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Abstract We propose a new algorithm for the solution of
the robust multiple-load topology optimization problem. The
algorithm can be applied to any type of problem, e.g., truss
topology, variable thickness sheet or free material optimiza-
tion. We assume that the given loads are uncertain and can
be subject to small random perturbations. Furthermore, we
define a rigorous measure of robustness of the given design
with respect to these perturbations. To implement the algo-
rithm, the users only need software to solve their standard
multiple-load problem. Additionally, they have to solve a
few small-dimensional eigenvalue problems. Numerical ex-
amples demonstrate the efficiency of our approach.
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1 Introduction

This article has been motivated by the following sentence of
an engineer in an industrial company: “When we use off-
the-shelf topology optimization software, we always con-
sider not only the nominal loads but also their angular per-
turbations by up to 30 degrees.” The goal of this article is to
automatize this heuristics and to give rigorous measures of
robustness of a structure with respect to these perturbations.

Robust topology optimization (in fact, any robust opti-
mization problem) can be approached from two different
angles—a stochastic one and a deterministic one. Most of
the existing literature deal with the stochastic approach (e.g.
Evgrafov et al 2003; Doltsinis and Kang 2004; Conti et al
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2009). The deterministic (worst case) approach has been pi-
oneered by Ben-Tal, Nemirovksi and El Ghaoui (Ben-Tal
and Nemirovski 1997, 2001; El Ghaoui and Lebret 1997;
Ben-Tal et al 2009). In their monograph, Ben-Tal and Ne-
mirovski (2001) defined the concept of a robust counter-
part to a nominal (convex) optimization problem, where the
problem data is assumed to live in an uncertainty set. Ben-
Tal and Nemirovski (2001) showed that if the uncertainty set
is an ellipsoid, then the robust counterpart (a semi-infinite
optimization problem) can be formulated as a computation-
ally tractable convex cone optimization problem. In the same
monograph, they presented explicit formulations of robust
counterparts for the truss topology and the free material op-
timization problems with uncertainty in the loadings. Unfor-
tunately, these problems (typically large-scale linear semidef-
inite optimization problems) are just too large to be compu-
tationally tractable in practical situations. For this reason, in
Kočvara, Zowe, and Nemirovski (2000) we have developed
a so-called cascading technique that reduces the dimension
of the robust counterpart significantly. This article makesan
attempt to go one step further in bringing the solution of the
robust topology optimization problem closer to use in engi-
neering practice.

After introducing the notation and the standard multiple-
load topology optimization problem in Section 2, we de-
scribe the main idea of our approach and the corresponding
algorithm in Section 3. Section 4 is devoted to numerical
experiments.

In the article we use standard notation for vectors and
matrices:xi is the i-th element of vectorx ∈ R

n andAi j an
(i, j)-th element of matrixA ∈ R

n×m. If I ⊂ {1,2, . . . ,n},
J ⊂ {1,2, . . . ,n} are sets of indices, thenxI is a subvector
of x with indices fromI andAIJ a submatrix ofA with row
indices fromI and column indices fromJ. For x∈ R

n, ‖x‖
denotes the Euclidean norm ofx.

2 Problem definition

We consider a general mechanical structure, discrete or dis-
cretized by the finite element method. The number of mem-
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bers or finite elements is denoted bym, the total number of
“free” degrees of freedom (i.e., not fixed by Dirichlet bound-
ary conditions) byn.

For a given set ofL (independent) load vectors

f (ℓ) ∈ R
n, f (ℓ) 6= 0, ℓ= 1, . . . ,L, (1)

the structure should satisfy linear equilibrium equations

K(x)u(ℓ) = f (ℓ), ℓ= 1, . . . ,L. (2)

HereK(x) is the stiffness matrix of the structure, depending
on a design variablex.

We do not assume any particular structure ofK(x) or its
dependence onx. Therefore, the problem formulations and
the conclusions apply to a broad class of problems, e.g., the
truss topology optimization, variable thickness sheet, SIMP
and free material optimization (see, e.g., Bendsøe and Sig-
mund (2002)). All we need is software for the solution of
the specific multiple-load problem. Consequently, the design
variablesx ∈ R

m, x≥ 0, represent, for instance, the thick-
ness, cross-sectional area or material properties of the ele-
ment.

Let

X := {x∈ R
m |

m

∑
i=1

xi ≤ v; x≤ xi ≤ x, i = 1, . . . ,m}

be the set of feasible design variables with somev,x,x∈ R,
v > 0 and 0≤ x≤ x (again, the specific form of this set is
not important for our purposes). The standard formulation of
the worst-case multiple-load topology optimization problem
reads as follows:

min
x∈X,u∈RL·n

max
ℓ=1,...,L

( f (ℓ))Tu(ℓ) (3)

subject to

K(x)u(ℓ) = f (ℓ), ℓ= 1, . . . ,L .

To simplify our notation, we will instead consider the fol-
lowing “nested” formulation

min
x∈X

max
ℓ=1,...,L

( f (ℓ))TK(x)−1 f (ℓ) , (4)

where, in case ofK(x) singular, we consider the generalized
Moore-Penrose inverse of the matrix. Note that, for the nu-
merical treatment, one would use the equivalent formulation

min
x∈X,γ∈R

γ (5)

subject to

( f (ℓ))TK(x)−1 f (ℓ) ≤ γ , ℓ= 1, . . . ,L .

In the following, we will use formulation (4). This is just for
the sake of keeping the notation fixed. In practical imple-
mentation, the users can use any multiple-load formulation
implemented in their software.

3 Robust topology optimization

3.1 General approach

In their ground-breaking theory of robust convex optimiza-
tion Ben-Tal and Nemirovski (2001) define arobust counter-
part to a nominal convex optimization problem in the worst-
case sense. The solution of the robust problem should be
feasible forany instance of the random data and the opti-
mum is attained at the maximum of the objective function
over all these instance. Ben-Tal and Nemirovski (2001) show
that if the data of the problem (vectors, matrices) lie inellip-
soidal uncertainty sets, the robust counterpart—essentially a
semi-infinite optimization problem—can be converted into a
numerically tractable (solvable in polynomial time) convex
optimization problem.

Specifically, if we assume uncertainty in the loads of our
topology optimization problem (4), the robust counterpartis
defined as

min
x∈X

max
ℓ=1,...,L

max
f∈Uℓ

f TK(x)−1 f . (6)

where

Uℓ :=

{

f | ∃g∈ R
p, ‖g‖ ≤ 1 : f = f (ℓ)0 +

p

∑
i=1

gi f (ℓ)i

}

; (7)

here f (ℓ)0 are the nominal loads andf (ℓ)i ∈ R
n, i = 1, . . . , p,

define an ellipsoid aroundf (ℓ)0 . Ben-Tal and Nemirovski (2001)
have shown that (6) with the uncertainty set (7) can be for-
mulated as a linear semidefinite optimization problem. Un-
fortunately, in the context of topology optimization, the di-
mension of this problem may be very large: basically, it is
the number of the finite element nodes times the space di-
mension.

To avoid the problem of the prohibitive dimension, in
Kočvara et al (2000) we have proposed acascading algo-
rithm that leads to an approximate solution of the original
robust problem. The idea is to find only the “most danger-
ous” incidental loads and to solve the robust problem only
with these dangerous loads, ignoring the others. In this arti-
cle, we took inspiration from Kočvara et al (2000); however,
we have substantially modified the uncertainty sets which
also leads to a modification of the algorithm. Our goal was to
get closer to engineering practice and to make the approach
usable for practitioners.

3.2 Uncertainty set

In Kočvara et al (2000) we have considered random pertur-
bations of loads at any free node of the finite element mesh
(or truss). This leads not only to very large dimensional ro-
bust counterparts but also to practical difficulties when a per-
turbation force can be applied to a node that would not nor-
mally be a part of the optimal structure.
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In this article we are motivated by the practice when, in-
stead of considering only the nominal loads, the engineers
also apply these very loads but in slightly perturbed direc-
tions. Our goal is to automatize this heuristics and to give
rigorous measures of robustness of a particular design with
respect to these perturbations.

Consider the multiple-load topology optimization prob-
lem (4) with loads f (ℓ), ℓ = 1, . . . ,L. We assume that the
loads are applied at certain nodes, either the nodes of the
truss ground structure or nodes of the finite-element dis-
cretization. Each nodeνi , i = 1, . . . ,N, is associated withd
degrees of freedomνi1, . . . ,νid . Typically, d is equal to the
spatial dimension of the problem. As we haven degrees of
freedom, we assume that they can be order such that

{ν11, . . . ,ν1d ,ν21, . . . ,ν2d , . . . . . . ,νN1, . . . ,νNd}= {1, . . . ,n} .

For eachf (ℓ) we find the set of indices of nodes with at
least one non-zero component off (ℓ)0

Îℓ := {i | ( f (ℓ)0 )νi j
6= 0 for somej = 1, . . . ,d} ,

the set of the corresponding degrees of freedom

Iℓ := {k | k= νi j , i ∈ Îℓ, j = 1, . . . ,d} (8)

and its complement in{1, . . . ,n}:

Jℓ := {1, . . . ,n}\ Iℓ . (9)

Assume that instead of knowing each of the loadsf (ℓ)

exactly, we only know that they lie in an ellipsoid around
somenominal loads f(ℓ)0 , ℓ= 1, . . . ,L:

f (ℓ) = f (ℓ)0 +Pℓg, ‖g‖ ≤ 1, gi = 0 if i ∈ Jℓ (10)

wherePℓ is a symmetric and positive semidefinite matrix
with (Pℓ)i j = 0 if either i ∈ Jℓ or j ∈ Jℓ. The choice ofPℓ
is discussed below.

Choice of Pℓ Consider a nominal loadf (ℓ)0 . Notice first the
second part of the definition (10) concerning the zero com-
ponents of the perturbation vectorg. This means that the
perturbed loadf (ℓ) is only applied at the same nodes as the

nominal load f (ℓ)0 . Matrix Pℓ defines the neighbourhood of

f (ℓ)0 in which we can expect the random perturbations. De-
note byP̃ℓ the restriction(Pℓ)IℓIℓ . The choice

P̃ℓ = τI

defines a ball of radiusτ around f (ℓ)0 , see Fig. 1-left. If we

want to consider significant angular perturbation off (ℓ)0 but
just a small perturbation in its magnitude, we would chose
Pℓ to define a flat ellipsoid. For instance, if

P̃ℓ =

[

1.0·10−3 0
0 1

]

for f (ℓ)0 = (10, 0)T

or, generally,

P̃ℓ = TT
[

1.0·10−3d 0
0 d

]

T for f (ℓ)0 = (a, b)T

whereT is the rotation matrix for an angle defined byf (ℓ)0

T =

[

cosφ sinφ
−sinφ cosφ

]

, φ = arctan(b/a)

andd = τ‖ f (ℓ)0 ‖; see Fig. 1-right.

f (ℓ)0

f (ℓ)

f (ℓ)0

f (ℓ)

Fig. 1 The nominal loadf (ℓ)0 and its perturbationf (ℓ) for a circular
(left) and ellipsoidal (right) uncertainty set

3.3 Robust counterpart

We are now ready to give the definition of the robust coun-
terpart.

Definition 1 Consider the multiple-load topology optimiza-
tion problem (4) with nominal loadsf (ℓ)0 , ℓ= 1, . . . ,L. Define

Gℓ := {g∈ R
n | ‖g‖ ≤ 1, gi = 0 if i ∈ Jℓ} . (11)

Therobust counterpartto problem (4) is defined as

min
x∈X

max
ℓ=1,...,L

max
g∈Gℓ

( f (ℓ)0 +Pℓg)
TK(x)−1( f (ℓ)0 +Pℓg) . (12)

So for each load case we consider the worst-case scenario,
the “most dangerous” load from the ball aroundf (ℓ)0 .

Notice that up to this point we followed the general the-
ory by Ben-Tal and Nemirovski (2001). From now on, we
will use the specific form of the uncertainty set. In the fol-
lowing, we will show that the most-inner optimization prob-
lem in (12) can be easily solved.

Assume thatx and ℓ are given. First we find the index
setsIℓ andJℓ from (8), (9). Now we compute the Schur com-
plement of the inverse stiffness matrix

S(ℓ) = K(x)−1
IℓIℓ
−K(x)−1

JℓIℓ
(K(x)−1

JℓJℓ
)−1K(x)−1

IℓJℓ
. (13)

We get the obvious statement:



4

Lemma 1 Let x andℓ be given and denote bỹf = ( f (ℓ)0 )Iℓ .
Then

max
g∈Gℓ

( f (ℓ)0 +Pℓg)
TK(x)−1( f (ℓ)0 +Pℓg) (14)

= max
g̃∈R|Iℓ|:‖g̃‖≤1

( f̃ + P̃ℓg̃)
TS(ℓ)( f̃ + P̃ℓg̃) .

Lemma 2 Let A by a symmetric positive semidefinite n×n
matrix and letϕ ∈ R

n be given. The optimal value of the
problem

max
‖ψ‖≤1

(ϕ +Pψ)TA(ϕ +Pψ) (15)

is attained at the eigenvectorψmaxassociated with the largest
eigenvalueλmax of the inhomogeneous eigenvalue problem

PTAPψ +PTAϕ = λ Iψ . (16)

Proof The Lagrangian of the constrained optimization prob-
lem (15) is given by

L (ψ,λ) := (ϕ +Pψ)TA(ϕ +Pψ)−λ(∑ψ2
i −1)

hence the first order optimality condition reads

2PTA(ϕ +Pψ)−2λ Iψ = 0.

The rest follows from convexity of (15). ⊓⊔

Therefore, by solving the eigenvalue problem

PT
ℓ S(ℓ) f̃ +PT

ℓ S(ℓ)Pℓg̃= λ I g̃ (17)

(with respect to ˜g andλ ) we find the optimal value of the
most-inner problem in (12) and the corresponding maximizer.
Notice that this is a low-dimensional problem, as the num-

ber of non-zeros inf (ℓ)0 is typically very small, as compared
to the number of degrees of freedom.

3.4 Measuring robustness

Assume that we have solved the original multiple-load prob-
lem (4) with the nominal loadsf (1)0 , . . . , f (L)0 . Let us call
the optimal designx∗. For this design and for each load
case, let us solve the eigenvalue problem (17) to get eigen-

vectorsg(ℓ)max associated with the largest eigenvaluesλ (ℓ)
max,

ℓ = 1, . . . ,L, i.e., solutions of (14). A comparison of the op-
timal compliance for the nominal loads with compliances
corresponding to these eigenvectors will give us a clear idea
about the vulnerability and robustness of the designx∗.

Definition 2 Let x∗ be the solution of (4) and

c∗ := max
ℓ=1,...,L

( f (ℓ)0 )TK(x∗)−1 f (ℓ)0

the corresponding optimal compliance. Define

crob := max
ℓ=1,...,L

( f (ℓ)0 +Pℓg
(ℓ)
max)

TK(x∗)−1( f (ℓ)0 +Pℓg
(ℓ)
max) ,

whereg(ℓ)max is a solution of (14) forℓ= 1, . . . ,L. The ratio

V (x∗) :=
crob

c∗

is called thevulnerabilityof designx∗ with respect to ran-
dom perturbations of the nominal loads.

Definition 3 Designx∗ (solution of (4)) isrobust with re-
spect to random perturbations of the nominal loads if its vul-
nerability is smaller than or equal to one:

V (x∗)≤ 1.

The design isalmost robustif

V (x∗)≤ 1.05.

The constant 1.05 gives a 5% tolerance for non-robustness.
Of course, this constant is to be changed according to partic-
ular applications.

This definition is not only important for the algorithm
that follows but on its own. It gives us the measure of quality
(robustness) of a given design, whether a result of optimiza-
tion or a manual one, with respect to random perturbations
of the given loads. Furthermore, not only it will give us an
indication whether the design is (almost) robust—if it is not,
we will know by how much. The maximal “perturbed com-
pliance” will show by how much our objective value can get
worse under a “bad” random perturbation of the given loads.

3.5 Algorithm for robust design

The key idea of our approach to finding a robust design is

that, for givenx andℓ the eigenvectorf (ℓ)0 +Pℓg
(ℓ)
max repre-

sents the most dangerous load for the design x and theℓ-th
load casein the sense that, under this load, the compliance is
maximized. If the compliance corresponding to this load is
greater than 1.05·c∗, this load is indeed dangerous and will
be added to our set of load cases; if not, the load is harmless
for the existing design and can be ignored.

This leads to the following algorithm.

Algorithm 1 Finding an almost robust design.

Step 1.Sets= 0 andF = ( f (1), . . . , f (L)).
Step 2.Solve the multiple-load problem (4) with the origi-

nal set of loadsF .
Get the optimum designx(0) and compute the associated
stiffness matrixK(x(0)).

Compute the norm̂f = minℓ=1,...,L ‖ f (ℓ)‖.
Define the uncertainty ellipsoid by settingPℓ.

Step 3.Compute the compliance
cs = maxℓ=1,...,L( f (ℓ))TK(x(s))

−1 f (ℓ).
Step 4.For each load case:
Step 4.1.Compute the Schur complementS(ℓ) from (13) and

its inverse.
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Step 4.2.Solve the inhomogeneous eigenvalue problem (17)
to find the eigenvectorg(ℓ)max associated with the largest
eigenvalue.

Step 5.Find the index setR of all load cases with

1.05·cs < ( f (ℓ)0 +Pℓg
(ℓ)
max)

TK(x(s))
−1( f (ℓ)0 +Pℓg

(ℓ)
max) .

Step 6.If R = /0, then the design is almost robust;FINISH.
If not, add loads with indicesℓ ∈R to the existing set of
loads

F ← (F ;g(ℓ)max), ℓ ∈R.

Step 7.Sets← s+1.
Solve the problem (4) with loadsF .
Get the optimum designx(s) and compute the associated
stiffness matrixK(x(s)).
Go back to Step 3.

In our numerical experiments, we have solved the inho-
mogeneous eigenvalue problems (17) by the power method,
as described below.

Algorithm 2 Power method for finding the largest eigen-
value of the inhomogeneous eigenvalue problem

Ax−b= λ Ix (18)

whereA is a real symmetric positive semidefiniten×n ma-
trix andb∈ R

n.
Fork= 1,2, . . . repeat until convergence:

yk+1 = Axk−b (19)

λk+1 = xT
k yk+1

xk+1 =
yk+1

‖yk+1‖
.

The convergence proof of the method can be found in Mattheij
and Söderlind (1987). More precisely, the authors show that
λk converges to the largest eigenvalueλ ∗ andxk to the asso-
ciated eigenvectorx∗, under the condition that the operator
(I − x∗x∗T)A(I − x∗x∗T)/λ ∗ is a contraction. In all our nu-
merical experiments, the power method converged in less
than five iterations, therefore we have not pursued the analy-
sis of this operator. Furthermore, there is another simple way
how to compute all eigenvalues of (18), as proposed also
by Mattheij and Söderlind (1987). The problem can be con-
verted into a quadratic eigenvalue problem which, in turn,
can be written as the following standard (though nonsym-
metric) eigenvalue problem:
[

0 I
bTb−AAT 2A

][

x
y

]

= λ
[

x
y

]

that can be solved by any standard algorithm. Recall again
that the dimension of these problems is typically very small.
Notice that the above eigenproblem only delivers the eigen-
values of the original inhomogeneous problem (18). The as-
sociated eigenvectors can be then computed asx := (A−
λ I)−1b, x := x/‖x‖.

4 Numerical examples

In this section we present numerical examples for robust
truss topology optimization and robust variable thickness
sheet problem. Purposely, all examples are simple enough so
that the reader can see the effect of the robust approach. In
fact, for most of our examples the reader will just guess what
the critical perturbations of the nominal loads will look like.
But that is why we have chosen these examples, in order to
show that the results obtained by the algorithm correspond
to engineering intuition. Clearly, for real world problems,
the intuition may not be that obvious.

In all examples,Pℓ was chosen to define a flat uncertainty
ellipsoid around the nominal load:

Pℓ = TT
[

1.0·10−3 0
0 3.0

]

T for f (ℓ)0 = (a, b)T

with

T =

[

cosφ sinφ
−sinφ cosφ

]

, φ = arctan(b/a)

see Fig. 1-right.
All optimization problems were solved by our MATLAB

based software package PENLAB1 (Fiala et al 2013).

4.1 Truss topology optimization

We first consider the standard ground-structure truss topol-
ogy optimization problem. For a given set of potential bars
(the ground structure), we want to find those that best sup-
port a given set of loads. The design variablesxi represent
the volumes of the bars (see e.g. Bendsøe and Sigmund 2002).
In our examples, all nodes can be connected by a potential
bar.

Example 1We start with a toy single-load truss topology ex-
ample shown in Figure 2-left, together with the ground struc-
ture, the boundary conditions and the nominal load. The ob-
vious solution of the minimum compliance problem is pre-
sented in Figure 2-right; a single bar in the horizontal direc-
tion which is extremely unstable with respect to any verti-
cal perturbation of the load and its vulnerability approaches
infinity. Also in Figure 2-right we can see the “most dan-
gerous” load, as computed by our algorithm. When we add
this load to the set of loads and solve the corresponding two-
load problem, we obtain an optimal design shown in Fig-
ure 3-left. This design is not yet robust as the vulnerability
is V = 2.25, still way bigger than 1.05. Hence we will add
the new dangerous load, also shown in Figure 3-left, to the
set of loads and solve a three-load problem. The optimal de-
sign for this problem is shown in Figure 3-right. This time,
the design is robust. For each iteration of the algorithm, Ta-
ble 1 presents: the corresponding vulnerabilityV ; maximal
compliance for the current multiple-load problem “compl”;

1 Downloadable from http://www.nag.co.uk/projects/penlab
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compliance of the current design with respect to the nomi-
nal load “compl0”; and the worst-case load for the previous
design, starting with the nominal load[10.0, 0.0]. The com-

Fig. 2 Example 1: ground structure, loads and boundary conditions
(left) and the optimal design, together with the most dangerous pertur-
bation (right).

Fig. 3 Example 1: Optimal design after the first iteration (left) and
robust optimal design (right).

Table 1 Example 1: iteration count “iter”, vulnerabilityV , maximal
compliance of the current problem “compl”, compliance of the cur-
rent design with respect to the nominal loads “compl0, and the worst
perturbation for the previous designfs.

iter V compl compl0 fs
0 Inf 1.0 1.0 [10.0, 0.0]
1 2.25 1.46 1.46 [10.0, 3.0]
2 1.00 1.90 1.38 [10.0, -3.0]

puted critical perturbation may seem obvious, simply the ex-
treme perturbation of the nominal force “up” and “down”.
Again, that is why we have chosen this example, in order to
show that the results obtained by the algorithm correspond
the engineering intuition.

Example 2We now consider a higher dimensional example
of a long slender truss with 55 nodes and 1485 potential bars.
This is again a single-load problem with a single horizontal
force applied at the middle right-hand side node. The opti-
mal results of the nominal problem and of the robust prob-
lem are shown in Fig. 4 left and right, respectively. The fol-
lowing Table 2 shows that we only needed two iterations of
Algorithm 1 to obtain a robust solution.

Example 3Let us now solve a problem with three load cases,
each on them represented by a single force, as shown in

Fig. 4 Example 2: optimal design for the nominal load, together
with the most dangerous perturbation (left) and robust optimal design
(right).

Table 2 Example 2, same description as in Table 1

iter V compl compl0 fs
0 Inf 10.0 10.0 [10.0, 0.0]
1 3.86 90.17 64.68 [10.0, 3.0]
2 1.00 101.50 10.15 [10.0, -3.0]

Fig. 5-left. The ground structure consists of 25 nodes and
300 potential bars. Fig. 5-right shows the optimal structure
for the nominal loads, as well as the most dangerous pertur-
bations of the nominal loads for this structure. Due to the
“free” bar in the top part, this structure is extremely unsta-
ble with respect to perturbations and its vulnerability tends
to infinity, as shown in Table 3. After the first iteration of
Algorithm 1, we obtain the truss shown in Fig. 6-left. This
truss is still not robust enough with respect to the depicted
load perturbations and its vulnerability isV = 1.55. Finally,
after the second iteration of Algorithm 1, we obtain the opti-
mal structure shown in Fig. 6-right. This truss is robust with
respect to allowed perturbations.

Fig. 5 Example 3: ground structure, loads and boundary conditions
(left) and the optimal design, together with the most dangerous pertur-
bation (right).

Fig. 6 Example 3: Optimal design after the first iteration (left) and
robust optimal design (right).
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Table 3 Example 3, same description as in Table 1

iter V compl compl0 fs
0 Inf 4.82 4.82 [10, 0]; [0, 10]; [7, -7]
1 1.55 6.08 6.08 [10, -2.97]; [2.97, 10]; [9.1, -4.9]
2 1.00 6.61 6.30 N/A; [-2.97, 10]; [4.9, -9.1]

4.2 Variable thickness sheet

In the variable thickness sheet (or free sizing) problem, we
consider plane strain linear elasticity model discretizedby
the standard finite element method. The design variablesxi
are the thicknesses of the plate, which are assumed to be con-
stant on each finite element; so we have as many variables
as elements. Again, the model can be found, e.g. in Bendsøe
and Sigmund (2002).

To make the results more transparent, we consider a ma-
terial with zero Poisson ratio.

Example 4Consider a rectangular plate as depicted in Fig. 7-
left. The plate is fixed on its left-hand side (by prescribed ho-
mogeneous boundary conditions at the corresponding nodes)
and subject to a horizontal load applied to a small segment in
the middle of the right-hand side edge. Fig. 7-right shows the
optimal result of this single load problem—a single horizon-
tal bar (recall that the result is due to the zero Poisson ratio).
The first line in Table 4 shows that this design is far from
being robust; its vulnerability is almost 36. In the same ta-
ble, in the second row, we can see the critical perturbation of
the three prescribed forces. If we add these forces as a load
number two and solve the corresponding two-load problem,
we obtain an optimal solution depicted in Fig. 8-left. This
solution is still not robust; its vulnerability isV = 3.35. But
after another iteration of Algorithm 1, we obtain a robust
design shown in Fig. 8-right.
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Fig. 7 Example 4: computational domain, loads and boundary condi-
tions (left) and the optimal design, together with the most dangerous
perturbation (right).
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Fig. 8 Example 4: Optimal design after the first iteration (left) and
robust optimal design (right).

Table 4 Example 4, same description as in Table 1

iter V compl compl0 fs
0 35.93 48.88 48.88 [1, 0, 2, 0, 1, 0]
1 3.35 78.28 78.28 [1, 0.25, 2, 0.41, 1, 0.56]
2 1.04 111.80 56.54 [1, -0.42, 2, -0.42, 1, -0.43]
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