a (2)–covariant and is related to the

λ2/ (1 − λ2)
2

part of the Molien function. The associated generalized integrity basis of

M
SO(2)
β ((2) ; Γ2; λ) would contain the denominators r1, r2, s1,2 and numerators π2

1, π1π2

for the 2λ2/ (1 − λ2)
3

contribution and the denominators r2, s1,2 and numerator π2
2

for the λ2/ (1 − λ2)
2

contribution. These results are summed up in table 2. The

corresponding C–basis contains the elements rn1

1 rn2

2 sn3

1,2π
2
1, rn1

1 rn2

2 sn3

1,2π1π2, and rn2

2 sn3

1,2π
2
2.

Figure 3 gives a picture of the corresponding lattice of points.

n1

n3 n3n3

n1 n1

n2n2n2

π1
2 π1 2π π2

2

Figure 3. Lattices for the C–basis of (2)–covariants built from two planar vectors and

decomposition (19).

The proposed generalized integrity basis is nevertheless not unique. We could have

chosen to remove all the sn
1,2π1π2 terms in (18) instead of the rn

1 π2
2. Substituting every

occurrence of sn
1,2π1π2 by

(
r1s

n−1
1,2 π2

2 + r2s
n−1
1,2 π2

1

)
/2, any (2)–covariant is expressed as

the combination (20):

p′2,0 (r1, r2, s1,2) π2
1 + p′1,1 (r1, r2) π1π2 + p′0,2 (r1, r2, s1,2)π2

2 , (20)

which suggests to relate the denominators r1, r2, s1,2 and numerators π2
1, π

2
2 to the

2λ2/ (1 − λ2)
3

rational function and the denominators r1, r2 and numerator π1π2 to the

λ2/ (1 − λ2)
2

rational function. Figure 4 illustrates this decomposition of the non–free

module of (2)–covariants.

One yet another possibility substitutes every rn
2 π2

1 term in (18) by 2s1,2r
n−1
2 π1π2 −

r1r
n−1
2 π2

2 . Any (2)–covariant is then expressed as the combination (21),

p′′2,0 (r1, s1,2)π2
1 + p′′1,1 (r1, r2, s1,2) π1π2 + p′′0,2 (r1, r2, s1,2)π2

2 , (21)
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n1

n3 n3n3

n1 n1

n2n2n2

π1
2 π1 2π π2

2

Figure 4. Lattices for the C–basis of (2)–covariants built from two planar vectors and

decomposition (20).

which suggests to associate the denominators r1, r2, s1,2 and numerators π2
2, π1π2 to the

2λ2/ (1 − λ2)
3

rational function and the denominators r1, s1,2 and the numerator π2
1 to

the λ2/ (1 − λ2)
2

rational function. This decomposition is pictured in Figure 5.

n1

n3 n3n3

n1 n1

n2n2n2

π1
2 π1π2 π2

2

Figure 5. Lattices for the C–basis of (2)–covariants built from two planar vectors and

decomposition (21).

4.3.2. Non–free module of (3)–covariants The β form of the Molien function for the

(3)–covariants is a sum of two rational functions, 2λ3/ (1 − λ2)
3
+ 2λ3/ (1 − λ2)

2
. The

π3
1, π2

1π2, π1π
2
2 and π3

2 polynomials are the four linearly independent (3)–covariants of

lowest degree (degree three) and are chosen as numerator invariants.

As in section 4.3.1, we select r1, r2, and s1,2 as denominator invariants of the first

rational function and we start from the redundant decomposition of a (3)–covariant as:

p3,0 (r1, r2, s1,2) π3
1 + p2,1 (r1, r2, s1,2) π2

1π2 + p1,2 (r1, r2, s1,2) π1π
2
2

+p0,3 (r1, r2, s1,2)π3
2 , (22)

corresponding to a Molien function equal to 4λ3/ (1 − λ2)
3
. Redundancies are eliminated

by first using the quintic relation 2s1,2π1π
2
2 − r1π

3
2 − r2π

2
1π2 = 0 to eliminate the rn

1 π3
2

terms of (22). The quintic relation 2s1,2π
2
1π2 − r1π1π

2
2 − r2π

3
1 = 0 is used in a second
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step to eliminate the rn
1 π1π

2
2 terms. Any (3)–covariant then uniquely decomposes as:

p′′3,0 (r1, r2, s1,2) π3
1 + p′′2,1 (r1, r2, s1,2) π2

1π2 + p′′1,2 (r2, s1,2) π1π
2
2

+p′′0,3 (r2, s1,2)π3
2 . (23)

Decomposition (23) corresponds to the symbolic interpretation of the β form of the

Molien function. The first rational function 2λ3/ (1 − λ2)
3

is associated with r1, r2, and

s1,2 as denominator polynomials and π3
1, π2

1π2 as numerator polynomials. The second

contribution 2λ3/ (1 − λ2)
2

is associated with r2 and s1,2 as denominator polynomials

and π1π
2
2, π3

2 as numerator polynomials. Figure 6 gives the geometric interpretation of

the C–basis of (3)–covariants in term of two N3 spaces associated with π3
1, π2

1π2 and two

N
2 spaces associated with π1π

2
2 , π3

2 .

n3

n1

n3

n2 n2

n1

n3

n2

n1

n3

n2

n1

π1
3 2π1π2 π1π2

2 π2
3

Figure 6. Lattices for the C–basis of (3)–covariants built from two planar vectors and

decomposition (23).

4.3.3. Non–free module of (4)–covariants and (5)–covariants The same principles used

in the description of the non–free modules of (2)–covariants and (3)–covariants are still

valid for the modules of (4)–covariants and (5)–covariants. The successive application of

the three sextic relations 2s1,2π1π
3
2 −r1π

4
2 −r2π

2
1π

2
2 = 0, 2s1,2π

2
1π

2
2 −r1π1π

3
2 −r2π

3
1π2 = 0,

and 2s1,2π
3
1π2 − r1π

2
1π

2
2 − r2π

4
1 = 0, allows to uniquely decompose any (4)–covariant as:

p4,0 (r1, r2, s1,2) π4
1 + p3,1 (r1, r2, s1,2) π3

1π2

+p2,2 (r2, s1,2)π2
1π

2
2 + p1,3 (r2, s1,2) π1π

3
2 + p0,4 (r2, s1,2) π4

2. (24)

The generalized integrity basis related to the Molien function M
SO(2)
β ((4) ; Γ2; λ) consists

in r1, r2, s1,2 as denominator polynomials and π4
1 , π3

1π2 as numerator polynomials for the

2λ4/ (1 − λ2)
3

contribution and in r2, s1,2 as denominator polynomials and π2
1π

2
2, π1π

3
2,

and π4
2 as numerator polynomial for the 3λ4/ (1 − λ2)

2
contribution. Figure 7 gives a

geometric view of the C–basis of (4)–covariants in term of two N3 spaces associated with

π4
1, π3

1π2 and three N2 spaces associated with π2
1π

2
2, π1π

3
2 , and π4

2.

Finally, the Molien function M
SO(2)
β ((5) ; Γ2; λ) and the four relations of degree

seven 2s1,2π1π
4
2 − r1π

5
2 − r2π

2
1π

3
2 = 0, 2s1,2π

2
1π

3
2 − r1π1π

4
2 − r2π

3
1π

2
2 = 0, 2s1,2π

3
1π

2
2 −

r1π
2
1π

3
2 −r2π

4
1π2 = 0, 2s1,2π

4
1π2−r1π

3
1π

2
2 −r2π

5
1 = 0 between the quadratic invariants and
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n2

n3

n1

n3

n2

n1

n3

n2

n1

n3

n2

n1

π1
4 3π1π2 1π π2

22 π1π2
3

n3

n2

n1

π2
4

Figure 7. Lattices for the C–basis of (4)–covariants built from two planar vectors and

decomposition (24).

the set of (5)–covariants of lowest degree imply that any (5)–covariant can be uniquely

written as:

p5,0 (r1, r2, s1,2) π5
1 + p4,1 (r1, r2, s1,2) π4

1π2 + p3,2 (r2, s1,2) π3
1π

2
2

+p2,3 (r2, s1,2)π2
1π

3
2 + p1,4 (r2, s1,2) π1π

4
2 + p0,5 (r2, s1,2) π5

2, (25)

and suggest a generalized integrity basis composed of r1, r2, s1,2 as denominator

polynomials and π5
1, π4

1π2 as numerator polynomials for the 2λ5/ (1 − λ2)
3

contribution

and of r2, s1,2 as denominator polynomials and π3
1π

2
2, π2

1π
3
2, π1π

4
2, and π5

2 as numerator

polynomials for the 4λ5/ (1 − λ2)
2

contribution.

5. Integrity bases for three planar vectors under SO(2)

The integrity bases for the invariants and low (m)–covariants are given in table 3.

5.1. Generators of invariants and syzygies between them

The expression of the Molien function for SO(2)–invariants built up from three

vectors is M
SO(2)
α ((0) ; Γ3; λ) =

[
(1 + λ2 + λ4)A1

+ (3λ2)A2

]
/ (1 − λ2)

5
. Its numerator

separates in two contributions from A1 and A2 final representation under the O(2)

group. This rational function suggests an integrity basis containing five quadratic

denominator invariants, a numerator constant, four quadratic numerator invariants (one



The action of the orthogonal group on planar vectors 17

Table 2. Integrity bases for invariants and covariants of the SO(2) group built up

from two planar vectors. The underscored polynomial transform as the A2 irreducible

representation of O(2) group.

m Term Polynomial

Denominators d1 = r1, d2 = r2, d3 = s1,2

≥ 0
(
1 − λ2

)3
d1, d2, d3

≥ 2
(
1 − λ2

)2
d2, d3

Numerators

0 1 + λ2 1, t1,2

1 2λ π1, π2

2 2λ2 π2
1 , π1π2

λ2 π2
2

3 2λ3 π3
1 , π2

1π2

2λ3 π1π
2
2 , π3

2

4 2λ4 π4
1 , π3

1π2

3λ4 π2
1π2

2 , π1π
3
2 , π4

2

5 2λ5 π5
1 , π4

1π2

4λ5 π3
1π2

2 , π2
1π3

2 , π1π
4
2 , π5

2

has symmetry A1 and three have symmetry A2 in O(2)), and one quartic numerator

invariant of symmetry A1 in O(2). The nine invariants πiµj, 1 ≤ i, j ≤ 3 or equivalently

the ri = x2
i + y2

i , si,j = xixj + yiyj, and ti,j = xiyj − xjyi constitute a set of generators

for all the SO(2) invariant polynomials built up from Γ3 [14]. The three quadratic

ti,j polynomials change sign upon any reflection in a line. They are identified with the

three numerator polynomials of symmetry A2. Syzygies exist among the nine generators.

The expression (26) is much suitable for a symbolic interpretation of the Molien function

under the method of syzygies.

MSO(2) ((0) ; Γ3; λ) =
1 − 9λ4 + 16λ6 − 9λ8 + λ12

(1 − λ2)9 . (26)

The nine syzygies σi = 0 of degree four suggested by (26) are given by Weyl [14]:

σ1 = t21,2 − r1r2 + s2
1,2, σ2 = t21,3 − r1r3 + s2

1,3,

σ3 = t22,3 − r2r3 + s2
2,3, σ4 = t1,2t1,3 − r1s2,3 + s1,2s1,3,

σ5 = t1,2t2,3 − s1,2s2,3 + r2s1,3, σ6 = t1,3t2,3 − r3s1,2 + s1,3s2,3,

σ7 = s1,3t1,2 + r1t2,3 − s1,2t1,3, σ8 = s2,3t1,2 + s1,2t2,3 − r2t1,3,

σ9 = r3t1,2 + s1,3t2,3 − s2,3t1,3.

The nine first–order syzygies are not independent and the numerator of (26) predicts

sixteen second–order syzygies. The syzygy investigated in section 4.1 between the

generators of two planar vectors was simple enough that a construction of an integrity

basis for invariants was done by hand. The syzygies between the generators of three

planar vectors are much more intricate and integrity bases have to be determined with

a different approach that relies on a computer algebra system.
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5.2. Integrity basis of invariants with an algorithmic approach

The algorithmic approach for bringing up an integrity basis bypasses the description

of the syzygies among the generators. It rather uses the Molien function as a guide

to propose an educated guess for the integrity basis. The symbolic interpretation of

the Molien function M
SO(2)
α ((0) ; Γ3; λ) first requires to pick up a set of denominator

polynomials θk. The number D and degree of these polynomials are directly read

from the denominator of the Molien function. Gröbner bases are used to check the

algebraically independency of the denominator polynomials [35]. In a second step, the

numerator of the Molien function gives an indication on the number and degree of

the linearly independent numerator polynomials. A vector space Vk is spanned by the

polynomials of degree k built from the tentative integrity basis, keeping in mind that

powers of denominator polynomials may be used but numerator polynomials appear

only linearly. The integrity basis is acceptable if the rank of the vector space Vk is equal

for any value of k to the coefficient ck in the Taylor expansion of the Molien function.

In practice, this is checked for the lowest values of k. After some trial and error, we

found that the d1 = r1, d2 = r2, d3 = r3, d4 = s1,2 + s1,3 , d5 = s1,2 + s2,3 denominator

polynomials and 1 , s2,3 , t1,2, t1,3 , t2,3 , s2
2,3 numerator polynomials defines an integrity

basis for the invariants built up from Γ3. The ring of invariants is Cohen–Macaulay and

any SO(2)–invariant decomposes as:

p1 (d1, . . . , d5) + p2 (d1, . . . , d5) s2,3 + p3 (d1, . . . , d5) t1,2

+p4 (d1, . . . , d5) t1,3 + p5 (d1, . . . , d5) t2,3 + p6 (d1, . . . , d5) s2
2,3,

where the notation di, . . . , dj stands for the set of (j − 1 + 1) variables

di, di+1, . . . , dj−1, dj.

5.3. Free module of (1)–covariants

The Molien function for the (1)–covariants asks for three (1)–covariants of degree one

and three (1)–covariants of degree three. The denominator polynomials of the integrity

basis of the invariants are chosen as denominator polynomials for the (1)–covariants. The

algorithmic procedure described in section 5.2 is adapted by using linearly independent

(1)–covariants as numerator polynomials. It shows that π1 , π2 , π3 , π1s2,3 , π2s1,3,

π3s2,3 can be chosen as numerator invariants. The module of (1)–covariants is free and

any (1)–covariant decomposes as:

p1 (d1, . . . , d5) π1 + p2 (d1, . . . , d5)π2 + p3 (d1, . . . , d5)π3

+p4 (d1, . . . , d5) π1s2,3 + p5 (d1, . . . , d5)π2s1,3 + p6 (d1, . . . , d5) π3s2,3.

5.4. Free module of (2)–covariants

The denominator polynomials of M
SO(2)
α ((2) ; Γ3; λ) = 6λ2/ (1 − λ2)

5
are again

chosen to be identical to the denominator polynomials of the invariants. The

six linearly independent (2)–covariants of degree two are the monomials N 3,2 =
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{π2
1, π1π2, π1π3, π

2
2, π2π3, π

2
3} in the expansion of (π1 + π2 + π3)

3. They are chosen as

numerator invariants. Any (2)–covariant decomposes as:

p1 (d1, . . . , d5) π2
1 + p2 (d1, . . . , d5) π1π2 + p3 (d1, . . . , d5) π1π3

+p4 (d1, . . . , d5) π2
2 + p5 (d1, . . . , d5) π2π3 + p6 (d1, . . . , d5) π2

3.

The module of (2)–covariants is free. Each of the six (2)–covariant polynomials is

associated with a five–dimensional lattice N5.

5.5. Non–free modules of (m)–covariants, m ≥ 3

The coefficient in front of λm+2 in the α form of the Molien function

M
SO(2)
α ((m) ; Γ3; λ) = N3,m (λ) / (1 − λ2)

5
, with

N3,m (λ) = (m + 2) (m + 1) λm/2 − (m + 2) (m − 2)λm+2 + (m − 1) (m − 2)λm+4/2,

becomes negative for m ≥ 3. As in the two vector case, relations between denominator

and numerator polynomials are expected and the corresponding modules of (m)–

covariants are not free.

5.5.1. Non–free module of (3)–covariants There are exactly ten linearly independent

(3)–covariants of degree three, and the negative coefficient in N3,3 (λ) suggests five

relations between the denominator and numerator polynomials, in the same spirit

as section 4.3.1 for two vectors. The β form M
SO(2)
β ((3) ; Γ3; λ) = 6λ3/ (1 − λ2)

5
+

3λ3/ (1 − λ2)
4
+ λ3/ (1 − λ2)

3
can be used to propose a generalized integrity basis. The

expression suggests a total of ten (3)–covariants of degree three to be partitioned among

the three numerators. The denominator of the first rational function contains five terms,

the second denominator four terms and the third one only three terms. The denominator

polynomials associated to the first rational fraction are chosen to be the five denominator

polynomials of the invariants. The four denominator polynomials corresponding to the

second contribution are selected by removing the r1 invariant from this set, and the

three denominator polynomials of the third contribution are obtained by removing r1

and r2 together from this set.

We can methodically define the numerator polynomials for each of the three rational

function of M
SO(2)
β ((3) ; Γ3; λ) by looking back to the two vector case. Equation (13)

states that the total number of numerator polynomials in M
SO(2)
β ((m) ; Γ2; λ) is simply

m + 1. Note that this number is the cardinal of the set of monomials N 2,m =

{πm1

1 πm2

2 , (m1, m2) ∈ N2, m1 + m2 = m}. The set N 2,m is partioned into two disjoint

subsets N 2,m,1 and N 2,m,2 respectively associated with the first and the second rational

function of M
SO(2)
β ((m) ; Γ2; λ). Following table 2, N 2,m,1 contains the monomials πm

1

and πm−1
1 π2. The monomials of N 2,m not in N 2,m,1 belong to the subset N 2,m,2. The

partitioning in two parts of the set N 2,m of numerator polynomials is certainly not

unique as shown by the complete study in section 4.3.
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We define the set N n,m,i of numerator polynomials attached to the ith rational

fraction of M
SO(2)
β ((m) ; Γn; λ) as the (m)–monomials that appear in the multivariate

polynomial (27).

(πi + πi+1 + · · · + πn)n−1 × (π1 + π2 + · · ·+ πi)
m−n × πi, m ≥ n ≥ 2. (27)

Such a definition coincides with the sets given in table 2 for m ≥ 2. The expression

of the N n,m,i numerator polynomials is explicitly given in Appendix A for 2 ≤ n ≤ 4

and n ≤ m ≤ 5. The number of monomials in polynomials (πi + πi+1 + · · · + πn)n−1

and (π1 + π2 + · · ·+ πi)
m−n are respectively equal to the first and second binomial

coefficients of the left–hand side of (13). The polynomial N n,m,i
j is the jth element

of the set N n,m,i.

The β form of the Molien function is a sum of rational functions with different

number of terms in the denominators and the algorithmic procedure for one rational

function exposed in section 5.2 is modified to take care of the new representation.

The numerators in N 3,m,i can only be multiplied by a polynomial in the denominator

polynomials attached to the ith rational fraction. The computation confirms that the

choice of N 3,3,1 as numerators of the first rational function, N 3,3,2 as numerators of the

second rational function, and N 3,3,3 as numerator of the third rational function is a

generalized integrity basis for the module of (3)–covariants.

The module of (3)–covariants is not free. The expansion

6∑

i=1

p1,i (d1, . . . , d5)N
3,3,1
i +

3∑

i=1

p2,i (d1, . . . , d5)N
3,3,2
i

+p3,1 (d1, . . . , d5)N
3,3,3
1 , (28)

can be reduced by taking into account the five relations (2.1a)–(2.1e) of Appendix

B between the numerator and denominator polynomials. Once the terms dn
1N

3,3,2
1 ,

dn
1N

3,3,2
2 , dn

1N
3,3,2
3 , dn

1N
3,3,3
1 and dn

2N
3,3,3
1 are removed from expansion (28) using

relations (2.1a)–(2.1e), the decomposition of any (3)–covariant finally reads as:

6∑

i=1

p1,i (d1, . . . , d5)N
3,3,1
i +

3∑

i=1

p2,i (d2, . . . , d5)N
3,3,2
i

+p3,1 (d3, . . . , d5)N
3,3,3
1 . (29)

The six covariants N 3,3,1
i are associated to a lattice in N

5, the three covariants N 3,3,2
i

are associated to a lattice in N4, and the covariant N 3,3,3
1 is associated to a lattice in

N3. Figure 8 gives a geometrical point of view of this result.

5.5.2. Non–free module of (4)–covariants The β form of the Molien function is

M
SO(2)
β ((4) ; Γ3; λ) = 6λ3/ (1 − λ2)

5
+ 6λ3/ (1 − λ2)

4
+ 3λ3/ (1 − λ2)

3
. The module of

(4)–covariants is not free, the relations (2.2a)–(2.2l) of Appendix B between denominator

polynomials di and numerator polynomials N 3,4,i
j hold. In a first step, relations (2.2d),

(2.2e), (2.2f), (2.2h), (2.2i) are used to remove the terms dn
1N

3,4,2
4 , dn

1N
3,4,2
5 , dn

1N
3,4,2
6 ,

dn
1N

3,4,3
2 , dn

1N
3,4,3
3 . The right hand side of these relations contains N 3,4,2

1 , N 3,4,2
2 , N 3,4,2

3 ,
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n3,n4,n5

n2

n1 n1

n2

n3,n4,n5

n1

n2

n3,n4,n5 n3,n4,n5

n1

n2

N1
3,3,1 N2

3,3,1 N3
3,3,1 N4

3,3,1

n3,n4,n5

n1

n2

n1

n2

n3,n4,n5 n3,n4,n5

n2

n1

n3,n4,n5

n1

n2

n3,n4,n5

n2

n1

n3,n4,n5

n2

n1

N5
3,3,1 N6

3,3,1 N1
3,3,2 N2

3,3,2

N3
3,3,2 N1

3,3,3

Figure 8. Lattices for the C–basis of (3)–covariants built from three planar vectors

and decomposition (29). The arrow labelled n3, n4, n5 represents a three–dimensional

space N3.

N 3,4,3
1 , but the terms dn

1N
3,4,2
1 , dn

1N
3,4,2
2 , dn

1N
3,4,2
3 , dn

1N
3,4,3
1 can be removed in a second

step using relations (2.2a), (2.2b), (2.2c), (2.2g). In a third step, the dn
2N

3,4,3
3 terms are

removed using (2.2l). The right–hand side of this relation contains a N 3,4,3
2 term, but

dn
2N

3,4,3
1 and dn

2N
3,4,3
2 terms can be removed using (2.2j) and (2.2k). Any (4)–covariant

finally decomposes as:

6∑

i=1

p1,i (d1, . . . , d5)N
3,4,1
i +

6∑

i=1

p2,i (d2, . . . , d5)N
3,4,2
i

+
3∑

i=1

p3,i (d3, . . . , d5)N
3,4,3
i .
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In terms of lattices of points, the six covariants N 3,4,1
i are associated with a N5 lattice,

the six covariants N 3,4,2
i are associated with a N4 lattice, and the three covariants N 3,4,3

i

are associated with a N3 lattice.

5.5.3. Non–free module of (5)–covariants The β form of the Molien function is

M
SO(2)
β ((4) ; Γ3; λ) = 6λ3/ (1 − λ2)

5
+ 9λ3/ (1 − λ2)

4
+ 6λ3/ (1 − λ2)

3
. As in the

treatment of the non–free modules of (3)–covariants and (4)–covariants, relations (2.3a)–

(2.3u) of Appendix B indicate that the module of (5)–covariants is not free. In a first

step, the terms dn
1N

3,5,2
7 , dn

1N
3,5,2
8 , dn

1N
3,5,2
9 , dn

1N
3,5,3
4 dn

1N
3,5,3
5 dn

1N
3,5,3
6 are eliminated by

using the relations (2.3g), (2.3h), (2.3i), (2.3m), (2.3n), (2.3o). However the right–hand

side of these relations produce the terms dn
1N

3,5,2
1 , dn

1N
3,5,2
2 , dn

1N
3,5,2
3 , dn

1N
3,5,2
4 , dn

1N
3,5,2
5 ,

dn
1N

3,5,2
6 , dn

1N
3,5,3
1 , dn

1N
3,5,3
2 , dn

1N
3,5,3
3 . In a second step, the terms dn

1N
3,5,2
4 , dn

1N
3,5,2
5 ,

dn
1N

3,5,2
6 , dn

1N
3,5,3
2 , dn

1N
3,5,3
3 , are eliminated by the use of relations (2.3d), (2.3e), (2.3f),

(2.3k), (2.3l). The products dn
1N

3,5,2
1 , dn

1N
3,5,2
2 , dn

1N
3,5,2
3 , dn

1N
3,5,3
1 are generated in the

right–hand side. In a third step, the terms dn
1N

3,5,2
1 , dn

1N
3,5,2
2 , dn

1N
3,5,2
3 dn

1N
3,5,3
1 are

eliminated by relations (2.3a), (2.3b), (2.3c), (2.3j). At this point, any (5)–covariant

decomposes as:

6∑

i=1

p1,i (d1, . . . , d5)N
3,5,1
i +

9∑

i=1

p2,i (d2, . . . , d5)N
3,5,2
i

+

6∑

i=1

p3,i (d2, . . . , d5)N
3,5,3
i .

In a fourth step, the term dn
2N

3,5,3
6 is eliminated by (2.3u), but products dn

2N
3,5,3
2 ,

dn
2N

3,5,3
4 , dn

2N
3,5,3
5 appear in the right–hand side. In a fifth step, the terms dn

2N
3,5,3
3

and dn
2N

3,5,3
5 are eliminated by relations (2.3r), (2.3t). The relations generate the

products dn
2N

3,5,3
2 and dn

2N
3,5,3
4 . In a sixth step, the terms dn

2N
3,5,3
1 , dn

2N
3,5,3
2 , dn

2N
3,5,3
4

are eliminated by relations (2.3p), (2.3q), (2.3s). After the six steps of rewriting, any

(5)–covariant decomposes as:

6∑

i=1

p1,i (d1, . . . , d5)N
3,5,1
i +

9∑

i=1

p2,i (d2, . . . , d5)N
3,5,2
i

+

6∑

i=1

p3,i (d3, . . . , d5)N
3,5,3
i .

The six covariants N 3,5,1
i are associated with a N5 lattice, the nine covariants N 3,5,2

i

are associated with a N4 lattice, and the six covariants N 3,5,3
i are associated with a N3

lattice.
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Table 3. Integrity bases for invariants and covariants of the SO(2) group built up from

three planar vectors. The underscored polynomials transform as the A2 irreducible

representation of O(2) group. The other numerator polynomials of the (0) irreducible

representation transform as the totally symmetric representation A1 of the O(2) group.

See Appendix A for the explicit expression of the sets of numerator polynomials N 3,m,i.

m Term Polynomial

Denominators d1 = r1, d2 = r2, d3 = r3, d4 = s1,2 + s1,3, d5 = s1,2 + s2,3

≥ 0
(
1 − λ2

)5
d1, d2, d3, d4, d5

≥ 3
(
1 − λ2

)4
d2, d3, d4, d5

≥ 3
(
1 − λ2

)3
d3, d4, d5

Numerators

0 1 + 4λ2 + λ4 1, s2,3, t1,2, t1,3, t2,3, s2
2,3

1 3λ + 3λ3 π1, π2, π3, π1s2,3, π2s1,3, π3s2,3

2 6λ2 π2
1 , π1π2, π1π3, π2

2 , π2π3, π2
3

3 6λ3 N 3,3,1

3λ3 N 3,3,2

λ3 N 3,3,3

4 6λ4 N 3,4,1

6λ4 N 3,4,2

3λ4 N 3,4,3

5 6λ5 N 3,5,1

9λ5 N 3,5,2

6λ5 N 3,5,3

6. Integrity bases for four planar vectors under SO(2)

6.1. Invariants and free modules of (1)–, (2)–, and (3)–covariants

The Molien function for SO(2)–invariants built up from four vectors, M
SO(2)
α ((0) ; Γ4; λ) =

[
(1 + 3λ2 + 6λ4)A1

+ (6λ2 + 3λ4 + λ6)A2

]
/ (1 − λ2)

7
, suggests to find seven quadratic

denominator invariants, one numerator constant, nine quadratic numerator invariants

(of which three have A1 symmetry and six have A2 symmetry), nine quartic numer-

ator invariants (of which six have A1 symmetry and three have A2 symmetry), and

one sextic numerator polynomial of symmetry A2. The set of generators ri, si,j, ti,j,

1 ≤ i < j ≤ 4 contains sixteen linearly independent quadratic polynomials. The Molien

function is rewritten in the form MSO(2) ((0) ; Γ4; λ) = N4,0 (λ) / (1 − λ2)
16

compatible

with the method of syzygies, where the numerator reads as:

N4,0 (λ) = 1 − 36λ4 + 160λ6 − 315λ8 + 288λ10 − 288λ14 + 315λ16 − 160λ18 + 36λ20 − λ24.

Thirty–eight first order syzygies of degree four among the generators are given

in Appendix C, but they span a vector space of only thirty–six linearly independent

relations as confirmed by the 36λ4 term in the numerator N4,0 (λ). As in the case

with three planar vectors, the intricate structure of the syzygies calls for an algorithmic

approach. The results are given in table 4. The twenty numerator polynomials N 4,3
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for the free module of (3)–covariants are the monomials that belong to the expansion of

(π1 + π2 + π3 + π4)
3.

Table 4. Integrity bases for invariants and covariants of the SO(2) group built up

from four planar vectors. The underscored polynomials transform as the A2 irreducible

representation of O(2) group. The other numerator polynomials of the (0) irreducible

representation transform as the totally symmetric representation A1 of the O(2) group.

See Appendix A for the explicit expression of the sets of numerator polynomials N 4,m,i.

m Term Polynomial

Denominators d1 = r1, d2 = r2, d3 = r3, d4 = r4, d5 = s1,2 + s1,3 + s3,4,

d6 = s1,3 + s1,4 + s2,4, d7 = s1,4 + s2,3 + s3,4

≥ 0
(
1 − λ2

)7
d1, d2, d3, d4, d5, d6, d7

≥ 4
(
1 − λ2

)6
d2, d3, d4, d5, d6, d7

≥ 4
(
1 − λ2

)5
d3, d4, d5, d6, d7

≥ 4
(
1 − λ2

)4
d4, d5, d6, d7

Numerators

0 1 + 9λ2 + 9λ4 + λ6 1, s2,3, s2,4, s3,4, t1,2, t1,3, t1,4, t2,3, t2,4, t3,4, s2
2,3, s2

2,4, s2
3,4,

s2,3s2,4, s2,3s3,4, s2,4s3,4, t2,3s2,3, t2,4s2,4, t3,4s3,4, s2
3,4t3,4

1 4λ + 12λ3 + 4λ5 π1, π2, π3, π4, π1s2,3, π1s2,4, π1s3,4, π2s1,3, π2s1,4, π2s2,3,

π3s1,2, π3s1,3, π3s2,4, π4s1,2, π4s1,3, π4s2,3, π1s
2
2,3, π2s

2
1,3,

π3s
2
1,2, π4s

2
1,2

2 10λ2 + 10λ4 π2
1 , π2

2 , π2
3 , π2

4 , π1π2, π1π3, π1π4, π2π3, π2π4, π3π4, π2
1s1,2,

π2
2s1,2, π2

3s1,2, π2
4s1,2, π1π2s3,4, π1π3s2,4, π1π4s2,3, π1π4s1,3,

π2π3s2,4, π3π4s1,4

3 20λ3 π3
1 , π2

1π2, π2
1π3, π2

1π4, π1π
2
2 , π1π2π3, π1π2π4, π1π

2
3 , π1π3π4,

π1π
2
4 , π3

2 , π2
2π3, π2

2π4, π2π
2
3 , π2π3π4, π2π

2
4 , π3

3 , π2
3π4, π3π

2
4 , π3

4

4 20λ4 N 4,4,1

10λ4 N 4,4,2

4λ4 N 4,4,3

λ4 N 4,4,4

5 20λ5 N 4,5,1

20λ5 N 4,5,2

12λ5 N 4,5,3

4λ5 N 4,5,4

6.2. Non–free modules of (4) and (5)–covariants

Negative coefficients appear for m ≥ 4 in the numerator of the α form

M
SO(2)
α ((m) ; Γ4; λ) = N4,m (λ) / (1 − λ2)

7
, with

N4,m (λ) = (m + 3) (m + 2) (m + 1)λm/6 − (m − 3) (m + 3) (m + 2)λm+2/2

+ (m − 3) (m − 2) (m + 3) λm+4/2 − (m − 3) (m − 2) (m − 1) λm+6/6.

Generalized integrity basis for the modules of (4) and (5)–covariants are constructed

following the same lines seen in section 4.3 and section 5.5 for the non–free modules
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with two or three vectors. Their elements are given in table 4. As a consequence, any

(4)–covariant uniquely decomposes as:

20∑

i=1

p1,i (d1, . . . , d7)N
4,4,1
i +

10∑

i=1

p2,i (d2, . . . , d7)N
4,4,2
i

+
4∑

i=1

p3,i (d3, . . . , d7)N
4,4,3
i + p4,1 (d4, d5, d6, d7)N

4,4,4
1 ,

and any (5)–covariant uniquely decomposes as:

20∑

i=1

p1,i (d1, . . . , d7)N
4,5,1
i +

20∑

i=1

p2,i (d2, . . . , d7)N
4,5,2
i

+

12∑

i=1

p3,i (d3, . . . , d7)N
4,5,3
i +

4∑

i=1

p4,i (d4, . . . , d7)N
4,5,4
i .

7. Integrity bases for two, three, and four planar vectors under O(2)

The integrity bases for two, three, and four planar vectors under the O(2) group are

directly deduced from the integrity bases under SO(2) given in table 2, table 3, and

table 4. It suffices to remark that both the ri and si,j polynomials are invariant

with respect to a reflection in any line, while the ti,j change sign. As a consequence,

the ri and si,j belong to the A1 irreducible representation while the ti,j transform

as the A2 irreducible representation of the O(2) group. The underscored numerator

polynomials of the (0) representation of SO(2) in table 2, table 3 and table 4 are the

numerator polynomials for the A2 representation of O(2), while the remaining numerator

polynomials of the (0) representation are the numerator polynomials for the A1 Molien

function of O(2).

The integrity basis for the Em representations of O(2) are constructed with a similar

pattern. The denominator polynomials are those of the (m) representation of SO(2).

The numerator polynomials are those of the (m) representation of SO(2) and their

complex conjugate.

8. Conclusion

The explicit expressions of the Molien function MG (Γf ; Γn; λ) for the Γf–polynomials

built up from the components of n planar vectors under G = SO(2), O(2) were presented.

The formulas obtained after a direct evaluation of the integral (10) do not admit any

direct symbolic interpretation. Two other expressions of the Molien function, Mα and

Mβ , are presented.

For 0 ≤ m ≤ n − 1, the ring of invariants or the module of covariants features a

Cohen–Macaulay structure that corresponds to a module over a ring of invariants. The

Mα expression is a single rational function which admits a symbolic interpretation in

term of integrity bases.
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The modules of (m)–covariants are not free when m ≥ n. Negative terms appear

in the numerator of M
SO(2)
α and indicate that relations exist between the denominator

and numerator polynomials of M
SO(2)
α . Generalized integrity bases are proposed by

considering the M
SO(2)
β form. A geometrical view of the non–free modules is obtained

with the introduction of lattices of points. Each numerator covariant is multiplied by a

polynomial function in k denominator polynomials and is attached to a k–dimensional

lattice Nk. Any covariant polynomial uniquely decomposes as a C–linear combination

of the elements in the C–basis.

The integrity bases determined in this paper are summed up in table 2, table 3, and

table 4. Two extensions of these work are possible. First, the empirical description of the

non–free modules should be formalized in a more mathematical setting. Secondly, this

presentation of the Molien function for non–free modules as a sum of rational functions

probably occurs with an initial representation different from Γn and in other continuous

groups of physical importance such as SO(3) or SU(2).
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la Physique Moléculaire via a CNRS grant Projet Exploratoire Premier Soutien (PEPS)
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Appendix A. Expression of the N n,m,i numerator polynomials

The sets N n,m,i of numerator polynomials attached to the ith rational fraction of

M
SO(2)
β ((m) ; Γn; λ) are given in table A1, see (27) for a definition.

Appendix B. Relations between the numerator and denominator

polynomials for three planar vectors

Appendix B.1. Relations for the non–free module of (3)–covariants

d1N
3,3,2
1 = d2N

3,3,1
1 + (−d2 − 2d5)N

3,3,1
2 + 2d2N

3,3,1
3

+ (d1 + d3 + 2d4)N
3,3,1
4 − 2d5N

3,3,1
5 + d2N

3,3,1
6 , (2.1a)

d1N
3,3,2
2 = − d2N

3,3,1
3 − d3N

3,3,1
4 + 2d5N

3,3,1
5 − d2N

3,3,1
6 , (2.1b)

d1N
3,3,2
3 = − d3N

3,3,1
2 + d3N

3,3,1
4 + (2d4 − 2d5)N

3,3,1
5 + d2N

3,3,1
6 , (2.1c)

d1N
3,3,3
1 = − d3N

3,3,1
1 + 2d3N

3,3,1
2 + (−d3 + 2d4 − 2d5)N

3,3,1
3 − d3N

3,3,1
4
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Table A1. Expression of the Nn,m,i numerator polynomials, 2 ≤ n ≤ 4 and

n ≤ m ≤ 5.

Nn,m,i Numerator polynomials

N 2,2,1 π2
1 , π1π2

N 2,2,2 π2
2

N 2,3,1 π3
1 , π2

1π2

N 2,3,2 π1π
2
2 , π3

2

N 2,4,1 π4
1 , π3

1π2

N 2,4,2 π2
1π

2
2 , π1π

3
2 , π4

2

N 2,5,1 π5
1 , π4

1π2

N 2,5,2 π3
1π

2
2 , π2

1π
3
2 , π1π

4
2 , π5

2

N 3,3,1 π3
1 , π2

1π2, π2
1π3, π1π

2
2 , π1π2π3, π1π

2
3

N 3,3,2 π3
2 , π2

2π3, π2π
2
3

N 3,3,3 π3
3

N 3,4,1 π4
1 , π3

1π2, π3
1π3, π2

1π
2
2 , π2

1π2π3, π2
1π2

3

N 3,4,2 π1π
3
2 , π1π

2
2π3, π1π2π

2
3 , π4

2 , π3
2π3, π2

2π
2
3

N 3,4,3 π1π
3
3 , π2π

3
3 , π4

3

N 3,5,1 π5
1 , π4

1π2, π4
1π3, π3

1π
2
2 , π3

1π2π3, π3
1π2

3

N 3,5,2 π2
1π

3
2 , π2

1π
2
2π3, π2

1π2π
2
3 , π1π

4
2 , π1π

3
2π3, π1π

2
2π2

3 , π5
2 , π4

2π3, π3
2π2

3

N 3,5,3 π2
1π

3
3 , π1π2π

3
3 , π1π

4
3 , π2

2π
3
3 , π2π

4
3 , π5

3

N 4,4,1 π4
1 , π3

1π2, π3
1π3, π3

1π4, π2
1π

2
2 , π2

1π2π3, π2
1π2π4, π2

1π2
3 , π2

1π3π4, π2
1π

2
4 ,

π1π
3
2 , π1π

2
2π3, π1π

2
2π4, π1π2π

2
3 , π1π2π3π4, π1π2π

2
4 , π1π

3
3 , π1π

2
3π4,

π1π3π
2
4 , π1π

3
4

N 4,4,2 π4
2 , π3

2π3, π3
2π4, π2

2π
2
3 , π2

2π3π4, π2
2π2

4 , π2π
3
3 , π2π

2
3π4, π2π3π

2
4 , π2π

3
4

N 4,4,3 π4
3 , π3

3π4, π2
3π

2
4 , π3π

3
4

N 4,4,4 π4
4

N 4,5,1 π5
1 , π4

1π2, π4
1π3, π4

1π4, π3
1π

2
2 , π3

1π2π3, π3
1π2π4, π3

1π2
3 , π3

1π3π4, π3
1π

2
4 ,

π2
1π

3
2 , π2

1π
2
2π3, π2

1π2
2π4, π2

1π2π
2
3 , π2

1π2π3π4, π2
1π2π

2
4 , π2

1π3
3 , π2

1π2
3π4,

π2
1π3π

2
4 , π2

1π3
4

N 4,5,2 π1π
4
2 , π1π

3
2π3, π1π

3
2π4, π1π

2
2π2

3 , π1π
2
2π3π4, π1π

2
2π2

4 , π1π2π
3
3 , π1π2π

2
3π4,

π1π2π3π
2
4 , π1π2π

3
4 , π5

2 , π4
2π3, π4

2π4, π3
2π2

3 , π3
2π3π4, π3

2π2
4 , π2

2π3
3 ,

π2
2π

2
3π4, π2

2π3π
2
4 , π2

2π
3
4

N 4,5,3 π1π
4
3 , π1π

3
3π4, π1π

2
3π

2
4 , π1π3π

3
4 , π2π

4
3 , π2π

3
3π4, π2π

2
3π

2
4 , π2π3π

3
4 , π5

3 ,

π4
3π4, π3

3π
2
4 , π2

3π3
4

N 4,5,4 π1π
4
4 , π2π

4
4 , π3π

4
4 , π5

4

+ (−2d4 + 2d5)N
3,3,1
5 + (−d1 − d2 + 2d4)N

3,3,1
6 , (2.1d)

d2N
3,3,3
1 = d3N

3,3,1
4 − d2N

3,3,1
6 − d3N

3,3,2
1 + (−d3 − 2d4 + 2d5)N

3,3,2
2

+ (−d2 + 2d5)N
3,3,2
3 . (2.1e)

Appendix B.2. Relations for the non–free module of (4)–covariants

d1N
3,4,2
1 = d2N

3,4,1
1 + (−d2 − 2d5)N

3,4,1
2 + 2d2N

3,4,1
3

+ (d1 + d3 + 2d4)N
3,4,1
4 − 2d5N

3,4,1
5 + d2N

3,4,1
6 , (2.2a)

d1N
3,4,2
2 = − d2N

3,4,1
3 − d3N

3,4,1
4 + 2d5N

3,4,1
5 − d2N

3,4,1
6 , (2.2b)
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d1N
3,4,2
3 = − d3N

3,4,1
2 + d3N

3,4,1
4 + (2d4 − 2d5)N

3,4,1
5 + d2N

3,4,1
6 , (2.2c)

d1N
3,4,2
4 = d2N

3,4,1
1 − 2d5N

3,4,1
2 + 2d2N

3,4,1
3

+ (d1 − d2 + d3 + 2d4 − 2d5)N
3,4,1
4 + (2d2 − 2d5)N

3,4,1
5 +

d2N
3,4,1
6 + (d3 + 2d4)N

3,4,2
1 − 2d5N

3,4,2
2 + d2N

3,4,2
3 , (2.2d)

d1N
3,4,2
5 = − d2N

3,4,1
5 − d3N

3,4,2
1 + 2d5N

3,4,2
2 − d2N

3,4,2
3 , (2.2e)

d1N
3,4,2
6 = − d3N

3,4,1
4 + d3N

3,4,2
1 + (2d4 − 2d5)N

3,4,2
2 + d2N

3,4,2
3 , (2.2f)

d1N
3,4,3
1 = − d3N

3,4,1
1 + 2d3N

3,4,1
2 + (−d3 + 2d4 − 2d5)N

3,4,1
3

− d3N
3,4,1
4 + (−2d4 + 2d5)N

3,4,1
5 + (−d1 − d2 + 2d4)N

3,4,1
6 ,(2.2g)

d1N
3,4,3
2 = d3N

3,4,1
4 − d3N

3,4,1
5 − d2N

3,4,1
6 − d3N

3,4,2
1

+ (−2d4 + 2d5)N
3,4,2
2 + (−d2 + 2d4)N

3,4,2
3 , (2.2h)

d1N
3,4,3
3 = d3N

3,4,1
1 − 2d3N

3,4,1
2 + (−2d4 + 2d5)N

3,4,1
3

+ (2d3 + 2d4 − 2d5)N
3,4,1
5 + (d1 + 2d2 − d3 − 2d5)N

3,4,1
6

+ d3N
3,4,2
1 + (2d4 − 2d5)N

3,4,2
2 + (d2 − 2d4)N

3,4,2
3

+ 2d4N
3,4,3
1 , (2.2i)

d2N
3,4,3
1 = d3N

3,4,1
4 − d2N

3,4,1
6 − d3N

3,4,2
1 + (−d3 − 2d4 + 2d5)N

3,4,2
2

+ (−d2 + 2d5)N
3,4,2
3 , (2.2j)

d2N
3,4,3
2 = d3N

3,4,2
1 − d2N

3,4,2
3 − d3N

3,4,2
4 + (−d3 − 2d4 + 2d5)N

3,4,2
5

+ (−d2 + 2d5)N
3,4,2
6 , (2.2k)

d2N
3,4,3
3 = − d3N

3,4,1
4 + d2N

3,4,1
6 + (2d3 + 2d4 − 2d5)N

3,4,2
2

+ (2d2 − 2d5)N
3,4,2
3 + d3N

3,4,2
4 + (2d4 − 2d5)N

3,4,2
5

+ (d2 − d3 − 2d4)N
3,4,2
6 + 2d5N

3,4,3
2 . (2.2l)

Appendix B.3. Relations for the non–free module of (5)–covariants

d1N
3,5,2
1 = d2N

3,5,1
1 + (−d2 − 2d5)N

3,5,1
2 + 2d2N

3,5,1
3

+ (d1 + d3 + 2d4)N
3,5,1
4 − 2d5N

3,5,1
5 + d2N

3,5,1
6 , (2.3a)

d1N
3,5,2
2 = − d2N

3,5,1
3 − d3N

3,5,1
4 + 2d5N

3,5,1
5 − d2N

3,5,1
6 , (2.3b)

d1N
3,5,2
3 = − d3N

3,5,1
2 + d3N

3,5,1
4 + (2d4 − 2d5)N

3,5,1
5 + d2N

3,5,1
6 , (2.3c)

d1N
3,5,2
4 = d2N

3,5,1
1 − 2d5N

3,5,1
2 + 2d2N

3,5,1
3

+ (d1 − d2 + d3 + 2d4 − 2d5)N
3,5,1
4 + (2d2 − 2d5)N

3,5,1
5

+ d2N
3,5,1
6 + (d3 + 2d4)N

3,5,2
1 − 2d5N

3,5,2
2 + d2N

3,5,2
3 , (2.3d)

d1N
3,5,2
5 = − d2N

3,5,1
5 − d3N

3,5,2
1 + 2d5N

3,5,2
2 − d2N

3,5,2
3 , (2.3e)

d1N
3,5,2
6 = − d3N

3,5,1
4 + d3N

3,5,2
1 + (2d4 − 2d5)N

3,5,2
2 + d2N

3,5,2
3 , (2.3f)

d1N
3,5,2
7 = d2N

3,5,1
1 − 2d5N

3,5,1
2 + 2d2N

3,5,1
3 + (d1 + d3 + 2d4 − 2d5)N

3,5,1
4

+ (2d2 − 2d5)N
3,5,1
5 + d2N

3,5,1
6

+ (−d2 + d3 + 2d4 − 2d5)N
3,5,2
1 + (2d2 − 2d5)N

3,5,2
2
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+ d2N
3,5,2
3 + (d3 + 2d4)N

3,5,2
4 − 2d5N

3,5,2
5 + d2N

3,5,2
6 , (2.3g)

d1N
3,5,2
8 = − d2N

3,5,2
2 − d3N

3,5,2
4 + 2d5N

3,5,2
5 − d2N

3,5,2
6 , (2.3h)

d1N
3,5,2
9 = − d3N

3,5,2
1 + d3N

3,5,2
4 + (2d4 − 2d5)N

3,5,2
5 + d2N

3,5,2
6 , (2.3i)

d1N
3,5,3
1 = − d3N

3,5,1
1 + 2d3N

3,5,1
2 + (−d3 + 2d4 − 2d5)N

3,5,1
3 − d3N

3,5,1
4

+ (−2d4 + 2d5)N
3,5,1
5 + (−d1 − d2 + 2d4)N

3,5,1
6 , (2.3j)

d1N
3,5,3
2 = d3N

3,5,1
4 − d3N

3,5,1
5 − d2N

3,5,1
6 − d3N

3,5,2
1

+ (−2d4 + 2d5)N
3,5,2
2 + (−d2 + 2d4)N

3,5,2
3 , (2.3k)

d1N
3,5,3
3 = d3N

3,5,1
1 − 2d3N

3,5,1
2 + (−2d4 + 2d5)N

3,5,1
3

+ (2d3 + 2d4 − 2d5)N
3,5,1
5

+ (d1 + 2d2 − d3 − 2d5)N
3,5,1
6 + d3N

3,5,2
1 + (2d4 − 2d5)N

3,5,2
2

+ (d2 − 2d4)N
3,5,2
3 + 2d4N

3,5,3
1 , (2.3l)

d1N
3,5,3
4 = d3N

3,5,2
1 − d3N

3,5,2
2 − d2N

3,5,2
3 − d3N

3,5,2
4 + (−2d4 + 2d5)N

3,5,2
5

+ (−d2 + 2d4)N
3,5,2
6 , (2.3m)

d1N
3,5,3
5 = − d3N

3,5,1
4 + d2N

3,5,1
6 + (2d3 + 2d4 − 2d5)N

3,5,2
2

+ (2d2 − d3 − 2d5)N
3,5,2
3 + d3N

3,5,2
4 + (2d4 − 2d5)N

3,5,2
5

+ (d2 − 2d4)N
3,5,2
6 + 2d4N

3,5,3
2 , (2.3n)

d1N
3,5,3
6 = − d3N

3,5,1
1 + 2d3N

3,5,1
2 + (2d4 − 2d5)N

3,5,1
3 + d3N

3,5,1
4

+ (−2d3 − 2d4 + 2d5)N
3,5,1
5 + (−d1 − 3d2 + 2d5)N

3,5,1
6

− d3N
3,5,2
1 + (−2d3 − 4d4 + 4d5)N

3,5,2
2

+ (−3d2 + 2d3 + 2d4 + 2d5)N
3,5,2
3 − d3N

3,5,2
4

+ (−2d4 + 2d5)N
3,5,2
5 + (−d2 + 2d4)N

3,5,2
6

+ (−d3 − 2d5)N
3,5,3
1 − 2d4N

3,5,3
2 + 2d4N

3,5,3
3 , (2.3o)

d2N
3,5,3
1 = d3N

3,5,1
4 − d2N

3,5,1
6 − d3N

3,5,2
1 + (−d3 − 2d4 + 2d5)N

3,5,2
2

+ (−d2 + 2d5)N
3,5,2
3 , (2.3p)

d2N
3,5,3
2 = d3N

3,5,2
1 − d2N

3,5,2
3 − d3N

3,5,2
4 + (−d3 − 2d4 + 2d5)N

3,5,2
5

+ (−d2 + 2d5)N
3,5,2
6 , (2.3q)

d2N
3,5,3
3 = − d3N

3,5,1
4 + d2N

3,5,1
6 + (2d3 + 2d4 − 2d5)N

3,5,2
2

+ (2d2 − 2d5)N
3,5,2
3 + d3N

3,5,2
4 + (2d4 − 2d5)N

3,5,2
5

+ (d2 − d3 − 2d4)N
3,5,2
6 + 2d5N

3,5,3
2 , (2.3r)

d2N
3,5,3
4 = d3N

3,5,2
4 − d2N

3,5,2
6 − d3N

3,5,2
7 + (−d3 − 2d4 + 2d5)N

3,5,2
8

+ (−d2 + 2d5)N
3,5,2
9 , (2.3s)

d2N
3,5,3
5 = − d3N

3,5,2
1 + d2N

3,5,2
3 + (2d3 + 2d4 − 2d5)N

3,5,2
5

+ (2d2 − 2d5)N
3,5,2
6 + d3N

3,5,2
7 + (2d4 − 2d5)N

3,5,2
8

+ (d2 − d3 − 2d4)N
3,5,2
9 + 2d5N

3,5,3
4 , (2.3t)

d2N
3,5,3
6 = d3N

3,5,1
4 − d2N

3,5,1
6 + d3N

3,5,2
1 + (−2d3 − 2d4 + 2d5)N

3,5,2
2
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+ (−3d2 + 2d5)N
3,5,2
3 − d3N

3,5,2
4 + (−2d3 − 4d4 + 4d5)N

3,5,2
5

+ (−3d2 + 2d3 + 2d4 + 2d5)N
3,5,2
6 − d3N

3,5,2
7

+ (−2d4 + 2d5)N
3,5,2
8 + (−d2 + 2d4)N

3,5,2
9 − 2d5N

3,5,3
2

+ (−d3 − 2d4)N
3,5,3
4 + 2d5N

3,5,3
5 . (2.3u)

Appendix C. First–order syzygies among the generators, four vector case

The following list of relations contains 38 syzygies of degree four in variables xi, yi

between the generators of all the invariants in the four vector case. They are linearly

dependent. A set of 36 linearly independent relations suggested by N4,0 (λ) can be

obtained by removing σ34 and σ38 of the list. Other choices are possible, for example

σ16 and σ25 can be removed instead.

σ1 = t21,2 − r1r2 + s2
1,2, σ2 = t21,3 − r1r3 + s2

1,3,

σ3 = t21,4 − r1r4 + s2
1,4, σ4 = t22,3 − r2r3 + s2

2,3,

σ5 = t22,4 − r2r4 + s2
2,4, σ6 = t23,4 − r3r4 + s2

3,4,

σ7 = t1,2t1,3 − r1s2,3 + s1,2s1,3, σ8 = t1,2t2,3 − s1,2s2,3 + r2s1,3,

σ9 = t1,2t1,4 − r1s2,4 + s1,2s1,4, σ10 = t1,2t2,4 − s1,2s2,4 + r2s1,4,

σ11 = t1,2t3,4 − s1,3s2,4 + s2,3s1,4, σ12 = t1,3t1,4 − r1s3,4 + s1,3s1,4,

σ13 = t1,3t2,3 − r3s1,2 + s1,3s2,3, σ14 = t1,3t2,4 − s1,2s3,4 + s2,3s1,4,

σ15 = t1,3t3,4 − s1,3s3,4 + r3s1,4, σ16 = t1,4t2,3 − s1,2s3,4 + s2,4s1,3,

σ17 = t1,4t2,4 − r4s1,2 + s1,4s2,4, σ18 = t1,4t3,4 − r4s1,3 + s1,4s3,4,

σ19 = t2,3t2,4 − r2s3,4 + s2,3s2,4, σ20 = t2,3t3,4 − s2,3s3,4 + r3s2,4,

σ21 = t2,4t3,4 − r4s2,3 + s2,4s3,4, σ22 = s1,3t1,2 + r1t2,3 − s1,2t1,3,

σ23 = s2,3t1,2 + s1,2t2,3 − r2t1,3, σ24 = r3t1,2 + s1,3t2,3 − s2,3t1,3,

σ25 = s3,4t1,2 + s1,4t2,3 − s2,4t1,3, σ26 = s1,4t1,2 + r1t2,4 − s1,2t1,4,

σ27 = s2,4t1,2 + s1,2t2,4 − r2t1,4, σ28 = s3,4t1,2 + s1,3t2,4 − s2,3t1,4,

σ29 = r4t1,2 + s1,4t2,4 − s2,4t1,4, σ30 = s1,4t1,3 + r1t3,4 − s1,3t1,4,

σ31 = s2,4t1,3 + s1,2t3,4 − s2,3t1,4, σ32 = s3,4t1,3 + s1,3t3,4 − r3t1,4,

σ33 = r4t1,3 + s1,4t3,4 − s3,4t1,4, σ34 = s1,4t2,3 + s1,2t3,4 − s1,3t2,4,

σ35 = s2,4t2,3 + r2t3,4 − s2,3t2,4, σ36 = s3,4t2,3 + s2,3t3,4 − r3t2,4,

σ37 = r4t2,3 + s2,4t3,4 − s3,4t2,4, σ38 = t1,4t2,3 − t1,3t2,4 + t1,2t3,4.
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[7] B. I. Zhilinskíı, M. I. El Idrissi, and M. Herman. The vibrational energy pattern in acetylene (VI):

Inter- and intrapolyad structures. The Journal of Chemical Physics, 113(18):7885–7890, 2000.
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