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Abstract

The behaviour of a steady thin sessile or pendent ridge of fluid on an inclined planar substrate

which is strongly coupled to the external pressure gradient arising from an external airflow that

flows parallel to the substrate far from the ridge is described. When the substrate is nearly

horizontal a relatively large ridge can be supported against gravity by capillary and/or external

pressure forces, whereas when the substrate is not restricted to being nearly horizontal only a

relatively small ridge can be supported; classical thin-aerofoil theory is adapted to obtain the

governing singular integro-differential equations for the profile of the ridge in each case. Attention

is focused mainly on the case of a large sessile ridge on a nearly horizontal substrate. The effect

of strengthening the airflow is to push a pinned ridge down near to its edges but to pull it up

near to its middle. Furthermore, at a critical value of the airflow strength the upslope contact

angle reaches the receding contact angle at which the upslope contact line de-pins, and continuing

to increase the airflow strength beyond its critical value results in the de-pinned ridge becoming

increasingly narrow, thick and symmetric in the limit of a strong external airflow. The effect of

tilting the substrate is to skew a pinned ridge downslope. Furthermore, depending on the values of

the advancing and receding contact angles, the ridge may first de-pin at either the upslope or the

downslope contact angle but, in general, eventually both contact lines de-pin. The special cases in

which only the downslope contact line de-pins and in which only the upslope contact line de-pins are

also considered. It is also shown that the behavour of a large pendent ridge is qualitatively similar

to that of a large sessile ridge, while the important qualitative difference between the behaviour of

a large ridge and a small ridge is that, in general, for the latter one or both of the contact lines

may never de-pin.
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I. INTRODUCTION

The behaviour of a thin layer or droplet of viscous fluid in the presence of an external

airflow has been the subject of much theoretical and experimental research because of the

many practically important situations in which it occurs. In civil engineering, the interaction

between the rivulets of rainwater which can form on the cables of cable-stayed bridges and

the wind blowing past them is believed to play a crucial role in the rain–wind-induced

vibrations of the cables (see, for example, Robertson et al. [1] and Lemaitre et al. [2]). In

the electronics industry, a jet of air is sometimes used to remove droplets of water left on the

surface of silicon wafers during the manufacture of microchips (see, for example, Kim et al.

[3]). In the nuclear industry, careful control of the dry-out point at which the layer of water

that forms on the inside surface of a steam-generating boiler pipe (through which both gas

and vapour flows) completely vaporises is important for safe and efficient reactor operation

(see, for, example, Cuminato et al. [4]). Other areas in which a thin layer or droplet of fluid

may be subject to an external airflow include air-knife and spin-coating processes in industry

(see, for example, Chou and Wu [5]) and in ice-accretion on aircraft (see, for example, Myers

and Charpin [6]).

In each of the situations mentioned above, the interaction between the flow of the fluid and

the external airflow passing over it plays an important role. In order to gain greater insight

into and understanding of this interaction, in the present work we formulate and analyse a

simple model for the strongly coupled interaction between a thin sessile or pendent ridge of

fluid (or, equivalently, a two-dimensional droplet) on an inclined planar substrate and an

external airflow that flows parallel to the substrate far from the ridge. Specifically, we assume

that the air is inviscid and that it does not exert a shear stress on the free surface of the ridge,

and adapt classical thin-aerofoil theory to obtain an expression for the pressure gradient in

the air (and, in particular, for the pressure gradient on the free surface of the ridge) in terms

of the unknown free surface profile of the ridge. We then use the hydrostatic equations valid

within the ridge to obtain a singular integro-differential equation for the profile of the ridge
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which we solve analytically in appropriate asymptotic limits and numerically.

We are not the first authors to use classical thin-aerofoil theory to tackle problems of

this kind. Durbin [7] used thin-aerofoil theory to study the steady flow of a thin ridge on

a horizontal substrate. Unlike in the present work, he assumed that the external airflow

detaches at some point on the free surface of the ridge resulting in an asymmetric ridge

profile. In particular, Durbin [7] studied the critical case in which the strength of the

external airflow is at the maximum value such that the ridge is deformed but for which the

contact lines do not de-pin. King and Tuck [8] used thin-aerofoil theory to study the steady

flow of a thin ridge on an inclined substrate. Unlike in the present work, they included a

constant shear stress at the free surface of the ridge due to the external airflow, but neglected

surface tension except near to the contact lines. In particular, King and Tuck [8] found that

for each value of the angle of inclination of the substrate, there are zero, one or two values of

the strength of the external airflow for which a steady solution exists. Subsequently, King et

al. [9] used a similar approach to study steady surface waves on a layer of fluid flowing down

an inclined substrate in the absence of surface tension. Cuminato et al. [4] used thin-aerofoil

theory to study the steady flow of a thin layer on a heated horizontal substrate as a model

for dry-out within a steam-generating boiler pipe. Unlike in the present work, they included

both a constant shear stress at the free surface of the layer and evaporative mass loss from

the layer, but neglected surface tension, and, in particular, calculated the location of the

dry-out point.

Although we will assume that the air is perfectly inviscid, in reality there will, of course,

be viscous boundary layers at the air–substrate and the air–fluid interfaces. Smith et al.

[10] showed that the pressure and shear stress due to the external airflow are comparable

when the thickness of the ridge is O(Re−1/8) ≪ 1 times the boundary layer thickness, where

Re ≫ 1 is an appropriately defined Reynolds number for the airflow; the present work and

that of Durbin [7], in both of which the shear stress due to the external airflow is neglected,

is relevant when the thickness of the ridge is greater than O(Re−1/8) times the boundary

layer thickness.
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In each of the studies mentioned above, using thin-aerofoil theory leads to a singular

integro-differential equation for the unknown free surface profile of the fluid. Making an-

alytical progress with this type of equation is not easy and techniques for solving them

numerically are not routine; instead they must be treated on a problem-by-problem basis

depending on the specific properties of the equation in each case, as described in the review

article by Cuminato, Fitt and McKee [11] on both linear and nonlinear singular integral and

integro-differential equations arising in a wide variety of physical contexts.

There have, of course, also been many other studies in which the pressure gradient and/or

the shear stress due to an external airflow is prescribed rather then being coupled to the

unknown free surface profile (see, for example, [12]–[26]), but these are less directly relevant

to the present strongly coupled problem.

The structure of the present work is as follows. In Sec. II we use a thin-film approximation

to describe the behaviour of a steady thin sessile or pendent ridge of fluid on an inclined

planar substrate, including the effects of gravity and surface tension, which is strongly

coupled to the external pressure gradient arising from an external airflow that flows parallel

to the substrate far from the ridge, and obtain the governing singular integro-differential

equations for the profile of a “large” sessile ridge on a nearly horizontal substrate, a “large”

pendent ridge on a nearly horizontal substrate, and a “small” (sessile or pendent) ridge. Our

attention is focused mainly on the first of these problems, namely a “large” sessile ridge on

a nearly horizontal substrate. In Sec. III we describe some basic properties of the solution,

while in Secs IV and V we use a combination of asymptotic and numerical techniques to

analyse the effect of varying the strength of the external airflow and the angle of inclination

of the substrate, respectively. Situations in which the contact lines are pinned and in which

one or both of the contact lines de-pin are considered. The behaviour of the ridge in the

other two problems is somewhat similar to that in the first one, and so in Secs VI and VII

we consider these two problems only briefly, highlighting the qualitative similarities and

differences between them and the first problem. Finally, in Sec. VIII we summarise the

results obtained.

4



y = h(x)

x

y

O

L

g
θ1

θ2

U∞, p∞

α

ρ

ρa

hm

xm

FIG. 1: Sketch of a steady thin sessile ridge of fluid on an inclined planar substrate in the presence of a

steady external airflow which flows parallel to the substrate far from the ridge with constant speed U∞ and

ambient pressure p∞.

II. PROBLEM FORMULATION

Consider a steady thin sessile or pendent ridge of fluid (or, equivalently, a two-dimensional

droplet) on a planar substrate inclined at an angle α (0 ≤ α ≤ π) to the horizontal, in the

presence of a steady external airflow. Values of α satisfying 0 ≤ α < π/2 correspond to a

sessile ridge sitting on an inclined substrate as sketched in Figure 1, values of α satisfying

π/2 < α ≤ π correspond to a pendent ridge hanging from an inclined substrate, while the

value α = π/2 corresponds to the special case of a ridge on a vertical substrate. We assume

that the fluid in the ridge has constant density ρ and coefficient of surface tension σ, and

that the ridge is subject to an external flow of inviscid air of constant density ρa which flows

parallel to the substrate far from the ridge with constant speed U∞ and ambient pressure p∞.

The airflow is perturbed by the presence of the ridge, resulting in a non-uniform external

pressure gradient that depends in a non-trivial way on the unknown free surface profile of

the ridge. Referred to Cartesian coordinates Oxy with the x and y directions taken to be

parallel and normal to the substrate, respectively, as indicated in Figure 1, the ridge has free

surface profile y = h(x) for 0 ≤ x ≤ L, width L in the transverse (i.e. in the x) direction,

prescribed constant volume per unit length in the longitudinal (i.e. in the z) direction V ,

maximum thickness h = hm at x = xm, and downslope and upslope contact angles θ1 = h′(0)
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(≥ 0) and θ2 = −h′(L) (≥ 0), respectively. The pressure in both the air and the ridge is

denoted by p = p(x, y).

In order to analyse the problem we introduce the following non-dimensionalised and scaled

variables:

x = L0x
∗, xm = L0x

∗

m, L = L0L
∗, y = ǫL0y

∗, y = L0Y
∗,

h = ǫL0h
∗, hm = ǫL0h

∗

m, V = ǫL2
0V

∗, p − p∞ =
ǫσ

L0

p∗,
(1)

where L0 is the characteristic transverse length scale (discussed in more detail below) and

ǫ = V/L2
0 ≪ 1 is the (small) transverse aspect ratio of the ridge, giving V ∗ = 1 without loss

of generality. Hence in what follows we set V ∗ = 1 in all of the numerical calculations, but

retain V ∗ explicitly in all of the analytical results for clarity. Note that, since the problem has

two different length scales in the y direction, two different non-dimensional y-coordinates,

namely y∗ and Y ∗, are required. The coordinate y∗ corresponding to the characteristic

thickness scale for the ridge ǫL0 (≪ L0) is required to describe the behaviour of the ridge,

and, in particular, the internal pressure in the ridge denoted by p∗ = p∗(x∗, y∗). On the

other hand, the coordinate Y ∗ corresponding to the characteristic length scale L0 (i.e. the

same length scale as in the x-direction) is required to describe the behaviour of the external

airflow, and, in particular, the external pressure in the air denoted by p∗ = P (x∗, Y ∗). For

clarity, we immediately drop the star superscripts on non-dimensional variables in what

follows.

The external airflow consists of a uniform stream with constant speed U∞ in the positive

x-direction plus a non-uniform perturbation due to the presence of the ridge, which we

obtain using thin-aerofoil theory (see, for example, Van Dyke [27]). The velocity potential

and stream function of the external airflow φ(x, Y ) and ψ(x, Y ) (both non-dimensionalised

with L0U∞) are given in terms of the unknown free surface profile of the ridge by

φ(x, Y ) = x +
ǫ

2π

∫ L

0

h′(ξ) log
[

(x − ξ)2 + Y 2
]

dξ, (2)

ψ(x, Y ) = Y +
ǫ

π

∫ L

0

h′(ξ) tan−1

(

Y

x − ξ

)

dξ, (3)

satisfying ψ(x, 0) = 0, where a prime denotes differentiation with respect to argument. Using
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either (2) or (3) together with Bernoulli’s theorem yields an expression for the leading order

external pressure P (x, Y ), namely

P (x, Y ) = −Λ

∫ L

0

(x − ξ)h′(ξ)

(x − ξ)2 + Y 2
dξ, (4)

where the non-dimensional parameter Λ (≥ 0), defined by

Λ =
ρaL0U

2
∞

πσ
, (5)

is the appropriate measure of the strength of the external airflow. Note that, since U∞

occurs in the problem only via the term U2
∞

in (5), the sign of U∞ is unimportant and hence

the profile of the ridge will be the same whether the external airflow is directed up or down

the substrate; for definiteness we take the external airflow to be directed up the substrate, as

indicated in Figure 1. Note also that, since the inviscid external airflow imposes a pressure

gradient but no shear stress on the free surface of the ridge, there is no flow within the ridge.

Hence, the internal pressure p satisfies the hydrostatic equations

ǫpx = −
(

L0

ℓ

)2

sin α, py = −
(

L0

ℓ

)2

cos α (6)

subject to the leading order normal-stress balance at the free surface y = h, namely p =

P − h′′ at Y = 0, where ℓ = (σ/ρg)1/2 denotes the usual capillary length, in which g

denotes the constant magnitude of gravitational acceleration. Integrating (6b) subject to

the boundary condition gives

p =

(

L0

ℓ

)2

(h − y) cos α + P − h′′. (7)

Substituting this solution for the internal pressure p into (6a) and evaluating the expression

for the external pressure P given by (4) at Y = 0 yields the governing linear singular

integro-differential equation for the ridge profile h, namely

h′′′ −
(

L0

ℓ

)2

h′ cos α −
(

L0

ℓ

)2
sin α

ǫ
+ Λ

d

dx
−
∫ L

0

h′(ξ)

x − ξ
dξ = 0, (8)

where the integral is of Cauchy principal-value type. Equation (8) is to be solved subject

to boundary conditions of zero thickness at both contact lines and of prescribed constant
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volume, namely

h(0) = 0, h(L) = 0, V =

∫ L

0

h dx. (9)

Note that not all of the terms in (8) are necessarily of the same order in the thin-film limit

ǫ → 0, and so the appropriate form of (8) depends on the particular physical situation under

investigation, as described subsequently.

III. A LARGE SESSILE RIDGE

When the substrate is nearly horizontal (specifically, when α = O(ǫ)), the transverse

component of gravity is relatively weak and so a relatively “large” ridge of width comparable

to the capillary length ℓ can be supported against gravity by capillary and/or external

pressure forces. In this case it is appropriate to choose L0 = ℓ as the characteristic transverse

length scale, so that the transverse aspect ratio is ǫ = V/ℓ2 ≪ 1, the characteristic pressure

scale is ǫσ/ℓ = ǫρgℓ = ρgV/ℓ, and at leading order in the limit ǫ → 0 equation (8) becomes

h′′′ − h′ − α̂ + Λ
d

dx
−
∫ L

0

h′(ξ)

x − ξ
dξ = 0, (10)

where

Λ =
ρaℓU

2
∞

πσ
(11)

and the non-dimensional parameter α̂ (≥ 0), defined by

α̂ =
α

ǫ
, (12)

is an appropriately scaled version of the angle of inclination of the substrate to the horizontal.

Equation (10) is subject to the boundary conditions (9) and is analysed in detail below and

in Secs IV and V. The corresponding equations in the pendent case (specifically, when

π − α = O(ǫ)) and in the case of a small (sessile or pendent) ridge (specifically, when

α = O(1)) are derived and analysed in Secs VI and VII, respectively.
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A. Local Behaviour near the Contact Lines

Local analysis of (10) reveals that near the downslope and upslope contact lines h behaves

according to

h ∼ θ1x −
Λθ1

2
x2 log x +

κ1

2
x2 as x → 0+ (13)

and

h ∼ θ2(L − x) −
Λθ2

2
(L − x)2 log(L − x) +

κ2

2
(L − x)2 as x → L−, (14)

respectively, where the contact angles θ1 and θ2 and the constants κ1 and κ2 are determined

globally (rather than locally). In particular, (13) and (14) show that h′′ (but not h or h′) is

logarithmically singular at both contact lines for non-zero θ1 and θ2.

B. Transverse Force Balance

Multiplying the governing equation (10) by h, integrating with respect to x from 0 to

L, and using the local behaviour (13) and (14) yields a statement of the transverse force

balance on the ridge, namely

θ2
1 − θ2

2 −
∫ L

0

−
∫ L

0

h′(x)h′(ξ)

x − ξ
dξ dx = 2V α̂. (15)

A simple change of variables shows that the double integral in (15) is identically zero for

regular (non-singular) h′(x) in 0 ≤ x ≤ L. Hence, since in the present problem, as in that

studied by Durbin [7] but not in that studied by King and Tuck [8], there are finite contact

angles at both contact lines, the transverse force balance (15) reduces to simply

θ2
1 − θ2

2 = 2V α̂, (16)

which is equivalent to Durbin’s equation (A6).

The transverse force balance (16) is a very useful relationship which (since V > 0 and

α̂ ≥ 0) shows immediately that 0 ≤ θ2 ≤ θ1, i.e. that a ridge on an inclined substrate is

always skewed in the downslope direction, with θ1 = θ2 only in the special case of a horizontal

substrate, α̂ = 0. Moreover, there is a critical ridge profile which occurs when θ2 = 0 (i.e.
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FIG. 2: Plots of the functions (a) h0(x) and (b) h1(x) appearing in the solution for the ridge profile (17)

for Λ = 0, 1, 2, Λmax(0) ≃ 2.25 when L = 1.

when the upslope contact angle reaches its minimum physically realisable value of zero). For

a prescribed value of α̂, this critical profile occurs at a critical maximum external airflow

strength Λ, denoted by Λ = Λmax(α̂), above which there are no physically realisable steady

solutions and, conversely, for a prescribed value of Λ, it occurs at a critical maximum angle

of inclination of the substrate α̂, denoted by α̂ = α̂max(Λ), above which there are again no

physically realisable steady solutions. The critical quantities Λmax and α̂max will be discussed

further in Secs IV and V.

C. General Form of the Solution for the Ridge Profile

Inspection of (9) and (10) reveals that the general form of the solution for the ridge profile

h = h(x) is a linear function of V and α̂, namely

h = V h0 + α̂h1, (17)

with

h0(0) = h0(L) = h1(0) = h1(L) = 0,

∫ L

0

h0 dx = 1,

∫ L

0

h1 dx = 0, (18)
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where the function h0 = h0(x), which represents the ridge profile in the case of a horizontal

substrate α̂ = 0, is positive and symmetric about x = L/2, and the function h1 = h1(x) is

antisymmetric about x = L/2. In general, we must solve (10) subject to (9) for h numerically,

and we do this using the finite difference method detailed in Appendix A. Figure 2 shows

numerically calculated plots of (a) h0 and (b) h1 when L = 1 for various values of Λ satisfying

Λ ≤ Λmax(0) ≃ 2.25. In particular, since h1 is positive for 0 < x < L/2 and negative for

L/2 < x < L, Figure 2 shows, as might have been expected, that increasing α̂ (i.e. tilting the

substrate) always skews the ridge in the downslope direction so that the maximum thickness

hm increases, the location of the maximum thickness xm decreases (i.e. moves downslope),

the downslope contact angle θ1 increases, and the upslope contact angle θ2 decreases.

IV. STRENGTHENING THE EXTERNAL AIRFLOW

In this section we investigate the quasi-static evolution of a large sessile ridge of prescribed

constant volume V on a substrate inclined at a constant angle α̂ to the horizontal as the

external airflow is gradually strengthened (i.e. as Λ is gradually increased from zero). In

Sec. IV A we consider a pinned ridge with pinned contact lines, and hence constant width L

but variable contact angles θ1 and θ2. In reality the contact lines will not remain pinned for

all values of Λ ≤ Λmax (i.e. for all values of θ2 ≥ 0). In practice (as, for example, Dussan V.

[28] and Blake and Ruschak [29] describe), eventually one or both of the contact angles θ1

and θ2 will reach either the receding contact angle, θR, or the advancing contact angle, θA,

and the corresponding contact line(s) will de-pin. For definiteness we assume that θ1 and

θ2 satisfy θR ≤ θ1,2 ≤ θA when Λ = 0, i.e. that the ridge is always pinned in the absence

of the external airflow. We will find that increasing the strength of the external airflow Λ

decreases the contact angles θ1 and θ2, and so, while neither θ1 nor θ2 can ever reach θA,

they may reach θR. However, as previously noted, the transverse force balance (16) shows

that θ2 ≤ θ1, and so (except in the special case α̂ = 0 in which θ1 = θ2), θ2 will always reach

θR before θ1 does (i.e. the upslope contact line with always de-pin before the downslope

one). After de-pinning we assume that θ2 remains equal to θR, and hence from (16) that
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L

FIG. 3: Plot of the function γ(L) given by (23). The dotted curves show the leading order asymptotic

behaviour γ ∼ 6/L2 → ∞ as L → 0+ and γ ∼ 1/L → 0+ as L → ∞.

θ1 = (θ2
R +2V α̂)1/2 (≥ θR). Thus in Sec. IV B we consider a ridge that de-pins at its upslope

contact line, and hence after de-pinning has variable width L but constant contact angles

θ1 = (θ2
R + 2V α̂)1/2 and θ2 = θR.

A. A Pinned Ridge

In this subsection we study a pinned ridge with constant width L but variable contact

angles θ1 and θ2 for increasing Λ.

1. The Special Case of No External Airflow (Λ = 0)

In the special case of no external airflow, Λ = 0, the ridge profile, denoted by h = H0 =

H0(x), is given by

H0 = V h0 + α̂h1, (19)

where the functions h0 = h0(x) and h1 = h1(x) are given by

h0 =
sinh

L − x

2
sinh

x

2
L

2
cosh

L

2
− sinh

L

2

(20)

12



H0(x)

x

α̂ = 0

α̂ = α̂max(0) ≃ 74.40

(a)

H1(x)

x

α̂ = 0

α̂ = α̂max(0) ≃ 74.40

(b)

FIG. 4: Plots of (a) the leading order term, H0(x), and (b) the first order term, H1(x), in the asymptotic

solution for the profile of a pinned ridge in the limit of a weak external airflow, Λ → 0+, given by (24) for

α̂ = 0, 20, 40, 60, α̂max(0) ≃ 74.40 when L = 1.

and

h1 =
L cosh

L − x

2
sinh

x

2

sinh
L

2

− x, (21)

respectively. From (19)–(21) it may readily be deduced that the contact angles θ1 and θ2

are given by

θ1,2 = V γ ±
α̂

2γ
, (22)

where the + sign is taken for θ1, the − sign is taken for θ2, and the function γ = γ(L) (> 0)

is defined by

γ =
1

2

(

L

2
coth

L

2
− 1

)−1

. (23)

Inspection of (23) reveals that γ is a strictly positive, monotonically decreasing function of

L and satisfies γ ∼ 6/L2 → ∞ as L → 0+ and γ ∼ 1/L → 0+ as L → ∞, as shown in Figure

3. Hence from (22) it can be deduced that as L is increased both contact angles decrease,

with θ2 reaching zero and θ1 reaching the non-zero value θ1 = 2V γ = α̂/γ when α̂ = 2V γ2,

and hence the critical maximum value of α̂ when Λ = 0 is given by α̂max(0) = 2V γ2.
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Figure 4(a) shows plots of the profile of a pinned ridge in the case of no external airflow,

H0(x), for various values of α̂ when L = 1, in which case α̂max(0) ≃ 74.40. In particular,

Figure 4(a) shows that, as previously noted, tilting the substrate skews the ridge in the

downslope direction.

2. The Limit of a Weak External Airflow (Λ → 0+)

In the limit of a weak external airflow, Λ → 0+, the ridge profile takes the form

h = H0 + ΛH1 + O(Λ2), (24)

where the leading order term, H0 = H0(x), is simply the solution in the special case of no

external airflow, Λ = 0, given by (19)–(21) and the first order term, H1 = H1(x), satisfies

H ′′′

1 − H ′

1 +
d

dx
−
∫ L

0

H ′

0(ξ)

x − ξ
dξ = 0 (25)

subject to

H1(0) = 0, H1(L) = 0,

∫ L

0

H1 dx = 0. (26)

Figure 4(b) shows numerically calculated plots of the first order term in the asymptotic

solution for the profile of a pinned ridge, H1, for various values of α̂ when L = 1. In the

special case of a horizontal substrate, α̂ = 0, H1 is symmetric about x = L/2 with H1 > 0

and H ′

1 = 0 at x = xm = L/2, and −H ′

1(L) = H ′

1(0) < 0. Therefore, in this case the effect

of a weak external airflow is to slightly decrease both contact angles θ1 and θ2 equally, and

to slightly increase the maximum thickness hm (which always occurs at x = xm = L/2), i.e.

to push the ridge down near to its edges and pull it up near to its middle. In the general

case of a tilted substrate, 0 < α̂ ≤ α̂max, H1 is no longer symmetric about x = L/2, with

x = xm satisfying 0 < xm < L/2, and −H ′

1(L) < H ′

1(0) ≤ 0 with H ′

1(0) = 0 at α̂ = α̂max(0).

Therefore, in this case the effect of a weak external airflow is to slightly decrease both contact

angles (but to decrease θ2 more than θ1), and to slightly increase the maximum thickness

hm and to move the position at which it occurs xm slightly downslope, i.e. to skew the ridge

downslope while simultaneously pushing it down near to its edges and pulling it up near to
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FIG. 5: Plots of (a) the profile of a large sessile pinned ridge for Λ = 0, 0.4, 0.8, 1.2, Λmax ≃ 1.50 when

α̂ = 20 and L = 1, together with plots of (b) the contact angles θ1 and θ2, (c) the maximum thickness hm

and (d) the relative location of the maximum thickness xm/L, as functions of Λ for a large sessile pinned

ridge for α̂ = 0, 20, 40, 60 when L = 1 (in which case Λmax(0) ≃ 2.25 and α̂max(0) ≃ 74.40). In (b)–(d) the

dots indicate the points at which θ2 = 0 (i.e. when Λ = Λmax), the dashed lines show the curves on which

Λ = Λmax, and the dotted lines show the first-order-accurate asymptotic solutions in the limit of a weak

external airflow, Λ → 0+.

its middle, as in the case of a horizontal substrate. We will consider the effect of the external

airflow in more detail in Sec. IV A 3 below.
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α̂max

Λmax

L = 0.9

L = 1.6

FIG. 6: Plot of the relationship between the critical inclination angle α̂max and the critical external airflow

strength Λmax for L = 0.9, 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6. The dotted lines show the first-order-accurate

asymptotic solutions in the limit of a weak external airflow, Λ → 0+.

3. The General Case of Non-Zero External Airflow (Λ > 0)

Figure 5(a) shows plots of the profile of a pinned ridge as Λ is increased from Λ = 0 to

Λ = Λmax ≃ 1.50 when α̂ = 20 and L = 1. Figures 5(b)–(d) show how the contact angles

θ1 and θ2, the maximum thickness hm and the relative location of the maximum thickness

xm/L vary with Λ for a range of values of α̂. In particular, Figure 5(b) shows that both θ1

and θ2 decrease monotonically with Λ, and that dθ1/dΛ = 0 when θ2 = 0 (i.e. at Λ = Λmax).

Furthermore, Figures 5(c) and (d) show that hm increases monotonically and xm/L decreases

monotonically (i.e. the ridge is skewed downslope) except in the special case of a horizontal

substrate, α̂ = 0, in which the ridge is symmetric about x = xm = L/2 for all Λ.

Figure 6 shows the relationship between α̂max and Λmax (i.e. between the critical values

of α̂ and Λ and for which θ2 = 0) for various values of L; this plot may be interpreted as

giving either Λmax as a function of α̂ or α̂max as a function of Λ. In particular, Figure 6

shows that, for a given value of L, the largest possible value of α̂max occurs at Λ = 0 (i.e.

is equal to α̂max(0)), and the largest possible value of Λmax occurs at α̂ = 0 (i.e. is equal to

Λmax(0)). For example, in Figures 5(b)–(d) the largest possible value of Λ is Λmax(0) ≃ 2.25,

and the largest possible value of α̂ is α̂max(0) ≃ 74.40.
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The results shown in Figure 5 confirm the trend evident in the limit of a weak external

airflow described in Sec. IV A 2, namely that the effect of strengthening the external airflow

is to skew the ridge downslope while simultaneously pushing it down near to its edges and

pulling it up near to its middle. In order to understand why the external airflow has this

effect on the ridge it is instructive to investigate the external pressure due to the external

airflow given by (4) in more detail.

Figure 7(a) shows the external pressure at the free surface of the ridge and the substrate,

P (x, 0), plotted as a function of x for various values of Λ when α̂ = 20 and L = 1 (i.e. for the

pinned ridge whose profile is shown in Figure 5(a)). In particular, Figure 7(a) shows that

the external pressure near x = xm is lower than the ambient pressure far from the ridge, and

that the external pressure near the downslope (leading) and upslope (trailing) edges of the

ridge is higher than the ambient pressure. Using the local behaviour (13) and (14) shows

that near the downslope contact line P behaves according to

P (x, 0) ∼ −Λθ1 log x → ∞ as x → 0+ (27)

for θ1 > 0, while near the upslope contact line P behaves according to

P (x, 0) ∼ −Λθ2 log(L − x) → ∞ as x → L− (28)

for θ2 > 0 and

P (x, 0) ∼ Λmaxκ2L = O(1) as x → L− (29)

for θ2 = 0, i.e. a non-zero contact angle leads to a logarithmic singularity in P (x, 0) at

the corresponding contact line. Figure 7(b) shows the external pressure, P (x, Y ), plotted

as a function of Y for various values of x in the range −0.3 ≤ x/L ≤ xm/L ≃ 0.41 when

Λ = 1, α̂ = 20 and L = 1. In particular, Figure 7(b) shows that P (xm, Y ) is negative at

Y = 0 and increases monotonically towards zero as Y increases. Figure 7(b) also shows that

P (0, Y ) is large and positive near Y = 0 and decreases towards zero as Y increases. P (L, Y )

has qualitatively the same behaviour as P (0, Y ), but for clarity values of x/L greater than

xm/L ≃ 0.41 are not shown in Figure 7(b). Figure 7(c) shows the streamlines of the external
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FIG. 7: Plots of (a) the external pressure at the free surface of the ridge and the substrate, P (x, 0), as

a function of x for Λ = 0, 0.4, 0.8, 1.2, Λmax ≃ 1.50 when α̂ = 20 and L = 1, (b) the external pressure,

P (x, Y ), as a function of Y at x/L = −0.3, −0.2, −0.1, 0, 0.1, 0.2, 0.3, xm/L ≃ 0.41 when Λ = 1, α̂ = 20

and L = 1, and (c) the streamlines of the external airflow passing over the ridge when Λ = 1, α̂ = 20, L = 1

and ǫ = 0.05.

airflow passing over the ridge plotted using (3) when Λ = 1, α̂ = 20, L = 1 and ǫ = 0.05.

Far upstream and downstream of the ridge the flow is uniform and so the streamlines are

parallel to the substrate, while near x = xm the curvature of the streamlines is (slightly)

negative and so, given that the pressure increases in the direction away from the centre of

curvature, the pressure there is (slightly) smaller than that of the uniform stream. Hence,
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the free surface tends to be pulled up near x = xm (i.e. hm increases). Similarly, near the

contact lines the streamline curvature is (slightly) positive and so the pressure near the

contact lines is (slightly) larger than that of the uniform stream. Hence, the free surface

tends to be pushed down (i.e. both θ1 and θ2 decrease) near the contact lines.

B. A Ridge that De-Pins at its Upslope Contact Line

In this subsection we study a ridge that de-pins at its upslope contact line for increasing

Λ.

As the strength of the external airflow is increased from zero the ridge initially deforms

but remains pinned with constant width as described in Sec. IV A. However, since both

contact angles θ1 and θ2 (≤ θ1) are monotonically decreasing functions of Λ, eventually at a

critical external airflow strength denoted by Λ = ΛR and satisfying ΛR ≤ Λmax, the upslope

contact angle θ2 becomes equal to the receding contact angle θR and the upslope contact

line de-pins. As the strength of the external airflow is increased from Λ = ΛR the ridge

continues to deform but now with varying width L. Figure 8(a) shows plots of the profile of

a de-pinned ridge as Λ is increased from Λ = ΛR ≃ 1.02 when α̂ = 20 and θR = 2. Note that

for clarity the corresponding pinned ridge profiles for 0 ≤ Λ < ΛR are not shown in Figure

8(a), but examples are, of course, shown in Figure 5(a). Figures 8(b)–(e) show how the

contact angles θ1 and θ2, the maximum thickness hm, the relative location of the maximum

thickness xm/L and the width L vary with Λ for a range of values of α̂ when θR = 2. Note

that for Λ < ΛR (i.e. to the left of the dots denoting the points at which the upslope contact

line de-pins), the curves in Figures 8(b)–(d) are, of course, identical to the corresponding

curves for a pinned ridge shown in Figures 5(b)–(d). In particular, Figure 8(b) shows that

after the contact line has de-pinned (i.e. for Λ > ΛR) the contact angles θ1 = (θ2
R + 2V α̂)1/2

and θ2 = θR are independent of the value of Λ. Moreover, Figures 8(c)–(e) show that while

hm and L are monotonically increasing and decreasing functions of Λ, respectively, xm/L

decreases to a minimum value at Λ = ΛR before increasing towards the limiting value of
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FIG. 8: Plots of (a) the profile of a large sessile de-pinned ridge for Λ = ΛR ≃ 1.02, 2, 3, 4, 5 when α̂ = 20

and θR = 2, together with plots of (b) the contact angles θ1 and θ2, (c) the maximum thickness hm, (d) the

relative location of the maximum thickness xm/L and (e) the width L, as functions of Λ for a large sessile

ridge whose upslope contact line de-pins for α̂ = 0, 20, 40 when θR = 2 (in which case α̂max(0) ≃ 50.01).

In (b)–(e) the dots indicate the points at which the upslope contact line de-pins (i.e. when Λ = ΛR and

θ2 = θR), and in (c)–(e) the dotted lines show the leading order asymptotic solutions in the limit of a strong

airflow, Λ → ∞, given by (c) hm ≃ 0.94Λ → ∞, (d) xm/L = 1/2 (which coincides with the solution in the

case α̂ = 0) and (e) L ≃ 2.20Λ−1 → 0+ for all α̂.
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x̄x̄m = 1/2

h̄m ≃ 2.05

FIG. 9: Plot of the leading order scaled ridge profile h̄(x̄) in the limit of a strong external airflow, Λ → ∞,

obtained by solving (31) subject to (32) numerically.

xm/L = 1/2 as Λ becomes large.

In the limit of a strong external airflow, Λ → ∞, the numerically calculated solutions

shown in Figure 8 suggest that the ridge becomes infinitely narrow like L = O(Λ−1) → 0+

and infinitely thick like hm = O(Λ) → ∞ with xm/L → 1/2−. To investigate the behaviour

of the ridge in this limit we therefore rescale the variables according to

L = Λ−1L̄, x = Λ−1L̄x̄, xm = Λ−1L̄x̄m, ξ = Λ−1L̄ξ̄, h = ΛL̄−1h̄, hm = ΛL̄−1h̄m,

(30)

where the scaled width L̄ is to be determined as part of the solution. At leading order in

the limit Λ → ∞ the effect of gravity is negligible, and equations (10) and (9) become

h̄′′′ + L̄
d

dx̄
−
∫ 1

0

h̄′(ξ̄)

x̄ − ξ̄
dξ̄ = 0 (31)

subject to

h̄(0) = 0, h̄(1) = 0, h̄′(1) = 0,

∫ 1

0

h̄ dx̄ = V. (32)

Equation (31) was solved subject to (32) numerically to obtain the solution for the leading

order scaled ridge profile h̄ = h̄(x̄), and, in particular, the leading order values L̄ ≃ 2.20,

h̄m ≃ 2.05 and x̄m = 1/2. Figure 9 shows h̄ plotted as a function of x̄, and, in particular,
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shows that h̄ is symmetric about x̄ = x̄m = 1/2. The leading order asymptotic solutions for

hm ≃ 0.94Λ → ∞ and L ≃ 2.20Λ−1 → 0+ are shown with dotted lines in Figures 8(c) and

(e), while in Figure 8(d) the leading order asymptotic solution for xm/L = 1/2 coincides

with the solution in the case α̂ = 0. In particular, this asymptotic solution shows how

the ridge becomes infinitely narrow, thick and symmetric in the limit of a strong external

external airflow. While this asymptotic solution is formally valid for arbitrarily large values

of Λ, the underlying thin-film approximation will, of course, eventually fail when Λ becomes

too large.

V. TILTING THE SUBSTRATE

In this section we investigate the quasi-static evolution of a large sessile ridge of prescribed

constant volume V in the presence of an external airflow of constant strength Λ as the

substrate is gradually tilted (i.e. as the angle of inclination of the substrate α̂ to the horizontal

is gradually increased from zero). Like in Sec. IV A, in Sec. V A we again consider a pinned

ridge with pinned contact lines, and hence constant width L but variable contact angles θ1

and θ2. However, unlike in Sec. IV A, in which we found that increasing Λ decreases both

θ1 and θ2, we will find that increasing α̂ increases θ1 and decreases θ2; moreover, as the

general form of the solution for the ridge profile (17) shows, both θ1 and θ2 vary linearly

with α̂. Like in Sec. IV, in reality the contact lines will not remain pinned for all values of

α̂ ≤ α̂max (i.e. for all values of θ2 ≥ 0). In practice, either θ1 will reach θA or θ2 will reach θR

and the corresponding contact line(s) will de-pin. For definiteness we assume that θ1 and θ2

satisfy θR ≤ θ1,2 ≤ θA when α̂ = 0, i.e. that the ridge is always pinned when the substrate

is horizontal. However, unlike in Sec. IV, in which, in general, θ2 always reaches θR first as

Λ is increased, now it is possible either for θ2 to reach θR first or for θ1 to reach θA first as

α̂ is increased. After de-pinning we assume that either θ2 remains equal to θR and hence

from (16) that θ1 = (θ2
R +2V α̂)1/2 (≥ θR) is an increasing function of α̂, or θ1 remains equal

to θA and hence from (16) that θ2 = (θ2
A − 2V α̂)1/2 (≤ θA) is a decreasing function of α̂,

as appropriate. In Sec. V B we consider the general situation in which both contact lines
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eventually de-pin, while in Secs V C and V D we consider the special cases in which only the

downslope contact line de-pins and only the upslope contact line de-pins, respectively.

A. A Pinned Ridge

Figure 10(a) shows plots of the profile of a pinned ridge as α̂ is increased from α̂ = 0 to

α̂max ≃ 38.02 when Λ = 1 and L = 1. Figures 10(b)–(d) show how θ1, θ2, hm and xm/L vary

with α̂ for a range of values of Λ. In particular, Figure 10(b) shows that θ1 increases linearly

and θ2 decreases linearly with α̂. Furthermore, Figures 10(c) and (d) show that hm increases

monotonically and xm/L decreases monotonically with α̂ (i.e. the ridge is skewed downslope

as the substrate is tilted). Note that, as in Figures 5(b)–(d) discussed previously in Sec.

IV A, in Figures 10(b)–(d) (which correspond to the same values of L and V ) the largest

possible value of Λ is Λmax(0) ≃ 2.25, and the largest possible value of α̂ is α̂max(0) ≃ 74.40.

B. A Ridge that Eventually De-Pins at Both of its Contact Lines

In the general case in which θA is finite and θR is non-zero, the ridge eventually de-

pins at both of its contact lines for increasing α̂, but the order in which the contact lines

de-pin depends on the value of Λ. Specifically, if θ1 reaches θA at some value α̂ = α̂A(Λ)

(< α̂max(Λ)), before θ2 reaches θR, then the downslope contact line will de-pin first, but if

θ2 reaches θR at some value α̂ = α̂R(Λ) (< α̂max(Λ)), before θ1 reaches θA, then the upslope

contact line will de-pin first. Regardless of which contact line de-pins first, the second

contact line de-pins when both θ1 = θA and θ2 = θR, and hence from the transverse force

balance (16) this always occurs at α̂ = α̂AR, where

α̂AR =
θ2
A − θ2

R

2V
, (33)

which is independent of the value of Λ, and for α̂ > α̂AR there are no steady solutions of

the kind considered here. There is a critical value of Λ, denoted by ΛAR, for which the two

contact lines de-pin simultaneously (i.e. θ1 = θA and θ2 = θR simultaneously for the first

time at α̂ = α̂AR). The value of Λ relative to ΛAR determines which of the two contact
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FIG. 10: Plots of (a) the profile of a large sessile pinned ridge for α̂ = 0, 10, 20, α̂max ≃ 38.02 when Λ = 1

and L = 1, together with plots of (b) the contact angles θ1 and θ2, (c) the maximum thickness hm and (d)

the relative location of the maximum thickness xm/L, as functions of α̂ for a large sessile pinned ridge for

Λ = 0, 0.5, 1, 1.5 and 2 when L = 1 (in which case Λmax(0) ≃ 2.25 and α̂max(0) ≃ 74.40). In (b)–(d) the

dots indicate the points at which θ2 = 0 (i.e. when α̂ = α̂max) and the dashed lines show the curves on

which α̂ = α̂max.

lines de-pins first for increasing α̂: specifically, if Λ < ΛAR then the downslope contact line

de-pins first, while if Λ > ΛAR then the upslope contact line de-pins first.

Figure 11(a) and 11(b) show plots of the profile of a ridge as α̂ is increased from α̂ = 0

to α̂ = α̂AR = 45/2 = 22.50 in the cases Λ < ΛAR ≃ 0.93 and Λ > ΛAR, respectively, when
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FIG. 11: Plots of (a) the profile of a large sessile ridge that first de-pins at its downslope contact line for

α̂ = 0, 5, α̂A ≃ 10.99, 15, 20, α̂AR = 22.50 when Λ = 0 (< ΛAR ≃ 0.93), θA = 7 and θR = 2, (b) the

profile of a large sessile ridge that first de-pins at its upslope contact line for α̂ = 0, 5, α̂R ≃ 7.34, 10, 15,

20, α̂AR = 22.50 when Λ = 1.5 (> ΛAR), θA = 7 and θR = 2, together with plots of (c) the contact angles θ1

and θ2, (d) the maximum thickness hm, (e) the relative location of the maximum thickness xm/L, and (f)

the width L, as functions of α̂ for a large sessile ridge whose upslope and downslope contact lines de-pin for

Λ = 0, 0.5, ΛAR ≃ 0.93, 1, 1.5 when θA = 7 and θR = 2. In (c)–(f) the leftmost dot on each curve indicates

the point at which the first contact line (which can be either the upslope or downslope contact line) de-pins,

the rightmost dot indicates the point α̂ = α̂AR at which the second contact line de-pins, and the vertical

dashed line indicates the value α̂ = α̂AR = 22.50 beyond which there are no steady solutions of the kind

considered here.
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θA = 7 and θR = 2. Figures 11(c)–(f) show how θ1 and θ2, hm, xm/L and L vary with α̂

for a range of values of Λ when θA = 7 and θR = 2. Note that until the first contact line

de-pins (i.e. to the left of the leftmost dots denoting the points at which the first contact

line de-pins), the curves in Figures 11(c)–(e) are, of course, identical to the corresponding

curves for a pinned ridge shown in Figures 10(b)–(d). In particular, Figures 11(c) and (f)

show that if Λ < ΛAR then the downslope contact line de-pins first and the width of the

ridge increases after de-pinning, if Λ > ΛAR then the upslope contact line de-pins first and

the width of the ridge decreases after de-pinning, and if Λ = ΛAR then the two contact lines

de-pin simultaneously.

C. A Ridge that De-Pins Only at its Downslope Contact Line

In the special case when θR = 0 the upslope contact line remains pinned for all values

of θ2 ≥ 0, while the downslope contact line de-pins at α̂ = α̂A. Figure 12(a) shows plots

of the profile of a ridge which has de-pinned at its downslope contact line as α̂ is increased

from α̂ = α̂A ≃ 23.08 to α̂ = α̂Amax = 49/2 = 24.50 when Λ = 1, θA = 7 and θR = 0.

Figures 12(b)–(e) show how θ1 and θ2, hm, xm/L and L vary with α̂ for a range of values of

Λ when θA = 7 and θR = 0. In particular, Figure 12(e) shows that the width of the ridge

always increases after de-pinning. The upslope contact angle eventually reaches the value

θ2 = θR = 0 when θ2
A = 2V α̂, and so, as Figures 12(b)–(e) show, there is a maximum value

of α̂ = α̂Amax = θ2
A/2V (= α̂AR evaluated at θR = 0), which is independent of the value of

Λ, at which the ridge achieves its maximum width and beyond which there are no steady

solutions of the kind considered here.

D. A Ridge that De-Pins Only at its Upslope Contact Line

In the special case when θA = ∞ the downslope contact line remains pinned for all values

of θ1, while the upslope contact line de-pins at α̂ = α̂R. Figure 13(a) shows plots of the

profile of a ridge which has de-pinned at its upslope contact line as α̂ is increased from
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FIG. 12: Plots of (a) the profile of a large sessile ridge which has de-pinned at its downslope contact line

for α̂ = α̂A ≃ 23.08, 24, 24.25, α̂Amax = 24.50 when Λ = 1, θA = 7 and θR = 0, together with plots of

(b) the contact angles θ1 and θ2, (c) the maximum thickness hm, (d) the relative location of the maximum

thickness xm/L and (e) the width L, as functions of α̂ for a large sessile ridge whose downslope contact line

de-pins for Λ = 0, 0.5, 1 when θA = 7 and θR = 0. In (b)–(e) the leftmost dot on each curve indicates

the point at which the downslope contact line de-pins, the rightmost dot indicates the point α̂ = α̂Amax at

which θ2 = 0, and the vertical dashed line indicates the value α̂ = α̂Amax = 24.50 beyond which there are

no steady solutions on the kind considered here.
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FIG. 13: Plots of (a) the profile of a large sessile ridge which has de-pinned at its upslope contact line

for α̂ = α̂R ≃ 20.58, 100, 500, 1000, 2000 when Λ = 1, θA = ∞ and θR = 2, together with plots of (b)

the contact angles θ1 and θ2, (c) the maximum thickness hm, (d) the relative location of the maximum

thickness xm/L and (e) the width L, as functions of α̂ for a large sessile ridge whose upslope contact line

de-pins for Λ = 0, 0.5, 1 when θA = ∞ and θR = 2. In (b)–(e) the dots on each curve indicate the point at

which the upslope contact line de-pins, and the dotted curves show the leading order asymptotic solutions

in the limit of a large angle of inclination of the substrate, α̂ → ∞, given by (b) θ1 ≃ 1.41α̂1/2 → ∞, (c)

hm ≃ 0.61α̂1/4 → ∞, (d) xm/L → 1/3+ and (e) L ≃ 2.91α̂−1/4 → 0+ for all Λ.
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h̄(x̄)

x̄x̄m = 1/3

h̄m ≃ 1.78

FIG. 14: Plot of the scaled ridge profile h̄(x̄) in the limit of a large angle of inclination of the substrate,

α̂ → ∞, given by (37) and (38).

α̂ = α̂R ≃ 20.58 when Λ = 1, θA = ∞ and θR = 2. Figures 13(b)–(e) show how θ1 and

θ2, hm, xm/L and L vary with α̂ for a range of values of Λ when θA = ∞ and θR = 2. In

particular, Figure 13(e) shows that the width of the ridge always decreases after de-pinning.

In the limit of a large angle of inclination of the substrate, α̂ → ∞, the numerically

calculated solutions shown in Figure 13 suggest that the ridge becomes infinitely narrow

like L = O(α̂−1/4) → 0+ and infinitely thick like hm = O(α̂1/4) → ∞ with xm/L → 1/3+.

To investigate the behaviour of the ridge in this limit we therefore rescale the variables

according to

L = α̂−1/4L̄, x = α̂−1/4L̄x̄, xm = α̂−1/4L̄x̄m, ξ = α̂−1/4L̄ξ̄,

h = α̂1/4L̄−1h̄, hm = α̂1/4L̄−1h̄m, θ1 = α̂1/2L̄−2θ̄1,
(34)

where the scaled width L̄ is to be determined as part of the solution. At leading order in

the limit α̂ → ∞ the effects of the external airflow and of the normal component of gravity

are negligible, and equations (10) and (9) become

h̄′′′ − L̄4 = 0 (35)

subject to

h̄(0) = 0, h̄(1) = 0, h̄′(1) = 0,

∫ 1

0

h̄ dx̄ = V. (36)
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Equations (35) and (36) have the simple exact solution

h̄ =
L̄4

6
x̄(1 − x̄)2 = 12V x̄(1 − x̄)2, where L̄ = (72V )1/4 ≃ 2.91V 1/4, (37)

which gives the values

θ̄1 =
L̄4

6
= 12V, h̄m =

2L̄4

81
=

16V

9
≃ 1.78V, x̄m =

1

3
. (38)

Figure 14 shows h̄ plotted as a function of x̄, and, in particular, shows that h̄ is skewed

downslope with x̄m = 1/3. The leading order asymptotic solutions for θ1 = (2V α̂)1/2 ≃

1.41α̂1/2 → ∞, θ2 = 0, hm = (16/9)(V 3α̂/72)1/4 ≃ 0.61α̂1/4 → ∞, xm/L = 1/3 and

L = (72V/α̂)1/4 ≃ 2.91α̂−1/4 → 0+ are shown with dotted lines in Figures 13(b)–(e). In

particular, this asymptotic solution shows how the ridge becomes infinitely narrow and thick

and is skewed downslope with infinitely large downslope contact angle in the limit of a large

angle of inclination of the substrate. Like the solution in the limit of strong external airflow

discussed in Sec. IV B, while this asymptotic solution is formally valid for arbitrarily large

values of α̂, the underlying thin-film approximation will, of course, eventually fail when α̂

becomes too large.

VI. A LARGE PENDENT RIDGE

The equation for the profile of a large pendent ridge on a nearly horizontal substrate

(specifically, when π − α = O(ǫ)), differs from the corresponding equation for a large sessile

ridge (10) derived in Sec. III only in the sign of the h′ term (i.e. the term corresponding

to the normal component of gravity), where Λ is again given by (11) and α̂ (≥ 0) is now

defined by

α̂ =
π − α

ǫ
. (39)

This equation is again subject to the boundary conditions (9), and equations (13)–(18) again

hold.

In the special case of no external airflow, Λ = 0, the ridge profile is again given by (19),
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γ(L)

L

FIG. 15: Plot of the function γ(L) given by (42). The dotted curves show the leading order asymptotic

behaviour γ ∼ 6/L2 → ∞ as L → 0+ and γ ∼ (2π − L)/4π → 0+ as L → 2π−.

where the functions h0 = h0(x) and h1 = h1(x) are now given by

h0 =
sin

L − x

2
sin

x

2

sin
L

2
−

L

2
cos

L

2

(40)

and

h1 = x −
L cos

L − x

2
sin

x

2

sin
L

2

, (41)

respectively. The contact angles θ1 and θ2 are again given by (22), where the function

γ = γ(L) is now defined by

γ =
1

2

(

1 −
L

2
cot

L

2

)−1

. (42)

Inspection of (42) reveals that, unlike for a sessile ridge (23), for a pendent ridge γ has

multiple branches of solutions. However, γ is a strictly positive, monotonically decreasing

function of L in the only interval in which the solutions for h are physically realisable,

namely 0 < L ≤ 2π, and satisfies γ ∼ 6/L2 → ∞ as L → 0+ and γ ∼ (2π − L)/4π → 0+ as

L → 2π−, as shown in Figure 15.

The quasi-static evolution of a large pendent ridge as the external airflow is gradually

strengthened and as the substrate is gradually tilted is similar to that of a large sessile ridge
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θ1, θ2

Λ

θ1 = θ2 (α̂ = 0)

θ1 (α̂ = 40)

θ2 (α̂ = 40)

(a) Λ

hm

α̂ = 0
α̂ = 40

(b)

Λ

xm/L

α̂ = 0

α̂ = 40

(c) Λ

L

α̂ = 0

α̂ = 40

(d)

FIG. 16: Plots of (a) the contact angles θ1 and θ2, (b) the maximum thickness hm, (c) the relative location

of the maximum thickness xm/L, and (d) the width L, as functions of Λ for a large pendent ridge whose

upslope contact line de-pins for α̂ = 0, 20, 40 when θR = 2. The dots indicate the points at which the

upslope contact line de-pins (i.e. when Λ = ΛR and θ = θR). The solid lines show the results for a large

sessile ridge for which α̂ = α/ǫ and the dashed lines show the results for a large pendent ridge for which

α̂ = (π − α)/ǫ.

described in Secs IV and V, respectively. For example, Figure 16 shows how θ1, θ2, hm,

xm/L and L vary with Λ for a range of values of α̂ when θR = 2 for both a large sessile and

a large pendent ridge. In particular, Figure 16 shows that the behaviour of the two ridges

is qualitatively similar, with the pendent ridge (shown with the dashed lines) generally
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being slightly thicker, de-pinning at a slightly smaller value of ΛR, and (after de-pinning

occurs) being slightly narrower than the corresponding sessile ridge (shown with the solid

lines). Moreover, as Figure 16 also shows, at leading order in the limit of a strong external

airflow, Λ → ∞, the effect of gravity is negligible and both sessile and pendent ridges behave

according to the asymptotic solution described in Sec. IV B.

VII. A SMALL (SESSILE OR PENDENT) RIDGE

When the substrate is not restricted to being nearly horizontal (specifically, when α =

O(1)), in both sessile and pendent cases the transverse component of gravity is relatively

strong and so only a relatively “small” ridge of width much less than the capillary length ℓ

can be supported against gravity by capillary and/or external pressure forces. In this case it

is appropriate to choose L0 =
√

ǫℓ = V 1/4
√

ℓ as the characteristic transverse length scale, so

that the aspect ratio is ǫ =
√

V /ℓ ≪ 1, the characteristic pressure scale is
√

ǫσ/ℓ =
√

ǫρgℓ =

ρgV 1/4
√

ℓ, and at leading order in the limit ǫ → 0 equation (8) becomes

h′′′ − sin α + Λ
d

dx
−
∫ L

0

h′(ξ)

x − ξ
dξ = 0, (43)

where

Λ =
ρa

√
ǫℓU2

∞

πσ
=

ρaV
1/4

√
ℓU2

∞

πσ
. (44)

This equation is again subject to the boundary conditions (9), the local behaviour near the

contact lines is again given by (13) and (14), the transverse force balance is simply

θ2
1 − θ2

2 = 2V sin α, (45)

and the general form of the solution for the ridge profile is h = V h0 + sin α h1, where the

functions h0 = h0(x) and h1 = h1(x) again satisfy (18). Comparing equation (43) with the

corresponding equation for a large ridge (10) reveals, as might have been expected, that the

normal component of gravity is negligible for a small ridge, and hence that the leading order

solutions for a small sessile and a small pendent ridge are identical. Moreover, comparing

the definitions of Λ for large and small ridges (given by equations (11) and (44), respectively)
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reveals that the external airflow required to support even a small ridge on a substrate which

is not nearly horizontal is stronger than that required to support a large ridge on a nearly

horizontal substrate (specifically, U∞ must be larger by a factor of ǫ−1/4 = (ℓ/
√

V )1/4 ≫ 1).

In the special case of no external airflow, Λ = 0, the ridge profile, denoted by h = H0 =

H0(x), is given by H0 = V h00 +sin α h01, where the functions h00 = h00(x) and h01 = h01(x)

are given by

h00 =
6x(L − x)

L3
(46)

and

h01 =
x

12
(L − x)(L − 2x), (47)

respectively, and the contact angles θ1 and θ2 are given by

θ1,2 =
6V

L2
±

L2 sin α

12
, (48)

where again the + sign is taken for θ1 and the − sign is taken for θ2. In particular, from

(48) it can immediately be deduced that as L is increased both contact angles decrease,

just as they do in the case of a large ridge discussed in Secs III–VI. However, since, unlike

the value of α̂, the value of sin α cannot exceed unity, unlike in the case of a large ridge in

which θ2 always reaches zero for sufficiently large values of L, for a small ridge θ2 reaches

zero and θ1 reaches the non-zero value θ1 = 12V/L2 = (L2 sin α)/6 when sin α = 72V/L4

only if 72V/L4 ≤ 1 with both θ1 and θ2 remaining strictly positive and taking the minimum

values θ1,2 = 6V/L2 ± L2/12 when sin α = 72V/L4 = 1 otherwise. Note that the present

solution for a small ridge in the special case of no external airflow was first obtained (albeit

with a slightly different scaling) by Hocking and Miksis [30]. In the limit of a weak external

airflow, Λ → 0+, the ridge profile again takes the form (24), where the leading order term,

H0 = H0(x), is again simply the solution in the special case of no external airflow, Λ = 0,

and the first order term, H1 = H1(x), is given by H1(x) = V h10 + sin α h11, where the

functions h10 = h10(x) and h11 = h11(x) are given by

h10 = log L −
5x(L − x)

2L2
−

x2(3L − 2x)

L3
log x −

(L − x)2(L + 2x)

L3
log(L − x) (49)
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θA = 1.7

θR = 1

sin αAR = 0.945

(a) sin α

θ1, θ2

θ1(Λ = 0.4)

θ2(Λ = 0.4)

θ1(Λ = 0)

θ2(Λ = 0)

θA = 1.7

θR = 0.8

sinα = 1

(b)

FIG. 17: Plots of the contact angles θ1 and θ2 as functions of sinα for a small ridge for (a) Λ = 0,

ΛAR ≃ 0.19, 0.4 when L = 2, θA = 1.7 and θR = 1 (for which sinαAR = (θ2
A − θ2

R)/(2V ) = 0.945 < 1), and

for (b) Λ = 0, 0.2, 0.4 when L = 2, θA = 1.7 and θR = 0.8 (for which (θ2
A − θ2

R)/(2V ) = 1.125 > 1). In both

(a) and (b) the leftmost dot on each curve indicates the point at which the first contact line (which can be

either the upslope or the downslope contact line) de-pins, and in (b) the rightmost dot indicates the point

sin α = sinαAR = 0.945 at which the second contact line de-pins.

and

h11 =
Lx(L − 2x)(L − x)

48
−

x2(L − x)2

24
log x +

x2(L − x)2

24
log(L − x), (50)

respectively. The behaviours of H0 and H1 are qualitatively similar to those in the case of

large ridge shown in Figure 2, except that when 72V/L4 > 1 H ′

0(L) is strictly positive (rather

than simply non-negative) and H ′

1(0) is strictly negative (rather than simply non-positive).

In general, the behaviour of a small ridge can be similar to that of a large ridge described

in Secs III–VI, with, as we have already seen, the important qualitative difference that,

whereas for a large ridge the value of α̂ is unbounded, for a small ridge the value of sinα

cannot exceed unity, and hence, unlike in the case of a large ridge, for a small ridge even in

the general case in which θA is finite and θR is non-zero one or both of the contact lines may

never de-pin. For example, for a small ridge the transverse force balance (45) shows that if
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the second contact line de-pins then it does so when sin α = sin αAR, where

sin αAR =
θ2
A − θ2

R

2V
, (51)

and that if there exists a critical value of Λ for which the two contact lines de-pin simul-

taneously, denoted again by ΛAR, then the value of Λ relative to ΛAR determines which of

the two contact lines de-pins first for increasing sin α. When sin αAR = (θ2
A − θ2

R)/(2V ) ≤ 1

this behaviour is qualitatively the same as in the case of a large ridge discussed in Sec. V B;

however, when (θ2
A − θ2

R)/(2V ) > 1 the second contact line never de-pins. This behaviour

is illustrated in Figure 17 which shows how the contact angles θ1 and θ2 vary with sin α for

a range of values of Λ. Specifically, Figure 17(a) shows the behaviour in the case L = 2,

θA = 1.7 and θR = 1 in which sin αAR = (1.72 − 1)/(2V ) = 0.945 < 1, ΛAR ≃ 0.19, and

the behaviour is qualitatively the same as that in the case of a large sessile ridge shown in

Figure 11, while Figure 17(b) shows the behaviour in the case L = 2, θA = 1.7 and θR = 0.8

in which (1.72 − 0.82)/(2V ) = 1.125 > 1, ΛAR does not exist, and the second contact line

never de-pins. In particular, closer inspection of Figure 17(b) reveals that for values of Λ less

than that at which θ1 = θA at sin α = 1 (exemplified by the case Λ = 0) only the downslope

contact line de-pins, for values of Λ greater than that at which θ2 = θR at sin α = 1 (ex-

emplified by the case Λ = 0.4) only the upslope contact line de-pins, while for intermediate

values of Λ (exemplified by the case Λ = 0.2) neither contact line ever de-pins.

VIII. CONCLUSIONS

In the present work we described the behaviour of a steady thin sessile or pendent ridge

of fluid on an inclined planar substrate which is strongly coupled to the external pressure

gradient arising from an external airflow that flows parallel to the substrate far from the

ridge. When the substrate is nearly horizontal (specifically, when α = O(ǫ) for a sessile ridge

or π−α = O(ǫ) for a pendent ridge) a relatively large ridge can be supported against gravity

by capillary and/or external pressure forces, whereas when the substrate is not restricted

to being nearly horizontal (specifically, when α = O(1)) only a relatively small ridge can
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be supported; classical thin-aerofoil theory was adapted to obtain the governing singular

integro-differential equations for the profile of the ridge in each case.

Attention focused mainly on the case of a large sessile ridge on a nearly horizontal sub-

strate. In Sec. III we described some basic properties of the solution, while in Secs IV and

V we used a combination of asymptotic and numerical techniques to analyse the effect of

varying the strength of the external airflow, Λ, and the angle of inclination of the substrate,

α̂, respectively.

In Sec. IV A we studied a pinned ridge for increasing Λ and showed that the effect of

strengthening the airflow is to push the ridge down near to its edges but to pull it up near

to its middle. In Sec. IV B we showed that at a critical value of Λ = ΛR the upslope contact

angle reaches the receding contact angle θR at which the upslope contact line de-pins, and

continuing to increase Λ beyond ΛR results in the de-pinned ridge becoming increasingly

narrow, thick and symmetric in the limit of a strong external airflow, Λ → ∞.

In Sec. V A we studied a pinned ridge for increasing α̂ and showed that the effect of tilting

the substrate is to skew the ridge downslope. In Sec. V B we showed that, depending on the

values of the advancing and receding contact angles, the ridge may first de-pin at either the

upslope or the downslope contact angle but, in general, eventually both contact lines de-pin

at α̂ = α̂AR = (θ2
A − θ2

R)/(2V ). In Secs V C and V D we considered the special cases θR = 0

in which only the downslope contact line de-pins, and θA = ∞ in which only the upslope

contact line de-pins, respectively.

In Sec. VI we showed that the behavour of a large pendent ridge is qualitatively similar

to that of a large sessile ridge, while in Sec. VII we showed that the important qualitative

difference between the behaviour of a large ridge and a small ridge is that for the latter even

in the general case in which θA is finite and θR is non-zero one or both of the contact lines

may never de-pin.

The goal of the present work was to formulate and analyse a simple model for the strongly

coupled interaction between a thin ridge of fluid and an external airflow. Clearly this analysis

could be extended in several directions, such as to include detachment of the external airflow
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at some point on the free surface of the ridge (as discussed by, for example, Durbin [7]) and/or

a non-zero shear stress at the free surface of the ridge (as discussed by, for example, King

and Tuck [8] and Sullivan et al. [26]).
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Appendix A: Numerical Method

In this Appendix we outline the numerical method used to solve the governing linear

singular integro-differential equation (10) subject to the boundary conditions (9). We first

map the ridge from the interval x ∈ [0, L] onto the interval x ∈ [0, 1], which is then divided

into n equally spaced subintervals [xi, xi+1], where xi = i/n, 0 ≤ i ≤ n − 1. We adopt a

method similar to that used by Tseluiko et al. [31] and use central differences to approximate

h′′′(x), h′(x) and the derivative of the integral term; the integral itself is approximated as

half the sum of the integrals in each double subinterval [ξj−1, ξj+1] for 1 ≤ j ≤ n− 1. Hence
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the term

d

dx
−
∫ 1

0

h′(ξ)

x − ξ
dξ (A1)

is discretised and approximated by

n

(

−
∫ 1

0

h′(ξ)

xi+ 1

2

− ξ
dξ −−

∫ 1

0

h′(ξ)

xi− 1

2

− ξ
dξ

)

=
n2

4

n−1
∑
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(

∫ ξj+1

ξj−1

dξ

xi+ 1

2

− ξ
−

∫ ξj+1

ξj−1

dξ

xi− 1

2

− ξ

)

+
n2h1

2

(
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dξ

xi− 1

2

− ξ

)

−
n2hn−1

2

(

∫ ξn

ξn−1

dξ

xi+ 1

2

− ξ
−

∫ ξn

ξn−1

dξ

xi− 1

2

− ξ

)

=
n2

4

n−1
∑

j=1

(hj+1 − hj−1) log

∣

∣

∣

∣

(2i − 2j + 3) (2i − 2j − 3)

(2i − 2j − 1) (2i − 2j + 1)

∣

∣

∣

∣

+
n2h1

2
log

∣

∣

∣

∣

(2i − 3) (2i + 1)

(2i − 1)2

∣

∣

∣

∣

+
n2hn−1

2
log

∣

∣

∣

∣

(2i − 2n − 1) (2i − 2n + 3)

(2i − 2n + 1)2

∣

∣

∣

∣

, (A2)

where

δx = xi+1 − xi, n =
1

δx
, xi± 1

2

=
i ± 1

2

n
, ξj±1 =

j ± 1

n
, hj = h(ξj), (A3)

and h0 = hn = 0 from the boundary conditions. Then, rather than specifying the volume

condition directly, we specify either θ1 or θ2 to give an expression for either h1 or hn−1,

respectively. This yields a system of (n − 2) × (n − 2) linear equations for the ridge profile

hi at each node xi, which is solved using the mathematical software package MAPLE. This

is done iteratively; specifically, the value of the specified angle is altered until the volume

condition (9) is satisfied to within a prescribed tolerance (typically 10−6). The numerical

results show good agreement when checked against the transverse force balance (16) and

the asymptotic results derived in the present work.
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