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Abstract

When a simple or complex liquid recedes from a smooth solid substrate it often leaves a homogeneous or

structured deposit behind. In the case of a receding non-volatile pure liquid the deposit might be a liquid film

or an arrangement of droplets depending on the receding speed of the meniscus and the wetting properties

of the system. For complex liquids with volatile components as, e.g., polymer solutions and particle or

surfactant suspensions, the deposit might be a homogeneous or structured layer of solute - with structures

ranging from line patterns that can be orthogonal or parallel to the receding contact line via hexagonal

or square arrangements of drops to complicated hierarchical structures. We review a number of recent

experiments and modelling approaches with a particular focus on mesoscopic hydrodynamic long-wave

models. The conclusion highlights open question and speculates about future developments.
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I. INTRODUCTION

Knowledge about the various interfacial effects on small scales becomes increasingly important

because of the intense drive towards a further miniaturisation of fluidic systems that are used in

micro- [1] and eventually nano-fluidic [2] devices. A particularly interesting example are depo-

sition processes involving moving contact lines where physical processes on the nanometer- and

micrometer scale interact in the deposition of layers of various materials (mostly but not exclu-

sively on solid substrates). The resulting layers have macroscopic extensions, but might only be a

few nanometers thick. The layers can be homogeneous or structured with lateral structure lengths

that are often in the sub-micrometer or lower micrometer range.

FIG. 1: Sketch of the essential core part of the geometry of every deposition process where material is left

behind by a moving contact line. In the frame of the substrate the contact line region moves to the right

together with the entire meniscus.

Fig. 1 sketches the typical situation close to the three-phase contact line region: In the frame

of the solid substrate the three-phase contact line region – where substrate, liquid and gas phase

meet – moves to the right either purely by evaporation or supported by dewetting processes or

external forces. The liquid is a solution or suspension where the solute is normally non-volatile

and the solvent is volatile. The solvent evaporates (often stronger close to the contact line), the

local concentration of the solute increases and it is left behind.

The system is intensely investigated as on the one hand it is a practically very widely used

method to deposit and structure thin layers of material on solid surfaces (see, e.g., the recent re-
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views in Refs. [3, 4] and the introduction of Ref. [5]). Note that it is a special case of a wider class

of patterning strategies that use films, drops or contact lines of solutions and suspensions with

volatile solvents (see, e.g., review [6]). On the other hand the ongoing interacting non-equilibrium

processes are all interesting by themselves as they are related to a number of long-standing prob-

lems in various sub-fields of hydrodynamics and soft matter science that are still under vivid

discussion:

(i) Moving contact lines are even for simple non-volatile liquids under hot discussion. Particular

keywords are the relaxation of the stress-singularity at moving contact lines, determination and

prediction of dynamic contact angles, contact angle hysteresis (see reviews [7–9] and the recent

Discussion and Debate volume about wetting and spreading published by the European Physical

Journal Special Topics [10];

(ii) The dynamics of the liquid-gas phase transition at liquid-gas interfaces, i.e. the processes of

evaporation and condensation, pose intriguing problems, particularly close to three-phase contact

lines. See, e.g. reviews [11–13] and discussions in Refs. [14–16];

(iii) The equilibrium and non-equilibrium phase behaviour and rheology of high-concentration

suspensions and solutions is even for bulk systems still of large present interest in soft matter sci-

ence. Jamming, phase separation, gelling, crystallisation, glass transition may all occur when the

concentrations reach high levels, depending on the molecular interactions of the various compo-

nents. As many of these processes are even individually not fully understood, their interaction

with free surfaces, moving contact lines and solvent evaporation pose challenging problems. See

Refs. [17–20] as entrance points to the vast literature.

This list already indicates why experiments discover such a rich spectrum of phenomena and

why it is so difficult to extract a consistent picture from the experiments and emerging models. In

the present brief review, first, in section II we mention a number of experiments with a focus on

the various deposition patterns found and the related quantitative measures. This is followed in

section III by a brief overview of model types used in the literature and a more detailed analysis of

results obtained with hydrodynamic long-wave models. Note that we will mention several treat-

ments of evaporation in passing, but do by no means intent to review evaporation of simple liquids

For recent pertinent overviews see other contributions in the present volume [? ] (citations to

be introduced later in coordination with editor), the reviews [11, 12, 14] and the introductions

of Refs. [15, 21–23]. The review concludes with a number of proposals as to what are the most

challenging problems and with some recommendations about set-ups that would allow us to most
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easily compare experimental and theoretical results.

II. EXPERIMENTS

Deposition techniques involving a moving contact line have been studied at least since the early

20th century when Küster studied “rhythmic cristallisation” at receding contact lines of evaporat-

ing droplets of various solutions on gel substrates mentioning line patterns, zig-zag patterns, lines

with side branches, flower-like arrangements of striped domains, etc. [24]. The field remained

active during the following decades (see, e.g., Ref. [25]), and became also important in the context

of the assembly of proteins and colloidal particles into crystals (cf. discussions and reviews of the

usage of evaporating films and drops in Refs. [26–29]).

Over the previous decade, the general interest in deposition patterns has markedly increased,

possibly triggered by Deegan and co-workers’ detailed investigations of the “coffee-stain effect”,

i.e., of the deposition patterns left behind by the receding contact line of an evaporating drop

of a suspension on a smooth solid substrate [30–32]. Ref. [30] reports a wide range of deposit

patterns: cellular structures, single and multiple concentric rings, and fractal-like patterns (see,

e.g., Fig. 2). The creation of multiple concentric rings through a stick-slip front motion of the

contact line of other colloidal liquids is also described in Refs. [33, 34]. These investigations are

also related to the one of Parisse and Allain of the shape changes that drops of colloidal suspension

undergo when they dry [35, 36] and the creation of semiconductor nanoparticle rings through

evaporative deposition [37]. Other reported structures include crack and fracture patterns [38, 39]

and hierarchical patterns of obligue lines [40] (cf. Fig. 3 (a)).

Generally, evaporating a macroscopic drop of a suspension does not create a very regular con-

centric ring pattern in a reproducible way, but rather results in irregular patterns of rugged rings

and lines [30, 33]. To produce patterns that can be employed to fabricate devices one performs

the experiments on smaller scales in a somewhat more controlled way employing various small-

scale geometries that confine the liquid meniscus (sphere on flat substrate, parallel plates, capil-

laries, etc.) as reviewed in Ref. [3]. Experiments with both, polymer solutions [41, 42, 45] and

(nano)particle suspensions [46–48] result in strikingly regular line patterns with periods ranging

from 1-100µm (see, e.g., Fig. 3 (b). Line patterns can be parallel or perpendicular to the receding

contact line [42, 47] and are produced in a robust repeatable manner in extended regions of param-

eter space. Besides the lines, a variety of other patterns may also be found, including undulated
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FIG. 2: Various deposits left behind by a drying drop of a suspension of 100nm polystyrene microspheres

(0.5% initial volume fraction) with added anionic surfactant sodium dodecyl sulphate (SDS). The contact

line moved from top to bottom. All scale bars correspond to 50 µm. In panels (a) to (d) the surfactant

concentration is 8.1 × 104M, 4.3 × 104M, 1.4 × 104M, and 4.8 × 105M, respectively. Reproduced with

permission from Ref. [30] (Copyright (2000) by The American Physical Society).

stripes, interconnected stripes, ladder structures, i.e. superpositions of perpendicular and parallel

stripes [42] (see Fig. 3 (c)), hierarchical arrangements of pieces of parallel and perpendicular lines

[43] (see Fig. 3(d)) regular arrays of drops [42, 49] or holes [41] (see Fig. 3 (e)); rings with small-

scale side branches [44] (see Fig. 3(f)) and irregularly branched structures [50–53] (see review in

[54]).

This type of wet evaporative deposition is now widely employed as a non-lithographic tech-

nique for covering large areas with regular arrays of small-scale structures. They are either di-

rectly deposited from the receding contact line as described above or produced using the deposited

structures as templates. Examples are concentric gold rings with potential uses as resonators in ad-

vanced optical communications systems [55] and arrays of cyanine dye complex micro-domes em-
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ployed in photo-functional surfaces [56]. Often the patterns are robust and can be post-processed,

e.g., to create double-mesh structures by crossing and stacking two ladder films [42]. A number

of investigations focuses on deposition patterns resulting from more complex fluids, such as phase

separating polymer mixtures [57]; solutions of the biomolecule collagen [58], liquid crystals [59],

dye molecules [25, 56, 60], dendrimers [61], carbon nanotubes [62–64], DNA [65, 66], DNA and

colloidal particle mixtures [67], lysozyme [68], viruses [43] and graphene [69]; and biofluids like

blood [70–72]. The latter has potential medical implications as one may learn how illnesses can

be detected through simple evaporation experiments on small samples [73].

Overall one finds that the deposition of regular lines is a generic phenomenon that occurs for

many different combinations of substances. Examples are charge-stabilized polystyrene micro-

spheres in water on glass [31, 74] or mica [30]; Rings were also found using metal, polyethylene,

roughened Teflon, ceramic, and silicon substrates with acetone, methanol, toluene, and ethanol as

solvents [32]. Used solutes are sugar and dye molecules, 10µm PS spheres; 144nm PS particles in

water on glass [33]; 15nm silica particles in water on glass (partially wetting, θeq = 40) [35, 36];

6.5 nm silica nano-particles in water [75]; 4nm CdS particles in pyridine and 6nm CdSe/CdS

core-shell particles in water on glass [37]; 90nm silica particles in pH-adjusted water on glass

[46]; 0.23 µm and 3 µm poly(methyl methacrylate) (PMMA) spheres in cis-decalin (Decahydron-

aphthalene), and chloroform solutions of PS and poly(3-hexylthiophene) (PHT) on glass [42];

PMMA particles in octane [74], 0.1 µm and 1 µm PMMA particles in mixtures of cis- and trans-

decalin [76]; bidisperse mixture of PMMA particles of different sizes in decalin [44]; benzene and

chloroform solutions of PS and chloroform solution of a polyion complex on glass or mica [50].

Very similar patterns are obtained with soluble and insoluble surfactants that form monolayers on

the solvent. Examples are the phospholipid dipalmitoylphosphatidylcholine (DPPC) [77–79] or

poly(vinyl pyrrolidone)-coated gold nanoparticles on water [80].

To control the contact line motion various experimental setups and techniques are employed.

Normally, set-ups are chosen that allow for slow evaporation. We propose to distinguish between

passive and active set-ups. In the passive set-up, the solution or suspension evaporates freely and

the (mean) contact line speed naturally emerges from the processes of dewetting and evaporation.

In the active set-ups an additional parameter directly controls the mean contact line speed. It can

often be better adjusted than the control parameters in the passive set-ups.

Examples of passive set-ups include (i) the “meniscus technique” where a meniscus with a

contact line is created in a geometric confinement, e.g., in a sphere-on-flat [41, 45, 47] or ring-
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on-flat [26, 81] geometry, between two parallel plates [39], or in the wedge between two plates

or crossed cylinders [63]; (ii) the deposition of a single drop onto a substrate where it evaporates

freely [30, 33, 80]; and (iii) the deposition of flat films onto a substrate using spin-coating [82–84].

These passive set-ups are mainly controlled via the temperature, the partial pressure of the solvent,

and the solute concentration. Note, however, that often they are realised at the ambient conditions

of the laboratory and not in controlled environments.

Examples of active set-ups include (i) a set-up similar to blade coating where a solution is

continuously provided between two glass plates while the upper plate slides backwards with a

controlled velocity maintaining a meniscus-like liquid surface where the evaporation takes place

and the patterns are deposited [42]. Other examples are (ii) a receding meniscus between two

glass plates. Thereby the receding velocity of the meniscus is controlled by an imposed pressure

gradient [48]; (iii) an evaporating drop that is pushed over a substrate at controlled velocity [46];

(iv) a solution that is spread on a substrate by a roller that moves at a defined speed [56]; and

(v) a plate that is removed from a bath of the solution or suspension at a determined angle and

velocity [77–80, 85]. The latter example works for the deposition of a solute from a bath of a

solution. However, it also corresponds to the well-known Langmuir-Blodgett technique that is

used to transfer a layer of surfactant from the free surface of a liquid bath onto a solid substrate

indicating that this technique can be related to the deposition of a solute from a moving contact

line. It will also turn out that the describing models are in certain limits closely related (see below

in section III). For all the active set-ups it is found that additionally to the control parameters

typical for the passive set-ups, the deposition patterns do also depend on the imposed mean speed

at the contact line.

Up to here we have focused on experiments where the substrates are solid. However, there

exist first studies of evaporating films on fluid substrates. In Ref. [86] films of a dispersion of

nano-crystals in alkanes are studied that simultaneously spread and evaporate on the free surface

of an immiscible polar organic fluid. As the liquid substrate is defect-free it allows for highly

regular, periodic, large-area stripe patterns.

A Careful study of the rich experimental literature shows that many of the works are concerned

with the creation of regular deposition patterns for particular combinations of materials in partic-

ular geometries that could be of interest for certain applications. Typical examples are shown as

a proof of concept but a detailed quantitative analysis of the pattern properties in dependence of

the employed control parameters is often missing, not to speak of morphological phase diagrams
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that show which patterns are found in the various regions of the parameter space. However, with-

out such systematic studies interactions between experiment and modelling are more cumbersome

and, in consequence, an effective control of the involved processes is more difficult.

Before, modelling approaches are reviewed in section III, we give examples of quantitative

analyses of experimental data. For deposition patterns that are lines parallel to the receding contact

line, a typical qualitative result is the dependence of line properties like amplitude (height), period

(distance), or skewness on initial concentration, imposed mean velocity of the contact line or

evaporation rate. Ref. [45] shows for the sphere-on-flat geometry that the height and distance

of the lines increase with the distance from the center of the concentric ring pattern. The plot

reproduced in Fig. 4 also shows that height and distance of the lines also increase with the initial

concentration. Different solvents are also compared quantitatively [45]. It is not ideal that the

sphere-on-flat geometry (as well as the drop on flat geometry) results in a drift of parameters as

during the course of the experiment the concentration in the solution often increases resulting in a

drift in the characteristics of the line/ring patterns or even in a qualitative change of the pattern as

the contact line moves inwards. This complicates interpretation and comparison with models.

On may say that the quantitative analysis for the Langmuir-Blodgett transfer is further advanced

than for the deposition from the moving contact line of a solution or suspension. For example,

Ref. [85] gives line period as a function of surface pressure and velocity of the receding plate for

single species surfactant layers and mixtures of different surfactants. They also provide a first

morphological phase diagrams that indicates at which parameters one finds stripes parallel to the

receding contact line, stripes orthogonal to the receding contact line, and ladder structures.
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(a) (b) (c)

(d) (e) (f)

FIG. 3: Examples of various patterns obtained in drying experiments in passive geometries with various

solutions and suspensions: (a) Optical image (side length 350µm) of the contact line region of a drying drop

of suspension of 50 nm silica particles. The contact line recedes towards the left and leaves a hierarchical

pattern of lines behind. Reproduced from Ref. [40], Copyright (2003), with permission from Elsevier; (b)

Optical image zooming in on a small part of a concentric ring pattern of PMMA deposited in the sphere-

on-flat geometry from a PMMA in toluene solution of concentration 0.25 mg/mL. The receding contact

line was oriented parallel to the stripes. Reproduced with permission from Ref. [41], Copyright 2007

WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim; (c) Optical image of ladder structures deposited in a

moving cover-plate geometry from a PS in chloroform solution of concentration 4 mg/ml. The contact line

receded parallel to the short lines. Reproduced with permission from Ref. [42], Copyright 2005 WILEY-

VCH Verlag GmbH & Co. KGaA, Weinheim.; (d) Tapping mode AFM image of structures obtained when

a solution (concentration 0.15 mg/ml) of the Cowpea Mosaic Virus (27nm size) dries on freshly cleaved

mica. Reprinted with permission from Ref. [43]. Copyright (2002) American Chemical Society; (e) AFM

height images (side length 100µm) of punch-hole-like PS patterns deposited from a PS toluene solution.

The receding contact line was oriented parallel to the lines of holes. Reproduced with permission from

Ref. [41], Copyright 2007 WILEY-VCH Verlag GmbH & Co. KGaA; (f) Confocal microscopy image of a

ring-with-sidefingers structure obtained from an evaporating droplet of a bidisperse suspension of PMMA

particles in decalin [44]. Reproduced with permission from Ref. [44] (Copyright (2013) by The American

Physical Society).
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FIG. 4: (color online). Quantitative characteristics of line patterns of the polymer poly[2-methoxy-5-(2-

eth-ylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) deposited in the passive sphere-on-flat geometry [45].

Solid and open circles correspond to toluene solutions with initial MEH-PPV concentrations of 0.075 mg/ml

and 0.05 mg/ml, respectively. Panels (a) and (b) show the center-to-center distance of adjacent lines/rings

λC−C and the ring height hd in dependence of their distance from the sphere/Si substrate contact center,

respectively. For the 0.075 mg/ml solution, typical examples of 3d AFM topographical images (50x50µ

m2) and corresponding cross sections are given as insets in (a) and (b), respectively. The solid lines are

theoretical fits obtained as described in the main text (for more in detail see pg. 3 of Ref. [45]). Reproduced

with permission from Ref. [45] (Copyright (2006) by The American Physical Society).
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III. MODELS

Despite the large number and variety of experimental works that study the creation of regular

line patterns and other structures from polymer solutions and colloidal suspensions, the theoretical

description and understanding of the dynamics of their formation seems still rather preliminary.

In general, most authors agree that patterns of lines that are parallel to the receding contact

line result from a stick-slip motion of the contact line that is caused by pinning/depinning events

[30, 45, 55, 87]. Branched structures and patterns of lines orthogonal to the contact line (the latter

are sometimes called spoke patterns [44, 47, 55, 67, 88]) are thought to result from transversal

instabilities of the receding contact line (sometimes called fingering instabilities) [51, 89–91].

As discussed in the introduction, a full description of the involved processes needs to account

for moving contact lines, the dynamics of the liquid-gas phase transition, and the equilibrium and

non-equilibrium phase behaviour and rheology of high-concentration suspensions and solutions.

Many of the involved non-equilibrium processes and even the underlying equilibrium phase tran-

sitions are still under discussion and we avoid to touch the related individual issues. Instead, we

first give an overview over the taken modelling approaches before discussing specific effects and

results for a sub-class of models namely models based on a small gradient expansion (also called

lubrication or long-wave models).

Several reduced models have been developed for the deposition process. Many of them focus

on the pinning/depinning process of the contact line that is responsible for the pattern deposition

and combine quasi-static considerations for droplet or meniscus shapes (e.g., assuming the liquid-

gas interface always forms part of a circle/sphere), assumptions about homogeneity or a certain

distribution of the evaporation flux, assumptions about the shape and density of the deposit (e.g.,

circular or triangular cross sections), and discuss the interaction between the contact line and the

deposit that is formed, in terms of a pinning force. One example is Ref. [45] where a film thickness

evolution equation in lubrication approximation (see below) is used together with assumed quasi-

static expressions for the meniscus and deposit shapes to obtain average velocities of the solute

moving toward the capillary edge. The obtained expressions are iteratively employed to get a best

fit with experimental data (solid lines in Fig. 4. However, some details of the iterative procedure

as, e.g., the calculation of pinning time and pinning force are not given in Ref. [45] making it

difficult to apply the approach to other systems. The pinning force is clearly defined in Ref. [48]

where a line-depositing meniscus recedes between two vertical parallel plates. There the pinning
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FIG. 5: (color online) Morphological phase diagramme for deposition patterns as obtained in a computa-

tional fluid dynamics approach [87, 92]. The parameter plane is spanned by ratios of the typical velocities

Vrad of the radial flow caused by the highest evaporation rate at the pinned contact line line, VDLVO related

to the attractive DLVO force, and VMa related to the Marangoni flow. The letters A to D refer to experiments

performed in Refs. [87, 92] while the dashed lines represent sketched boundaries of regions where homo-

geneous deposits, ring deposits and central deposits are expected to be found. Reprinted with permission

from Refs. [92]. Copyright 2010 American Chemical Society.

force results from the difference between the equilibrium meniscus height obtained from Jurin’s

law (based on the balance of capillarity and gravity for a meniscus between smooth homogeneous

vertical walls, see section 2.4 of Ref. [93]) and the measured rise height in the experimentally

studied system where the deposits make the walls heterogeneous. The dependence of contact

line pinning on colloid size and concentration in the vicinity of the contact line is investigated in

Ref. [76].

Building on earlier work [31], Ref. [30] bases some estimates on the assumptions that the

deposited ring is an annulus with a cross section shaped like a right triangle, the evaporating drop
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is always a thin spherical cap, and the volume of the drop decreases linearly. This allows for the

derivation of a pair of coupled ordinary differential equations that govern the width and height

of the ring deposit. The calculations in Ref. [32] assume that the drop is a spherical cap, the

evaporation rapidly approaches a steady state allowing one to treat the vapour diffusion in the

gas phase with the Laplace equation, i.e., by solving an equivalent electrostatic problem [31].

This results in an evaporation flux proportional to (r0 − r)−λ where r0 is the base radius of the

droplet and λ > 0 depends on the contact angle. This implies that the evaporation flux diverges

at the contact line and yields time dependencies of the mass of the drop, and the amount of solute

arriving at the contact line that agree with experimental results [32]. The model is refined in

Ref. [94] where the profile of the deposited ring is discussed. Note that these models assume that

the contact line remains pinned at its initial position and are therefore not able to describe extended

deposition patterns. Some of the underlying assumptions related to the diverging evaporation flux

at the contact line [32] have been questioned in Refs. [22].

Ref. [74] analytically determines the flow field (including Marangoni flow) for a shallow

droplet with pinned contact line and assumed spherical cap shape. The obtained velocity field

is combined with Brownian dynamics simulations to study the deposition of particles modelled

as simple interactionless spheres. They are convected by and diffuse in the flow. When they im-

pact the substrate they count as deposited. The simulations show a transition from a ring-deposit

(with strong Marangoni flow) to the deposition of a central bump of material (without or weak

Marangoni flow).

In a computational fluid dynamics approach the system is described with a macroscale de-

terministic continuum model, namely, a fully non-isothermal Navier-Stokes model that consists

of the complete set of transport equations for momentum, energy, and solute/colloid and vapour

concentration, thereby incorporating evaporation, thermal Marangoni forces and heat transport

through the solid substrate. The evaporation is limited by the vapour diffusion in the gas phase as

in Refs. [22, 95–97]. Contact line motion is implemented via rules for the motion of the liquid-gas

interface due to evaporation, rules for a liquid-solid transition at a critical colloid concentration,

and rules for depinning when the contact angle becomes smaller than an imposed receding con-

tact angle [87]. As a result the deposition of a single ring is modelled for a number of different

parameter sets. In Ref. [92] the same authors furthermore incorporate the mesoscale elements of

Derjaguin-Landau-Verwey-Overbeek (DLVO) interactions between solute particles and the solid

substrate in the form of effective forces in the advection-diffusion equation for the solute concen-
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tration. Again, the resulting simulations show the formation of and depinning from a single ring

deposit. For the parameter values used in Refs. [87, 92] no ’periodic’ deposits (i.e., multiple rings)

are observed. The phase diagram reproduced in Fig. 5 is proposed, where homogeneous deposits,

single ring deposits and central bump deposits are distinguished that occur in different regions

of the parameter plane spanned by ratios of typical velocities (see caption of Fig. 5). Although

computational fluid dynamics models like the ones developed in Refs. [87, 92] contain most or

all of the relevant physics, one may argue that they are tedious to use if an extensive scan of the

parameter space shall be performed. Furthermore, they are rich in tricky details when it comes to

incorporating wettability and contact line motion.

Alternatively, there exist modelling approaches based on microscale considerations, in partic-

ular, in the form of kinetic Monte Carlo (KMC) models for evaporatively dewetting nanoparticle

suspensions [53, 84, 90, 98–100] and in the form of a dynamical density functional theory (DDFT)

obtained from the KMC via coarse graining [91, 101] as (p)reviewed in Ref. [54]. Both, the micro-

scopic discrete stochastic KMC and the continuous deterministic DDFT are able to qualitatively

describe the strong fingering instability of an evaporatively receding contact line of a nanoparticle

suspension and its dependence on the chemical potential of the gas phase, solute mobility and

solvent-solute, solvent-solvent and solute-solute interactions. However, they do not account for

convective motion of the liquid as all transport is by diffusion. These approaches could up to now

not reproduce the deposition of regular line patterns parallel to the receding contact line, although

line patterns orthogonal to the receding contact line result when solvent-solute decomposition is

likely at the receding contact line (though not very regular, and rapidly decaying into droplets, see

Fig. 12 of Ref. [91]).

A class of models that may be seen as ’lying between’ macroscopic hydrodynamics and micro-

scopic dynamical density functional theory are the so called long-wave models (sometimes also

called lubrication models or small gradient models or thin film models). The subset of them that in-

corporates wettability via an additional pressure term (see below) and not via boundary conditions

at the contact line represents mesoscopic hydrodynamic models. As explained in the conclusion

they can be more easily expanded to incorporate additional physical effects like solvent-solute

interactions or solute-dependent wettability than computational fluid dynamics models.

Long-wave models for the evolution of films of liquids and drops on solid substrates are derived

from the full macroscopic bulk hydrodynamic equations and boundary conditions at the solid sub-

strate and the free surface through an expansion in a small parameter, namely, the ratio of typical
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length scales orthogonal and parallel to the substrate. For reviews and examples of derivations see

Refs. [102–104]. In the case of a partially wetting liquid, the small parameter is of the order of the

equilibrium contact angle. For a drop or film of a simple volatile liquid in an isothermal situation

the long-wave expansion results in the evolution equation

∂th = −∇ · Jconv − Jevap = ∇ · [Q(h)∇p]− Jevap (1)

for the film height h(x, t). Here, Q(h) = h3/3η is the mobility function in the case of a no-

slip condition at the substrate where η is the dynamic viscosity (for the case of slip see, e.g.,

Ref. [105]); p = −γ∆h − Π(h) corresponds to the pressure where γ is the liquid-gas interface

tension, −γ∆h is the Laplace or curvature pressure, and Π(h) = −df/dh is the Derjaguin or

disjoining pressure [8, 106, 107]; x = (x, y)T and ∇ = (∂x, ∂y)
T . Note that in the absence of

additional sources of energy the conserved part ∇ · Jconv of the r.h.s. of Eq. (1) can always be

written as a gradient dynamics writing the pressure p = δF [h]/δh as the variational derivative of

the underlying Lyapunov functional (sometimes called effective interface Hamiltonian or surface

free energy functional [9, 108, 109])

F [h] =

∫
dx[γξ + f(h)] (2)

where f(h) is the wetting energy per substrate area, and γξ is the energy of the (curved) free

surface per substrate area [110, 111]. Here, ξdx ≈ (1 + 1
2
|∇h|2)dx is the surface area element in

long-wave (or small-gradient) approximation. The situation is not as clear for the non-conserved

part Jevap of the dynamics in Eq. (1). Many forms are used in the literature as further discussed

below.

In general, evaporation is controlled by the phase transition process at the free liquid-gas in-

terface and by mass and energy transfer in the gas and liquid phase (and the substrate – for a

discussion see, e.g., Ref. [112]). In consequence, one often distinguishes the limiting cases of

evaporation limited by vapour diffusion in the gas phase and of evaporation limited by phase tran-

sition. In the latter case one would expect the evaporation flux to take the gradient dynamics

form

Jevap = Qnc(h)

(
δF [h]

δh
− µ

)
, (3)

where µ is the (constant) chemical potential of the gas phase. It is (with different choices for the

mobility Qnc(h)) equivalent to evaporation fluxes used, e.g., in Refs. [5, 21, 23, 113] and accounts

for the Kelvin effect (curvature influence on evaporation) and the dependence of evaporation on
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wettability (not included in Ref. [23]). For the class of evaporation models that assume that evap-

oration is controlled by diffusion in the gas phase; see, e.g., Ref. [22, 97, 114] and the discussion

below.

In the case of a suspension or solution the evolution equation for the film height Eq. (1) needs

to be supplemented by an equation for the transport of the solute. Employing a long-wave ap-

proximation the coupled system of evolution equations for film height h(x, t) and height-averaged

concentration φ(x, t) can be readily obtained from coupled Navier-Stokes and advection diffusion

equations and adequate boundary conditions [102, 104]. They are of the form

∂th = −∇ · Jconv − Jevap, (4)

∂t(φh) = −∇ · (φJconv + Jdiff), (5)

where most common terms in the convective and diffusive fluxes are given by

Jconv =
h3

3η(φ)

[
γ∇∆h−∇ df

dh

]
, (6)

Jdiff = −D(φ)h∇φ. (7)

Here, we have assumed that there is no slip at the solid substrate. Various evaporation fluxes Jevap

are used in the literature as, e.g., the one introduced above in Eq. (3). We discuss other options

below along with the various versions of long-wave models.

Such evolution equations are employed in a number of studies of drying films of solutions

and of deposition processes from contact lines of solutions with volatile solvent. However, only

very few studies allow contact lines to move and are therefore, in principle, able to describe the

dynamics of a periodic deposition process, i.e., the stick-slip character of the process [5, 114, 116–

118]. Many works focus on evaporating drops with a contact line that always remains pinned at

its initial position [115, 119–121]. This implies that they are only able to describe how a deposit

forms for a fixed drop base, even if fully dynamic long-wave models are employed.

An early example for such a study with pinned contact line is Ref. [119]. It uses the radially

symmetric form of Eqs. (4)-(7), neglects solute diffusion (D = 0), assumes constant (solute-

independent) viscosity (η(φ) = η0), and only accounts for the Laplace pressure term in Eq. (6)

(no Derjaguin pressure, i.e., no influence of wettability). There are no further flux contributions.
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FIG. 6: (Color online) Morphological phase diagram obtained with a long-wave model that combines a

quasi-static treatment of the film height profile with full time-dependent calculations of the concentration

field, and also introduces a simple model for the influence of gelation. Shown is the dependence of the final

deposit shape on the parameters initial concentration φ0 (in units of the gelling concentration φg) and initial

drop height b0 for cases (a) without and (b) with solute diffusion. Open circles, closed circles, and triangles

stand for basin type, crater type, and mound type deposits,respectively, as illustrated by the pictograms.

The solid line represents a theoretical curve separating basin and crater type in the case without diffusion.

Reproduced with permission from Ref. [115] (Copyright (2009) by The American Physical Society).

Results are presented for three different evaporation laws, namely

Jaevap =
E

K + h
[1− exp(−A(r − r0)2)], (8)

J bevap =
E

4hmax

[1− tanh(A(r − r0))], (9)

J cevap =
2E

hmax

exp(−Ar2). (10)

They all correspond to fluxes that go to zero (or become very small) at the pinned contact line.
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This shall model the effect of the growing deposit and avoid problems with singularities that arise

for finite evaporation flux at a pinned contact line. In Jaevap the heat transfer between substrate

and the free surface matters and determines the “nonequilibrium parameter K” [119], r0 is the

drop base radius, E is an evaporation rate, and A is related to the square of the inverse length

over which the colloidal particles affect the evaporation [119]. J bevap and J cevap are “qualitative

evaporative flux functions” developed to model particular experimental situations (for details see

[119]). Depending on the evaporation flux used, ring deposition (Jaevap and J bevap) or deposition

of a central bump (J cevap) are observed. Note, that many works that consider volatile pure liquids

employ evaporation fluxes that also contain the first factor in the expression for Jaevap in Eq. (8) as,

e.g.,

Jdevap =
E

K + h
(11)

in Refs. [122] (where K is said to measure “the degree of non-equilibrium at the evaporating

interface”); and

Jeevap =
E

K + h

(
δF

δh
− µ

)
(12)

in Refs. [16, 21, 123, 124] (whereK is called the “kinetic parameter” [123], the “kinetic resistance

number” [16] or is said “to measure the relative importance of kinetic effects at the interface”

[124]). The limit were thermal aspects can be neglected by assuming that the latent heat is very

small or/and the thermal conductivity is very large is obtained for K � h (and redefining E). It

is used, e.g., in Refs. [5, 15, 113]. Note that only Jeevap is a special case of the variational form

given in Eq. (3), i.e., for Qnc = E/(K + h). From the point of view of a gradient dynamics

the other given evaporation fluxes are not consistent with the energy functional underlying the

respective conserved part of the evolution. Note that this is an observation only and does not imply

a judgement. A gradient dynamics form as discussed above would not necessarily result in the case

of evaporation limited by vapour diffusion, but might be expected in the case of evaporation limited

by phase transition. But even in the latter case one might find |δF/δh| � |µ| and approximate

Jeevap by Jdevap (redefining E).

Another study with pinned contact line is Ref. [115] that starts off with the same convective

flux and general geometric setting as Ref. [119], but includes diffusion of the solute (D 6= 0)

and, most importantly, distinguishes a fluid and a gel-like part of the drop. In their analysis, the

authors treat the film height profile quasi-statically and approximate it by a parabolic shape with

time-dependent coefficients that are calculated through ordinary differential equations coupled to
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the remaining evolution equation. For the evaporation flux a piece-wise function is assumed: it

is constant from the center of the drop up to the distance from the center where the concentration

passes the critical value for gelling. Further outside one has a gel, there is no convective flux

and no evaporation, the drop shape is ’frozen’. The model can distinguish between final deposits

of basin-, crater-, and mound-type. The crater-type deposits might be seen as corresponding to

the deposition of a single ring. Typical obtained shapes of the dried-in deposits and morphologi-

cal phase diagrams are reproduced in Fig. 6 for the cases with (top) and without (bottom) solute

diffusion. Similar approaches are followed in Refs. [125] and [120] using evaporation fluxes

(ns − n∞)/
√
r2

0 − r2 and
√

1 + |∇h|2, respectively, where ns is the saturated vapour density at

the liquid-air interface and n∞ is the ambient vapour density away from the droplet. The pro-

portionality of the evaporation flux on the local surface area does not seem to be consistent with

long-wave approximation or a gradient dynamics form of the governing equations (before applying

the quasi-static approximation).

The final study with pinned contact line we present here, is the one in Ref. [121] where time

simulations of the evolution equations (4)-(7) are presented, again without solute diffusion (D = 0)

and without wettability influence or further (e.g., Marangoni) fluxes. The work takes into account

gelation close to the contact line by introducing a (i) concentration dependent viscosity η(φ) =

η0 exp[Sφ/(1− K̃φ)] (Mooney equation) and (ii) a concentration-dependent evaporation flux

Jfevap = E
1− φ2

K + h
. (13)

Here, the concentration φ is in units of the concentration at the sol-gel transition, S and K̃ are

fitting parameters. Overall, the obtained droplet shapes seem to match results of the simplified

model with quasi-static drop profile discussed before (used, e.g., in Ref. [115]). As only crater-

type deposits can be deduced from the drop profiles shown in Ref. [121] the question remains

open how well the results of full and simplified (quasi-static) models match in the case of drying

droplets with pinned contact line. To our knowledge no such comparison exists in the literature.

All the models that we have described in the previous paragraphs fix the drop base and are

therefore not able to capture the deposition of multiple rings or of a regular line pattern in planar

geometry. By fixing the drop base the contact angle is determined via the volume of the drop and

no wettability effects need to be taken into account. This is different in the following models that

allow for a freely receding drop edge either by introducing slip at the substrate or by employing a

precursor film model (where the precursor film is either imposed ’by hand’ or via specification of
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a wetting energy f(h) [cf. Eq. (2)] or of the related Derjaguin pressure Π(h) = −df/dh.

FIG. 7: Snapshots from the evolution of the film thickness (top), vertically averaged concentration (cen-

tre), and local effective solute height (bottom) obtained in a time simulation of a long-wave model for the

dewetting of a suspension of non-surface-active nano-particles in a volatile solvent. For parameter values

and time intervals see caption of Fig. 7 of Ref. [117]. Reprinted from Ref. [117], Copyright (2003), with

permission from Elsevier.

Dewetting drying films of solutions and suspensions are studied in Refs. [116, 117] with equa-
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tions (4)-(7) and evaporation fluxes

Jgevap = E0(1− φ)ν (14)

with 0 ≤ ν < 1, and where E0 is the drying rate for the pure solvent that is assumed to be

constant [116]; or corresponds to Jdevap (Eq. (11)) [117]. The latter work also takes vapor recoil

effects into account. Both models employ concentration-dependent viscosities and concentration-

independent Derjaguin pressures. For the latter they employ combinations of short-range stabil-

ising and long-range destabilising power law contributions. Note that here we only refer to the

case of surface-passive solute particles in Ref. [117] and not to the also treated case of surface-

active ones. Ref. [116] investigates the dewetting and drying of an initially homogeneous film

on a two-dimensional substrate with a small number of imposed wettability defects and is not di-

rectly related to deposition patterns. In contrast, Ref. [117] investigates dewetting and drying of

a nanoparticle suspension on a one-dimensional substrate starting with a single initial front and

observes the development of an array of drops/lines. An example is given in Fig. 7. Inspecting the

figure one notes that the lines develop starting from the left where the initial position of the front

is located. However, it is clear that the dried-in solute lines are not left behind by a moving front

or contact line region. Instead, they result from liquid suspension drops/ridges that first develop

in a directed convective dewetting process before they slowly dry in. As the film gets everywhere

thinner, the process does not advance far towards the right. Such a directed dewetting process can

occur via a spatially propagating spinodal process or a sequence of (secondary) nucleation pro-

cesses as investigated for simple non-volatile liquids in Refs. [126–128] (1d) and Refs. [129, 130]

(2d). Another thin film model that produces rings is introduced in Ref. [131], however, there the

contact line is shifted ‘by hand’ if a certain condition is met.

The mesoscopic hydrodynamic model employed in the final part of Ref. [54] and in Refs. [5,

118] is nearly identical to the one for surface-passive solutes [117] that we just discussed. Both

groups use the strongly nonlinear Krieger-Dougherty law for the viscosity [132, 133]

η(φ) = η0

(
1− φ

φc

)−ν
, (15)

where η0 is the dynamic viscosity of the pure solvent. Here, as before the solute concentration φ

is a dimensionless volume fraction and φc is its value at random close packing where the viscosity

diverges (for hard spheres φc = 0.63). Various exponents ν are used in the considered long-wave

models: ν = 2 [117, 134], ν = 1.575 [118], and various values [5]. In general, the exact value
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parameter region used in Refs. [5, 118] does not allow for directed spinodal dewetting (or by

sequences of secondary nucleation events), but results for a volatile pure liquid in an evaporatively

and convectively receding front (of constant speed) between a thick film and an ultrathin precursor

film [113]. These ingredients are sufficient to model the deposition of regular and irregular line

patterns from a receding front in a passive geometry. Next we briefly describe the mechanism of

line deposition and give examples of typical results.

Refs. [5, 118] describe one of the basic mechanisms that result in the formation of regular line

patterns via a self-organised cycle of pinning-depinning events, often described as a ‘stick-slip’

motion of the contact line. It is caused by the highly nonlinear rheology (power law divergence

for suspensions in Ref. [5, 118] or exponential increase for polymer solutions in Ref. [135]):

First, for sufficiently low diffusion of the solute, the ongoing evaporation rapidly increases the

solute concentration in the contact line region causing a strong local increase of the viscosity.

This eventually leads to a strong slow-down or even arrest of the convective motion in the contact

line region. However, evaporation still moves the contact region, albeit much slower. During this

phase, the material that had been collected into the contact line region is deposited as a line deposit.

As the concentration in the evaporatively moving contact line region decreases, it depins from the

line deposit, and moves faster again. The typical velocities in the convective and evaporative phase

of motion may differ by orders of magnitude and overall the process can appear to be a stick-slip

motion. Thus, the spatio-temporal self-organisation of the deposition process results from a subtle

interplay of all three of the transport processes (convection, diffusion and evaporation). As even

the basic model (e.g., without thermal effects, without solutal or thermal Marangoni effects) has

many parameters we are still far from a complete picture.

Typical results are given in Fig. 8 where the left panel reproduces the obtained morphological

phase diagram in the plane spanned by the evaporation number and the solute concentration. The

right panel reproduces final dried-in patterns in the various regions of the phase diagram. Note that

there is a rather extended central region of regular line patterns that are analysed in detail in Ref. [5]

in their dependence on the evaporation number, solute concentration, strength of solute diffusion,

wettability parameter, and viscosity exponent. This robust region of line patterns is surrounded by

regions of various transient and intermittent patterns. One important part of the analysis in Ref. [5]

focuses on the onset of the line patterns. Based on time simulations it was found that the regular

line patterns can appear/disappear through (i) sub- or supercritical Hopf bifurcations (i.e., they

disappear with a finite period and with an amplitude that reaches a (often small) finite value (sub-
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critical) or approaches zero (supercritical), (ii) homoclinic and sniper (saddle-node infinite period)

bifurcations that are both global bifurcations [136]. In both cases the line amplitude approaches

a finite value and the line period diverges when approaching the boundary - logarithmically (ho-

moclinic bifurcation) or in a power law (sniper bifurcation). Experimentally, the subcritical Hopf-

and homoclinic bifurcation may also be spotted through a hysteresis between homogeneous depo-

sition and line deposition, while the supercritical and sniper bifurcation would not show hysteresis.

Such a taxonomy of onset behaviour should proof valuable for the analysis of future experimental

results - these properties are nearly not looked at until now.

In Refs. [114, 135] a thin film description of an evaporating meniscus of a suspension in an

active geometry (meniscus moves under an imposed pressure gradient as in the experiments in

Ref. [48]) is developed for the case of diffusion-limited evaporation. The resulting model is of the

form of Eqs. (4)-(7) with an evaporation flux that is controlled by the diffusive flux of the vapour

in the gas phase. The diffusive flux itself is influenced by the saturated vapour pressure at the free

liquid-gas interface. In contrast to Ref. [5], Refs. [114, 135] do not take wettability effects into

account (their film always remains sufficiently thick), but include a solutal Marangoni flux (only

in Ref. [135]) and as well consider the dependence of the saturated vapour pressure at the free

liquid-gas interface on the solvent concentration in the solution. Ref. [114] studies homogeneous

deposition while Ref. [135] finds that in the considered parameter region regular line patterns are

deposited in a certain range of meniscus speeds but only if a sufficiently strong solutal Marangoni

effect is taken into account. From the provided numerical simulation results for the dependencies

of the amplitude and period of the line patterns on meniscus speed one may conclude that at

small meniscus speeds the onset is via a homoclinic bifurcation (period diverges, amplitude is

finite, small hysteresis range in speed exists) and at large meniscus speeds via a subcritical Hopf

bifurcation (period remains finite, amplitude is small but finite, small hysteresis range in speed

exists).

Finally, we discuss dynamic models for the related process of Langmuir-Blodgett transfer

where a surfactant layer is transfered from the surface of a bath onto a moving plate that is drawn

out of the bath. The resulting stripe patterns are related to a first order phase transition in the

surfactant layer that results from a substrate-mediated condensation effect [77]. Refs. [138, 139]

develop a long-wave model consisting of coupled evolution equations for film height h(x, t) and
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FIG. 9: Bifurcation diagram for stripe deposition obtained with a reduced (Cahn-Hilliard-type) model for

Langmuir-Blodgett transfer of a surfactant layer under the influence of substrate-induced condensation.

Shown is the norm of steady and time-periodic 1d concentration profiles against the velocity of the plate

V . The solid and dashed lines represent stable (corresponding to homogeneous transfer) and unstable

steady profiles, respectively, while the crosses give the time-averaged norm of time-periodic profiles that

correspond to the deposition of line patterns. They emerge at low plate speed in a homoclinic bifurcation

while at large plate speed several Hopf bifurcations are involved. The Greek letters label profiles given

in Fig. 7 of Ref. [137] while S1–S4 label particular saddle-node bifurcations (see Ref. [137]). Figure

reproduced from Ref. [137] under a CC BY-NC-SA licence. Copyright IOP Publishing Ltd and Deutsche

Physikalische Gesellschaft.

concentration of the insoluble surfactant Γ(x, t). The general form is [102, 104]

∂th = −∇ · Jconv − Jevap, (16)

∂tΓ = −∇ · (Γvs + Jdiff), (17)

where the evolution equation for film height is of identical form as Eq. (4). The main difference

to the system (4)-(7) above is that the convective transport of the surfactant concentration Γ is not

through the film bulk flux Jconv but through the liquid velocity at the free surface vs. Such a model

can account for the full thermodynamics of the surfactant phase transition including the resulting

Marangoni fluxes [137–140]. It also contains wettability and capillarity effects. The substrate-

mediated condensation is incorporated through a dependence of the free energy of the surfactant

on film thickness. The model results in stripe patterns in a certain range of velocities of the moving
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plate [137, 138]. The stripes can be parallel (plate velocities towards upper limiting velocity) or

perpendicular (plate velocities towards lower limiting velocity) to the contact line.

A disadvantage of all hydrodynamic long-wave models for line deposition is that they are still

rather complicated coupled highly-nonlinear partial differential equations that do not easily lend

themselves to a detailed bifurcational analysis of the patterning process. However, simulation re-

sults reveal that details of the shape of the free surface of the film and of its limited dynamics

(meniscus is nearly static) do not affect the qualitative characteristics of the stripe formation pro-

cess. The main role of the meniscus is to tilt the free energy potential for the surfactant phase

transition from preferring one state (at hight film height) to preferring another state (at low film

height). With other words, in the surfactant system the substrate-mediated condensation arises

because the moving substrate drags the surfactant layer over a spatial threshold where the free

energy landscape changes. This implies that the main qualitative features of the process can be

captured by a strongly reduced model consisting of a Cahn-Hilliard equation (describing phase

separation) [141, 142] with a double-well energy whose tilt is changed over a fixed small region

in space (that represents the contact line region in the original system) [137]. The model produces

stripe patterns as expected and can be analysed much more in detail than the hydrodynamic long-

wave models. In particular, it is found that for the studied parameter values in the one-dimensional

case the line patterns emerge at low plate velocities through a homoclinic bifurcation from an

unstable branch that forms part of a family of steady heteroclinic snaking states (see bifurcation

diagram in Fig. 9; for the concept of snaking cf. e.g., Ref. [143, 144]). At high plate velocities

the line pattern emerges through a number of sub- and supercritical Hopf-bifurcations [137] This

supports hypotheses about the onset of deposition patterns made on the basis of time simulations

in Refs. [5, 137, 138]. We expect such reduced models to play an important future role in the

understanding of transitions between the various two-dimensional deposition patterns.

It is interesting to note that the described onset behaviour for the deposition of regular lines may

also be related to the characteristics of depinning transitions in other soft matter systems. However,

to appreciate this, it is important to understand that the described transitions from homogeneous

deposition to the deposition of of lines may be seen as depinning transitions in the frame moving

with the mean speed of the contact line region: When a flat layer is deposited, the concentration

profile is steady in the frame of the contact line region. Then, one may say that the concentration

profile is pinned to the contact line region (to the moving front in Refs. [5, 118]; to the moving

meniscus in Ref. [135], to the resting meniscus in Refs. [137, 138]) as it does not move relative
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to it. However, at the transition to periodic line deposition, the concentration profile starts to

move relative to the contact line region, and one may say the concentration profile depins from the

contact line region (for a detailed analysis see Ref. [5].

This consideration makes it clear why the transition scenarios described above are very similar

to the scenarios found when studying depinning in other driven soft matter systems. To illustrate

how universal such transitions are, we mention two other systems: On heterogeneous substrates

drops of simple nonvolatile liquids remain pinned if an external lateral driving forces remains

below a threshold value. When the force passes the threshold the drops depin from the hetero-

geneities. Depending on system details, one finds sniper, homoclinic and super- or subcritical Hopf

bifurcations [145? , 146]. As second system we mention clusters of interacting colloidal particles

that move under the influence of external forces through a heterogeneous nanopore [147, 148].

Under weak dc driving, the particle density distribution is pinned by the heterogeneities. De-

pending on driving force and the attraction between the colloids, the particle density distribution

may depin from the heterogeneity via Hopf and homoclinic bifurcations resulting in time periodic

fluxes. The sketched comparison between the different soft matter systems shows that the emer-

gence of regular deposition patterns (in particular, line patterns) may be related to a wider class

of depinning transitions. It is to expect that particular results obtained in each system can inform

future studies of the other mentioned systems.

IV. CONCLUSIONS AND OUTLOOK

The present review has focused on deposition patterns that are left behind when a complex

liquid with volatile components recedes from a solid smooth substrate. Examples are polymer,

(nano-)particle and surfactant suspensions/solutions. This occurs for many combinations of sub-

strate, solvent and solute materials in a wide range of geometries that one might classify into the

two groups of passive and active set-ups. In the passive case, the evaporation proceeds freely

and the (mean) contact line speed naturally emerges from the processes of convective dewetting

and evaporation. In the active case, the mean contact line speed is controlled by an additional

parameter as, e.g., the plate speed in the Langmuir-Blodgett transfer of a surfactant layer onto a

moving plate or the pressure gradient for a meniscus that recedes between two parallel plates. The

parameter that controls the mean speed of the contact line region in the active set-ups can often be

better controlled than the parameters that are relevant in the passive set-ups.
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First we have briefly discussed a number of examples of experimental systems. This has illus-

trated how rich and universal the pattern deposition process is and what the range of potential ap-

plications is. This part has also indicated that a full description of the pattern formation processes

should account for moving contact lines, the dynamics of the liquid-gas phase transition, and the

equilibrium and non-equilibrium phase behaviour and rheology of high-concentration suspensions

and solutions – most being non-trivial non-equilibrium phenomena. The part has concluded with

the assessment that although a wide range of deposition patterns is described for many systems,

there is a certain lack of quantitative results that would allow us to understand how the pattern

properties change with well defined control parameters, in particular, close to the onset of pattern-

ing or close to transitions between different pattern types. This is in part due to the frequent use

of geometries that result in a drift of parameters during the process (as, e.g., an increasing solute

concentration in a shrinking droplet). This makes a quantitative analysis very challenging and also

results in modelling problems.

This has been followed by a brief overview of model types used in the literature including com-

putational fluid dynamics, kinetic Monte Carlo simulations, dynamical density functional theory,

and (mesoscopic) long-wave hydrodynamics. Subsequently, a more detailed analysis has been

given of hydrodynamic long-wave models and of the results obtained with them. In this part of

the review we have seen that there exists a number of long-wave hydrodynamic models for the

drying of droplets with permanently fixed contact line position that mainly differ by the employed

expressions for the evaporation flux and viscosity function. There are fewer works that use models

which allow for freely moving contact lines. Only such models are able to describe the emergence

of involved deposition patterns. Up to now they have mostly been used to analyse one-dimensional

line patterns.

However, it has also become clear that the hydrodynamic long-wave models for nanoparticle

suspensions and solutions are still rather restricted concerning the spectrum of physical effects

that can be included in a systematic and consistent way. For instance, the models used to study

line deposition do not yet account for physical effects like solvent-solute interactions or solute-

dependent wettability. Also the inclusion of a solute-influence on evaporation would benefit from

a more systematic approach, in particular, in the case of phase transition-controlled evaporation

(for diffusion-limited evaporation see Ref. [114, 135]). A systematic way for such extensions of

hydrodynamic long-wave models has recently been proposed for (i) non-surface active solutes

[149, 150] and (ii) insoluble surfactants [140] improving, e.g., on earlier ad-hoc inclusions of
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concentration-dependencies into Derjaguin pressures. For an extensive discussion see Refs. [140,

149].

To give an outlook, we sketch the main idea in the case of a non-surface active solute. For a thin

film of a mixture with a neglectable influence of inertia (Stokes flow, over-damped limit) without

additional sources of energy one should expect that its approach to equilibrium can be described

by a gradient dynamics for the conserved fields film thickness h and effective local solute layer

thickness ψ = hφ based on an underlying free energy. Note that the non-conserved field φ is

the dimensionless height-averaged per volume solute concentration. The general form of coupled

evolution equations for two such conserved order parameter fields h and ψ in the framework of

linear nonequilibrium thermodynamics is

∂th = ∇ ·
[
Qhh∇

δF

δh
+ Qhψ∇

δF

δψ

]
,

∂tψ = ∇ ·
[
Qψh∇

δF

δh
+ Qψψ∇

δF

δψ

]
. (18)

The mobility matrix

Q =

 Qhh Qhψ

Qψh Qψψ

 =
1

3η

 h3 h2ψ

h2ψ hψ2 + 3D̃ψ

 (19)

is symmetric and positive definite corresponding to Onsager reciprocal relations and the condition

for positive entropy production, respectively [151]. The parameter D̃ is the molecular mobility of

the solute. The mobility matrix is chosen in such a way that the thermodynamic form of the evo-

lution equations (18) coincides with the hydrodynamic form (4)-(7) if the underlying free energy

functional only comprises the wetting energy per substrate area f , the surface energy per substrate

area γξ and the per substrate area entropic contribution due to a low concentration solute h gid

(where gid ∼ φ log φ). That is, the free energy functional is

F [h, ψ] =

∫
[γξ + f (h, φ) + h gid (φ)] dA. (20)

To appreciate that with this thermodynamic approach one exactly recovers the standard hydrody-

namic long-wave equations (4) to (7) see Ref. [149]. With a number of small modifications this

works similarly well for insoluble surfactants and in the dilute limit one recovers Eqs. (16) and

(17) including the appropriate fluxes and the linear relation between surfactant concentration and

surface tension [140]. However, beyond this mere reformulation the thermodynamic approach

can play out its strength if one aims at the introduction of additional physical effects into the
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long-wave evolution equations. For instance, if instead of the purely entropic gid one employs

a double-well potential g ∼ (φ2 − 1)2 for the solvent-solute interaction (and also adds a stabil-

ising gradient term ∼ h(|∇φ|2) to avoid blow-up one obtains the long-wave limit of model-H

[152, 153] as derived recently via an involved long-wave asymptotic expansion [154]. One may

also incorporate a concentration-dependent wettability by replacing f(h) by f(h, φ). Then one

obtains a concentration-dependent Derjaguin pressure as proposed, e.g., in the case of a struc-

tural Derjaguin pressure in Refs. [155–157]. This pressure, however, has to be accompanied by

a flux term driven by concentration-gradients within the bulk of a thin film. This flux is neither

a Marangoni nor a Korteweg flux, although it may be seen as being related to both (for details

and examples in the case of a non-surface active solution see Ref. [150]). The sketched gradient

dynamics approach will allow for an incorporation into mesoscopic hydrodynamics of interac-

tions that naturally enter a dynamical density functional theory but have only incompletely been

accounted for in hydrodynamic long-wave models.

Furthermore, one may add an evaporation flux to the first equation of (18). In the case of phase

transition-limited evaporation, this would take a non-conserved (Allen-Cahn type) form similar

to Eq. (3), i.e., it would be based on the same energy functional as the conserved dynamics in

Eq. (18). However, the mobility Qnc might depend on h and φ (it may also be constant). In this

way one accounts for the evaporation of a volatile solvent including the dependence of evaporation

on the osmotic pressure g − φg′. To our knowledge this approach has not yet been employed in

long-wave studies of deposition patterns. We also expect that the approach can be extended to

other complex fluids as, e.g., suspensions of soluble surfactants or liquid crystals.

To conclude, we have given a brief overview about experimental results and modelling ap-

proaches for deposition patterns emerging at moving contact lines. Besides sketching main ap-

proaches and results, we have briefly outlined relations between the onset of patterned deposition

and depinning transitions in different soft matter systems as we believe that a further analysis of

such relations might be rather fruitful, in particular, as the deposition models themselves are still

under development.
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