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On Robustness Criteria and Robust Topology Optimization wih
Uncertain Loads

Abstract We propose a new algorithm for the solution 02009). The deterministic (worst case) approach has been pi-
the robust multiple-load topology optimization problenhel oneered by Ben-Tal, Nemirovksi and El Ghaoui (Ben-Tal
algorithm can be applied to any type of problem, e.g., truasd Nemirovski 1997, 2001; El Ghaoui and Lebret 1997;
topology, variable thickness sheet or free material oigmi Ben-Tal et al 2009). In their monograph, Ben-Tal and Ne-
tion. We assume that the given loads are uncertain and cainovski (2001) defined the concept of a robust counter-
be subject to small random perturbations. Furthermore, wart to a nominal (convex) optimization problem, where the
define a rigorous measure of robustness of the given desmyablem data is assumed to live in an uncertainty set. Ben-
with respect to these perturbations. To implement the algtal and Nemirovski (2001) showed that if the uncertainty set
rithm, the users only need software to solve their standdsdan ellipsoid, then the robust counterpart (a semi-irdinit
multiple-load problem. Additionally, they have to solve @ptimization problem) can be formulated as a computation-
few small-dimensional eigenvalue problems. Numerical eaty tractable convex cone optimization problem. In thesam
amples demonstrate the efficiency of our approach. monograph, they presented explicit formulations of robust
counterparts for the truss topology and the free material op
timization problems with uncertainty in the loadings. Unfo
Mathematics Subject Classification (2000)74P05- tunately, these problems (typically large-scale linearigef-
62K25- 90C31 inite optimization problems) are just too large to be compu-
tationally tractable in practical situations. For thisges, in
Kocvara, Zowe, and Nemirovski (2000) we have developed
1 Introduction a so-called cascading technique that reduces the dimension
of the robust counterpart significantly. This article ma&as

This article has been motivated by the following sentence @itempt to go one step further in bringing the solution of the

an engineer in an industrial company: “When we use offobust topology optimization problem closer to use in engi-

the-shelf topology optimization software, we always codl€€ring practice.

sider not only the nominal loads but also their angular per- After introducing the notation and the standard multiple-

turbations by up to 30 degrees.” The goal of this article is t8ad topology optimization problem in Section 2, we de-

automatize this heuristics and to give rigorous measuressgfibe the main idea of our approach and the corresponding

robustness of a structure with respect to these perturisati@/gorithm in Section 3. Section 4 is devoted to numerical
Robust topology optimization (in fact, any robust opti€Xperiments.

mization problem) can be approached from two different In the article we use standard notation for vectors and

angles—a stochastic one and a deterministic one. Mosth@trices; is thei-th element of vectok € R" andAjj an

the existing literature deal with the stochastic approacty. ( (i, J)-th element of matrixA € R™™ If | C {1,2,...,n},

Evgrafov et al 2003; Doltsinis and Kang 2004; Conti et a € {1,2,...,n} are sets of indices, then is a subvector
of x with indices froml andA,; a submatrix ofA with row
This research was supported by the EU FP7 project AMAZE and ydices froml and column indices frond. Forx € R", ||x]|
the Grant Agency of the Czech Republic through project GAPP?- denotes the Euclidean normxf

0671.
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bers or finite elements is denoted iy the total number of 3 Robust topology optimization
“free” degrees of freedom (i.e., not fixed by Dirichlet bound
ary conditions) byn. 3.1 General approach
For a given set ok (independent) load vectors
0 0 £ () In their ground-breaking theory of robust convex optimiza-
f9eR, 940,  (=1...L, (1) tion Ben-Tal and Nemirovski (2001) defineabust counter-
o . . partto a nominal convex optimization problem in the worst-
the structure should satisfy linear equilibrium equations 5se sense. The solution of the robust problem should be
o o feasible forany instance of the random data and the opti-
KOu™ = £, t=1...,L (2)  mum is attained at the maximum of the objective function
over all these instance. Ben-Tal and Nemirovski (2001) show
Nhat if the data of the problem (vectors, matrices) lieliip-
soidal uncertainty sefshe robust counterpart—essentially a
ﬁ;mi—inﬁnite optimization problem—can be converted into a
u

HereK(x) is the stiffness matrix of the structure, dependi
on a design variable

We do not assume any particular structurd<@x) or its
dependencc_—:- OR Therefore, the problem formulations an merically tractable (solvable in polynomial time) coxve
the conclusions apply to a broad class of problems, e.g., imization problem.
gggi::g%oﬁgr?gtg';)';;tif;’igr?r('s:ée ;héckréeesns dzgidgrﬁl . Specifically, if we assume uncertainty in the loads of our

X 3E9pl imization problem (4), ther nterpar

mund (2002)). All we need is software for the solution o ology optimization problem (4), the robust counterpzrt

the specific multiple-load problem. Consequently, theglesi efined as

variablesx e Rm,.x > 0, represent, fqr instance, the thickmin  max maxfTK(x)*lf. (6)
ness, cross-sectional area or material properties of the e€X (=1..L fe%,
ment.
Let where
< - (), < g0
X::{xeRm\zixigv;ggxigx,|:1,...,m} =< f|3geRP, |g| <1:f=f, +Zgifi ;o (M)
i= i=

0

be the set of feasible design variables with somex € R, o1 £\ are the nominal loads andé) ER" i=1,...p

v > 0 and 0< x < X (again, the specific form of this setis o 0 ) ]
not important for our purposes). The standard formulation 8€fine an ellipsoid arou_nté - Ben-Tal and Nemirovski (2001)
the worst-case multiple-load topology optimization pesnl have shown that (6) with the uncertainty set (7) can be for-

reads as follows: mulated as a linear semidefinite optimization problem. Un-
fortunately, in the context of topology optimization, thie d
min max (f(é))Tu(é) (3) mension of this problem may be very large: basically, it is
xeX,ueRkN (=1,...L the number of the finite element nodes times the space di-
subject to mension.

To avoid the problem of the prohibitive dimension, in
Kocvara et al (2000) we have proposedascading algo-
N . - : rithm that leads to an approximate solution of the original
;I(—)c\)/v?r:mgrl:gst%%r” ?(;)rtr?’]tll,lcl)gt’i(;l:/]e will instead consider the fol robust problem. The idea is to find only the “most danger-

9 ous” incidental loads and to solve the robust problem only
. (O\T —1¢(0) with these dangerous loads, ignoring the others. In this art
@Q é:mlaXL (F5) 7Kg=, (4) cle, we took inspiration from Ko€vara et al (2000); however
we have substantially modified the uncertainty sets which
where, in case dk(x) singular, we consider the generalizedlso leads to a modification of the algorithm. Our goal was to
Moore-Penrose inverse of the matrix. Note that, for the nget closer to engineering practice and to make the approach

merical treatment, one would use the equivalent formutatiasable for practitioners.

Kou =0 r=1,... L.

min_y (%)
xeX,yeR .
subject to 3.2 Uncertainty set
(FONTKX) O <y, ¢=1,... L. In Kotvara et al (2000) we have considered random pertur-

bations of loads at any free node of the finite element mesh
In the following, we will use formulation (4). This is justfo (or truss). This leads not only to very large dimensional ro-
the sake of keeping the notation fixed. In practical impléust counterparts but also to practical difficulties wheera p
mentation, the users can use any multiple-load formulatiturbation force can be applied to a node that would not nor-
implemented in their software. mally be a part of the optimal structure.



In this article we are motivated by the practice when, irer, generally,
stead of considering only the nominal loads, the engineers
also apply these very loads but in slightly perturbed direg- T {1.0. 103d0
tions. Our goal is to automatize this heuristics and to givé — 0 d
rigorous measures of robustness of a particular design with
respect to these perturbations. . . . )
Consider the multiple-load topology optimization prob?hereT is the rotation matrix for an angle defined By
lem (4) with loadsf®), ¢ = 1,...,L. We assume that the ,
loads are applied at certain nodes, either the nodes of the. { cosp sm(p}
truss ground structure or nodes of the finite-element dis- |~ SINY cosy|’
cretization. Each nodeg;, i = 1,...,N, is associated witd
degrees of freedorw,, ..., vi,. Typically, d is equal to the andd = 1| féf)”; see Fig. 1-right.
spatial dimension of the problem. As we haveegrees of
freedom, we assume that they can be order such that

]T for £\ = (a, b)T

@ = arctarib/a)

{vy, vy, Vo, Vo JUNps-- s UNg L =11,...,n}.

For eachf ) we find the set of indices of nodes with at
least one non-zero componentftéf)

lp={i (f((,é))vij #0 forsomej=1,...,d},

Fig. 1 The nominal loadf " and its perturbatiorf *) for a circular

the set of the corresponding degrees of freedom (left) and ellipsoidal (right) uncertainty set

lpi={k|k=wj, i€l j=1,..d} (8)
and its complement ifl,....n}:
Jo={1,....,n}\I,. (9) 3.3 Robust counterpart

Assume that instead of knowing each of the 1048 e are now ready to give the definition of the robust coun-
exactly, we only know that they lie in an ellipsoid aroungerpart.

somenominal loads Sé), ¢=1,...,L: o ) ) o
Definition 1 Consider the multiple-load topology optimiza-

t0=1"+pg, |ol<1l g=0ifiecd (10) tion problem (4) with nominal loadg”, ¢=1,...,L. Define
whereP, is a symmetric and positive semidefinite matriy, .— (g R" | ||g| < 1, g =0if i € J;}. (11)
with (P)ij = O if eitheri € J, or j € J;. The choice of, o

Is discussed below. Therobust counterparto problem (4) is defined as

Choice of > Consider a nominal Ioadié@. Notice first the . (0) T —1,¢(0)

second part of the definition (10) concerning the zero conzt—'x é:r?aXL 52%?( fo' + P KO) (o +Pg). (12)

ponents of the perturbation vectgr This means that the

perturbed load () is only applied at the same nodes as th®o for each load case we consider the worst-case scenario,

nominal Ioadféé). Matrix P, defines the neighbourhood ofthe “most dangerous” load from the ball aroufggé).

£ in which we can expect the random perturbations. De- '\éo'“ée th_?tlup tg ;[\T'S point r.’e(zfggci\;veg the general the-

= o . ory by Ben-Tal and Nemirovski . From now on, we

note byF; the restriction(R,),,. The choice will use the specific form of the uncertainty set. In the fol-

B — 1l lowing, we will show that the most-inner optimization prob-
lem in (12) can be easily solved.

defines a ball of radius aroundf”, see Fig. 1-left. If we Assume thak and are given. First we find the index
setdl, andJ, from (8), (9). Now we compute the Schur com-

want to consider significant angular perturbation‘éf’f but é)lement of the inverse stiffness matrix
e

just a small perturbation in its magnitude, we would cho

P, to define a flat ellipsoid. For instance, if S0 = K(x)L K(x)jll (K(X)J‘} )‘1K(x)|‘Jl (13)
4% 0Je ot

Iy —

Pé:

0 1

5 [10-10%0
We get the obvious statement:

] for £ = (10, 0)"



Lemma 1 Let x and/ be given and denote l:ﬂ/: (f((f) - wheregﬁf])ax is a solution of (14) fol =1,...,L. The ratio
Then

O peTr(y1-1( 0 (x) = o
max(fo " +Rg) KX (fo +Pg) (14) ct
a0
_ FLPaTSO(FLPa). is called thevulnerability of designx* with respect to ran-
geRm%Hg( +h9) (T+Rg) dom perturbations of the nominal loads.

Lemma 2 Let A by a symmetric positive semidefinite n  Definition 3 Designx* (solution of (4)) isrobustwith re-
matrix and let¢ € R" be given. The optimal value of thespect to random perturbations of the nominal loads if its vul

problem nerability is smaller than or equal to one:
max(¢ + PY)TA(9 +Py) (15) ¥ (x) <1.

is attained at the eigenvect@iaxassociated with the largest ~ The design islmost robustf
eigenvalue\yax of the inhomogeneous eigenvalue problem

¥ (X") < 1.05.
PTAPY+PTAp = Aly. (16)
) ) o The constant D5 gives a 5% tolerance for non-robustness.
Proof The Lagrangian of the constrained optimization prolpf course, this constant is to be changed according to partic

lem (15) is given by ular applications.

. T 2 This definition is not only important for the algorithm
Z(W,A) = (¢ +Py) Al¢ +Py) - A (Z W -1) that follows but on its own. It gives us the measure of quality
hence the first order optimality condition reads (robustness) of a given design, whether a result of optimiza

tion or a manual one, with respect to random perturbations
2PTA(¢ +Py) —2A1y =0. of the given loads. Furthermore, not only it will give us an

indication whether the design is (almost) robust—if it i$,no
we will know by how much. The maximal “perturbed com-
pliance” will show by how much our objective value can get
worse under a “bad” random perturbation of the given loads.

The rest follows from convexity of (15). O

Therefore, by solving the eigenvalue problem
PIS9f+PIS9Pg=AlIg 17)

(with respect tagand A) we find the optimal value of the 3 g5 Algorithm for robust design
most-inner problem in (12) and the corresponding maximizer

Notice that this is a low-dimensional problem, as the nurfy,¢ key idea of our approach to finding a robust design is

. (0) . .

ber of non-zeros nfé Jis typically very small, as comparedthat, for givenx and / the eigenvectorf((f) + ng%éx repre-

to the number of degrees of freedom. sents the most dangerous load for the design x and-the

load casén the sense that, under this load, the compliance is

maximized. If the compliance corresponding to this load is

greater than D5- ¢, this load is indeed dangerous and will
. : e added to our set of load cases; if not, the load is harmless

Assume that we have solved the original multiple-load pro%r the existing design and can be ignored.

lem (4) with the nominal |0ad§(()1), RN fc()L) Let us call This leads to the f0||owing a|gorithm_

the optimal desigrx*. For this design and for each load

case, let us solve the eigenvalue problem (17) to get eigétgorithm 1 Finding an almost robust design.
vectorsg%éx associated with the largest eigenvall)égx, Step 1.Sets— 0 and.7 — (f<1) f(L))

t=1...L 1e, solutions of (1.4)' A comparison of th_e Op'Step 2.Solve the multiple-load problem (4) with the origi-
timal compliance for the nominal loads with compliances nal set of loadsZ

corresponding to these eigenvectors will give us a clea ide g : ;
about the vulnerability and robustness of the design G?t the optlmgm designo) and compute the associated
stiffness matrix (X))

3.4 Measuring robustness

Definition 2 Letx* be the solution of (4) and Compute the nornf = min._y__ || £
. ONT o —1¢(0) Define the uncertainty ellipsoid by settifg
¢ = é:r??‘.),(L“O ) KX)o Step 3.Compute the compliance
: . : , cs=max—1_ (f)TK(xg) 1.
the corresponding optimal compliance. Define Step 4.For each load case:

_ ¢ ¢ 1. ¢ Step 4.1.Compute the Schur complemedt) from (13) and
Crob 1= ,Mmax ( fo!+ P TK (<) (15 + Prgna, its inverse.

=1,...,



Step 4.2.Solve the inhomogeneous eigenvalue problem (1£)Numerical examples
to find the eigenvectogﬁ%x associated with the largest

eigenvalue. In this section we present numerical examples for robust
Step 5.Find the index se# of all load cases with truss topology optimization and robust variable thickness
sheet problem. Purposely, all examples are simple enough so
1.05-¢cs < (f((f) + I%gﬁﬁgx)TK(x(s))‘l(féé) + ngﬁfl)ax). that the reader can see the effect of the robust approach. In

L fact, for most of our examples the reader will just guess what
Step 6.1f 7 = 0, then the design is almost robuBINISH.  {he critical perturbations of the nominal loads will lookei
If not, add loads with indiceé€ Z to the existing set of gt that is why we have chosen these examples, in order to

loads show that the results obtained by the algorithm correspond
70D\ rep to engineering intuition. Clearly, for real world problems
7 (FiGmax), LA the intuition may not be that obvious.
Step 7.Sets+ s+ 1. In all examplesk, was chosen to define a flat uncertainty
Solve the problem (4) with load% . ellipsoid around the nominal load:
Get the optimum desigr) and compute the associated
: - 1[1.0-10% 0 © T
stiffness matrixK (x)). P=T o 30lT for f;’ = (a, b)
Go back to Step.3 -

In our numerical experiments, we have solved the inhwdth
mogeneous eigenvalue problems (17) by the power method, {

@ = arctarib/a)

as described below. T — | COSP sm(p}

—sing cosp| ’
Algorithm 2 Power method for finding the largest eigen-

: : see Fig. 1-right.
value of the inhomogeneous eigenvalue problem All optimization problems were solved by our MATLAB

AXx—b = Alx (18) based software package PENLAG-iala et al 2013).

whereA is a real symmetric positive semidefinitex n ma-

trix andb € R". 4.1 Truss topology optimization
Fork=1,2,... repeat until convergence:

We first consider the standard ground-structure truss topol

Yirr =A% —b (19) ogy optimization problem. For a given set of potential bars

Aks1 = nykH (the ground structure), we want to find those that best sup-
Yir1 port a given set of loads. The design variabtesepresent

X1 = Vierall the volumes of the bars (see e.g. Bendsge and Sigmund 2002).

In our examples, all nodes can be connected by a potential
The convergence proof of the method can be found in Matthaij

and Soderlind (1987). More precisely, the authors shotv tha

Ak converges to the largest eigenvalieandx, to the asso- Example 1We start with a toy single-load truss topology ex-
ciated eigenvectax*, under the condition that the operato~Rmple shown in Figure 2-left, together with the ground struc
(I —x*xTA(I —x*x*T)/A* is a contraction. In all our nu- ture, the boundary conditions and the nominal load. The ob-
merical experiments, the power method converged in |8ggus solution of the minimum compliance problem is pre-
than five iterations, therefore we have not pursued the anaggnted in Figure 2-right; a single bar in the horizontal clire
sis of this operator. Furthermore, there is another simple wtion which is extremely unstable with respect to any verti-
how to compute all eigenvalues of (18), as proposed aleal perturbation of the load and its vulnerability appraasch
by Mattheij and Soderlind (1987). The problem can be coiffinity. Also in Figure 2-right we can see the “most dan-
verted into a quadratic eigenvalue problem which, in turgerous” load, as computed by our algorithm. When we add
can be written as the following standard (though nonsyrthis load to the set of loads and solve the corresponding two-

metric) eigenva|ue problem; load problem, we obtain an optimal design shown in Fig-
ure 3-left. This design is not yet robust as the vulnerapbilit
0 I x| A X is ¥ = 2.25, still way bigger than 1.05. Hence we will add
bTb—AAT 2A| |y| — 7 |y the new dangerous load, also shown in Figure 3-left, to the

) set of loads and solve a three-load problem. The optimal de-
that can be solved by any standard algorithm. Recall 9@, for this problem is shown in Figure 3-right. This time,
that the dimension of these problems is typically very smajhg gesign is robust. For each iteration of the algorithm, Ta
Notice that the above eigenproblem only delivers the eiggl)s 1 presents: the corresponding vulnerabilitymaximal

values of the original inhomogeneous problem (18). The agsmpliance for the current multiple-load problem “compl”;
sociated eigenvectors can be then computed as (A—

AD b, x:=x/||x]|. 1 Downloadable from http://iwww.nag.co.uk/projects/pénla




compliance of the current design with respect to the nom
nal load “comp}”; and the worst-case load for the previous
design, starting with the nominal lo4t0.0, 0.0]. The com-

Fig. 4 Example 2: optimal design for the nominal load, together
with the most dangerous perturbation (left) and robustagltidesign

(right).

— L N Table 2 Example 2, same description as in Table 1

iter ¥V compl  comp} fs
0 Inf 10.0 10.0 [10.0, 0.0]
1 386 90.17 64.68 [10.0, 3.0]
2 1.00 10150 10.15 [10.0,-3.0]

Fig. 2 Example 1: ground structure, loads and boundary conditions
(left) and the optimal design, together with the most daogepertur-
bation (right).

Fig. 5-left. The ground structure consists of 25 nodes and
300 potential bars. Fig. 5-right shows the optimal struetur
for the nominal loads, as well as the most dangerous pertur-
bations of the nominal loads for this structure. Due to the
“free” bar in the top part, this structure is extremely unsta
ble with respect to perturbations and its vulnerabilityden

to infinity, as shown in Table 3. After the first iteration of
Algorithm 1, we obtain the truss shown in Fig. 6-left. This
truss is still not robust enough with respect to the depicted
load perturbations and its vulnerability#s = 1.55. Finally,
after the second iteration of Algorithm 1, we obtain the opti
Fig. 3 Example 1: Optimal design after the first iteration (leftdan mal structure shown in Fig. 6,'”ght' This truss is robustwit
robust optimal design (right). respect to allowed perturbations.

Table 1 Example 1: iteration count “iter”, vulnerability’, maximal
compliance of the current problem “compl”, compliance o tur-
rent design with respect to the nominal loads “cognphd the worst
perturbation for the previous desida

iter v compl comp} fs

0 Inf 1.0 1.0 [10.0, 0.0]

1 2.25 1.46 1.46 [10.0, 3.0]

2 1.00 1.90 1.38 [10.0, -3.0] Fig. 5 Example 3: ground structure, loads and boundary conditions

(left) and the optimal design, together with the most daogepertur-
bation (right).

puted critical perturbation may seem obvious, simply the ex
treme perturbation of the nominal force “up” and “down”.
Again, that is why we have chosen this example, in order to
show that the results obtained by the algorithm correspond
the engineering intuition.

Example 2We now consider a higher dimensional example
of along slender truss with 55 nodes and 1485 potential bars.
This is again a single-load problem with a single horizontal
force applied at the middle right-hand side node. The opti-
mal results of the nominal problem and of the robust prob-
lem are shown in Fig. 4 left and right, respectively. The fol-

lowing Table 2 shows that we only needed two iterations of _ _ S
Algorithm 1 to obtain a robust solution. Fig. 6 Example 3: Optimal design after the first iteration (leftdan
robust optimal design (right).

Example 3Let us now solve a problem with three load cases,
each on them represented by a single force, as shown in




Table 3 Example 3, same description as in Table 1 Table 4 Example 4, same description as in Table 1
iter ¥ compl comp} fs iter v compl  compy fs
0 Inf 4.82 4.82 [10, 0]; [0, 101; [7, -7] 0 3593 48.88 48.88 [1,0,2,0,1,0]
1 155 6.08 6.08 [10, -2.97]; [2.97, 10]; [9.1, -4.9] 1 3.35 78.28 78.28 [1,0.25,2,0.41, 1, 0.56]
2 100 6.61 6.30 N/A; [-2.97, 10]; [4.9, -9.1] 2 1.04 111.80 56.54 [1,-0.42,2,-0.42,1,-0.43]

4.2 Variable thickness sheet

In the variable thickness sheet (or free sizing) problem, vReferences
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Fig. 7 Example 4: computational domain, loads and boundary condi-
tions (left) and the optimal design, together with the mastgkrous
perturbation (right).

Fig. 8 Example 4: Optimal design after the first iteration (leftdan
robust optimal design (right).



