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Abstract

We study a liquid film that is deposited onto a flat plate that is inclined at a constant

angle to the horizontal and is extracted from a liquid bath at a constant speed. We addi-

tionally assume that there is a constant temperature gradient along the plate that induces a

Marangoni shear stress. We analyse steady-state solutions of a long-wave evolution equation

for the film thickness. Using centre manifold theory, we first obtain an asymptotic expan-

sion of solutions in the bath region. The presence of the temperature gradient significantly

changes these expansions and leads to the presence of logarithmic terms that are absent

otherwise. Next, we obtain numerical solutions of the steady-state equation and analyse the

behaviour of the solutions as the plate velocity is changed. We observe that the bifurcation

curve exhibits snaking behaviour when the plate inclination angle is beyond a certain critical

value. Otherwise, the bifurcation curve is monotonic. The solutions along these curves are

characterised by a foot-like structure that is formed close to the meniscus and is preceded

by a thin precursor film further up the plate. The length of the foot increases along the

bifurcation curve. Finally, we explain that the snaking behaviour of the bifurcation curves

is caused by the existence of an infinite number of heteroclinic orbits close to a heteroclinic

chain that connects in an appropriate three-dimensional phase space the fixed point corre-

sponding to the precursor film with the fixed point corresponding to the foot and then with

the fixed point corresponding to the bath.

1 Introduction

Spreading liquids on a surface by pulling a plate out of a liquid bath is a well known coating

process used for industrial applications [1]. In order to gain control over the coating process,

this problem has been studied from an experimental point of view, see, e.g., refs. [2, 3, 4, 5, 6],

and also theoretically, see, e.g., refs. [5, 7, 8, 9, 10, 11]. Landau and Levich [7], for example,

analysed liquid films of constant thickness coating a vertical plate extracted from a bath

of liquid at low velocities and found that the film thickness scales as U2/3, where U is the

velocity of the plate. The asymptotic result of Landau and Levich was improved by Wilson
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Table 1: Hierarchy of systems exhibiting exponential snaking behaviour, Shilnikov [17], Knobloch

& Wagenknecht [18].

Author Description of scenario # Fixed Points

Shilnikov infinite number of periodic orbits 1 fixed point

approaching a homocline

Knobloch & Wagenknecht infinite number of homoclines 2 fixed points

approaching a hetereoclinic cycle

Present study infinite number of heteroclines 3 fixed points

approaching a hetereoclinic chain

[10]. Non-Landau-Levich-type solutions, which satisfy other scaling laws, were also found,

see, for example, refs. [5, 12, 13, 14]. In particular, the results of Benilov et al. [12] indicate

that for certain parameter values there may exist multiple non-Landau-Levich solutions.

Related behaviour is also found in coating problems involving complex fluids. A particular

example is the deposition of line patterns in the process of Langmuir-Blodgett transfer of

a surfactant layer from a bath onto a moving plate [15]. There a reduced Cahn-Hilliard

type model was employed to show that the deposition of lines is related to local and global

bifurcations of time-periodic states from a snaking bifurcation curve of steady-state front

solutions [16], that in the light of the present work may be seen as a case of heteroclinic

snaking.

In the present study, we do not consider Landau-Levich solutions where the thick drawn

film directly connects to the meniscus of the bath. Instead we focus on a different type

of film profiles which show a foot-like structure of characteristic thickness hf close to the

meniscus that is preceded by a very thin precursor film of characteristic thickness hp further

up the plate. They were recently described for a slip model [5, 11]. We show that, as for

the slip model, for the precursor film model, for sufficiently small inclination angles, the foot

shape is monotonic and, as the inclination angle increases, there appear undulations on top

of the foot. In both cases we observe that for each inclination angle foot solutions exist

when the plate velocity is close to a certain limiting velocity, and the closer the bifurcation

curve approaches this limiting value, the larger the foot length becomes. The analysis of

the bifurcation diagrams of foot solutions for a suitable solution measure, shows that this

classical physical-chemical problem turns out to be a rich example to illustrate exponential

heteroclinic snaking near a hetereoclinic chain. We demonstrate that the three regions of

the liquid film profile, namely, the precursor film, the foot and the bath, can be considered

as three fixed points yp, yf and yb of an appropriate three-dimensional dynamical system.

The steady film profiles are then described by heteroclinic orbits connecting points yp and

yb. Then, we show that the exponential snaking behaviour observed in the dragged meniscus
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problem is caused by a perturbation of a heteroclinic chain that connects yp with yf and yf

with yb that exists for certain parameter values, provided that fixed points yp and yb have

two-dimensional unstable and two-dimensional stable manifolds, respectively, and that fixed

point yf is a saddle focus with a one-dimensional stable manifold and a two-dimensional

unstable manifold.

Note that related exponential snaking behaviour has been analysed in systems involving

either one fixed point [17, 19] or two fixed points [18]. Table 1 illustrates that our results

form part of a hierarchy of such snaking behaviours: Shilnikov (see refs. [17, 19]) analy-

ses homoclinic orbits to saddle-focus fixed points in three-dimensional dynamical systems

that exist for some value β0 of parameter β and demonstrated that if the fixed point has

a one-dimensional unstable manifold and a two dimensional stable manifold, so that the

eigenvalues of the Jacobian at this point are λ1 and −λ2± iω, where λ1,2 and ω are positive

real numbers, and if the saddle index δ ≡ λ2/λ1 < 1, then in the neighbourhood of the

primary homoclinic orbit there exists an infinite number of periodic orbits that pass near

the fixed point several times. Moreover, the difference in the periods of these orbit tends

asymptotically to π/ω. The perturbation of the structurally unstable homoclinic orbit leads

to a snaking bifurcation diagram showing the dependence of the period of the orbit versus

the bifurcation parameter β. This diagram has an infinitely countable number of turning

points at which the periodic orbits vanish in saddle-node bifurcations. However, if the saddle

index is greater than unity, then the bifurcation diagram is monotonic. Knobloch and Wa-

genknecht [18, 20] analyse symmetric heteroclinic cycles connecting saddle-focus equilibria in

reversible four-dimensional dynamical systems that arise in a number of applications, e.g., in

models for water waves in horizontal water channels [21] and in the study of cellular buckling

in structural mechanics [22]. In these systems the symmetric heteroclinic cycle organises the

dynamics in an equivalent way to the homoclinic solution in Shilnikov’s case. It is found

that a necessary condition for exponential snaking in such four-dimensional systems is the

requirement that one of the involved fixed points is a bi-focus [18]. Then there exists an

infinite number of homoclines to the second involved fixed point that all pass a close neigh-

bourhood of the bi-focus. The presently studied case is equivalent to the cases of Shilnikov

and of Knobloch and Wagenknecht, however, here a heteroclinic chain between three fixed

points forms the organising centre of an infinite number of heteroclines.

The rest of the paper is organised as follows. In sect. 2, we introduce the model equation.

In sect. 3, we analyse asymptotic behaviour of solutions in the bath region. In sect. 4 we

present numerical results for the steady states and their snaking behaviour in the cases

without and with Marangoni driving. Section 5 is devoted to an analytical explanation of

the bifurcation diagrams obtained in sect. 4. Finally, in sect. 6 we present our conclusions.
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2 Model equation

We consider a flat plate that forms a constant angle with the horizontal direction and that is

being withdrawn from a pool of liquid at a constant speed. A schematic representation of the

system is shown in fig. 1. We introduce a Cartesian coordinate system (x, z) with the x-axis

pointing downwards along the plate and the z-axis pointing upwards and being perpendicular

to the plate. We assume that the free surface is two-dimensional, with no variations in the

transverse direction. The position of the free surface is given by the equation z = h(x, t),

where t denotes time. As a model equation governing the evolution of the free surface, we

use a long-wave equation derived in refs. [23, 24] from the Navier-Stokes equations and the

corresponding boundary conditions under the assumptions that the plate inclination angle

is small and the typical longitudinal length scale of free-surface variations is large compared

to the typical film thickness:

∂th = −∂x
(
h3

3
∂x[∂2xh+ Π(h)]

−h
3

3
G(∂xh− α)− U

3
h

)
. (1)

Here α, U and G are the scaled inclination angle of the plate, the scaled plate velocity and

the scaled gravity, respectively, and the symbols ∂t and ∂x denote partial differentiation

with respect to t and x, respectively. On the right-hand side, −∂2xh represents the Laplace

pressure, Π(h) represents the Derjaguin or disjoining pressure (that we will discuss in detail

below), the term G∂xh is due to the hydrostatic-pressure, −Gα is due to the x-component

of gravity and the last term is due to the drag of the plate.

The interaction between the plate and the non-volatile partially wetting liquid is modelled

via the disjoining pressure, which has the dimensional form

Π̃(h̃) = Π̃1(h̃) + Π̃2(h̃) = − A
h̃3

+
B

h̃6
(2)

consisting of a destabilising long-range van der Waals interaction, Π̃1(h̃) = −A/h̃3 , and a

stabilising short-range interaction, Π̃2(h̃) = B/h̃6. Here h̃ is the dimensional film thickness,

and A and B are the Hamaker constants. For A and B positive, on a horizontal plane

the disjoining pressure describes partial wetting and characterises a stable precursor film of

thickness

heq = (B/A)1/3 (3)

that may coexist with a meniscus of finite contact angle

θeq =

√
3A

γh2eq
, (4)

where γ is the surface tension coefficient (see refs. [24, 25, 26, 27] for background information

and details).

Equation (1) has been non-dimensionalised using ` =
√

3/5 heq/θeq as the length scale

in the x-direction, heq as the length scale in the z-direction and τ=(9ηheq)/(25γθ4eq) as the
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Figure 1: Sketch of the problem: Upper panel: An infinitely extended flat plate inclined at an

angle α is withdrawn at a constant speed U from a bath of a partially wetting liquid. Lower

panel: Definition of the precursor film height, hp, and the foot film height, hf , for a typical film

profile.

time scale, where η is the viscosity of the liquid. Note that with this non-dimensionalisation

the dimensionless disjoining pressure has the form

Π(h) = Π1(h) + Π2(h) = − 1

h3
+

1

h6
. (5)

The scaled velocity, gravity number and the inclination angle are given by

U =
3τ

`
u, G =

ρgh4eq
A

, α =
`

heq
α̃, (6)

respectively, where ρ is the density of the liquid and g is gravity and u and α̃ are the

dimensional plate velocity and the plate inclination angle, respectively.

Note that additional physical effects can be included into the model presented above.

One extension that is interesting for reasons that will become clear later, is the inclusion of

a term quadratic in h in the flux on the right-hand side of eq. (1). This can be obtained, for

example, by assuming that there is an additional constant temperature gradient along the
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plate, see refs. [28, 29, 30, 31] for more details. Inclusion of this effect into the present model

results in

∂th = −∂x
(
h3

3
∂x[∂2xh+ Π(h)]

−h
3

3
G(∂xh− α)− Ω

3
h2 − U

3
h

)
, (7)

where Ω is a dimensionless number representing the temperature gradient along the plate.

Finally, we discuss boundary conditions. First, we assume that h tends to an undeter-

mined constant value (e.g., at equilibrium the precursor film thickness) as x→ −∞ and its

derivatives tend to zero as x→ −∞. Second, we assume that hx = α+o(1) as x→∞, which

means that the slope of the free surface of the bath approaches the horizontal direction far

away from the plate. The asymptotic behaviour of h as x → ∞ will be analysed in more

detail in the next section.

3 Asymptotic behaviour of solutions at infinity

In what follows, we will analyse steady-state solutions of eq. (7), i.e., solutions that satisfy

the equation

h3[h′′ + Π(h)]′ −Gh3(h′ − α)− Ωh2 − Uh+ C0 = 0, (8)

where now h is a function of x only and primes denote differentiation with respect to x.

Here, C0 is a constant of integration and represents the flux. Note that C0 is in fact not

an independent parameter but is determined as part of the solution of the boundary-value

problem consisting of eq. (8) and four boundary conditions that will be discussed in the next

section.

Following a proposal of ref. [29], we introduce variables y1 = 1/h, y2 = h′ and y3 = h′′,

and convert the steady-state equation (8) into a three-dimensional dynamical system:

y′1 = −y21y2, (9)

y′2 = y3, (10)

y′3 = (6y71 − 3y41)y2 +Gy2 + Uy21

+Ωy1 − C0y
3
1 −Gα. (11)

Note that the transformation y1 = 1/h is used to obtain a new fixed point corresponding

to the bath, namely the point yb = (0, α, 0), beside other fixed points, two of which, yf =

(1/hf , 0, 0) and yp = (1/hp, 0, 0), correspond to the foot and the precursor film, respectively.

To analyse the stability of the fixed point yb, we first compute the Jacobian at this point:

Jyb
=


0 0 0

0 0 1

Ω G 0

 . (12)
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The eigenvalues are 0, ±G1/2 and the corresponding eigenvectors are (G, −Ω, 0), (0, ±G−1/2, 1).

So there is a one-dimensional centre (or critical) eigenspace, a one-dimensional stable eigenspace

and a one-dimensional unstable eigenspace given by

T cyb
= span{(G, −Ω, 0)}, (13)

T syb
= span{(0, −G−1/2, 1)}, (14)

Tuyb
= span{(0, G−1/2, 1)}, (15)

respectively.

To determine the asymptotic behaviour of h as x → ∞, we analyse the centre manifold

of yb, which we denote by W c
yb

. This is an invariant manifold whose tangent space at yb

is T cyb
. The existence of a centre manifold is provided by the centre manifold theorem (see,

e.g., theorem 1, p. 4 in ref. [32], theorem 5.1, p. 152 in ref. [33]). For simplicity, we use the

substitution z1 = y1, z2 = y2 − α, z3 = y3. In vector notation, the dynamical system takes

the form

z′ = f(z), (16)

where f(z) = (f1(z), f2(z), f3(z))T and

f1(z) = f1(z1, z2, z3) = −z21(z2 + α), (17)

f2(z) = f2(z1, z2, z3) = z3, (18)

f3(z) = f3(z1, z2, z3) = (6z71 − 3z41)(z2 + α) +Gz2

+Uz21 + Ωz1 − C0z
3
1 . (19)

The fixed point corresponding to the bath is then zb = (0, 0, 0). Next, we rewrite the

system of ordinary differential equations (16) in its eigenbasis at zb, i.e., we use the change

of variables u = B−1z, where B is the matrix having the eigenvectors of the Jacobian as its

columns,

B =


G 0 0

−Ω G−1/2 −G−1/2

0 1 1

 , (20)

and obtain the system

u′ = g(u) ≡ B−1f(Bu), (21)

which can be written in the form

ξ′ = ψ(ξ,η), (22)

η′ = Cη +ϕ(ξ,η), (23)

where ξ denotes the first component of u and η = (η1, η2)T consist of the second and the

third components of u (i.e., ξ ≡ u1, η1 ≡ u2 and η2 ≡ u3), ψ and ϕ have Taylor expansions
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that start with quadratic or even higher order terms and C is the matrix

C =

 G1/2 0

0 −G1/2

 . (24)

After some algebra, we find

ψ(ξ,η) = GΩξ3 −Gαξ2 −G1/2ξ2η1 +G1/2ξ2η2, (25)

ϕ1(ξ,η) = −3G7Ω ξ8 + 3G7α ξ7 + 3G13/2ξ7η1

−3G13/2ξ7η2 +
3

2
G4Ω ξ5 − 3

2
G4α ξ4

−3

2
G7/2ξ4η1 +

3

2
G7/2ξ4η2 −

1

2
C0G

3ξ3

+
1

2
G3/2Ω2ξ3 − 1

2
G3/2Ωα ξ2 +

1

2
UG2ξ2

−1

2
GΩ ξ2η1 +

1

2
GΩ ξ2η2, (26)

ϕ2(ξ,η) = −G1/2η2 − 3G7Ω ξ8 + 3G7α ξ7

+3G13/2ξ7η1 − 3G13/2ξ7η2 +
3

2
G4Ω ξ5

−3

2
G4α ξ4 − 3

2
G7/2ξ4η1 +

3

2
G7/2ξ4η2

−1

2
C0G

3ξ3 − 1

2
G3/2Ω2ξ3 +

1

2
G3/2Ωα ξ2

+
1

2
UG2ξ2 +

1

2
GΩ ξ2η1 −

1

2
GΩ ξ2η2. (27)

Near the origin, zb, when |ξ| < δ for some positive δ, the centre manifold in the (ξ, η1, η2)-

space can be represented by the equations η1 = g1(ξ), η2 = g2(ξ), where g1 and g2 are in C2.

Moreover, near the origin system (22), (23) is topologically equivalent to the system

ξ′ = ψ(ξ, g(ξ)), (28)

η′ = Cη. (29)

where the first equation represents the restriction of the flow to its centre manifold (see, e.g.,

theorem 1, p. 4 in ref. [32], theorem 5.2, p. 155 in ref. [33]).

The centre manifold can be approximated to any degree of accuracy. According to the-

orem 3, p. 5 in ref. [32], ‘test’ functions φ1 and φ2 approximate the centre manifold with

accuracy O(|ξ|q), namely,

|g1(ξ)− φ1(ξ)| = O(|ξ|q), |g2(ξ)− φ2(ξ)| = O(|ξ|q) (30)

as ξ → 0, provided that φi(0) = 0, φ′i(0) = 0, i = 1, 2 and M [φ](ξ) = O(|ξ|q) as ξ → 0,

where M is the operator defined by

M [φ](ξ) = φ′(ξ)ψ(ξ, φ(ξ))−Cφ(ξ)−ϕ(ξ, φ(ξ)). (31)

The centre manifold can now be obtained by seeking for φ1(ξ) and φ2(ξ) in the form of

polynomials in ξ and requiring that the coefficients of the expansion of M [φ](ξ) in Taylor
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series vanish at zeroth order, first order, second order, etc. Using this procedure, we can find

the Taylor series expansions of g1 and g2:

g1(ξ) =

(
1

2
GΩα− 1

2
G3/2U

)
ξ2

+

(
G2Uα−G3/2Ωα2 − 1

2
GΩ2 +

1

2
G5/2C0

)
ξ3

−
(

3

2
G3αC0 − 3G2α3Ω +

3

2
G2ΩU − 3G5/2α2U

−3

2
G7/2α− 5

2
G3/2αΩ2

)
ξ4 + · · · , (32)

g2(ξ) =

(
1

2
GΩα+

1

2
G3/2U

)
ξ2

+

(
G2Uα+G3/2Ωα2 − 1

2
GΩ2 − 1

2
G5/2C0

)
ξ3

−
(

3

2
G3αC0 − 3G2α3Ω− 3G5/2α2U +

3

2
G2ΩU

+
3

2
G7/2α+

5

2
G3/2αΩ2

)
ξ4 + · · · . (33)

Let g
(k)
i (ξ), i = 1, 2, be the Taylor polynomial for gi(ξ) of degree k. Then gi(ξ) = g

(k)
i (ξ) +

O(|ξ|k+1), i = 1, 2, and M [g(k)](ξ) = O(|ξ|k+1) as ξ → 0. The dynamics on the centre

manifold is therefore governed by the equation

ξ′ = ψ(ξ, g(k)(ξ)) +O(|ξ|k+3)

= GΩξ3 −Gαξ2 −G1/2ξ2g
(k)
1 (ξ)

+G1/2ξ2g
(k)
2 (ξ) +O(|ξ|k+3). (34)

Substituting eq. (32) and eq. (33) into eq. (34), we find

ξ′ = −Gαξ2 +GΩξ3 + UG2ξ4 − (C0G
3 − 2G2Ωα2)ξ5

+(6G3Uα2 − 3G4α− 5G2Ω2α)ξ6 + · · · . (35)

Taking into account the fact that ξ = z1/G, we obtain

z′1 = −αz21 +
Ω

G
z31 +

U

G
z41 −

(
C0

G
− 2Ωα2

G2

)
z51

+

(
6Uα2

G2
− 3α

G
− 5Ω2α

G3

)
z61 + · · · . (36)

Rewriting this in terms of h, we get

h′ = α− Ω

G
h−1 − U

G
h−2 +

(
C0

G
− 2Ωα2

G2

)
h−3 −(

6Uα2

G2
− 3α

G
− 5Ω2α

G3

)
h−4 + · · · (37)

as h→∞.

We seek for a solution for h whose slope approaches that of the line corresponding to the

horizontal direction as x→∞. In the chosen system of coordinates, the line corresponding to
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Figure 2: Left Panel: Comparison between a numerical solution for Ω = 0 when α = 0.5 and

U = 0.084 and the expansion for h(x) given by eq. (46) with 1-4 terms. Right panel: Comparison

between a numerical solution for Ω = 0.001 when α = 0.5 at U = 0.076 and the expansion for

h(x) given by eq. (44) with 1-5 terms. L = 10000, L1 = 9800.

the horizontal direction has the slope α. So we seek for a solution satisfying h′(x) = α+o(1)

as x→∞. This can also be written in the form

h(x) = αx+ o(x) as x→∞. (38)

Substituting eq. (38) into eq. (37), we obtain

h′ = α− Ω

αG
x−1 + o(x−1), (39)

which implies

h = αx− Ω

αG
log x+ o(log x). (40)

Substituting eq. (40) into eq. (37), we find

h′ = α− Ω

αG
x−1 − Ω2

α3G2
x−2 log x+ o(x−2 log x), (41)

which implies

h = αx− Ω

αG
log x+

Ω2

α3G2
x−1 log x+ o(x−1 log x). (42)

In principle, any constant of integration can be added to this expression, and this reflects the

fact that there is translational invariance in the problem, i.e., if h(x) is a solution of eq. (8),

then a profile obtained by shifting h(x) along the x-axis is also a solution of this equation.

Without loss of generality, we choose the constant of integration to be zero, which breaks

this translational invariance and allows selecting a unique solution from the infinite set of

solutions.
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Substituting eq. (42) into eq. (37), we find

h′ = α− Ω

αG
x−1 − Ω2

α3G2
x−2 log x

− U

α2G
x−2 − Ω3

α5G3
x−3 log2 x

+
Ω3

α5G3
x−3 log x+ o(x−3 log x), (43)

which implies

h = αx− Ω

αG
log x+

Ω2

α3G2
x−1 log x (44)

+

(
Ω2

α3G2
+

U

α2G

)
x−1

− Ω3

2α5G3
x−2 log2 x+ o(x−2 log x). (45)

The procedure described above can be continued to obtain more terms in the asymptotic

expansion of h as x→∞. Note that all the terms in this expansion, except the first two, will

be of the form x−m logn x, where m is a positive integer and n is a non-negative integer. It

should also be noted that the presence of the logarithmic terms in the asymptotic expansion

of h is wholly due to the quadratic contribution to the flux in eq. (7) that here results

from a lateral temperature gradient. Without this term, i.e., for Ω = 0, the expansion (37)

for h′ does not contain the term proportional to h−1. This implies that after substituting

h(x) = αx+ o(x) in this expansion, no term proportional to x−1 will appear, and, therefore,

integration will not lead to the appearance of a logarithmic term. In fact, it is straightforward

to see that for Ω = 0 an appropriate ansatz for h is

h ∼ αx+D1x
−1 +D2x

−2 +D3x
−3 + · · · , (46)

implying that

D1 =
U

α2G
, D2 = − C0

2α3G
,

D3 = −1

3

(
2U2

α5G
+

3

α3G
− 6U

α2G2

)
, . . . . (47)

Note that the presence of a logarithmic term in the asymptotic behaviour of h was also

observed by Münch & Evans [29] in a related problem of a liquid film driven out of a meniscus

by a thermally induced Marangoni shear stress onto a nearly horizontal fixed plane. They

find the following asymptotic behaviour of the solution, given with our definition of the

coordinate system:

h(x) ∼ h0(x) +D0 +D1 exp(−D1/2x) as x→∞, (48)

where h0 = x/D − log x + o(1), D is the parameter measuring the relative importance of

the normal component of gravity and D0 and D1 are arbitrary constants. The constant D0

reflects the fact that there is translational invariance in the problem and it can be set to zero
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without loss of generality. An analysis performed along the lines indicated above shows that

a more complete expansion has the form

h(x) ∼ x

D
− log x+D x−1 log x+Dx−1

+
D2

2
x−2 log2 x+ · · · . (49)

Note that there is no need to include the exponentially small term as it is asymptotically

smaller than all the other terms of the expansion.

4 Numerical results

In this section, we present numerical solutions of eq. (8). We solve the equation on the

domain [−L1, L2]. At x = −L1, we impose the boundary conditions h′(−L1) = 0 and

h′′(−L1) = 0. At x = L2, we impose the boundary condition obtained by truncating the

asymptotic expansion (44) for Ω 6= 0 or (46) for Ω = 0 and evaluating it at x = L2. We

additionally impose a condition for the derivative of h at L2 obtained by differentiating

the asymptotic expansion for h and evaluating it at x = L2. To solve this boundary-

value problem numerically, we use the continuation and bifurcation software AUTO-07p (see

refs. [34, 35]). A description of the application of numerical continuation techniques to thin

film problems can be found in sect. 4b of the review in ref. [36], in sect. 2.10 of ref. [24], and

in refs. [37, 38, 39]. We perform our numerical calculations on a domain with L1 = 9800 and

L2 = 200 and choose G = 0.001.

In fig. 2, we compare the numerical solutions with the derived asymptotic expressions

for h as x → ∞, when the inclination angle is α = 0.5. In the left panel, Ω = 0 and

U = 0.084. The solid line shows a numerically computed profile, in which we can identify

three regions, namely, a thin precursor film, a foot, and a bath region. We also show the

truncated asymptotic expansion (46) with one, two, three and four terms included, as is

indicated in the legend. In the right panel, Ω = 0.001 and U = 0.076. The solid line shows

a numerically computed profile the remaining lines correspond to the truncated asymptotic

expansion (44) with one, two, three, four and five terms included, as is indicated in the

legend. In both cases, we can observe that the numerically computed profiles agree with the

derived asymptotic expansions and including more terms gives better agreement.

In fig. 3, we present bifurcation diagrams showing the dependence of a certain solution

measure quantifying the foot length on the velocity of the plate for Ω = 0. More precisely,

the measure is defined by lf = (V − V0)/(hf − hp), where V =
∫ L2

−L1
(h(x) − hp)dx, hf is

the characteristic foot height, hp is the precursor film height for the corresponding velocity,

and V0 is equal to V computed at U = 0. We observe that there is a critical inclination

angle, αc ≈ 0.1025, such that for α < αc, the bifurcation curve grows monotonically towards

a vertical asymptote at some value of the velocity, which we denote by U∞. This can be

observed in the left panels of fig. 3 when α = 0.1. When α > αc, we observe a snaking

12
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Figure 3: Comparison of bifurcation diagrams for two inclination angles as stated in the figures

for a temperature gradient Ω = 0: Top: Left panel: Asymptotical monotonic growth of the foot-

length measure lf towards the vertical asymptote at U = U∞ as a function of the dragged velocity

U for α = 0.1, which is below αc. Right panel: Snaking behaviour of the foot-length measure

lf where the bifurcation curve oscillates around a vertical asymptote at U = U∞ with decaying

amplitude of oscillations as a function of the dragged velocity U for α = 0.5, which is above

αc. Note the appearance of pairs of saddle nodes at Uc where the system starts successively to

switch branches and “snakes” around U∞. Bottom: In order to illustrate the different behaviour

for angles below and above αc, we show the foot-length measure lf versus |U−U∞| in a semi-log

plot. Left panel: The semi-log plot shows an asymptotic monotonic growth in U . Right panel:

An exponential – oscillating periodic decay is clearly shown. A periodic structure with a snaking

wavelength Λs and an exponential decay rate νs appears after Ub (bifurcation: appearance of

the first saddle node).
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Figure 4: Left panel compares bifurcation diagrams for different temperature gradients Ω as

shown in the legend for an inclination angle α = 0.5. The green filled circles indicate the points

at which lf = 300 and the corresponding film profiles are shown in the right panel. Note that

the snaking behaviour is present. The temperature gradient Ω shifts the vertical asymptote at

U∞ and changes the characteristic foot height at U∞.

behaviour where the bifurcation curve oscillates around a vertical asymptote at U = U∞

with decaying amplitude of oscillations. This can be observed in the right panels of fig. 3

when α = 0.5. We note that in this case there is an infinitely countable number of saddle-

nodes at which the slope of the bifurcation curve is vertical. Note that U∞ is different for

each inclination angle.

We note that for the case when Ω 6= 0 we observe qualitatively similar bifurcation di-

agrams. If an inclination angle is below a critical value (which now depends on Ω), then

the bifurcation diagrams are monotonic. Otherwise, the bifurcation diagrams show snaking

behaviour, as for the case of zero temperature gradient. An example of snaking bifurcation

curves for α = 0.5 and Ω = −0.001, 0 and 0.001 is given in fig. 4, and the corresponding

bifurcation curves are shown by dashed, solid and dot-dashed lines. We can observe that

as the temperature-gradient parameter Ω is increased/decreased, the vertical asymptote is

shifted to the left/right. We can also conclude that if the temperature gradient pulls the

liquid downwards, steady-state solutions of this bifurcation branch exist for larger values of

U . Otherwise, if the temperature gradient pulls the liquid upwards, steady-state solutions

of this bifurcation branch exist for smaller values of U . The right panel of fig. 4 shows three

profiles for lf = 300 by dashed, solid and dot-dashed lines for Ω = 0.001, 0 and −0.001,

respectively. We observe that the foot height decreases as Ω decreases.

In order to illustrate the different behaviour for angles below and above αc, we also show

the foot length measure, lf , versus |U − U∞| in a semi-log plot, see the lower left and right

panels of fig. 3 for α = 0.1 and α = 0.5, respectively. For simplicity, we consider the case of

Ω = 0. For α = 0.1, it can be clearly seen that the bifurcation curve approaches the vertical

asymptote exponentially with a rate which we denote by νs. For α = 0.5, we can see that
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Figure 5: Film profiles at plate velocity U∞ for α = 0.5. Left panel: Bifurcation diagram. The

red filled circles correspond to film solutions at plate velocity U∞. The inset shows a blow-up of

the region with the first five solutions. Note the appearance of a characteristic snaking behaviour

around U∞. The letters in the inset correspond to the film profiles depicted in the right panel.

Note the appearance of undulations on top the foot-like part of the solution as the foot becomes

longer. The numerical domain size used is L = 10000, L1 = 9800. Note that the first profile

(a) corresponds to a meniscus solution. It is located on the lowest branch before the bifurcation

curve folds back at Ub (the green square). The red dashed line indicates a linear increase in foot

length.
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the approach of the vertical asymptote is exponential with the snaking wavelength tending

to a constant value, which we denote by Λs.

Figure 5 shows the identified snaking behaviour for α = 0.5 in more detail. In the left

panel, we see the bifurcation diagram where the red filled circles correspond to solutions at

U∞. In the chosen solution measure, the solutions appear equidistantly distributed. In the

inset, the first five solutions are indicated and labeled by (a)-(e) and the corresponding film

profiles are shown in the right panel. The dashed line in the right panel confirms the linear

growth of the foot length.

The differences in film profiles for angles below and above αc can be seen in fig. 6 that

shows solutions for velocities close to U∞ for α = 0.1 and at U∞ for 0.5 by solid and dashed

lines, respectively. In the left and the right panels, we compare short-foot and long-foot

solutions, respectively, with similar foot lengths. To emphasise the differences, we represent

the profiles in a semi-log plot |h(x)−hf | versus (x+L1)/L in the bottom panels. For α = 0.1

we see no undulations – only exponential decays at a rate denoted by νfh from the bath to

the foot and at a rate denoted by νft from the foot to the precursor. However, for α = 0.5

we observe an oscillatory exponentially decaying behaviour at a rate denoted by νfh with a

wavelength denoted by Λf in the region between the bath to the foot. In the region between

the foot and the precursor film, we again observe an exponential decay.

Note that the precursor film and the foot correspond to fixed points of the dynamical

system (9)-(11), namely, if hp and hf are the heights of the precursor film and the foot, then

the fixed points are yp = (1/hp, 0, 0) and yf = (1/hf , 0, 0), respectively. The values of hp

and hf at U = U∞ are shown in fig. 7 as functions of α by dashed and solid lines, respectively.

In fig. 8, we show the dependence of the eigenvalues of the Jacobians of system (9)-(11) at

fixed points yp and yf at U = U∞ as functions of α. We note that for the precursor film all

the eigenvalues are real, two of them are positive and one is negative independently of the

angle. We denote these eigenvalues by λp,i, i = 1, 2, 3. However for the foot, the behaviour

of the eigenvalues changes for angles below and above a critical value and it turns out that

this critical angle is the same as the critical angle at which monotonic bifurcation diagrams

change to snaking, i.e., αc ≈ 0.1025. We observe that for α < αc all the eigenvalues for the

foot are real – two are positive and denoted by λf,1 and λf,2 so that λf,1 < λf,2 and one is

negative and is denoted by λf,3. However, for α > αc there is a negative real eigenvalue, λf,3,

and a pair of complex conjugate eigenvalues with positive real parts, λf,1 and λf,2. Table 2

shows the values of eigenvalues λf,i, i = 1, 2, 3, for α = 0.1 and 0.5.

In tables 3 and 4, we compare Re[λf,3] with the exponential rate νft characterising the

connection between the foot and the precursor film, and Re[λf,1] with the exponential rate

νfh characterising the connection between the foot and the bath. Table 3 corresponds to a

short foot, while table 4 corresponds to a long foot. For α = 0.5 the plate velocity is equal

to U∞, while for α = 0.1 we choose a foot of approximately the same lengths as for α = 0.5

and we note that for α = 0.1 the bifurcation curves do not reach U∞, but for the chosen
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Figure 6: Film profiles above and below αc given as solid and dashed lines, respectively. Left

panel: Shown are film profiles for α = 0.1 close to U∞ and for α = 0.5 at U∞. Right panel:

In order to show the appearance of undulations on top of the foot above αc, we represent in

bottom panels |h(x)− hf | versus (x+ L1)/L in a semi-log plot, where L1 = 9800, L = 10000 is

the numerical domain size and hf is the characteristic foot height calculated for each inclination

angle α by solving eq. (8) for h′ = 0, h′′ = 0 and h′′′ = 0 (using the numerically obtained value

of the flux C0). Observe the exponential approach with rate νfh of the foot height from the

bath side, and as well the exponential departure with rate νft from the foot height towards the

precursor film (see main text for details). Note that the measured foot wavelength is Λf = Λ̃fL.
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Table 2: Eigenvalues at fixed point yf = (y1f , 0, 0) with y1f = 1/hf for α = 0.1 close to U∞

and for α = 0.5 at U∞. Note that all the eigenvalues are real for α = 0.1, whereas for α = 0.5

one eigenvalue is real and negative and two are complex conjugates with positive real parts. See

fig. 8.

α hf y1f λf,1 λf,2 λf,3

0.1 19.3732 0.0516 0.0173 0.0188 -0.0361

0.5 12.3922 0.0807 0.0263 0.0263 -0.0525

+i 0.0346 −i 0.0346

Table 3: Shown is the comparison of the exponential decays νft, νfh with the eigenvalue ν from

the linear stability analysis for α = 0.1 close to U∞ and for α = 0.5 at U∞ for solutions with a

short foot. See fig. 6.

α ν = Re[λf,3] νft ν = Re[λf,1] νfh

0.1 -0.0361 -0.0403 0.0173 0.0152

0.5 -0.0525 -0.0497 0.0263 0.0278

Table 4: Shown is the comparison of the exponential decays νft, νfh with the eigenvalue ν from

the linear stability analysis for α = 0.1 close to U∞ and for α = 0.5 at U∞ for solutions with a

long foot. See fig. 6.

α ν = Re[λf,3] νft ν = Re[λf,1] νfh

0.1 -0.0361 -0.0356 0.0173 0.0155

0.5 -0.0525 -0.0463 0.0263 0.0255

foot the velocities coincide with U∞ up to at least seven significant digits. The results show

that there is good agreement between Re[λf,3] and νft and between Re[λf,1] and νfh for both

values of α and for both foot lengths, with a maximal error below 12%.

In table 5, we compare Λ = 2π/Im[λf,1] with the wavelength of the oscillations on the

foot, Λf , for a long and a short foot, and with the wavelength of oscillations in snaking

bifurcation diagrams, Λs, when α = 0.5. The results show that there is good agreement

between Λ and Λs – the error is below 2%, and between Λ and Λf for both foot lengths –

the error is below 12%.

In table 6, we compare Re[λf,1] with the exponential rate 1/νs, where νs is characterises

the rate at which the bifurcation diagrams approach the vertical asymptotes. We again

observe good agreement for both values of α, with an error up to 13%.

The close agreement between the eigenvalues corresponding to the foot and the quantities

obtained from the bifurcation diagrams and the foot profiles is explained in the next section.
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Table 5: Shown is the comparison of the wavelength of snaking Λs from the bifurcation diagram

and wavelength of the undulations of the foot Λf from the foot-like profile with the wavelength Λ

calculated from the eigenvalues λf,i at U∞ for α = 0.5. Note the locking between Λ ≈ Λs ≈ Λf .

See fig. 3 and fig. 6.

α Λ=2π/Im[λf,1] Λf (long) Λf (short) Λs

0.5 181.6987 202.6920 198.8801 184.7657

Table 6: Shown is the comparison of the exponential decay constant 1/νS from the bifurcation

diagrams with the eigenvalues λf,i calculated from the linear stability analysis for α = 0.1 and

α = 0.5. See fig. 3.

α Re[λf,1] 1/νs

0.1 0.0173 0.0151

0.5 0.0263 0.0284

5 Heteroclinic snaking

In what follows, our aim is to explain the snaking behaviour observed in our numerical

results, see the left panels of fig. 3 and fig. 5. For simplicity, we consider the case of zero

temperature gradient, i.e., we set Ω = 0. First, let us consider fixed points of system (9)-(11)

with y1 6= 0. For such fixed points, y2 = y3 = 0 and y1 satisfies the equation

f(y1) ≡ y31 −
U

C0
y21 +

Gα

C0
= 0. (50)

It can be easily checked that this cubic polynomial has a local maximum at ya1 = 0 and a local

minimum at a positive point yb1. Moreover, f(ya1 ) > 0 implying that there is always a fixed

point with a negative value of the y1-coordinate. We disregard this point, since physically

it would correspond to negative film thickness. Also, assuming that Gα < (4/27)(U3/C2
0 ),

we obtain f(yb1) < 0, which implies that there are two positive roots a1 and a2 of the

cubic polynomial satisfying a1 < a2. This implies that there are two more fixed points,

yf = (a1, 0, 0) and yp = (a2, 0, 0). The point yf corresponds to the foot and the point yp

corresponds to the precursor film.

To analyse stability of these fixed points, we compute the Jacobian at these points,

Jyf,p
=


0 −a21,2 0

0 0 1

2Ua1,2 − 3C0a
2
1,2 6a71,2 − 3a41,2 +G 0

 . (51)

A simple calculation shows that for both, yf and yp, all the eigenvalues have non-zero real

parts implying that these points are hyperbolic. Moreover, both points have two-dimensional

unstable manifolds and one-dimensional stable manifolds. Our numerical simulations pre-

sented in the previous section show that if α is sufficiently small, there exists a value of
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Figure 9: Schematic representation in the three-dimensional phase-space of the fixed points yp,

yf and yb of system (52) when β = β0. The fixed point yp is a saddle point with two-dimensional

unstable manifold, Wu(yp), and a one-dimensional stable manifold. The fixed point is yf is a

saddle-focus with two-dimensional unstable manifold and a one-dimensional stable manifold.

The fixed point yb is a non-hyperbolic point having two-dimensional stable manifold, Ws(yb).

The fixed points yp and yf are connected by the heteroclinic orbit Γ1 and the fixed points yf

and yb are connected by the heteroclinic orbit Γ2.

the plate speed, U∞, such that in the vicinity of this value there exist steady solutions for

which the foot length can be arbitrarily long, see fig. 3. We, therefore, conclude that at

U = U∞, there exists a heteroclinic chain connecting the fixed points yp, yf and yb. As was

discussed in the previous section, in the top panel of fig. 8, we can observe that for point

yp all the eigenvalues are real at U = U∞ implying that this point is a saddle. The two

bottom panels of fig. 8 demonstrate that there is a critical inclination angle αc ≈ 0.1025

such that for α ≤ αc, all the eigenvalues for yf are real, whereas for α > αc, one eigenvalue

is real and negative and there is a pair of complex conjugate eigenvalues with positive real

parts. Therefore, for α ≤ αc, point yf is a saddle, but for α > αc, it is a saddle-focus.

In the following Theorem, we analytically prove that if yf is a saddle-focus, there exists

a countably infinite number of subsidiary heteroclinic orbits connecting yp and yb that lie

in a sufficiently small neighbourhood of the heteroclinic chain connecting yp, yf and yb.

This explains the existence of a countably infinite number of steady-state solutions having

different foot lengths observed in the previous section, see the left panels of fig. 3 and fig. 5.
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Theorem. Consider a three-dimensional system

y′ = f(y, β), y ∈ R3, (52)

where β denotes a parameter. We assume that there exist three fixed points, which we

denote by yp, yf and yb, when β is sufficiently close to a number β0. We additionally assume

that yp and yb have a two-dimensional unstable manifold Wu(yp) and a two-dimensional

stable manifold Ws(yb), respectively, and that yf is a saddle-focus fixed point with a one-

dimensional stable manifold Ws(yf ) and a two-dimensional unstable manifold Wu(yf ) (i.e.,

the eigenvalues of the Jacobian at yf are −λ1, λ2 ± i ω, where λ1 = λ1(β), λ2 = λ2(β)

and ω = ω(β) are positive real numbers when β is sufficiently close to β0). Let us also

assume that for β = β0, there is a heteroclinic orbit Γ1 ∈ Wu(yp) ∩Ws(yf ) connecting yp

and yf and that the manifolds Wu(yf ) and Ws(yb) intersect transversely so that there is a

heteroclinic orbit Γ2 ∈ Wu(yf ) ∩Ws(yb) connecting yf and yb. Then for β = β0 there is

an infinite countable number of heteroclinic orbits connecting yp and yb and passing near

yf . Moreover, the difference in ‘transition times’ from yp to yb tends asymptotically to π/ω

(the meaning of a ‘transition time’ from yp to yb will be explained below).

Proof: After a suitable change of variables, the dynamical system y′ = f(y, β) can be

written in the form

y′1 = λ2y1 − ωy2 + f̃1(y, β), (53)

y′2 = ωy1 + λ2y2 + f̃2(y, β), (54)

y′3 = −λ1y3 + f̃3(y, β), (55)

where f̃i, i = 1, 2, 3, are such that ∂f̃i/∂yj = 0, i, j = 1, 2, 3, at y = yf . After such a

change of variables, the origin is a stationary point corresponding to yf and sufficiently close

to the origin, the terms f̃1(y, β), f̃2(y, β) and f̃3(y, β) are negligibly small, so that near the

origin the dynamical system can be approximated by the linearised system

y′1 = λ2y1 − ωy2, (56)

y′2 = ωy1 + λ2y2, (57)

y′3 = −λ1y3. (58)

Let Σ1 be a plane normal to the stable manifold of yf , Γ1, and located at a small distance

ε1 from yf , i.e., locally Σ1 is given by

Σ1 = {(y1, y2, ε1) : y1, y2 ∈ R}. (59)

Let Σ2 be part of a plane transversal to the unstable manifold of yf , Γ2, at some point

near yf and passing through yf that is locally given by

Σ2 = {(y1, 0, y3) : |y1 − r∗| ≤ ε2, |y3| ≤ ε3}. (60)

Here (r∗, 0, 0) ∈ Γ1 is sufficiently close to the origin and ε3 < ε1. We denote the upper

half-plane of Σ2, when y3 > 0, by Σ+
2 , i.e., Σ+

2 = {y ∈ Σ2 : y3 > 0} and let Σ−2 = Σ2\Σ+
2 .
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We choose ε2 to be sufficiently small so that each trajectory crosses Σ2 only once. It can be

shown that this condition is satisfied when ε2 < tanh(λ2π/ω) r∗.

Using cylindrical polar coordinates (r, θ, z), such that y1 = r cos θ, y2 = r sin θ and

y3 = z, the linearised dynamical system near the origin is given by

r′ = λ2r, (61)

θ′ = ω, (62)

z′ = −λ1z. (63)

The solution is given by

r = r0eλ2x, (64)

θ = θ0 + ωx, (65)

z = z0e−λ1x. (66)

In the cylindrical polar coordinates, Σ1 is given by z = ε1 and Σ2 is given by

Σ2 = {(r, 0, z) : |r − r∗| ≤ ε2, |z| ≤ ε3}. (67)

Let ϕx be the flow map for the linearised dynamical system. Also, let S be the set in Σ1

given by

S = {y ∈ Σ1 : ∃ x such that ϕx(y) ∈ Σ2}. (68)

Then we can define the map

ϕ : S → Σ2 : y 7→ ϕx(y) for some x > 0. (69)

It can easily be checked that the image of ϕ is in fact Σ+
2 . Also, it can be easily seen that

the set S is the so-called Shilnikov snake, a set bounded by two spirals, s1 and s2, given by

r = (r∗ ± ε2)e−λ2x, θ = −ωx, z = ε1, (70)

respectively, where x ∈ [(1/λ1) log(ε1/ε3), ∞), and the following segment of a straight line:

r ∈

[
(r∗ − ε2)

(
ε3
ε1

)λ2/λ1

, (r∗ + ε2)

(
ε3
ε1

)λ2/λ1
]
, (71)

θ =
ω

λ1
log

(
ε3
ε1

)
, z = ε1. (72)

Let lp = Σ1 ∩Wu(yp) be the intersection of the two-dimensional unstable manifold of yp

and the plane Σ1, which is locally a straight line given for β = β0 by the equations θ = θp

and z = ε1, where θp is some constant. As θp modπ determines the direction of the line, we

can choose without out loss of generality,

θp ∈ (−π + (ω/λ1) log(ε3/ε1), (ω/λ1) log(ε3/ε1)]. (73)
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Next, let ln, n = 1, 2, . . . , be the intersections of the line lp with set S such that |l1| > |l2| >

· · · , where |ln| denotes the length of the segment ln, n = 1, 2, . . . , see fig. 9. We can see

that ln is given by

r ∈ [(r∗ − ε2) exp(−λ2(π(n− 1)− θp)/ω),

(r∗ + ε2) exp(−λ2(π(n− 1)− θp)/ω)], (74)

θ = θp − π(n− 1) = θp modπ, z = ε1. (75)

Then, we find that ϕ(ln) is a segment of a line in Σ2 given by

r ∈ [(r∗ − ε2), (r∗ + ε2)], (76)

θ = 0, (77)

z = ε1 exp(−λ1(π(n− 1)− θp)/ω). (78)

Let lb = Σ2∩Ws(yb) be the intersection of the two-dimensional stable manifold of yb and the

plane Σ2. Locally it is a segment of a straight line, and since manifolds Wu(yf ) and Wu(yb)

intersect transversely, this segment of the line is given for β = β0 by parametric equations

r = r∗ + as, θ = 0, z = s, (79)

where a is some constant and s is a parameter changing from −ε3 to ε3. Note that we

can choose ε3 to be smaller than ε2/|a| so that the line lb intersects all the lines ϕ(ln),

n = 1, 2, . . . , and we denote such intersections points by yb,n, n = 1, 2, . . . . Let us denote

the preimages of these points with respect to map ϕ by yp,n, n = 1, 2, . . . . Note that

yp,n ∈ ln, n = 1, 2, . . . . Next, since for each n = 1, 2, . . . , point yp,n belongs to the unstable

manifold of yp, there is an orbit Γp,n connecting yp and yp,n. Also, by definition of point

yp,n, it is mapped by the flow map ϕx to point yb,n and the ‘transition time’ from yp,n

to yb,n is approximately equal to x = ttr = (π(n − 1) − θp)/ω. Note that the difference

in ‘transition times’ from yp,n to yb,n and from yp,(n+1) to yb,(n+1) tends to π/ω as n

increases. We denote the orbit connecting yp,n with yb,n by Γf,n. Finally, since yb,n for

each n = 1, 2, . . . , point yp,n belongs to the stable manifold of yb, there is an orbit Γb,n

connecting yb,n and yb. We conclude that there is an infinite countable number of subsidiary

heteroclinic orbits connecting points yp and yb that are given by Γs,n = Γp,n ∪ Γf,n ∪ Γb,n,

n = 1, 2, . . . . Moreover, the difference in ‘transition times’ for two successive orbits Γs,n and

Γs,(n+1) taken to get from plane Σ1 to plane Σ2 tends to π/ω as n→∞. Q.E.D.

Remark. Snaking diagrams as those computed in the previous section are obtained by

an unfolding of the structurally unstable heteroclinic chain connecting yp, yf and yb. For β

close to β0 but not necessarily equal to β0, line lp = Σ1 ∩Wu(yp) is locally given by

y2 = b(β)y1 + c(β), y3 = ε1, (80)

where c(β0) = 0 and b(β0) = tan(θp) (without loss of generality, we can assume that θp 6=

π/2 +πn for any n ∈ Z). This implies that in a small neighbourhood of point (0, 0, ε1), this
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Figure 10: Schematic representation of the Shilnikov snake, S, in plane Σ2. The solid line shows

line lp for β = β0, the dashed lines show lines lp for β = β+ > β0 and for β = β− < β0. The

dotted line shows the locus of the points through which heteroclinic orbits connecting yp and yb

pass for certain values of β near β0. The black square corresponds to the value of β+ at which

line lp is tangent to S and at which points yp,(n−1) and yp,n vanish in a saddle-node bifurcation.

The star corresponds to the value of β− at which line lp is tangent to S and at which points

yp,n and yp,(n+1) vanish in a saddle-node bifurcation.

line can be approximated by

y2 = (b(β0) + ∆β b′(β0))y1 + ∆β c′(β0), y3 = ε1, (81)

where ∆β = β−β0. Assuming that c′(β0) 6= 0, we obtain that for β 6= β0 line lp is shifted in

plane Σ2 and does not pass through point (0, 0, ε1), see fig. 10. This implies that for β 6= β0

line lp intersects the Shilnikov snake, S, finitely many times. For sufficiently small ∆β, we

denote by ln(β) the intersection of lp with S that is obtained by a small shift of ln for β = β0.

By considerations similar to those in the proof of the previous theorem, it can be shown that

in each of the line segments there is a point yp,n(β) such that there is a heteroclinic orbit

passing through this point and connecting yp and yb. For β 6= β0 there is only a finite

number of such orbits. Figure 10 schematically shows lp by a solid line for β = β0 and by

dashed lines for β = β+ > β0 and β = β− < β0. In addition, points yp,(n−1)(β+), yp,n(β+),

yp,n(β−) and yp,(n+1)(β−) are shown. For certain value of β+, points yp,(n−1)(β+), yp,n(β+)

vanish in a saddle-node bifurcation. This point is indicated by a black square in the figure.

At this point, line lp is tangent to the boundary of S. Also, for certain value of β−, points

yp,n(β−), yp,(n+)(β−) vanish in a saddle-node bifurcation. This point is indicated by a star

in the figure. At this point, line lp is tangent to the boundary of S. The locus of the points

through which heteroclinic orbits connecting yp and yb pass for certain values of β near β0

is shown by a dotted line. It can be seen that this line is a spiral, s, that belongs to S, passes

through points yp,n and is tangent between transitions from yp,n to yp,(n+1), n = 1, 2, . . . ,
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to the boundary of S given by spiral s1. It can therefore be concluded that the bifurcation

diagram showing the ‘transition time’ for heteroclinic orbits connecting yp and yp versus

parameter β is a snaking curve, shown schematically in fig. 11, similar to the numerically

obtained cases in figs. 3, 2 and 5 for α = 0.5. There is an infinite number of such orbits in

a neighbourhood of β0 and there is an infinite countable number of saddle-node bifurcaions

that correspond to the points at which spiral s touches the boundary of the Shilnikov spiral,

S.

We can find that the slope of the line tangent to spiral s1 is

dy2
dy1

= R tan(θ + θ0), (82)

where R =
√
λ22 + ω2 and θ0 = tan−1(ω/λ2). Therefore, at the points where line lp touches

spiral s1, we must have

R tan(θn + θ0) = b(β0) + ∆βnb
′(β0), (83)

where θn and ∆βn are the values of θ and ∆β corresponding to the nth saddle-node bifurca-

tion. Thus, at these points

θn = tan−1
(
b(β0)

R
+ ∆βn

b′(β0)

R

)
− θ0 − πn, (84)

for sufficiently large integer n. Equivalently,

xn = − 1

ω
tan−1

(
b(β0)

R
+ ∆βn

b′(β0)

R

)
+
θ0
ω

+
π

ω
n. (85)

From this formula, we clearly see that the difference in transition times between two saddle-

node bifurcations tends to π/ω. Also, at the saddle-node bifurcations we must have

rn sin θn=(b(β0) + ∆βnb
′(β0))rn cos θn + ∆βnc

′(β0), (86)

where rn = (r∗ + ε2)e−λ2xn , which implies

∆βn = rn
sin θn − b(β0) cos θn
c′(β0) + b′(β0)rn

. (87)

From the latter expression, we can conclude that

|∆βn| = O(rn) = O(e−λ2xn), (88)

which shows that the snaking bifurcation diagram approaches the vertical asymptote at an

exponential rate, and explains the results presented in the bottom right panel of fig. 3 and

in table 6.

Also, note that if yf is a saddle, then the set S is not a spiral but is a wedge-shaped

domain. The line lp then passes through the vertex of this domain for β = β0 and, generically,

intersects it in the neighbourhood of the vertex only for β < β0 but not for β > β0 or vice

versa. Then, the bifurcation diagram showing the ‘transition time’ for heteroclinic orbits
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Figure 11: Bifurcation diagram for heteroclinic orbits connecting yp and yb.

connecting yp and yb versus parameter β is a monotonic curve instead of a snaking curve

shown in fig. 11, similarly to the case in fig. 3 for α = 0.1.

Note that in the dragged meniscus problem the ‘transition time’ is a measure of the

length of the foot and is therefore equivalent to the measure lf introduced in the previous

section. Thus, the bifurcation diagrams obtained in figs. 3 and 5 are explained by the results

presented above.

6 Conclusions

We have analysed a liquid film that is deposited from a liquid bath onto a flat moving plate

that is inclined at a fixed angle to the horizontal and is removed from the bath at a constant

speed. Additionally, the liquid film may be driven by a Marangoni shear stress resulting

from a linear temperature gradient along the substrate direction. As a model equation, we

used a two-dimensional long-wave equation that is valid for small inclination angles of the

plate and under that assumption that the longitudinal length scale of variations in the film

thickness is much larger than the typical film thickness. This model equation includes the

terms due to surface tension, the disjoining (or Derjaguin) pressure modelling wettability,

the hydrostatic pressure and the lateral driving force due to gravity, the dragging by the

moving plate and the applied temperature gradient. Our goal was to analyse steady-state

solutions of this equation.

First, using centre manifold theory, we have obtained asymptotic expansion of solutions

in the bath region, when x→∞. We found that in the absence of the temperature gradient,
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the asymptotic expansion for the film thickness, h, has the form h ∼
∑∞
n=−1Dnx

−n, where

without loss of generality D0 can be chosen to be zero (fixing the value of D0 corresponds

to breaking the translational invariance of solutions and allows selecting a unique solution

from the infinite family of solutions that are obtained from each other by a shift along the

x-axis). In the presence of the temperature gradient, this asymptotic expansion is not valid,

but instead consists of terms proportional to x, log x and x−m logn x, where m and n are a

positive and a non-negative integers, respectively.

Next, we have obtained numerical solutions of the steady-state equation and analysed the

behaviour of the solutions as the plate velocity and the temperature gradient are changed.

When changing the plate velocity, we observe that the bifurcation curves exhibit snaking

behaviour when the plate inclination angle is beyond a certain critical value, namely, they

oscillate around a certain limiting velocity value, U∞, with an exponentially decreasing

oscillation amplitude and a period that tends to some constant value. In contrast, when the

plate inclination angle is smaller than the critical value, the bifurcation curve is monotonic

and the velocity tends monotonically to U∞. The solutions along these bifurcation curves

are characterised by a foot-like structure that emerges from the meniscus and is preceded by

a very thin precursor film further up the plate. The length of the foot increases continuously

as one follows the bifurcation curve as it approaches U∞.

Finally, we have shown that in an appropriate three-dimensional phase space, the three

regions of the film profile, i.e., the precursor film, the foot and the bath, correspond to

three fixed points, yp, yf and yb, respectively, of a suitable dynamical system. We have

explained that the snaking behaviour of the bifurcation curves is caused by the existence of

a heteroclinic chain that connects yp with yf and yf with yb at certain parameter values.

We have proved a general result that implies that if the fixed points corresponding to the

foot and to the bath have two-dimensional unstable and two-dimensional stable manifolds,

respectively, and the fixed point corresponding to the foot is a saddle-focus so that the

Jacobian at this point has the eigenvalues −λ1, λ2 ± i ω, where λ1,2 and ω are positive real

numbers, then in the neighbourhood of the heteroclinic chain there is an infinite countable

number of heteroclinic orbits connecting the fixed point for the precursor film with the fixed

point for the bath. These heteroclinic orbits correspond to solutions with feet of different

lengths. Moreover, these solutions can be ordered so that the difference in the foot lengths

tends to π/ω. We have also explained that in this case the bifurcation curve shows a snaking

behaviour. Otherwise, if the fixed point corresponding to the foot is a saddle, the Jacobian

at this point has three real non-zero eigenvalues, and the bifurcation curve is monotonic.
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