
ar
X

iv
:1

30
7.

57
92

v1
  [

co
nd

-m
at

.s
of

t]
  2

2 
Ju

l 2
01

3

Twisted quasiperiodic textures of biaxial nematics.
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Textures (i.e., smooth space non-uniform distributions of the order parameter) in biaxial nematics
turned out to be much more difficult and interesting than expected. Scanning the literature we find
only a very few publications on this topic. Thus, the immediate motivation of the present paper
is to develop a systematic procedure to study, classify and visualize possible textures in biaxial
nematics. Based on the elastic energy of a biaxial nematic (written in the most simple form that
involves the least number of phenomenological parameters) we derive and solve numerically the
Lagrange equations of the first kind. It allows one to visualize the solutions and offers a deep insight
into their geometrical and topological features. Performing Fourier analysis we find some particular
textures possessing two or more characteristic space periods (we term such solutions quasiperiodic
ones because the periods are not necessarily commensurate). The problem is not only of intellectual
interest but also of relevance to optical characteristics of the liquid-crystalline textures.

PACS numbers: 61.30.G, 78.66, 45.40
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I. INTRODUCTION.

The combination of orientational order (leading to non-trivial optical response) and relatively soft elasticity (leading
to high sensitivity to boundary conditions) makes liquid crystals very interesting systems possessing rich variety of
textures (topologically stable smooth configurations of the order parameter). Although textures and related optical
properties of uniaxial nematics are well studied and results of the investigations have numerous applications, there are
still only a few publications on textures in biaxial nematics, i.e. when molecular orientations are arranged regularly in
two directions (see e.g. [1], [2]). In this work we investigate geometrical and topological features of textures in biaxial
liquid crystals. We show that there are some particular configurations with quasiperiodic (i.e., possessing two or more
generally speaking incommensurate periods) space distribution of the order parameter.

In what follows we always have in mind a liquid crystalline slab placed between two polarizers. The nematic order
parameter (director n for uniaxial nematics or three mutually orthogonal unit vectors n, l, and m = n× l for biaxial
nematics) is uniform in-plane (independent of x and y) [3], [4]. However a question of how to identify biaxial nematics
is still a problem. One evident approach - optical microscopy- would be to examine the optical properties of the
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textures between crossed polarizers. Dealing with optical properties we assume that the light beam is propagating
along the normal to the slab (z-axis). In such a situation for uniaxial nematics one can learn almost everything about
coarse grained features of the textures from polarizing microscopy investigations which give average 2D information
integrated over the path of the light (or to get full 3D information more sophisticated and expensive confocal polarizing
microscopy methods [5] should be used). Indeed the pattern of transmitted light intensity depends on the difference of
times for ordinary and extraordinary beams to pass through the slab. If the uniaxial director is everywhere parallel to
z-axis, there is no transmitted light at all in the crossed polarizers. Therefore non-zero intensity indicates deviations
from uniform alignment (n = (0 , 0 , 1)).

Behavior is so simple because for the uniaxial nematics the optical axis is uniquely defined by the director (either
parallel to the director for prolate permeability tensor, or perpendicular to it for the oblate tensor). Even more, all
physical property tensors contain elements expressed in terms of laboratory axes, and the axes are simply related to
crystallographic Cartesian axes. Everything is not so simple for biaxial nematics, where all three eigenvalues of the
order parameter tensor (i.e., dielectric permeability tensor) are different. Although the system of Maxwell’s equations
irrespective to the liquid crystal symmetry (uniaxial or biaxial) can be always described in terms of only two normal
modes, the transmitted intensity for biaxial textures can be zero only for two special configurations, corresponding
to the light propagating along so-called biradials [6] (see more details in [7]). In their turn the biradial directions
depend on the biaxiality and on three unit vectors n, l, m. These quantities for a generic biaxial nematic texture
are non-trivially oriented with respect to the light propagation direction and distributed over z. We conclude that
in biaxial nematics there are intrinsic relations between geometry and topology of the order parameter textures and
optical properties expressed in terms of geometry and topology of the wave or ray surfaces (determined by Fresnel’s
equations [6]). It must be frankly admitted that we know practically nothing about optical properties of biaxial
nematic textures, and the first step to get insight on optical properties is to calculate and then visualize the biaxial
order parameter textures. We believe that not only the study of biaxial nematic textures is an interesting problem
in its own right but as well the basic ideas inspiring our work can be applied to a large variety of other interesting
problems of textures in liquid crystals.

The phenomenological model and the order parameters on which our description is based are introduced in the
next section II. Technical details of our variational approach and computation method are presented in section III.
The main results of our work are summarized in section V. In the conclusion section VI we discuss significance and
limitations of our findings.

II. BIAXIAL NEMATIC: BACKGROUND.

Biaxial nematics (Nb) possess three soft (Goldstone) orientational degrees of freedom: two corresponding to the
direction of the long axis of a molecule and one degree for the rotations of the molecule around this axis. Thus, they
have the same freedom of orientations in space as a solid body. Consequently, they should have three optical axes, and,
in comparison with uniaxial nematics, an additional pair of diffuse (liquid-like) X-ray diffraction peaks. It should be
noted that biaxial nematics have been experimentally identified, see [9] - [13] and also more recent publications [14],
[15], [16]; an important tool for their investigation being the X-ray scattering, [18], [19]. The symmetry structure of
biaxial nematics requires the use of a matrix order parameter within the framework of the Landau-de Gennes theory,
[3] - [4]. The guidelines to the effect are due to the theory of uniaxial nematics (Nu). It was de Gennes who suggested
that the order parameter for Nu phase may be cast in the form

Qij = Su ·

(

ninj −
1

3
δij

)

(1)

where Su is the module of the order parameter, whereas ni are coordinates of the director, that is a vector indicating
the average orientation of molecules. Similarly, the orientation in biaxial nematics relies on the use of a frame structure,
that is the order parameter of the form, which is a generalization of that given by Eq.(1),

Qij = Su(ninj −
1

3
δij) + Sb(mimj − lilj), (2)

where Sb describes the system’s biaxiality. Biaxial nematics are studied by employing this frame.

In this paper we shall use a method that is equivalent to the above approach, but provides useful tools for studying
spatial inhomogeneities of the orientational order, or textures. It is to be noted that Eq.(2) indicates that the matrix
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of the order parameter Q̂ may be cast in the form

Q̂ = R̂−1Q̂0R̂ (3)

where R̂ is a rotational 3× 3 matrix and matrix Q̂0 reads

Q̂0 =





λ1 0 0
0 λ2 0
0 0 −(λ1 + λ2)



 (4)

The representation (3) of the order parameter opens a convenient way for the application of topology to various
problems of field theory and condensed matter, [24]. Recently, Monastyrskii and Sasorov, [25], employed the method
for studying singularities in biaxial nematics. It is important that values of the order parameter may change from one
region of the volume to another. In this sense they are local characteristics of the system’s state.

The key point about the study of the phenomena is to employ the continuum theory by considering the order
parameter as a variable that describes the intrinsic structure of the liquid, [3]. It can be incorporated in the free
energy through appropriate terms that may also describe its spatial variations, and one can employ the minimization
of the free energy for writing down the equation of textures. To that end we shall write down the part of the free
energy related to spatial inhomogeneities in the form

F∇ =

∫

F∇d
3x

where the density of the free energy reads

F∇ = K1∂iQki∂jQkj +K2∂iQkj∂iQkj +K3∂iQkj∂jQki (5)

It is worth noting that we have little knowledge as to the relative size of the coefficients K1,K2,K3 for the biaxial
nematics. It is equally important that, applying integration by parts to the bulk free energy, we may substantially
change the form of F∇ through taking into account appropriate boundary conditions. The minimization equations for
F∇ given by Eq.(5) are extremely hard to solve analytically. Therefore we consider a special but very important case
of one dimensional textures. Thus we assume that the order parameter depends only on one spatial coordinate, say
z. This approximation can describe textures arising in the commonly used experimental configuration in which the
liquid crystal is placed in a thin layer between two planar uniform glass substrates.

III. VARIATIONAL PRINCIPLE: TECHNICAL DETAILS.

The gradient part of the free energy for one dimensional textures follows from Eq.(5) by neglecting terms with
derivatives in x1 = x, x2 = y, and preserving only terms in x3 = z. In what follows we shall use the notation

d

dz
f = ḟ

for any function f of z. Thus we obtain the following expression for the gradient energy

F∇ = K2Tr
(

ˆ̇Q ·
ˆ̇Q
)

+ (K1 +K3)
(

ˆ̇Q ·
ˆ̇Q
)

33

(6)

We have to minimize the functional of the gradient part of the free energy

F =

z
∫

0

F∇ dz (7)

under the constraint that the symmetric matrix of the order parameter have fixed eigenvalues, see Eq.(3), and trace
zero. This requirement may be accommodated by imposing the constraints

Tr(Q̂) = 0; Tr(Q̂ · Q̂) = const1; Tr(Q̂ · Q̂ · Q̂) = const2 (8)
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The minimization problem may be solved either by the use of the Lagrangian equations of the 1-st kind, that is using
Lagrangian multipliers, or by resolving the above constraints and employing the Lagrangian equations of the 2-nd
kind. To that end we shall use the representation given by Eq.(3).

The Lagrangian equations of the 1-st kind are more appropriate for numerical simulation. Generally, it is a hard
problem to resolve constraints. It is equally important that the constraints being resolved, the obtained equations
depend on the choice of local parameters, that is generalized coordinates, and therefore subject to some non-evident
tricks. For that reason we shall use the equations of the 1-st kind for our numerics, and introduce the effective
Lagrangian

L = F∇ − Λ1 Tr(Q̂)− Λ2 Tr(Q̂ · Q̂)− Λ3 Tr(Q̂ · Q̂ · Q̂) (9)

and solve the minimization problem in accord with the usual rules. It should be noted that we find only extremal
solutions, which, generally speaking, minimize the functional only for sufficiently short intervals in z.

To describe the change of position of a molecule in space we may employ the skew-symmetric matrix

Ω̂ = R̂−1 ˙̂R (10)

where R̂ is the rotation matrix defining the value of the order parameter, see Eq.(3). Matrix Ω̂ is intimately related
to the usual vector of angular velocity, ω, through the equation

Ωij = −ǫijk ωk

or in the matrix form

Ω̂ =

3
∑

k=1

ωk f
k

where the fk are generators of rotations about axes x̂k, k = 1, 2, 3, and the components ωk of the angular velocity
vector can be expressed in terms of the Euler angles θ, ϕ, ψ for the rotation matrix R̂ by the standard formulas,
see [30]:

ω1 = ϕ̇ sin θ sinψ + θ̇ cosψ,

ω2 = ϕ̇ sin θ cosψ − θ̇ sinψ,

ω3 = ϕ̇ cos θ + ψ̇.

IV. EQUATIONS OF THE TEXTURES

As explained above, for the numerical analysis, we employ the Lagrange equations of the first kind derived from
the Lagrangian (9),(6), which have the general form:

d

dt

∂L

∂Q̇ij

=
∂L

∂Qij

.

These equations contain the Lagrange multipliers Λ1,Λ2,Λ3, which we express in terms of the elements of Q̂ , ˆ̇Q
using the constraints (8) according to the standard procedure of Lagrange multipliers exclusion (see e.g. [31]). The
expressions used along the way get quite involved very quickly, so an essential component of success in the work with
systems of such analytical complexity is the automation of the work with formulas provided by means of symbolic
computation.

After the explicit equations are obtained, approximate solutions can be found numerically. For describing the
possible textures of the system we numerically solve the Cauchy problem for the Lagrange equations with a diagonal

initial order parameter matrix Q̂(0) given by (4) and a given initial derivative matrix ˆ̇Q(0), which we compute using
the representation (3) and choosing an arbitrary initial angular velocity vector ω(0). This guarantees the tangency of
the initial velocity to the manifold defined by the constraints (8).
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From here on we use the following notation for the parameters of the Lagrangian:

k1 = K2, k2 = K1 +K3.

It is also worthwhile to note that the terms “evolution”, “velocity”, the “dot” derivatives etc. refer in our context to
the change of the variables along the Z axis.

V. RESULTS OF THE SIMULATIONS

A. Homogeneous phase

The simplest and trivial arrangement of the orientational order parameters arises in the case of zero initial velocity,
in which the order parameter is constant (for any values of k1, k2), and the structure is homogeneous. Correspondingly
in this case all biaxial molecules (which can be visualized as identical bricks) have the same orientation.

B. Simple Helicoidal phase

The Lagrange equations for the order parameter (for any values of k1, k2) admit of a partial exact solution of the
form:

Q̂(z) = R̂−1

3
(ωz)Q̂(0)R̂3(ωz), (11)

where R̂3(ωz) is the matrix of the three-dimensional rotation about the Z axis through the angle ωz, and Q̂(0) is
given by (4). The fact that (11) satisfies the Lagrange equations was checked using symbolic computation. The angular
velocity for this solution does not depend on z:

ω = (0, 0, ω).

The eigenvectors of the matrix Q̂(z) for this solution have the form:

l = (− cosωz, sinωz, 0),
m = (sinωz, cosωz, 0),
n = (0, 0, 1).

Thus, from layer to layer, the directions of the molecule’s axes perform uniform rotation in the XY plane with the
angular velocity ω. The arrangement of molecules corresponding to this solution is shown in Fig. 1, A. This phase
shares some characteristics with the cholesteric structure, the evolution of the molecule orientation from layer to layer
consisting in the rotation about the Z axis with the angular velocity ω. The period of this structure in z (also known
as the pitch) has the value T = π/ω (π and not 2π because in non-polar biaxial nematics n, m, and l are physically
equivalent to −n, −m, and −l respectively, thus a rotation through π radians transforms an order parameter matrix
into itself). This similarity is a natural consequence of a close connection between chirality (mirror symmetry breaking)
and biaxiality (i.e., additional to uniaxial director n ordering in the perpendicular to n plane). In our case chirality is

produced externally by applied on the boundary twist Ω̂ and biaxiality is an intrinsic property of the liquid crystalline
material (therefore can be arbitrarily large). In conventional cholesterics (see e.g. [32]) chirality is a material property,
whereas biaxiality is a geometrical consequence of simple spiral twist structure and is typically very small.

C. Generic quasiperiodic textures

When the initial angular velocity direction differs from the Z axis, a more complicated solution arises. The molecular
arrangement of this type is shown in Fig. 1, B. One can see that the angular velocity is changing from layer to layer,
and the molecular orientation planes are not parallel.
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A B

Рис. 1: Arrangement of molecules. A: Helicoidal phase, ω(0) = (0, 0, 1), B: Quasiperiodic phase, ω(0) = ( 1
3
, 1

2
, 1). Arrows

indicate the angular velocity vectors. Other parameters in both pictures have the values: k1 = 1, k2 = 1

2
, λ1 = 7, λ2 = −10.

A B C

Рис. 2: A,B,C: Trajectories of the eigenvectors l ,m ,n (correspondingly) of the order parameter matrix in the quasy-periodic
phase. The parameters have the values: ω(0) = ( 1

3
, 1

2
, 1), k1 = 1, k2 = 1

2
, λ1 = 7, λ2 = −10.

To study this structure in more detail, we draw the trajectories of the eigenvectors l ,m ,n of the order parameter
matrix Q̂, which correspond to the directions of the molecules’ axes, see Fig. 2. In the case illustrated the vector m

corresponds to the eigenvalue with the largest magnitute, depicted in Fig. 1, B by the longest axis of the parallelepiped
representing the molecule. Its trajectory is shown in Fig. 2, B. One can see the rotation of this vector about the Z
axis (as in the helicoidal phase) combined with an oscillatory motion in the vertical direction. Thus, in contrast to
the helicoidal phase, this texture has more than one characteristic frequency, exhibiting quasiperiodic structure. The
third eigenvector n corresponds in Fig. 1 to the shortest axis of a parallelepiped, or, in other words, the normal to
the plane of the molecule. The evolution of this normal is shown in Fig. 2, C. In the helicoidal structure this vector
is directed along the Z axis, whereas in the quasiperiodic structure the Z direction is only the average position of n,
while its momentary values oscillate around this mean orientation.

To throw more light upon the change of the orientational order along Z axis, we also investigate the evolution
of the angular velocity vector for the quasiperiodic solution. Its trajectory is shown in Fig. 3, A. In the particular
case considered, the 3rd component of the angular velocity doesn’t change its sign, while the other two components
oscillate around zero. This agrees with Fig. 1, where we see the same main pattern as in the helicoidal phase, that is
the rotation of molecules about the Z axis from layer to layer, but with an additional pattern governing the precession
of the molecular planes. Another picture illustrating this structure is shown in Fig. 4, where the ends of the angular
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Рис. 3: Trajectory of the angular velocity. A: k2 = 1

2
, B: k2 = 0. Other parameters in both pictures have the values: ω(0) =

( 1
3
, 1

2
, 1), k1 = 1, λ1 = 7, λ2 = −10.
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Рис. 4: Curve parametrically defined as (0 , 0 , z) + ω(z) – the curve traced by the end of the angular velocity vector drawn
from the location of the corresponding molecule in the space. A: k2 = 1

2
, B: k2 = 0. Other parameters in both pictures have

the values: ω(0) = ( 1
3
, 1

2
, 1), k1 = 1, λ1 = 7, λ2 = −10.

velocity vectors are depicted, when each vector is drawn from the location of the corresponding molecule, i.e. the
figure shows the vector (0 , 0 , z) + ω(z). A segment of this curve resembles the trefoil knot. This confirms that the
structure has more than one characteristic frequency. A similar curve appears also in the case k2 = 0, Fig. 3, B,
Fig. 4, B. In this case there are additional first integrals corresponding to the rotational symmetry of the Lagrangian.
This property affects the shape of the solution, which nonetheless retains its quasiperiodic character.

D. Spectral properties of the textures.

The characteristic frequencies (in z) of the orientation patterns and the corresponding (generalized) pitches, i.e. the
lengths at which the structure approximately repeats itself, may indicate the wavelengths of light that correspond to
special optical properties of these textures. It is thus important to study the spectral characteristics of the solutions,
sampling the functions of z with a sufficiently small step in an appropriate interval and computing the discrete Fourier
transform (the spectrum). As a characteristic quantity we consider the X component nx of the third eigenvector n of
the order parameter matrix. Fig. 5 shows this function and a plot of the magnitude of its discrete Fourier transform.
One can see three major peaks in the spectrum corresponding to three characteristic frequencies of the texture. This
confirms the quasiperiodic nature of the texture under consideration and indicates the frequencies of light at which
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Рис. 5: A: The X component of the third eigenvector n of the order parameter matrix as a function of z in the quasiperiodic
case. B: Spectrum of this function. One can see three peaks in the spectrum corresponding to three characteristic frequencies
of the quasiperiodic texture. The parameters have the values: ω(0) = ( 1

3
, 1

2
, 1), k1 = 1, k2 = 1

2
, λ1 = 7, λ2 = −10.

special optical properties of the texture may be expected.

The general structure of the set of characteristic frequencies and their dependence on the parameters of the system
needs further exploration. The observed peaks may correspond to linear combinations of a number of basic frequencies,
as is the case in the spectra of quasiperiodic functions. One of the situations in which quasiperiodic solutions can
appear is the case of integrable, or close to integrable, Lagrange equations. Thus, the nature of the characteristic
frequencies in this system may be clarified by a further analysis of its dynamical properties, including the study of
the first integrals and possible dimensionality reductions.

VI. CONCLUSIONS.

In this paper we have presented a theory for orientational textures in biaxial nematic liquid crystals. The theory
combines two parts: the Landau - de Gennes free energy expansion over the gradients of the tensor order parameter, and
numeric solution of the Lagrange equations of the first kind. The deceptively simple general main message of our work
is that description of biaxial nematic textures involves new symmetry and topology features, admit the Hamiltonian
formulation, and could result in new optical phenomena. In particular, in this paper we develop a systematic numeric
procedure to study, classify and visualize possible textures in biaxial nematics. Based on the elastic energy of a biaxial
nematic written in the most simple form we derive and solve numerically the Lagrange equations of the first kind.
Performing Fourier analysis for the biaxial order parameter texture we find some particular textures possessing three
characteristic space periods (which are not necessarily commensurate). Such a multi-periodic twisted structure can
be considered as a sort of artificial photonic crystal. One can expect very unusual optical characteristics, e.g., two
or three band gaps (unlike one band gap for single periodic cholesteric photonic crystals [36], [37]). Our results can
be verified either in particle-resolved computer simulations or in optic experiments. Future work should extend the
present study to three spatial dimensions of the textures, which would require more heavy and sophisticated numerical
investigations but promises a reacher plethora of structures interesting for optical applications.

The results of the present paper allow us to bring forward some hypotheses concerning other physical properties of
biaxial nematics. The fact is that the three directors n ,m , l – the main axes of the orientational order parameter –
are not necessarily the principal axes for all macroscopic second order tensorial physical properties. Such requirement
is neither warranted by a theory, nor imposed by experimental data. A variety of different symmetries are possible
depending on the additional symmetry operations for the material under consideration. Our guess relies mainly on
multiperiodical structure of their textures, which was discussed above. For example the multi-periodic textures found
in our work should result in additional pairs of X-ray diffraction peaks. As a note of caution we should also mention
that for the optical or X-ray methods with a response integrated over the sample thickness, conventional uniaxial
nematic textures (where the single optic axis varies in the three-dimensional space) can be confused with a response
from a genuine biaxial nematic with two optical axes. The methods of this paper could be extended to other systems,
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for example, DNA solutions. Under appropriate conditions there exist DNA phases that are believed to be cholesteric
liquid crystals. The phases are prepared from segments of the DNA of a size approximately equal to the persistence
length, or 50nm. It is important that the segments do not have the rotational symmetry about their axes owing to
the structure of the double helix. Therefore, one may expect their being strongly biaxial (unlike only weakly biaxial
conventional cholesterics formed by molecules of low molecular mass), see [38].

The theory presented in our work can also have implications not only for optical or X-ray experiment qualitative
rationalization. One might think about various electro-optic and magneto-optic applications of biaxial nematic liquid
crystals. For example the response of the ”biaxial” directors m , l can be much faster than that of the uniaxial director
n.
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