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ABSTRACT. We introduce a scheme-theoretic enrichment of the principal objects of tropical geometry.
Using a category of semiring schemes, we construct tropical hypersurfaces as schemes over idempotent
semirings such as T = (R∪{−∞},max,+) by writing them as solution sets to explicit systems of tropical
equations that are uniquely determined by tropical linear algebra. We then define a tropicalization functor
that sends closed subschemes of a toric variety over a ring R with non-archimedean valuation to closed
subschemes of the corresponding tropical toric variety. Upon passing to the set of T-points this reduces
to Kajiwara-Payne’s extended tropicalization, and in the case of a projective hypersurface we show that
the scheme structure determines the multiplicities attached to the top-dimensional cells. By varying the
valuation, these tropicalizations form algebraic families of T-schemes parameterized by the analytification
of Spec R. For projective subschemes, the Hilbert polynomial is preserved by tropicalization, regardless of
the valuation. We conclude with some examples and a discussion of tropical bases in the scheme-theoretic
setting.

Dedicated to Max and Add(ie)

1. INTRODUCTION

Tropical geometry is a recent tool in algebraic geometry that transforms certain questions into com-
binatorial problems by replacing a variety with a polyhedral object called a tropical variety. It has had
striking applications to a range of subjects, such as enumerative geometry [Mik05, FM10, GM08, AB13],
classical geometry [CDPR12, Bak08], intersection theory [Kat09, GM12, OP13], moduli spaces and
compactifications [Tev07, HKT09, ACP12, RSS13], mirror symmetry [Gro10, GPS10, Gro11], abelian
varieties [Gub07, CV10], representation theory [FZ02, GL12], algebraic statistics and mathematical
biology [PS04, Man11] (and many more papers by many more authors). Since its inception, it has
been tempting to look for algebraic foundations of tropical geometry, e.g., to view tropical varieties as
varieties in a more literal sense and to understand tropicalization as a degeneration taking place in one
common algebro-geometric world. However, tropical geometry is based on the idempotent semiring
T = (R∪{−∞},max,+), which is an object outside the traditional scope of algebraic geometry.

Motivated by the desire to do algebraic geometry over the field with one element, F1, various authors
have constructed extensions of Grothendieck’s scheme theory to accommodate geometric objects whose
functions form algebraic objects outside the category of rings, such as semirings and monoids—the
context of F1-geometry. The three theories developed in [Dur07, TV09, Lor12] essentially coincide over
semirings, where the resulting schemes can be described in familiar terms either as spaces equipped with
a sheaf of semirings, or as functors of points extended from rings to the larger category of semirings.
While these theories provide distinct categories of F1-schemes, (split) toric varieties with torus-equivariant
morphisms—and a somewhat larger class of naive F1-schemes that we shall consider—embed as a full
subcategory of each, and there are base-change functors from (each version of) F1-schemes to schemes
over any ring or semiring. The above-cited authors have each speculated that the category of schemes
over T might have applications to tropical geometry. However, tropicalization, as it currently exists in the
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2 EQUATIONS OF TROPICAL VARIETIES

literature, produces tropical varieties as sets rather than as solutions to systems of tropical equations, and
the set of geometric points of a scheme is very far from determining the scheme, so the challenge is to lift
tropicalization to schemes in an appropriate way.

In traditional tropical geometry (e.g., [MS]) one considers subvarieties of a torus defined over a
non-archimedean valued field k, usually algebraically closed and complete with respect to the valuation.
Tropicalization sends a subvariety Z of the torus (k×)n to a polyhedral subset of the tropical torus (T×)n =
Rn, the Euclidean closure of the image of coordinate-wise valuation. Kajiwara and Payne extended
tropicalization to subvarieties of a toric variety, using the stratification by torus orbits [Kaj08, Pay09]. A
fan determines a toric scheme X over F1 and base-change to k yields a familiar toric variety Xk, while
base-change to T yields a tropical toric scheme XT. The T-points of XT form a convex polyhedron, the
partial compactification of NR dual to the fan, and Kajiwara-Payne tropicalization sends subvarieties of Xk
to subsets of XT(T).

Theorem A. Let R be a ring equipped with a non-archimedean valuation (see Definition 2.5.1) ν : R→ S,
where S is an idempotent semiring (such as T), and let X be a toric scheme over F1. There is a
tropicalization functor

Tropν

X : {closed subschemes of XR}→ {closed subschemes of XS}.
This is functorial in X with respect to torus-equivariant morphisms, and when S = T the composition with
HomSch/T(Spec T,−) yields the set-theoretic functor of Kajiwara-Payne.

In the case of projective space, X = Pn, if Z ⊂ XR is irreducible of dimension d then the set-theoretic
tropicalization admits the structure of a polyhedral complex of pure dimension d and there are integer
multiplicities associated to the facets such that the well-known balancing condition is satisfied (see,
e.g., [DFS07, §2]). We show (in Corollary 7.2.2) that when Z is a hypersurface, the scheme Tropν

X(Z)
determines the multiplicities, and we expect this to be true for Z of arbitrary codimension.

Theorem B. Let ν : k→ S be a valued field with S a totally ordered idempotent semifield. Given a
closed subscheme Z ⊂ Pn

k , the tropicalization Tropν

Pn(Z)⊂ Pn
S has a well-defined Hilbert polynomial and

it coincides with that of Z.

This suggests that the process of sending a variety to its tropicalization behaves like a flat degeneration.

We briefly explain the idea behind the construction of this scheme-theoretic tropicalization. Due to
the nature of (max,+)-algebra, the graph of a tropical polynomial f is piecewise linear; the regions of
linearity are where a single monomial in f strictly dominates and the “bend locus,” where the function is
nonlinear, is the set of points where the maximum is attained by at least two monomials simultaneously.
The bend locus (often called a tropical hypersurface or locus of tropical vanishing) is the tropical analogue
of the zero locus of a polynomial over a ring. We enrich the bend locus of f with a scheme structure by
realizing it as the solution set to a natural system of tropical algebraic equations: the bend relations of f
(§5.1). These equations are given by equating f with each polynomial obtained from f by deleting a single
monomial. By the fundamental theorem of tropical geometry [MS, Theorem 3.2.4] (Kapranov’s Theorem
in the case of a hypersurface), set-theoretic tropicalization can be reformulated by intersecting the bend
loci of the coefficient-wise valuations of all polynomials in the ideal defining an affine variety. Our
tropicalization is defined by replacing this set-theoretic intersection with the scheme-theoretic intersection
of bend loci. This yields a solution to the implicitization problem for the coordinate-wise valuation map.
For a homogeneous ideal defining a projective subscheme, these bend relations are compatible with the
grading and essentially reduce tropicalization to the framework of tropical linear algebra, from which the
Hilbert polynomial result follows.

Toric varieties are a natural class of varieties where there is a well-behaved class of monomials in each
coordinate patch and this allows for a global extension of these affine constructions. We use the language
of schemes over F1 as a convenient way to keep track of monomials and to provide a slight generalization
of the ambient toric varieties in which tropicalization takes place.



EQUATIONS OF TROPICAL VARIETIES 3

One can ask how the tropicalization of Z ⊂ XR depends on the valuation ν : R→ T. Set-theoretically,
the tropicalizations form a family over the Berkovich analytification of Spec R, and we interpret this as an
algebraic family.

Theorem C. Let R be a ring, X a toric scheme over F1, and Z ⊂ XR a closed subscheme.

(1) The moduli space Val (R) of valuations on R is represented in affine idempotent semiring schemes,
and there is a universal valuation νuniv : R→ Γ(Val (R),OVal (R)) through which all others factor
uniquely. In particular, Val (R)(T) = (Spec R)an as a set.

(2) The fiber of the algebraic family Tropνuniv
X (Z)→ Val (R) over each T-point ν : R→ T is the

tropicalization Tropν

X(Z) ⊂ XT. If X = Pn and R is a field then the Hilbert polynomials of the
fibres exist and are all equal.

1.1. Organization of the paper. We begin in §2 by recalling some standard material on monoids and
semirings and then giving our slightly generalized definition of valuation. In §3 we discuss the construction
of F1-schemes and semiring schemes, and in §4 we review some constructions in toric schemes within
this setting. The core of the paper is §5, where we define bend loci as schemes, and §6, where we use this
to define and study scheme-theoretic tropicalization. In §7 we study the tropical Hilbert function and the
multiplicities on the facets of a tropical hypersurface and in §8 we investigate tropical bases.
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author was supported by an NSF Postdoctoral Fellowship. We thank Dan Abramovich, Alex Fink, Mark
Kambites, Andrew MacPherson1, and Bernd Sturmfels, and for helpful conversations. We thank Eric
Katz, Sam Payne, and Steven Sam for providing valuable feedback on an early draft. Finally, we are
indebted to Diane Maclagan and Felipe Rincón for reading the draft with great care and discussing these
ideas at length; these discussions helped shape this project.

2. ALGEBRAIC PRELIMINARIES: MONOIDS, SEMIRINGS, AND VALUATIONS

Throughout this paper all monoids, semirings, and rings will be assumed commutative and unital.

2.1. Monoids and F1 algebra. In this paper we shall work with a naive version of algebra over the
so-called “field with one element”, F1, which is entirely described in terms of monoids. More sophisticated
notions of F1 algebra exist, such as Durov’s commutative algebraic monads [Dur07], but the naive version
recalled here is the one that appears most appropriate for tropical geometry and it provides a convenient
language for working with monoids and (semi)rings in parallel. This naive F1 theory (or a slight variation
on it) and its algebraic geometry have been studied by many authors, including [CC10, Dei08, TV09, FW].

Rather than defining an object F1, one starts by defining the category of modules, F1-Mod, to be the
category of pointed sets. The basepoint of an F1-module M is denoted 0M and is called the zero element of
M. This category has a closed symmetric monoidal tensor product given by the smash product of pointed
sets (take the cartesian product and then collapse the subset M×{0N}∪{0M}×N to the basepoint). The
two-point set {0,1} is a unit for this tensor product.

An F1-algebra is an F1-module A equipped with a commutative and unital product map A⊗A→ A
(i.e., it is a commutative monoid in F1-Mod). Concretely, an F1-algebra is a commutative and unital
monoid with a (necessarily unique) element 0A such that 0A · x = 0A for all x; thus F1-algebras, as defined
here, are sometimes called monoids-with-zero. The two-point set {0,1} admits a multiplication making
it an F1-algebra, and it is clearly an initial object, so we can denote it by F1 and speak of F1-algebras
without ambiguity.

1MacPherson has been developing related ideas in his thesis and has independently discovered the equations for scheme-
theoretic tropicalization that we propose here.
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Example 2.1.1. The F1 polynomial algebra F1[x1, . . . ,xn] is the free abelian monoid-with-zero on n
generators. The Laurent polynomial algebra F1[x±1 , . . . ,x±n ] is the free abelian group on n generators, Zn,
together with a disjoint basepoint.

An F1-algebra A is integral if the natural map from A r {0A} to its group completion is injective.
An A-module M is an F1-module equipped with an associative and unital action of A given by a map
A⊗M→M. Concretely, this is a pointed set with an action of the monoid A such that 0A sends everything
to 0M. An A-algebra is an F1-algebra morphism A→ B

2.2. Semirings. Commutative monoids admit a tensor product ⊗ generalizing that of abelian groups. A
semiring is a monoid in the monoidal category of commutative monoids—that is, an object satisfying
all the axioms of a ring except for the existence of additive inverses. For a semiring S, an S-module is a
commutative monoid M equipped with an associative action S⊗M→M. An S-algebra is a morphism of
semirings S→ T . Polynomial algebras S[x1, . . . ,xn], and Laurent polynomial algebras, are defined as they
are for rings. The category of semirings has an initial object, N, so the category of semirings is equivalent
to the category of N-algebras. A semiring is a semifield if every nonzero element admits a multiplicative
inverse.

A semiring S is idempotent if a+a = a for all a∈ S. In this case (and more generally, for an idempotent
commutative monoid) there is a canonical partial order defined by

a≤ b if a+b = b.

The least upper bound of any finite set {ai} of elements exists and is given by the sum ∑ai. If the partial
order is actually a total order then ∑ai is equal to the maximum of the ai.

From the perspective of tropical geometry, the central example of an idempotent semiring is the
semifield of tropical numbers, T. As a set,

T :=R∪{−∞}.
The addition operation is defined by the maximum: a+b = max{a,b} if both a and b are finite. Multipli-
cation a ·b in T is defined as the usual addition of real numbers a+b if both are finite. The additive and
multiplicative units are 0T =−∞ and 1T = 0, respectively, and this defines the extension of addition and
multiplication to −∞.

This is a special case of a general construction: given a commutative monoid (Γ,+) equipped with
a translation-invariant total order, the set Γ∪{−∞} equipped with the operations (max,+) forms an
idempotent semiring, and if Γ is a group then this yields a semifield. The tropical numbers T are the result
when Γ is (R,+) with its canonical total order. Another interesting example of an idempotent semifield
comes from Rn equipped with the lexicographic total order.

Remark 2.2.1. Idempotent totally ordered semifields appear to play much of the role in idempotent algebra
and geometry of fields in classical algebra and geometry.

The boolean semiring is the subsemiring

B :={−∞,0} ⊂ T.

The boolean semiring is initial in the category of idempotent semrings and every B-algebra is idempotent,
so B-algebras are the same as idempotent semirings.

2.3. Scalar extension and restriction. Given a (semi)ring S, there is an adjoint pair of functors

F1-Mod � S-Mod;

the right adjoint sends an S-module to its underlying set with the additive unit as the basepoint, and the
left adjoint, denoted −⊗S, sends a pointed set M to the free S-module generated by the non-basepoint
elements of M. If M is an F1-algebra then M⊗ S has an induced S-algebra structure. Note that −⊗ S
sends polynomial algebras over F1 to polynomial algebras over S.
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In this paper, S-modules equipped with an F1-descent datum (i.e., modules of the form M⊗S for M a
specified F1-module) play a particularly important role. For f ∈M⊗S, the support of f , denoted supp( f ),
is the subset of M corresponding to the terms appearing in f .

Given a semiring homomorphism ϕ : S→ T one obtains an adjoint pair

S-Mod � T -Mod

in the standard way. As usual, the left adjoint is denoted −⊗S T , and it sends S-algebras to T -algebras
and coincides with the pushout of S-algebras along ϕ .

2.4. Ideals, congruences and quotients. Let A be either an F1-algebra or a semiring. We can regard A
as an A-module and define an ideal in A to be a submodule of A. When A is a ring this agrees with the
usual definition of an ideal.

Quotients of semirings generally cannot be described by ideals, since a quotient might identify elements
f and g without the existence of an element f − g to identify with zero. The same issue arises when
constructing quotients of modules over semirings. For this reason, one must instead work with congruences.
The omitted proofs in this section are all standard and/or elementary.

Definition 2.4.1. Let S and M be a semiring and S-module respectively. A semiring congruence on S is an
equivalence relation J ⊂ S×S that is a sub-semiring, and a module congruence on M is an S-submodule
J ⊂M×M that is an equivalence relation. If the type is clear from context, we refer to such an equivalence
relation simply as a congruence.

Proposition 2.4.2. Let J be an equivalence relation on a semiring S (or module M over a semiring). The
semiring (or module) structure descends to the set of equivalence classes S/J (M/J) if and only if J is a
semiring (or module) congruence.

Definition 2.4.3. Given a morphism of semirings ϕ : S→ R, we define the kernel congruence

kerϕ := S×R S = {( f ,g) ∈ S×S | ϕ( f ) = ϕ(g)}.

Using congruences in place of ideals, the usual isomorphism theorems extend to semirings:

Proposition 2.4.4. (1) Let ϕ : S→ R be a homomorphism of semirings. The image is a semiring, the
kernel is a congruence, and S/kerϕ ∼= imϕ .

(2) Let R be a semiring, S ⊂ R a sub-semiring, I a congruence on R, and let S + I denote the I-
saturation of S (the union of all I-equivalence classes that contain an element of S). Then S + I is
a sub-semiring of R, I restricts to a congruence I′ on S + I and a congruence I′′ on S, and there is
an isomorphism (S + I)/I′ ∼= S/I′′

(3) For J ⊂ I congruences on S, we have a congruence I/J on S/J with (S/J)/(I/J) ∼= S/I. This
yields a bijection between congruences on S/J and congruences on S containing J.

Since the intersection of congruences is a congruence, for a collection { fα ,gα ∈ S}α∈A there is a unique
smallest (or finest) congruence identifying fα with gα for each α; this is the congruence generated by
pairs ( fα ,gα). In the case of a semiring congruence, we denote this by 〈 fα ∼ gα〉α∈A. More generally, for
any subset J ⊂ S×S, we denote by 〈J〉 the semiring congruence it generates. If ϕ : S→ R is a semiring
(or module) homomorphism and J is a congruence on S, then ϕ(J) need not be a congruence on R because
transitivity and reflexivity can fail; we denote by ϕ∗J the congruence generated by ϕ(J).

Lemma 2.4.5. The semiring congruence 〈 fα ∼ gα〉α∈A consists of the transitive closure of the sub-
semiring of S×S generated by the elements ( fα ,gα), (gα , fα), and the diagonal S⊂ S×S. The analogous
statement for module congruences also holds.

Proof. The sub-semiring generated clearly gives a binary relation that is symmetric and reflexive, so it
suffices to check that if R⊂ S×S is a sub-semiring, then the transitive closure R′ is also a sub-semiring.
Let x1, . . . ,xn and y1, . . . ,yk be sequences of elements in S such that each consecutive pair (xi,xi+1) and
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(yi,yi+1) is in R. Thus (x1,xn) and (y1,yk) are in R′, and we must show that the product and sum of these
are each in R′. We may assume k ≤ n, and by padding with n− k copies of yk, we can assume that k = n.
By adding or multiplying the two sequences term by term we obtain the result. �

Proposition 2.4.6. There is a bijection between ideals in a semiring S and congruences generated by
relations of the form f ∼ 0S. The bijection is given by I 7→ 〈 f ∼ 0S〉 f∈I .

2.5. Valuations. The term “non-archimedean valuation” on a ring R usually2 means a homomorphism
of multiplicative monoids ν : R→ T satisfying ν(0R) =−∞ and the subadditivity condition ν(a+b)≤
ν(a) + ν(b) for all a,b ∈ R. The subadditivity condition appears semi-algebraic but, as observed in
[Man11], it can be reformulated as an algebraic condition:

ν(a+b)+ν(a)+ν(b) = ν(a)+ν(b).

We use this observation in §6.5 when constructing the moduli space of valuations on a ring.

It is useful—for example, when studying families of tropical varieties—to allow a more general
codomain, so throughout this paper the term “valuation” shall refer to the following generalization. Note
that, when passing from T to an arbitrary idempotent semiring, the total order is replaced by a partial
order (cf., §2.2).

Definition 2.5.1. A valuation on a ring R is an idempotent semiring S (called the semiring of values), and
a map ν : R→ S satisfying

(1) (unit) ν(0R) = 0S and ν(±1R) = 1S,
(2) (multiplicativity) ν(ab) = ν(a)ν(b),
(3) (subadditivity) ν(a+b)+ν(a)+ν(b) = ν(a)+ν(b).

A valuation ν is said to be non-degenerate if ν(a) = 0S implies a = 0R.

For S = T this coincides with the usual notion of a non-archimedean valuation described above. Note
that any valuation on a field is automatically non-degenerate. When S is Rn∪{−∞} with the lexicographic
order then the resulting higher rank valuations and their associated tropical geometry have been studied
in [Ban11], and considering these higher rank valuations leads to Huber’s “adic spaces” approach to
non-archimedean analytic geometry [Hub96].

Remark 2.5.2. When S is totally ordered then the condition ν(−1) = 1S holds automatically; however, for
more general semirings of values this condition must be imposed separately for the important Lemma
2.5.3 below to hold.

Lemma 2.5.3. Let ν : R→ S be a valuation and a,b ∈ R.

(1) If ν(a) < ν(b) then ν(a+b) = ν(a)+ν(b).
(2) ν(a+b)+ν(a) = ν(a+b)+ν(a)+ν(b).
(3) If the partial order on S is a total order then the image of ν is a subsemiring of S, and R � imν

is a valuation.

Proof. The first two statements are easy applications of subadditivity. The third statement follows
immediately from the first. �

A valued ring is a triple (R,S,ν : R→ S) where R is a ring and ν is a valuation. Valued rings form a
category in which a morphism ϕ : (R,S,ν)→ (R′,S′,ν ′) consists of a ring homomorphism ϕ1 : R→ R′

and a semiring homomorphism ϕ2 : S→ S′ such that ν ′ ◦ϕ1 = ϕ2 ◦ν . Note that the composition of a
valuation ν : R→ S with a semiring homomorphism S→ S′ is again a valuation.

2Many authors use the opposite sign convention, and some would call this a “semi-valuation” unless the non-degeneracy
condition ν−1(−∞) = 0 holds.
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As an illustration of the utility of considering the general class of valuations defined above, we show
that, for a fixed ring R, there exists a universal valuation νR

univ : R→ SR
univ on R from which any other

valuation can be obtained by composition with a unique semiring homomorphism. This will be used to
show that, as one varies the valuation on R, the set of all tropicalizations of a fixed subscheme form an
algebraic family over Spec SR

univ (Theorem C part (1)). Consider the polynomial B-algebra B[xa |a ∈ R]
with one generator xa for each element a ∈ R. The universal semiring of values SR

univ is the quotient of
B[xa |a ∈ R] by the congruence generated by the relations

(1) x0 ∼ 0S and x1 ∼ x−1 ∼ 1S,
(2) xaxb ∼ xab for any a,b ∈ R,
(3) xa+b + xa + xb ∼ xa + xb for any a,b ∈ R.

The universal valuation νR
univ sends a to xa.

Proposition 2.5.4. Given a valuation ν : R→ T , there exists a unique homomorphism φ : SR
univ→ T such

that φ ◦ νR
univ = ν . Hence valuations with semiring of values T are in bijection with homomorphisms

SR
univ→ T

Proof. The homomorphism φ is defined by sending each generator xa to ν(a). Since the relations
in SR

univ correspond exactly to the relations satisfied by a valuation, φ is well-defined. Uniqueness is
immediate. �

3. F1-SCHEMES AND SEMIRING SCHEMES

3.1. Construction of F1-schemes and semiring schemes. The papers [TV09], [Lor12], and [Dur07]
each construct categories of schemes over semirings and some notion of F1. For the purposes of the
present paper we do not require the full generality of their constructions, so we present below a streamlined
construction that follows the classical construction of schemes and yields a category that admits a full
embedding into each of their categories.

Remark 3.1.1. Over a semiring, the category of schemes described here is equivalent to that of Toën-
Vaquié, and it is a full subcategory of both Lorscheid’s blue schemes and Durov’s generalized schemes.
See [LPL11] for a comparison of these three threories over each of their notions of F1.

The construction of schemes modelled on F1-algebras or semirings proceeds exactly as in the classical
setting of rings. Let A be a Q-algebra, where Q is either a semiring or an F1-algebra. A proper ideal in
A is prime if its complement is closed under multiplication. Given a prime ideal p ⊂ A, one can form
the localization Ap via equivalence classes of fractions in the usual way. As a space, the prime spectrum
|Spec A| is the set of prime ideals in A equipped with the Zariski topology in which the open sets are the
collections of primes not containing a given ideal (a basis is given by sets of the form D( f ) = {p | f /∈ p}
for f ∈ A). Any A-module (or algebra) M determines a sheaf M̃ of Q-modules (or algebras) that sends
a principal open set D( f ) to the localization M f = A f ⊗M in which f is inverted. In particular, A itself
gives a sheaf of Q-algebras, and this is the structure sheaf OA.

An affine scheme (over Q) is a pair (X ,O) consisting of a topological space X and a sheaf of Q-algebras
that is isomorphic to a pair of the form (|Spec A|,OA). A general Q-scheme is a pair that is locally affine.
A morphism of schemes is a morphism of pairs that is given in suitable affine patches by a homomorphism
of Q-algebras. As explained in [Dur07, 6.5.2], for rings this coincides with the usual construction in terms
of locally ringed spaces. The category of affine Q-schemes is equivalent to the opposite of the category of
Q-algebras.

Proposition 3.1.2. Given a Q-algebra A, the category of A-schemes is canonically equivalent to the
category of Q-schemes over Spec A.
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An F1-scheme is integral if it admits a cover by affine charts of the form Spec M with M an integral
monoid-with-zero.

Proposition 3.1.3. An F1-scheme X is integral if and only if for any open affine Spec M ⊂ X the monoid-
with-zero M is integral.

Proof. Since an affine scheme has a basis for its topology given by localizations, and any localization of
an integral monoid is integral, a standard argument (as in the proof of [Har77, II.3.2]) reduces to proving
the following: if Spec M = ∪Spec M fα

, where each localization M fα
is integral, then M itself is integral.

But this is easy: we have ∅ = ∩D( fα) so the fα generate M as an ideal, and for monoids the union of
ideals is again an ideal, so M = ∪( fα) and hence 1 ∈ ( fα) = M fα for some α . Thus fα is a unit and
M = M fα

is indeed integral. �

3.2. Base change functors. The scalar extension and restriction functors of §2.3 admit globalizations
that we briefly describe here.

Using the fact that F1-Mod and S-Mod (for S a semiring) are cocomplete, all fiber products exist in
the categories of F1-schemes and S-schemes and they are constructed in the usual way. In particular, if
T is an S-algebra and X is an S-scheme, then XT := Spec T ×Spec S X exists and by Proposition 3.1.2 it
can be regarded as a T -scheme. Thus Spec T ×Spec S− defines a base change functor from S-schemes
to T -schemes, and this is the right adjoint of the forgetful functor (defined using Proposition 3.1.2) that
regards a T -scheme as an S-scheme.

For R a ring or semiring, the scalar extension functor−⊗R clearly sends localizations of F1-algebras to
localizations of R-algebras, so it globalizes to give a base change functor from F1-schemes to R-schemes.
Given an F1-scheme X , we write XR for the base change of X to R-schemes. This base change functor is
right adjoint to the forgetful functor from R-schemes to F1-schemes that globalizes the corresponding
forgetful functor from R-Mod to F1-Mod. Given an F1-scheme X , by a slight abuse of notation, we will
write X(R) for the set of R-points of XR.

3.3. Closed subschemes. At a formal level, the classical theory of schemes and the extended theory of
semiring schemes are nearly identical when considering open subschemes and gluing. However, novel
features appear when considering closed subschemes; this is essentially because the bijection between
ideals and congruences breaks down when passing from rings to semirings.

Quasi-coherent sheaves on an S-scheme X are defined exactly as in the classical setting. A congruence
sheaf J is a subsheaf of OX ×OX such that J (U) is a congruence on O(U) for each open U ⊂ X . A
congruence sheaf is quasi-coherent if it is quasi-coherent when regarded as a sub-OX -module of OX ×OX .
We follow Durov’s viewpoint on closed subschemes: a closed immersion is an affine morphism Φ : Y → X
such that the sheaf morphism Φ] : OX →Φ∗OY is surjective. In this situation, kerΦ] is a quasi-coherent
congruence sheaf.

Curiously, morphisms that are scheme-theoretic closed immersions defined in this way are often not
closed embeddings at the level of topological spaces. For instance, a point Φ : SpecT→An

T corresponding
to a T-algebra morphism ϕ : T[x1, . . . ,xn] � T sending each xi to some finite value ϕ(xi) ∈ R is a
closed immersion, but the image of this map is not Zariski closed—in fact, it is a dense point! Indeed,
ϕ−1(−∞) = {−∞}, which is contained in all primes, so every point of |SpecT[x1, . . . ,xn]| is in the closure
of the image of the point |Spec T|.

Remark 3.3.1. One can view the prime spectrum and its Zariski topology as a technical scaffolding whose
purpose is to define the functor of points, which is then regarded as the fundamental geometric object
as in [TV09]. For instance, as we see in the following example, the T-points of a tropical variety more
closely reflect familiar geometry than its prime spectrum.
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3.4. Example: the affine tropical line. The set of T-points of the affine line A1
T = SpecT[x] is clearly

T itself, but the ideal-theoretic kernel corresponding to each is trivial except for the point x 7→ −∞

for which it is maximal. On the other hand, one can of course distinguish all these points using the
congruence-theoretic kernel, by the First Isomorphism Theorem.

The semiring T[x] has a rather intricate structure; however, it admits a quotient with the same set of
T-points that behaves more like univariate polynomials over an algebraically closed field:

T[x] := T[x]/∼, where f ∼ g if f (t) = g(t) for all t ∈ T.

Polynomials in this quotient split uniquely into linear factors. More specifically, if

bt := 0+ t−1x ∈ T[x] for t ∈ T× = R and b−∞ := x ∈ T[x],

then any element of T[x] can be written uniquely as c∏bdi
ti for c, ti ∈ T. Nonetheless, the prime spectrum

of T[x] is larger than one might guess based on analogy with the case of algebraically closed fields. For
any subset K ⊂ T we define the ideal IK := ({bt | t ∈ K})⊂ T[x].

Proposition 3.4.1. If K ⊂ T is an interval (not necessarily closed or open) then IK \{−∞} is the set of
functions that have a bend in K. As a set, |SpecT[x]|= {IK | K ⊂T is an interval }. The finitely generated
primes correspond to closed intervals and the principal primes to points of T.

Proof. If f ∈ T[x] has a bend at t ∈ K ⊂ T then f ∈ I{t} ⊂ IK . Conversely, if f ∈ IK then f = ∑
n
i=1 gibti

for some ti ∈ K and gi ∈ T[x]. Each summand gibti has a bend at ti, and the tropical sum of a function with
a bend at ti and a function with a bend at t j must have a bend in the closed interval [ti, t j]. Thus when K is
convex (i.e., an interval) we indeed have that the non-constant functions of IK are precisely the functions
with a bend in K.

From this it follows that if K is an interval then IK is prime: if f ,g ∈ T[x]\ IK then neither f nor g has a
bend in K so the same is true of f g, hence f g ∈ T[x]\ IK . Conversely, if p ⊂ T[x] is prime then by the
factorization property of T[x], any element of p must be divisible by bt for some t ∈ T. The identity

t1r−1bt1 +bt2 = br for any r ∈ [t1, t2]⊂ T

then shows that p = IK where K is the convex hull of all such t. The statement about finitely generated
primes and principal primes immediately follows. �

4. TORIC VARIETIES, INTEGRAL F1-SCHEMES, AND THEIR TROPICAL MODELS

4.1. Toric schemes over F1 and T. Let N ∼= Zn be a lattice with dual lattice M. The datum of a rational
polyhedral fan ∆ in NR determines an F1-scheme as in the usual construction of toric varieties. For each
cone σ ∈ ∆, there is a corresponding monoid Mσ = M∩σ∨. If τ ⊂ σ is a face then Mτ is a localization of
Mσ . Hence adjoining zeros to these monoids and taking Spec results in a collection of affine F1-schemes
that glue together according to the incidence relations of the fan ∆ to give an F1-scheme X∆. Base
change to a ring R yields the usual toric variety over R associated with the fan ∆. The full subcategory
of F1-schemes spanned by the objects of the form X∆ is equivalent to the category of toric varieties and
torus-equivariant morphisms.

Kajiwara [Kaj08] and Payne [Pay09] have each studied toric varieties over T. The T-points of the open
torus stratum are canonically identified with the points of NR, and X∆(T) is then the polyhedral partial
compactification of NR dual to the fan ∆, with a codimension i stratum at infinity for each i-dimensional
cone. For example, Pn(T) is an n-simplex.

Remark 4.1.1. Given a toric variety Xk, where k is a valued field, some authors refer to the corresponding
tropical scheme XT as the tropicalization of Xk.
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Observe that the toric F1-schemes X∆ described above are integral. However, the class of integral F1-
schemes is larger; it allows objects that are non-normal and/or not of finite type. In the scheme-theoretic
tropical geometry that we develop in this paper, the class of ambient spaces in which tropicalization makes
sense can naturally be enlarged from toric varieties to integral F1-schemes.

4.2. Cox’s quotient construction. It is straightforward to see that Cox’s construction of (split) toric
varieties as quotients of affine space descends to F1. Let X = X∆ be as above and suppose the rays ∆(1)
span NR, i.e., X has no torus factors. We define the Cox algebra as the free F1-algebra on the set of rays:
Cox(X) := F1[xρ | ρ ∈ ∆(1)].

For any field k the toric variety Xk is split and the divisor class group is independent of the field k, so
we can formally define Cl(X) := Z∆(1)/M, where

M ↪→ Z∆(1), m 7→ (m ·uρ)ρ∈∆(1),

and uρ denotes the first lattice point on the ray ρ ∈ NR.

The Cox algebra has a grading by the divisor class group, via the composition

Cox(X)\{0} ∼= N∆(1) ↪→ Z∆(1) � Cl(X),

and the graded pieces are the eigenspaces for the action of the dual group

G := Hom(Cl(X),Z)⊂ Hom(Z∆(1),Z)

on Spec Cox(X)∼= A∆(1)
F1

.

Each ray ρ ∈ ∆(1) determines a coherent sheaf on X , the global sections of which are naturally
isomorphic to the F1-module of homogeneous elements in Cox(X) of degree [ρ]. If X is complete then
each graded piece is finite and the sections of this F1-sheaf are naturally the lattice-points in a polytope.

The irrelevant ideal B ⊂ Cox(X) is generated by the elements xσ := ∏ρ /∈σ(1) xρ for all cones σ ∈ ∆.
This determines closed and open subschemes, respectively,

V (B) = Spec (Cox(X)/〈xσ ∼ 0〉σ∈∆) and U := A∆(1)
F1
\V (B).

Indeed, as noted in §3.3 it is not generally true that the complement of a closed immersion is Zariski-open,
but for congruences induced by ideals (cf. Proposition 2.4.6) this is the case, so there is an induced
F1-scheme structure on the complement of V (B).

Proposition 4.2.1. With notation as above, X is the categorical quotient U/G in F1-schemes.

Proof. This is an immediate translation of [Cox95, Theorem 2.1] and its proof to the setting of monoids.
We cover U by F1-open affine G-invariant charts Uσ := SpecCox(X)[x−1

σ ] and observe that Cox’s argument
carries over to show that

Cox(X)[x−1
σ ]G = Cox[x−1

σ ]0 ∼= σ
∨∩M.

This clearly implies that for this chart we have the categorical quotient

Uσ/G = Spec σ
∨∩M,

and following Cox’s argument again we see that the way these affine quotients glue together to yield the
categorical quotient U/G is identical to the way the affine charts corresponding to the cones in the fan ∆

glue together to produce the toric variety X . �
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5. BEND LOCI AS SCHEMES

In this section we define bend locus schemes; a bend locus is the tropical analogue of the zero locus
of a regular function (or more generally, a section of a line bundle). These tropical bend loci are one
of the key elements of the framework developed in this paper, and they are the basic building blocks of
scheme-theoretic tropicalization.

Recall that over a ring R, a polynomial f ∈R[x1, . . . ,xn] determines a zero locus in An
R as the set of points

where f vanishes, but it has the additional structure of a scheme over R given by Spec R[x1, . . . ,xn]/( f ).
There are various heuristic arguments (e.g., [RGST05, §3], [Mik06, §3.1]) that the correct analogue of
zero locus in the tropical setting is the locus of points where the piecewise linear graph of a tropical
polynomial is nonlinear—i.e., the locus where the graph “bends”. The relevant question in this setting is
then, how to endow this set with a semiring scheme structure, and to do so in a way that generalizes from
affine space to a larger class of F1 schemes and allows for coefficients in an arbitrary idempotent semiring
rather than just T.

Endowing the set-theoretic bend locus with the structure of a closed subscheme means realizing it as
the set of solutions to a system of polynomial equations over T—more precisely, we must construct a
congruence on the coordinate algebra of the ambient affine scheme (and a quasi-coherent congruence
sheaf in the non-affine case) such that the T-points of the quotient form the set-theoretic bend locus. To
this end, given an idempotent semiring S, an F1-algebra M (which is the set of monomials) and f ∈M⊗S,
we construct a congruence 〈B( f )〉 which defines the bend locus Bend ( f ) of f as a closed subscheme of
Spec M⊗S. The generators of this congruence are called the bend relations of f . When the ambient space
is a torus and S = T, the T-points of this scheme constitute the set-theoretic bend locus of f .

While the T-points alone are not enough to uniquely determine the scheme structure on Bend ( f ),
the particular scheme structure we propose here appears quite natural and allows for a robust theory of
scheme-theoretic tropicalization to be developed. Moreover, it contains strictly more information than
the set-theoretic bend locus, including multiplicities (§7.2), and it often determines f up to a scalar (see
Lemma 5.1.4 below), which the T-points do not in general.

Remark 5.0.2. A word of caution: the set-theoretic bend locus of a tropical polynomial is often called
a “tropical hypersurface,” and the set-theoretic tropicalization of a hypersurface is an example of one.
However, when enriched with scheme structure, the tropicalization of a hypersurface is usually cut out by
more relations than just the bend relations of a single tropical polynomial. We shall define tropicalization,
in §6, by taking the bend relations of the coefficient-wise valuations of all elements in an ideal. See §8.1
for further discussion.

5.1. The bend relations and affine bend loci. Let S be an idempotent semiring and M an F1-module
(or algebra). Given f ∈M⊗S and j ∈ supp( f ), we write f ĵ for the result of deleting the j term from f .

Definition 5.1.1. The bend relations of f ∈M⊗S are the relations { f ∼ f ĵ} j∈supp( f ). We write B( f ) for
the module congruence on M⊗S generated by the bend relations. When M is an F1-algebra this generates
a semiring congruence 〈B( f )〉 and we define the affine bend locus of f , denoted Bend ( f ), to be the closed
subscheme of Spec M⊗S defined by M⊗S � M⊗S/〈B( f )〉.

Example 5.1.2. If f = a1x1 +a2x2 +a3x3 ∈ S[x1,x2,x3] then the bend relations of f are

a1x1 +a2x2 +a3x3 ∼ a2x2 +a3x3 ∼ a1x1 +a3x3 ∼ a1x1 +a2x2.

Note that if λ is a unit in S then B(λ f ) = B( f ), and if M is an F1-algebra and u ∈M× then 〈B(u f )〉=
〈B( f )〉.

Proposition 5.1.3. Let M be an F1-algebra and f ∈M⊗S, with S a totally ordered idempotent semiring.

(1) The S-points of Bend ( f ) are the points p ∈ (Spec M⊗S)(S) where either the maximum of the
terms of f (p) is attained at least twice or f (p) = 0S.
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(2) If S = T and M = F1[x±1 , . . . ,x±n ] is the coordinate algebra of an F1-torus, then the T-points of
Spec M⊗T are (T×)n = Rn and the T-points of Bend ( f ) are the points at which the function
X(T)→ T induced by f is nonlinear.

Proof. A semiring homomorphism p : M⊗S→ S factors through the quotient by 〈B( f )〉 if and only if
f (p) = fî(p) for each i. This happens if and only if no single term in f (p) is strictly larger than all others,
when |supp( f )| ≥ 2, or f (p) = 0S when f consists of a single monomial.

We now prove the second statement. A homomorphism p : T[x±1 , . . . ,x±n ]→ T is determined by the
n-tuple of tropical numbers p(x1), . . . , p(xn)∈T×= R, so we identify p with a point in Rn. This Euclidean
space is divided into convex polyhedral chambers as follows. For each term of f there is a (possibly
empty) chamber consisting of all p for which that term dominates, the interior consisting of points where
this term strictly dominates. Since f is the tropical sum (Euclidean maximum) of its terms, the chamber
interiors are where the graph of f is linear and the walls are where the maximum is attained at least twice
and hence the graph is nonlinear. �

In general one cannot recover a tropical polynomial from its set-theoretic bend locus (consider, e.g.,
x2 + ax + 0 ∈ T[x] as a ∈ T varies). In the case of homogeneous polynomials this is manifest as the
statement that the tropicalization of the Hilbert scheme of projective hypersurfaces is not a parameter
space for set-theoretically tropicalized hypersurfaces (see [AN13, §6.1]). The following result says
in particular that when enriched with its scheme structure, one can indeed recover, up to a scalar, a
homogeneous tropical polynomial from its bend locus.

Lemma 5.1.4. Suppose S is a semifield and f ∈M⊗S.

(1) The congruence B( f ) determines f uniquely up to a scalar.
(2) If M is an F1-algebra that admits a grading by an abelian group such that M0 = 0M and f is

homogeneous, then 〈B( f )〉 determines f up to a scalar.

Remark 5.1.5. The hypotheses for (2) are satisfied by the Cox algebra of a toric scheme X over F1 whose
base change to a ring is proper. We show below in §5.4 that a homogeneous polynomial in Cox(XT)
defines a closed subscheme of XT, generalizing the case of a homogeneous polynomial (in the usual sense)
defining a tropical hypersurface in projective space.

Proof. For (1), write f = ∑
n
i=1 aimi with ai ∈ S,mi ∈M. If n = 1 then the result is obvious, otherwise

consider the elements φ of the dual module Hom(M⊗ S,S) of the form mi 7→ 0S for all i except two
indices, say j1 and j2. Such a homomorphism descends to the quotient by B( f ) if and only if a j1φ(m j1) =
a j2φ(m j2). In this way we recover the ratio of each pair of coefficients a j1 ,a j2 , and hence the vector of
all coefficients (a1, . . . ,an) up to a scalar. Item (2) follows from (1) since the hypotheses guarantee that
〈B( f )〉deg( f ) = B( f ), where the latter is viewed as a congruence on the module Mdeg( f )⊗S. �

The following result expresses the functoriality of bend loci and is used throughout the sequel.

Lemma 5.1.6. If ϕ : M⊗S→ N⊗S is induced by an F1-morphism (i.e., map of pointed sets) M→ N
and f ∈M⊗S, then

ϕ∗B( f )⊂ B(ϕ( f )) and ϕ∗〈B( f )〉 ⊂ 〈B(ϕ( f ))〉
with equality when ϕ is injective.

Proof. Since ϕ∗B( f ) is generated by the image of the generators of B( f ), it suffices to show that any
relation of the form ϕ( f )∼ ϕ( fî) is implied by a relation of the form ϕ( f )∼ ϕ( f ) ĵ. Let g0 be the term
of f whose support is i and let g1, · · · ,gn be the terms of f whose supports are identified with i by ϕ . The
relation ϕ( f )

ϕ̂(i) ∼ ϕ( f ) implies

ϕ( fî) = ϕ( f )
ϕ̂(i) +ϕ(g1 + · · ·+gn)∼ ϕ( f )+ϕ(g1 + · · ·+gn)

= ϕ( f +g1 + · · ·+gn) = ϕ( f ),
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where the last equality follows from the idempotency of addition in S. When ϕ is injective it is clear that
ϕ( fî) = ϕ( f )

ϕ̂(i). The semiring statement follows from the module statement. �

5.2. Unicity of the bend relations. Here we show that the bend relations of a tropical linear form f are
uniquely determined as the dual module of the tropical hyperplane defined by f . In this section we let
S be a totally ordered idempotent semifield and M a finitely generated F1-module (i.e., a finite pointed
set). Then M⊗S is a free S-module of finite rank and it is canonically isomorphic to its dual (M⊗S)∨

and hence also its double dual. We can thus think of M⊗S as the space of linear functions on its dual. A
quotient of M⊗S dualizes to a submodule; however, a general submodule W ⊂M⊗S only dualizes to a
quotient if every linear map W → S extends to a linear map M⊗S→ S.

Tropical hyperplanes were defined in [SS04] as the set-theoretic tropicalization of classical hyperplanes.
The following definition is from [Fre13, Chapter 4].

Definition 5.2.1. Given f ∈M⊗S, let L f ⊂ (M⊗S)∨ denote the set of points x where either f (x) = 0S
or the maximum of the terms of f (x) is attained at least twice (this set is sometimes called the “tropical
vanishing locus” of f ). A tropical hyperplane in (M⊗S)∨ is a subset of the form L f for some f ∈M⊗S.

Note that, by Proposition 5.1.3, for f ∈M⊗S we have (M⊗S/B( f ))∨ = L f .

Theorem 5.2.2. The canonical map from M⊗S/B( f ) to its double dual L∨f is an isomorphism.

Proof. Tropical hyperplanes are finitely generated as S-modules [Fre13, p. 69], so by [WJK13, Theorem
3.4], every linear map L f → S extends to a linear map (M⊗S)∨→ S and hence L∨f = (M⊗S/B( f ))∨∨ is
a quotient of (M⊗S)∨∨. It follows that the bottom arrow of the following diagram is surjective:

M⊗S (M⊗S)∨∨

M⊗S/B( f ) M⊗S/B( f )∨∨.

//
∼=

���� ����

//

To show injectivity, we will show that if g,g′ ∈M⊗S are equal at each point p∈ L f , then they are equal
in the quotient by B( f ). It is immediate that g and g′ coincide outside supp( f ), so we must show that
they agree modulo B( f ) over supp( f ). If f is a monomial then this is trivial, so assume |supp( f )| ≥ 2.

For any a ∈M, let χa ∈ (M⊗S)∨ denote the map sending a to 1S and all other basis elements to 0S. For
any pair of distinct elements a,b ∈ supp( f ), consider the element pab ∈ (M⊗S)∨ given by the formula

pab =
(

1S

χa( f )

)
χa +

(
1S

χb( f )

)
χb.

Idempotency of addition implies that pab factors through the quotient by B( f ), i.e., pab ∈ L f . Write
ga :=χa(g)/χa( f ) and likewise for g′, and let m and m′ denote the minimum of the ga and g′a, respectively.
By hypothesis, pab(g) = pab(g′) for all a,b ∈ supp( f ), which yields the set of equations

(5.2.1) (Rab) : ga +gb = g′a +g′b.

Modulo the congruence B( f ), we may assume the minima m and m′ are each attained at least twice; for,
if m is attained only once by some ga and gb is the minimum of the remaining non-minimal terms, then

g = g+gb fâ

∼ g+gb f

and in the final expression the minimum is equal to gb and is attained at least twice, so we replace g with
this and likewise for g′. Now, for a and b such that ga = gb = m, the equation (Rab) implies that m≥ m′,
and choosing a and b such that g′a = g′b = m′ we likewise see that m≤ m′. Hence m = m′.
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Now let a1, . . . ,an be the elements of supp( f ) ordered so that ga1 = ga2 ≤ ·· · ≤ gan . Since m = m′, the
equation (Ra1a2) implies that ga1 = ga2 = g′a1

= g′a2
. For any k > 2, gak and g′ak

are both greater than or
equal to m, and so the equation (Ra1ak) implies that gak = g′ak

. Thus we have shown that g and g′ are equal
in M⊗S/B( f ). �

5.3. Global bend loci. Let X be an integral F1-scheme, L a line bundle on X (i.e., a locally free sheaf
of rank one), and f a global section of the line bundle L ⊗S on XS. We now show how to associate a
global bend locus Bend ( f ) to this section by patching together the affine bend loci defined in §5.1.

Let {Uα} be a covering of X by affine opens, with {U ′α} the induced cover of XS, and choose local
trivializations ψα : L |Uα

∼= OX |Uα
(which induce local trivializations after base change to S that we denote

by the same symbol). For each α , the congruence 〈B(ψα( f ))〉 on OXS(U
′
α) defines a quasi-coherent

congruence sheaf on U ′α .

Proposition 5.3.1. The congruence sheaves 〈B(ψα( f ))〉 glue together to define a quasi-coherent con-
gruence sheaf 〈B( f )〉 on XS that is independent of the covering and local trivializations, and hence a
well-defined closed subscheme Bend ( f )⊂ XS.

Proof. On the intersection U ′α ∩U ′
β

the trivializations ψα and ψβ differ by a unit u in the monoid
OX(Uα ∩Uβ ) (i.e., an invertible monomial). Hence 〈B(ψα( f ))〉 and 〈B(ψβ ( f ))〉 are equal when restricted
to the intersection. By Lemma 5.1.6 and Proposition 3.1.3, formation of the bend relations commutes
with restriction to F1-open subschemes, since X is integral, so the resulting congruence sheaf is invariant
under refinement of the original cover. �

Proposition 5.3.2. Let ϕ : X → Y be a morphism of integral F1-schemes, L a line bundle on Y , and
f ∈ Γ(YS,L ⊗S). Then ϕ⊗S : XS→ YS maps Bend (ϕ∗ f ) into Bend ( f ).

Proof. It suffices to check on affine patches, where the result follows from Lemma 5.1.6. �

5.4. Tropical Proj and Cox. If M is an N-graded monoid-with-zero then M⊗S is an N-graded S-algebra
and we can form the scheme Proj M⊗ S in the usual way. For f ∈ M⊗ S homogeneous of degree d,
the congruence 〈B( f )〉 is homogeneous in that M⊗S/〈B( f )〉 inherits the grading. The bend locus of
f ∈ Γ(Proj M⊗S,O(d)) is the image of the morphism

Proj M⊗S/〈B( f )〉 → Proj M⊗S;

this is a special case of Proposition 5.4.1 below.

More generally, let X = X∆ be a toric variety over S without torus factors and consider its Cl(X)-graded
algebra Cox(X) = S[xρ | ρ ∈ ∆(1)]. As mentioned in §4.2, global sections of line bundles correspond to
homogeneous polynomials in the Cox algebra. Recall that X = U/G, where U is the complement of the
vanishing of the irrelevant ideal and G = Hom(Cl(X),Z).

Proposition 5.4.1. If f ∈ Cox(X) is homogeneous with degree given by the class of a line bundle, then
the bend locus determined by the corresponding global section is the categorical quotient

(Bend ( f )∩U)/G.

Proof. For each cone σ ∈ ∆, let xσ̂ := ∏ρ /∈σ(1) xρ . The restriction of Bend ( f ) to the affine open
Spec Cox(X)[x−1

σ̂
] ⊂ U is defined by ι∗〈B( f )〉, where ι : Cox(X)→ Cox(X)[x−1

σ̂
] is the localization

map. The subalgebra of G-invariants on this chart is the degree zero piece

(Cox(X)[x−1
σ̂

]/ι∗〈B( f )〉)0 = Cox(X)[x−1
σ̂

]0/ι∗〈B( f )〉0,

so this defines the restriction of (Bend ( f )∩U)/G⊂U/G to the affine open

Xσ := Spec (Cox(X)[x−1
σ̂

]0)⊂ X = U/G.
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On the other hand, a trivialization on Xσ of a line bundle L on X for which f is a section corresponds to
a choice of unit g ∈ Cox(X)[x−1

σ̂
] with deg(g) = deg( f ). Then the bend locus of f ∈ Γ(X ,L ) is defined

on this affine patch by 〈B( f
g )〉= ι∗〈B( f )〉0, exactly as above. �

6. SCHEME-THEORETIC TROPICALIZATION

Given an integral F1-scheme X and a valued ring ν : R→ S, we define a tropicalization map Tropν

X (or
simply Trop if these parameters are clear from the context) from the poset of closed subschemes of XR to
the poset of closed subschemes of XS. It sends Z to the scheme-theoretic intersection of the bend loci of
the coefficient-wise valuations of all functions in the defining ideal. This is functorial in X , compatible
with the Cox construction, and when S = T the composition with HomSch/T(Spec T,−) recovers the
extended tropicalization functor of Kajiwara-Payne. Moreover, these tropicalizations form an algebraic
family as the valuation varies.

6.1. Construction of the tropicalization functor. We first construct Tropν

X in the case when X = SpecM
is an integral affine F1-scheme and then glue these together to define it in general. To construct the affine
tropicalization functor, we first define a more general linear tropicalization functor that we think of as
tropicalizing linear subspaces; the affine tropicalization is then obtained by applying linear tropicalization
to an ideal.

A valuation ν : R→ S induces a set map M⊗R→M⊗S, also denoted ν , given by coefficient-wise
valuation. Note that this is not a semiring homomorphism.

Definition 6.1.1 (Linear tropicalization). Given an F1-module M and an R-submodule N ⊂M⊗R, let
Tropν(N) denote the module congruence on M⊗S generated by B(ν( f )) for all f ∈ N.

Remark 6.1.2. One should think of this Trop as sending the R-submodule

(M⊗R/N)∨ ⊂ (M⊗R)∨

to the S-submodule
(M⊗S/Trop(N))∨ ⊂ (M⊗S)∨,

although if R is not a field then there might not be a well-defined induced map T from the set of
submodules of (M⊗R)∨ to the set of submodules of (M⊗ S)∨ — for example, there might be two
submodules having the same dual but distinct tropicalizations. However, when R = k is a field then the
map T is well-defined; in this case, if |M \0M|= n and S = T, we will see that T sends linear subspaces
of kn to tropical linear subspaces (in the sense of [SS04]) of Tn and coincides with the classical definition
of tropicalization of linear spaces.

Lemma 6.1.3. If M is an integral F1-algebra and I ⊂M⊗R is an ideal then the module congruence
Tropν(I) is in fact a semiring congruence.

Proof. By Lemma 2.4.5, it suffices to show that Trop(I) is closed under multiplication by generating
relations. Since M is an integral F1-algebra, multiplying any generating relation by a monomial yields
another generating relation, so the S-module congruence Trop(I) is actually an M⊗S-module congruence.
Suppose g ∼ h is an arbitrary relation in Trop(I) and f ∼ fî is a generating relation. Then by the
observation that Trop(I) is an M⊗S-submodule, the two relations

g f ∼ h f and h f ∼ h fî

are both in Trop(I), and hence, by transitivity, the product relation g f ∼ h fî is as well. �

In light of Lemma 6.1.3 above, the following definition makes sense.

Definition 6.1.4 (Affine tropicalization). If M is an F1-algebra and Z⊂ SpecM⊗R is the closed subscheme
corresponding to an ideal I, then we define Tropν(Z)⊂ Spec M⊗S to be closed subscheme determined
by the semiring congruence Tropν(I).
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Proposition 6.1.5. Tropν(Z) =
⋂

f∈I Bend (ν( f )).

Proof. By Lemma 6.1.3, both sides correspond to the semiring congruence 〈B(ν( f ))〉 f∈I . �

Now let X be an arbitrary integral F1-scheme and Z ⊂ XR a closed subscheme. Choose a covering
{Uα} of X by affine F1-schemes, and let {Uα,R} and {Uα,S} be the induced coverings of XR and XS.

Lemma 6.1.6. There is an equality Trop(Z∩Uα,R)∩Uβ ,S = Uα,S∩Trop(Z∩Uβ ,R) of closed subschemes
of the open subscheme Uα,S∩Uβ ,S ⊂ XS. Thus, as one varies α , the subschemes Trop(Z∩Uα,R)⊂Uα,S
glue together to determine a closed subscheme

TropX(Z)⊂ XS,

which is independent of the choice of cover.

Proof. This follows immediately from Lemma 5.1.6, since integrality implies all localization maps are
injective. �

6.2. Basic properties of Tropν

X .

Proposition 6.2.1. For X an integral F1-scheme, TropX(XR) = XS.

Proof. When I is the zero ideal, Trop(I) is clearly the trivial congruence. �

Thus, one can view the tropical model XS of X as a canonical tropicalization of XR.

Lemma 6.2.2. Let W ⊂ X be a locally closed integral subscheme of an integral F1-scheme X such that
W is locally defined by equations of the form x∼ 0. Then TropX(Z)∩WS = TropW (Z∩WR). In particular,
TropX(WR) = WS.

Proof. It suffices to show this in the affine case. By Lemma 5.1.6, tropicalization commutes with
restriction to an open subscheme defined over F1, so we are reduced to the case when W is a closed
subscheme, and then the result follows from Lemma 8.1.4 below. The equality TropX(WR) = WS then
follows from Proposition 6.2.1 �

For X an F1-scheme and R a (semi)ring, a morphism Spec R→ XR is given locally by a multiplicative
map from a monoid to R. Thus, a valuation ν : R→ S determines a map ν̃ : X(R)→ X(S). In particular,
if X = An

F1
then ν̃ : Rn→ Sn is coordinate-wise valuation.

Proposition 6.2.3. The tropicalization of a point is the image of the point under ν̃; more precisely, if
Z ⊂ XR is the closed subscheme corresponding to a point p∈ X(R), then Tropν

X(Z) is the closed subscheme
corresponding to the point ν̃(p) ∈ X(S).

Proof. Locally, X = SpecM; let {xi}i∈A be a set of generators for the monoid M. The point p is determined
by the collection {p(xi)}i∈A of elements of R, and Z is defined by the ideal I := (xi− p(xi))i∈A. On the
other hand, ν̃(p) is determined by the elements ν̃(p)(xi) = ν(p(xi)) of S, and since B(ν(xi− p(xi))) is
generated by the relation xi ∼ ν(p(xi)), it follows from Proposition 8.1.3 that Trop(I) is generated by
these relations for all i ∈ A and hence defines the subscheme ν̃(p). �
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6.3. Relation to the Kajiwara-Payne extended tropicalization functor. We now show that the above
scheme-theoretic tropicalization recovers the Kajiwara-Payne extended tropicalization functor [Kaj08,
Pay09] upon composition with HomSch/T(Spec T,−).

Let X be a toric variety over F1, and let k be an algebraically closed field equipped with a non-trivial
valuation ν : k→ T. The Kajiwara-Payne extended tropicalization is a map of posets

TropX : {subvarieties of Xk}→ {subsets of X(T)}

sending Z ⊂ Xk to the Euclidean closure of the image of Z(k) under the map ν̃ : X(k)→ X(T).

Theorem 6.3.1. The set of T-points of TropX(Z) coincides with TropX(Z) as a subset of X(T).

Proof. By [Pay09, Prop. 3.4], the set-theoretic tropicalization can be computed stratum by stratum.
I.e., if W is a torus orbit in X then TropX(Z)∩W (T) = TropW (Z∩Wk). By the Fundamental Theorem
of tropical geometry [MS, Theorem 3.2.4] (a.k.a Kapranov’s Theorem in the case of a hypersurface),
TropW (Z∩Wk) is the subset of points in W (T)∼= Rn where the graph of each nonzero function in the ideal
defining Z∩Wk is nonlinear. By Proposition 5.1.3 and Lemma 6.2.2, this is equal to the set of T-points of
TropX(Z)∩WT. �

6.4. Functoriality. We now examine the functoriality properties of the scheme-theoretic tropicalization
map

Tropν

X : {closed subschemes of XR}→ {closed subschemes of XS}.
We show that it is functorial in X in the sense below, and under certain additional hypotheses it is functorial
in the valuation ν .

For a (semi)ring R, let P(R) denote the category of pairs

(X an integral F1-scheme, Z ⊂ XR a closed subscheme),

where a morphism (X ,Z)→ (X ′,Z′) is a morphism Φ : X → X ′ such that Φ(Z)⊂ Z′.

Proposition 6.4.1. The tropicalization maps {Tropν

X} determine a functor Tropν : P(R)→ P(S) sending
(X ,Z) to (X ,Tropν

X(Z)).

Proof. Given an arrow (X ,Z)→ (X ′,Z′) in P(R), we must show that Φ(TropX(Z)) ⊂ TropX ′(Z
′). It

suffices to show this in the affine case: X = Spec M, X ′ = Spec M′, the map Φ is given by a monoid
homomorphism ϕ : M′→M, and Z and Z′ are given by ideals I ⊂M⊗R and I′ ⊂M′⊗R with ϕ(I′)⊂ I.
The claim is now that ϕ∗Trop(I′)⊂ Trop(I), and for this it suffices to show that ϕ∗B(ν( f ))⊂B(ν(ϕ( f )))
for any f ∈M′⊗R. In fact, we will show that each generating relation

(6.4.1) ϕ(ν( f ))∼ ϕ(ν( f )î)

of ϕ∗B(ν( f )) is implied by the corresponding relation

(6.4.2) ν(ϕ( f ))∼ ν(ϕ( f ))
ϕ̂(i)

in B(ν(ϕ( f ))) by adding the RHS of (6.4.1) to both sides. We show this by comparing coefficients
term-by-term. For ` ∈ supp( f ), let a` ∈ R denote the coefficient of `. For each m ∈ supp(ϕ( f )) with
m 6= ϕ(i), the coefficients of m on boths sides of (6.4.1) are equal to

(6.4.3) ∑
`∈ϕ−1(m)

ν(a`).

The coefficients of m on either side in (6.4.2) are both equal to

(6.4.4) ν

(
∑

`∈ϕ−1(m)
a`

)
.

By the subadditivity property of the valuation, adding (6.4.4) to (6.4.3) yields (6.4.3).
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We now examine the coefficients of ϕ(i) in (6.4.1) and (6.4.2); they are, respectively,

∑
`∈ϕ−1(ϕ(i))

ν(a`), ∑
`∈ϕ−1(ϕ(i))r{i}

ν(a`)(6.4.5)

(LHS) (RHS)

and

ν

(
∑

`∈ϕ−1(ϕ(i))
a`

)
0S.(6.4.6)

(LHS) (RHS)

By Lemma 2.5.3 part (2), adding the RHS of (6.4.5) to both sides of (6.4.6) yields (6.4.5). �

We now turn to the dependence on ν .

Proposition 6.4.2. Let ν : R→ S be a valuation and ϕ : S→ T a map of semirings. Then

Tropϕ◦ν
X (Z) = Tropν

X(Z)×Spec S Spec T

as subschemes of XT .

Proof. It suffices to prove this in the case X is affine, so assume X = Spec A for some F1-algebra A, and
let I ⊂ A⊗R be the ideal defining Z ⊂ X .

Given a module congruence J on M⊗S, the canonical isomorphism (M⊗S)⊗S T ∼= M⊗T descends
to an isomorphism (

M⊗S/J
)
⊗S T ∼= M⊗T/ϕ∗J.

The claim follows from this by taking M = A, J = Tropν(I) and observing that ϕ∗Tropν(I) = Tropϕ◦ν(I).
�

6.5. Moduli of valuations and families of tropicalizations. Let Val (R) := Spec SR
univ be the affine B-

scheme corresponding to the semiring of values associated with the universal valuation on R defined in
§2.5. By Proposition 2.5.4, Val (R) represents the functor on affine B-schemes,

Spec S 7→ {valuations R→ S}.

Thus Val (R) is the moduli scheme of valuations on R. This is a refinement of the observation of Manon
[Man11] that the set of all valuations with semiring of values T forms a fan. In particular, the T-points of
Val (R) are the usual non-archimedean valuations on R—i.e., Val (R)(T) is equal to the underlying set of
the Berkovich analytification (Spec R)an.

As a special case of Proposition 6.4.2 we have the following (Theorem C part (1) from the introduction).

Theorem 6.5.1. Given an integral F1-scheme X, a ring R, and a subscheme Z ⊂ XR, the tropicalization
of Z with respect to the universal valuation, TropνR

univ
X (Z), forms an algebraic family of B-schemes over

Val (R) such that the fibre over each valuation ν is Tropν

X(Z).

6.6. Compatibility with Cox’s quotient construction. Let X = X∆ be a toric scheme over F1 and
recall (§4.2) that X = U/G, where U ⊂ A∆(1) is the complement of the vanishing of the irrelevant ideal
and G = Hom(Cl(X),Z). A homogeneous ideal I ⊂ Cox(XR) = R[xρ | ρ ∈ ∆(1)] determines a closed
subscheme Z ⊂ XR, and if ∆ is simplicial then every closed subscheme arises in this way [Cox95, Theorem
3.7]. The scheme Z is the categorical quotient of the G-invariant locally closed subscheme Z̃∩UR ⊂A∆(1)

R ,
where Z̃ := V (I). In other words, we have

Z = (Z̃∩UR)/G⊂UR/G = XR.



EQUATIONS OF TROPICAL VARIETIES 19

Theorem 6.6.1. Tropicalization commutes with the Cox quotient:

TropX(Z) = (TropA∆(1)(Z̃)∩US)/G⊂US/G = XS.

Proof. In the notation of §5.4, we can cover X by open affines Xσ for σ ∈ ∆. The subscheme Z ⊂ XR
is defined in each such chart as Zσ := Spec (Cox(XR)[x−1

σ̂
]0/I′0), where I′ denotes the image of I in this

localization and I′0 its degree zero part. The tropicalization TropX(Z) is then obtained by gluing the affine
tropicalizations

TropXσ
(Zσ ) = Spec Cox(XS)[x−1

σ̂
]0/Trop(I′0).

Since the valuation preserves degree and taking quotients commutes with taking degree zero part, this
is the spectrum of (Cox(XS)[x−1

σ̂
]/Trop(I′))0. As in §4.2, taking degree zero here coincides with taking

the subalgebra of G-invariants, and by Lemma 5.1.6 tropicalization commutes with F1-localization, so
this is the categorical quotient of TropA∆(1)(Z̃)\V (xσ̂ ). In the usual way, these categorical quotients patch
together to yield the categorical quotient of TropA∆(1)(Z̃)∩US. �

7. NUMERICAL INVARIANTS

Here we show that there is a natural way to define Hilbert polynomials for the class of tropical projective
subschemes that arise as tropicalizations, and that tropicalization preserves the Hilbert polynomial. We
also show that for a projective hypersurface, the multiplicities (sometimes called weights) decorating the
facets of its tropicalization, which are frequently used in tropical intersection theory, are encoded in the
tropical scheme structure.

7.1. The Hilbert polynomial. First recall the classical setup. Let k be a field, A := F1[x0, . . . ,xn] the
homogeneous coordinate algebra of Pn

F1
, and Z ⊂ Pn

k a subscheme defined by a homogeneous ideal
I ⊂ A⊗k. The Hilbert function of A⊗k/I is usually defined to be the map d 7→ dimk(A⊗k/I)d ; however,
one could equally well replace dimk(A⊗ k/I)d with dimk(A⊗ k/I)∨d , an observation that will be relevant
when we consider semifields. All homogeneous ideals defining Z have the same saturation, so the
corresponding Hilbert functions coincide for d� 0 and this determines the Hilbert polynomial of Z ⊂ Pn

k .

To define a tropical Hilbert function for a homogeneous congruence J on A⊗ S one first needs an
appropriate definition of the dimension of an S-module for S an idempotent semiring. We assume here S
is a totally ordered semifield. The following definition is from [MZ08], in the case S = T.

Definition 7.1.1. Let S be a totally ordered semifield and L an S-module.

(1) A collection v1, . . . ,vk ∈ L is linearly dependent if any linear combination of the vi can be written
as a linear combination of a proper subset of the vi; otherwise it is linearly independent.

(2) The dimension of L, denoted dimS L, is the largest number d such that there exists a set of d
linearly independent elements in L.

Lemma 7.1.2. Let ϕ : S→ T be a homomorphism of totally ordered idempotent semifields. If L is an
S-submodule of a finitely generated free module then dimS L = dimT L⊗S T .

Proof. It suffices to prove the result when T = B and ϕ is the unique homomorphism to B, defined by
sending all nonzero elements to 1B. Moreover, since L is a submodule of a finitely generated free module,
it suffices to show that a set v1, . . . ,vd ∈ Sn is linearly independent (in the sense of the above definition)
if and only if the set ϕ(v1), . . . ,ϕ(vd) is linearly independent. Clearly if the vi are S-linearly dependent
then their images under ϕ are B-linearly dependent. Conversely, suppose ϕ(v1), . . . ,ϕ(vd) are B-linearly
dependent, so that (without loss of generality)

d

∑
i=1

ϕ(vi) =
d−1

∑
i=1

ϕ(vi).
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This condition says that, for each k, if the kth component of vi vanishes for i < d then it does so for vd as
well. Since S is a totally ordered semifield, given any notrivial elements a,b ∈ S, there exists c ∈ S such
that ca≥ b. Hence for each i < d, we may choose an ai ∈ S large enough so that each component of aivi
is greater than or equal to the corresponding component of each vd . By construction we then have

d

∑
i=1

aivi =
d−1

∑
i=1

aivi,

which shows that the vi are S-linearly dependent. �

Lemma 7.1.3. If L ⊂ Sn is a tropical linear space of rank r (in the sense of [Fre13] or [SS04, Spe08])
then dimS L = r.

Proof. Let ψ : S→ T be any homomorphism (for example, one can take the unique homomorphism to
B followed by the unique homomorphism B ↪→ T). The base change L⊗S T is a tropical linear space of
rank d in Tn (this can easily be seen in terms of the corresponding valuated matroids). By Lemma 7.1.2,
dimS L = dimT L⊗S T and by [MZ08, Proposition 2.5], dimT L⊗S T is equal to the maximum of the local
topological dimensions of the polyhedral set underlying L⊗S T. The statement now follows from the fact
that a tropical linear space in Tn is a polyhedral complex of pure dimension equal to its rank. �

Definition 7.1.4. Given a homogenous congruence J on A⊗S = S[x0, . . . ,xn], the tropical Hilbert function
of J is the map d 7→ dimS(A⊗S/J)∨d .

Two homogeneous congruences (cf. §5.4) define the same projective subscheme if and only if they
coincide in all sufficiently large degrees; it follows that the Hilbert function of any tropical projective
subscheme is well-defined for sufficiently large values of d. Since modules over a semiring do not form an
abelian category, it does not appear automatic that the Hilbert function of an arbitrary tropical projective
subscheme is eventually polynomial, but remarkably, this is the case for schemes in the image of the
tropicalization functor.

Theorem 7.1.5. Let ν : k→ S be a valued field. If I ⊂ A⊗ k is a homogenous ideal then the Hilbert
function of I coincides with the tropical Hilbert function of Trop(I). Consequently, for any subscheme
Z ⊂ Pn

k , the tropical subscheme Tropν

Pn(Z)⊂ Pn
S has a well-defined Hilbert polynomial and it coincides

with that of Z.

Proof. Linear tropicalization commutes with restriction to the degree d graded piece, so

(A⊗S/Trop(I))d = Ad⊗S/Trop(Id).

By Propositions 5.1.3 and 6.1.5, the dual, (Ad ⊗ S/Trop(Id))∨ is the tropical linear space in (Ad ⊗ S)∨

that is the tropicalization of the linear subspace (Ad⊗ k/Id)∨ ⊂ (Ad⊗ k)∨. Since the tropicalization of
a subspace of dimension r is a rank r tropical linear space, the statement that tropicalization preserves
the Hilbert function now follows from Lemma 7.1.3. The statement about the Hilbert polynomials then
follows since, by Theorem 6.6.1, Tropν

Pn(Z) is defined by the homogeneous congruence Trop(I).

�

Recall that classically a family of projective subschemes is flat if and only if the Hilbert polynomials
of the fibres are all equal. The above result therefore suggests that if one views tropicalization as some
kind of degeneration of complex structures on a variety, then the numerical behavior is that of a flat
degeneration. Moreover, this next result (Theorem C part (2)) shows that the family of all tropicalizations
of a projective subscheme Z has the numerical behaviour of a flat family.

Corollary 7.1.6. For S a totally ordered idempotent semifield, the Hilbert polynomial of the fibre of the
family Tropνk

univ(Z)→ Val (k) over any S-point is equal to the Hilbert polynomial of Z.

Proof. This follows directly from Theorems 6.5.1 and 7.1.5 since the Hilbert polynomials of the fibres are
all equal to the Hilbert polynomial of Z. �
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7.1.1. Example: points on the line. Assume k = k is algebraically closed and recall that the Hilbert
scheme of m points on the projective line is Pm

k = PΓ(P1
k ,O(m)). A k-point of this scheme is a degree m

binary form and the associated hypersurface in P1
k is a zero-dimensional length m scheme. Although it is

not clear how much of the theory of Hilbert schemes carries over to the tropical setting, one can at least
consider the set H of subschemes of P1

T with constant Hilbert polynomial m. Theorem 7.1.5 implies that
tropicalization yields a map ϕ : Pm

k (k)→H. However, ϕ is not surjective, since there are many tropical
schemes that lie outside the image of the tropicalization functor. For instance, consider the family

Z := Proj T[x,y, t]/〈x2 ∼ x2 + txy,y2 ∼−∞〉 ⊂ P1
T×A1

T→ A1
T,

where t is the parameter on A1
T.

Proposition 7.1.7. The fiber Zt over t ∈ T has Hilbert polynomial 2, yet it is in the image of ϕ (i.e., the
tropicalization of a length 2 subscheme of P1

k) if and only if t =−∞.

Proof. Since Z−∞ = Proj T[x,y]/〈y2 ∼−∞〉, this is the tropicalization of a double point at the origin of
P1

k . On the other hand, it follows from the proof of Theorem 7.1.5 that if Zt were a tropicalization then the
dual T-module of each graded piece of the homogeneous coordinate semiring would be a tropical linear
subspace, and we claim this is not the case for any t ∈ R. The degree 2 piece is a quotient of the rank
3 free T-module Tx2⊕Txy⊕Ty2. If we set X := x2,Y := y2,Z := xy, then the dual of this quotient is a
T×-invariant subset of A3

T which on the affine chart {Z = 0}= A2
T is defined by the equations X = X + t

and Y =−∞. For any t 6=−∞ this is a line segment and hence not a tropical linear space. That the Hilbert
function stabilizes at 2 for any t ∈ T is obvious. �

7.2. Recovering the multiplicities and defining polynomial of a tropical hypersurface.

Proposition 7.2.1. For any valued ring ν : R→ S such that S is a semifield, and any projective hypersur-
face Z = V ( f )⊂ Pn

R, the tropical scheme Trop(Z)⊂ Pn
S determines the defining homogeneous polynomial

ν( f ) ∈ (A⊗S)d uniquely up to scalar.

Proof. Since Trop(Z) = Proj A⊗S/〈B(ν(g))〉g∈( f ), and this homogeneous congruence in degree d coin-
cides with the congruence B(ν( f )), the result follows from Lemma 5.1.4. �

Corollary 7.2.2. For an algebraically closed valued field ν : k → T, and an irreducible projective
hypersurface Z ⊂ Pn

k , the scheme Trop(Z)⊂ Pn
T determines the multiplicities on the facets of its T-points.

Proof. This follows immediately from Proposition 7.2.1, since the multiplicities for a tropical hypersurface
are lattice lengths in the Newton polytope of f [DFS07, §2]. �

Remark 7.2.3. It would be interesting to see whether the multiplicities are determined by the tropical
scheme structure for arbitrary codimension irreducible subvarieties.

8. HYPERSURFACES AND TROPICAL BASES

We have seen that associated to a tropical polynomial is a bend locus scheme whose T-points are what
have traditionally been referred to as a tropical hypersurface. On the other hand, given a polynomial with
coefficients in a valued ring there is a classical hypersurface which can be tropicalized to produce another
geometric object that could justifiably be referred to as a tropical hypersurface. In this section we explain
how these two notions are only compatible in special situations. The discrepancy can be understood in
terms of Theorem 7.1.5: the tropicalization of a projective hypersurface must have enough relations in its
homogeneous coordinate algebra to yield the Hilbert polynomial of a codimension one subscheme, but
the bend relations of a single tropical polynomial do not typically suffice for this numerical constraint.

This discussion leads naturally to the notion of a scheme-theoretic tropical basis, a term we introduce
as a replacement for the usual set-theoretic notion considered in the tropical literature.
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8.1. Bend loci versus tropical hypersurfaces. To illustrate concretely that the tropicalization of a
hypersurface V ( f ) may need more relations than those provided by the bend relations of the coefficient-
wise valuation ν( f ), consider the following example.

Example 8.1.1. Let f = x2 + xy+ y2 ∈ k[x,y], where ν : k→ T is a valued field. One can see as follows
that the tropicalization of the principal ideal generated by f , denoted Trop( f ), is a congruence that is
strictly larger than the semiring congruence generated by B(ν( f )). This latter congruence is generated
by the degree 2 relations x2 + y2 ∼ x2 + xy∼ xy+ y2. The degree 3 part of 〈B(ν( f ))〉 is generated (as a
module congruence) by the relations B(x3 + x2y+ xy2) and B(x2y+ xy2 + y3). Since arithmetic in T[x,y]
can only enlarge the support of a polynomial, we see that any nontrivial degree 3 relation in 〈B(ν( f ))〉
involves only polynomials with at least 2 terms. However, (x− y) f = x3− y3, and this gives the degree 3
monomial relation x3 ∼ y3 in Trop( f ).

The behaviour above, where B(ν( f )) does not generate all the relations in the tropicalization of the
principal ideal generated by f , appears to be generic. Suppose now that f = x2 + xy + ty2 for some
t 6= 0,1. The degree 3 part of 〈B(ν( f ))〉 is generated as a module congruence by the bend relations of
ν(x f ) = x3 + x2y+ν(t)xy2 and ν(y f ) = x2y+ xy2 +ν(t)y3. However, in Trop( f ) one also has the bend
relations of ν((x− ty) f ) = x3 +ν(1− t)x2y+ν(t)2y3; among these is the relation

x3 +ν(t)2y3 ∼ x3 +ν(1− t)x2y

which cannot be obtained from B(ν(x f )) and B(ν(y f )). In fact, one can check that these relations now
generate all relations in the degree 3 part of Trop( f ).

In general, when passing from 〈B(ν( f ))〉 to Trop( f ), the additional relations appearing in Trop( f ) are
not uniquely determined by the single tropical polynomial ν( f ), so the tropicalization of a hypersurface
is not uniquely determined by the bend locus of the valuation of a defining polynomial. The following
is a simple example illustrating this: two polynomials with the same valuation but whose associated
hypersurfaces have unequal tropicalizations.

Example 8.1.2. Let k = C with the trivial valuation ν : k→ B, and consider the polynomials in C[x,y],

f = a1x2 +a2xy+a3y2, and g = x2 + xy+ y2,

where the coefficients in f do not satisfy the quadratic relation a2
2 = a1a3. Clearly ν( f ) = ν(g), and

as seen in Example 8.1.1, Trop(g) contains the relation x3 ∼ y3. However, for any nonzero linear form
h = b1x+b2y ∈ C[x,y] the polynomial f h has at least three terms, so Trop( f ) cannot contain the relation
x3 ∼ y3.

There are, however, certain nice situations where the tropicalization of an ideal is equal to the intersec-
tion of the bend loci of a set of generators of the ideal.

Proposition 8.1.3. Let M be a torsion-free integral monoid-with-zero, and suppose S is totally ordered. If
f = ax+by is a binomial (a,b ∈ R, and x,y ∈M) then Trop( f ) = 〈B(ν( f ))〉.

Proof. We must show that 〈B(ν( f ))〉 implies 〈B(ν( f g))〉 for any g ∈ M⊗R. Since f is a binomial,
〈B(ν( f ))〉 is generated by the single relation ν(a)x∼ ν(b)y.

We define a binary relation→ on supp(g) as follows. z1→ z2 if z1x = z2y. This generates an equivalence
relation; let {Ci} be the set of equivalence classes. Note that Cix∪Ciy is necessarily disjoint from C jx∪C jy
if i 6= j. Hence we can, without loss of generality, assume that supp(g) consists of just a single equivalence
class C. If C consists of a single element then the claim holds trivially, so we assume that C consists of at
least 2 elements.

Since M is integral and torsion free, C must consist of a sequence of elements z1, . . . ,zn such that
zix = zi+1y (having a loop would imply that xy−1 is a torsion element in the group completion of M, and
the integral condition implies that if x→ y and x→ y′ then y = y′).
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Let ci be the coefficient of zi in g. We then have

ν( f g) = ν(acn)znx+ν(acn−1 +bcn)zn−1x+ · · ·+ν(ac1 +bc2)z1x+ν(bc1)z1y.

We first show that the relation ν(a)x∼ ν(b)y allows the first term, ν(acn)znx, to be absorbed into one of
the terms to its right. First,

ν(acn)znx∼ ν(bcn)zny = ν(bcn)zn−1x.

Either ν(acn−1 +bcn) = ν(acn−1)+ν(bcn), in which case we are done, or ν(acn−1) = ν(bcn), in which
case ν(bcn)zn−1x = ν(acn−1)zn−1x∼ ν(bcn−1)zn−2x. We continue in this fashion until the term absorbs
or we reach the end of the chain, at which point it will be absorbed into the final term ν(bc1)z1y. Working
from right to left instead, the final term can be absorbed into the terms to its left by the same argument.

Finally, given a middle term, ν(aci−1 + bci)zi−1x, we have that ν(aci−1)zi−1x and ν(bci)zi−1x are
both larger, and so the above argument in reverse allows us to replace the term ν(aci−1 +bci)zi−1x with
ν(aci−1)zi−1x+ν(bci)zi−1x. Then the above argument in the forward direction allows these two terms to
be absorbed into the terms to the right and left respectively. �

Lemma 8.1.4. Suppose I is an ideal generated by elements f1, . . . , fn. If Trop(I) = 〈B( fi)〉i=1...n, and J
is the ideal generated by I and a monomial f0, then Trop(J) = 〈B( fi)〉i=0...n.

Proof. We will show that the generating relations of Trop(J) are all contained in the sub-congruence
〈B(ν( fi))〉i=0...n. Let g = ∑

n
i=0 hi fi ∈ J, with hi ∈M⊗R. Since 〈B( f0)〉= 〈 f0 ∼ 0S〉, for any F ∈M⊗S,

the congruence 〈B( f0)〉 contains the relation F · f0 ∼ 0S. This means that if F1,F2 ∈M⊗S are identical
outside of f0 ·M, then the relation F1 ∼ F2 is contained in 〈B( f0)〉.

The tropical polynomials F := ν(g) and F ′ := ν(∑n
i=1 hi fi) dffer only outside of f0 ·M, as do Fĵ and

F ′
ĵ
. In 〈B(ν( fi))〉i=0...n we thus have the relations

F ∼ F ′ from B( f0)

∼ F ′ĵ from Trop(I) = 〈B(ν( fi))〉 f =1...n

∼ Fĵ from B( f0),

This completes the proof. �

If f0 is instead a binomial then the analogue of the above lemma can fail.

Example 8.1.5. Consider f1 = x− y and f0 = x + y in R[x,y] and the trivial valuation ν : R→ B. By
Proposition 8.1.3, Trop( f1) = 〈B( f1)〉. However, 〈B(ν( f0)),B(ν( f1))〉= 〈x∼ y〉 is not the tropicalization
of the ideal ( f0, f1), since the latter contains the bend relation of ν( f0 + f1) = x, namely 〈x∼−∞〉, which
is not implied by the former.

8.2. Tropical bases. It is well-known that the set-theoretic tropical variety associated to an ideal is not
necessarily equal to the set-theoretic intersection of the tropical hypersurfaces associated with generators
of this ideal. A set of generators for which this holds is called a tropical basis in [MS], where this notion
is studied and related to Gröbner theory. We use the term set-theoretic tropical basis for this concept to
distinguish it from the following notion of tropical basis that arises when considering scheme-theoretic
tropicalization.

Definition 8.2.1. Let ν : R→ S be a valued ring, X an integral F1-scheme, and Z ⊂ XR a closed subscheme.
A scheme-theoretic tropical basis for Z is a set β = {Y1,Y2, . . .} of hypersurfaces in XR containing Z such
that the following scheme-theoretic intersections hold:

Z =
⋂

i

Yi and Trop(Z) =
⋂

i

Trop(Yi).
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In the affine case, say X = Spec M and Z = Spec M⊗R/I, a scheme-theoretic tropical basis is a
generating set { f1, f2, . . .} for the ideal I such that the corresponding congruences Trop( fi), obtained
by tropicalizing the principal ideals ( fi), generate the congruence Trop(I). Note that this is generally a
weaker requirement than the requirement that the bend relations of the fi generate Trop(I). For instance,
for a principal ideal I = ( f ) it is automatic that { f} is a tropical basis, whereas it is not always the case,
as discussed above, that Trop(I) = 〈B( f )〉.

Not surprisingly, being a scheme-theoretic tropical basis is a stronger requirement than being a set-
theoretic tropical basis.

Example 8.2.2. Let R = k[x,y,z] with the trivial valuation. As discussed in [MS, Example 3.2.2], the
elements x + y + z and x + 2y do not form a tropical basis for the ideal I they generate, since y− z ∈ I
tropically yields the relation y∼ z which is not contained in 〈B(x+y+ z),B(x+y)〉. This can be rectified
by adding the element y− z, and indeed these three polynomials form a set-theoretic tropical basis for
I. However, if we instead add the element (y− z)2 ∈ I then the corresponding congruence has the same
T-points, so this is still a set-theoretic tropical basis, but it is no longer a scheme-theoretic tropical basis
since the relation y∼ z is still missing.

Remark 8.2.3. It is known that subvarieties of affine space defined over an algebraically closed field with
non-trivial valuation admit finite set-theoretic tropical bases (see [SS04, Corollary 2.3] and [MS, Corollary
3.2.3]). It would be interesting to see if this also holds scheme-theoretically.
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Zürich, 2006, pp. 827–852.
[MS] Diane Maclagan and Bernd Sturmfels, Introduction to tropical geometry, book in preparation.
[MZ08] Grigory Mikhalkin and Ilia Zharkov, Tropical curves, their Jacobians and theta functions, Curves and abelian

varieties, Contemp. Math., vol. 465, Amer. Math. Soc., Providence, RI, 2008, pp. 203–230.
[OP13] Brian Osserman and Sam Payne, Lifting tropical intersections, Documenta Mathematica 18 (2013), 121–175.
[Pay09] Sam Payne, Analytification is the limit of all tropicalizations, Math. Res. Lett. 16 (2009), no. 3, 543–556.
[PS04] Lior Pachter and Bernd Sturmfels, Tropical geometry of statistical models, Proc. Natl. Acad. Sci. USA 101 (2004),

no. 46, 16132–16137 (electronic).
[RGST05] Jürgen Richter-Gebert, Bernd Sturmfels, and Thorsten Theobald, First steps in tropical geometry, Idempotent

mathematics and mathematical physics, Contemp. Math., vol. 377, Amer. Math. Soc., Providence, RI, 2005,
pp. 289–317.

[RSS13] Qingchun Ren, Steven Sam, and Bernd Sturmfels, Tropicalization of classical moduli spaces, arXiv:1303.1132,
2013.

[Spe08] David Speyer, Tropical linear spaces, SIAM J. Discrete Math. 22 (2008), no. 4, 1527–1558.
[SS04] David Speyer and Bernd Sturmfels, The tropical Grassmannian, Adv. Geom. 4 (2004), no. 3, 389–411.
[Tev07] Jenia Tevelev, Compactifications of subvarieties of tori, Amer. J. Math. 129 (2007), no. 4, 1087–1104.
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