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Abstract

Second-order local optimality conditions involving copositiv-
ity of the Hessian of the Lagrangian on the reduced (polyhedral)
tangent cone have the advantage that there is only a small gap
between sufficient (the Hessian is strictly copositive) and neces-
sary (the Hessian is copositive) conditions. In this respect, this is
a proper generalization of convexity of the Lagrangian. We also
specify a copositivity-based variant which is sufficient for global
optimality. For (nonconvex) quadratic optimization problems
over polyhedra (QPs), the distinction between sufficiency and ne-
cessity vanishes, both for local and global optimality. However,
in the strictly copositive case we can provide a distance lower (er-
ror) bound of the increment f(x)−f(x̄) around a local minimizer
x̄. This is a refinement of an earlier result which focussed on mere
(non-strict) copositivity. In addition, an apparently new variant
of constraint qualification (CQ) is presented which is implied
by Abadie’s CQ and which is suitable for second-order analysis.
This new reflected Abadie CQ is neither implied, nor implies,
Guignard’s CQ. However, it implies the necessary second-order
local optimality condition based on copositivity. Applications to
trust-region and all-quadratic problems illustrate the advantage
of this approach, by applying above proof techniques and several
(counter-)examples.
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1 Second-order local optimality conditions
for general smooth nonlinear optimization

1.1 Constraint qualifications

To begin with, let us shortly recapitulate several constraint qualifications
(CQ) for a smooth optimization problem

f(x) → min ! subject to
hi(x) = 0 , i ∈ {1, . . . , q} ,
gi(x) ≤ 0 , i ∈ {1, . . . ,m} ,

which can be written in the more compact form

min
x∈M

f(x) with M =
{
x ∈ Rn : H(x) = o and −G(x) ∈ Rm+

}
, (1)

H(x) = [h1(x), . . . hq(x)]
> ∈ Rq and G(x) = [g1(x), . . . , gm(x)]> ∈ Rm. Note

that the following conditions depend on f and the current description of M
by G and H, not only on the shape of M and f . All functions f , G and H are
supposed to have continuous second-order derivatives (the derivatives w.r.t.
x are symbolized by Dx, sometimes also by ∇f = [Dxf ]>, while φ̇(t) = dφ

dt
denotes derivative w.r.t. scalar variable t). As usual, for any cone C ⊆ Rn,
we denote its dual cone by

C? =
{
u ∈ Rn : u>v ≥ 0 for all v ∈ C

}
.

Definition 1.1 Let x ∈M be a feasible point of problem (1) and denote by
I(x) = {i ∈ {1, . . . ,m} : gi(x) = 0} the indices of constraints binding at x,
as well as by

Γ(x) =
{
v ∈ Rn : DxH(x)v = o and v>∇gi(x) ≤ 0 for all i ∈ I(x)

}
the polyhedral tangent cone of M at x. Later on, we will also use the reduced
polyhedral tangent cone

Γ0(x) =
{
v ∈ Γ(x) : v>∇f(x) = 0

}
= Γ(x) ∩∇f(x)⊥ .

Finally, consider the (derivative) tangent cone

TM (x) =

{
v ∈ Rn : v = lim

s↘0
vs with x + tsvs ∈M, some ts ↘ 0 as s↘ 0

}
.

Note that, by taking directional derivatives, we always have TM (x) ⊆ Γ(x)
but the latter cone may be larger in general (and the former may neither be
convex nor closed, let alone polyhedral).
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(a) We say that G,H satisfy the linear independence CQ (LICQ) at x if
the gradients of binding constraints

[∇hi(x) : i ∈ {1, . . . , q} ;∇gi(x) : i ∈ I(x)]

are linearly independent;

(b) we say that G,H satisfy the Mangasarian/Fromovitz CQ (MFCQ) at x
if the gradients

[∇hi(x) : i ∈ {1, . . . , q}]

are linearly independent (i.e., if rank DxH(x) = q) and if there is a
direction d ∈ Γ(x) satisfying

d>∇gi(x) < 0 for all i ∈ I(x) ;

(c) we say that G,H satisfy the Abadie CQ (ACQ) at x if TM (x) = Γ(x);

(d) we say that G,H satisfy the Guignard CQ (GCQ) at x if [TM (x)]? =
[Γ(x)]?;

(e) finally, we define an apparently new CQ which we propose to call re-
flected ACQ (RACQ): we say that G,H satisfy the RACQ at x if

Γ(x) ⊆ TM (x) ∪ [−TM (x)] ;

in sloppy words, RACQ are satisfied if and only if for any direction
v ∈ Γ(x), either v or −v is a starting tangent of a trajectory (or curve)
starting at x and remaining entirely inside M .

For the readers’ convenience, we detail the only non-trivial relation of above
CQs; see, e.g. [6, Cor.12.1].

Lemma 1.1 Suppose that v ∈ Γ(x̄) satisfies v>∇gi(x̄) < 0 for all i ∈ I(x̄),
and further suppose that rank DxH(x̄) = q. Then there is a trajectory y(t) ∈
Rn with y(t) ∈ M for all small enough t ≥ 0 with y(0) = x̄, and having
a tangent ẏ(0) = v. Hence v = lims↘0 vs with vs = 1

s [y(s) − y(0)] and
x̄ + svs = y(s) ∈M .

Proof. The q×n Jacobian matrixDxH(x) has rows [∇hi(x)]>, i ∈ {1, . . . , q}.
Now, for w ∈ Rq and t ∈ R, define the mapping Φ : Rq × R→ Rq by

Φ(w, t) := H(x̄ + tv +DxH(x̄)>w) .

Then Φ(o, 0) = H(x̄) = o and, by assumption, the Jacobian DwΦ(o, 0) =
DxH(x̄)[DxH(x̄)]> is nonsingular as rank DxH(x) = q. Thus the Implicit

2



Function Theorem guarantees existence of a differentiable trajectory w :
(−ε, ε) → Rq with w(0) = o and Φ(w(t), t) = 0 if |t| < ε. Further, we
have ẇ(0) = −[DwΦ(o, 0)]−1DtΦ(o, 0). Now DtΦ(o, 0) = DxH(x̄)v = o as
v ∈ Γ(x̄) implies v ⊥ ∇hi(x̄) for all i = 1, . . . , q. So also ẇ(0) = o. Now
define the trajectory y(t) = x̄+tv+w(t) which satisfies ẏ(0) = v. Further, by
construction, H(y(t)) = Φ(w(t), t) = o whenever |t| < ε. For these t, if ε is
small enough, we can enforce gi(y(t)) < 0 whenever gi(x̄) < 0 by continuity.
Finally, we get, possibly further reducing ε if necessary,

gi(y(t)) = gi(x̄) + tv>∇gi(x̄) + o(t) < gi(x̄) = 0 for all i ∈ I(x̄) if 0 < t < ε .

We conclude y(t) ∈M whenever 0 ≤ t < ε, as desired. 2

Most of the following relations between the CQs are well known; for a
standard reference see [10].

Corollary 1.1 The LICQ imply the MFCQ which in turn imply the ACQ
which in turn imply both the RACQ and the GCQ.

Proof. If all gradients of binding constraints at x̄ are linearly independent,
the linear system in d

d>∇hi(x̄) = 0 , i ∈ {1, . . . , q} ,

d>∇gi(x̄) = −1 , i ∈ I(x̄) ,

has a solution d ∈ Rn. Any such d must lie in Γ(x̄) and hence MFCQ holds.
To show the remaining assertion, take any v ∈ Γ(x̄), choose any small s > 0,
and consider a direction d ∈ Γ(x̄) which satisfies d>∇gi(x̄) < 0 for all i with
gi(x̄) = 0. This d exists by the MFCQ. Clearly, also vs = v + sd ∈ Γ(x̄)
satisfies the assumption of Lemma 1.1, so for any small s > 0 there is a
trajectory ys(t) ∈ M starting at x̄, i.e. ys(0) = x̄, and having starting
tangent ẏs(0) = vs. Hence the ACQ are met. Obviously, ACQ implies both
RACQ and GCQ. 2

Remark 1.1 This example is taken from James V. Burke’s extremely help-
ful site http://www.math.washington.edu/˜burke/crs/408/. Consider n = 2,
f(x) = x>x, G(x) = −x and H(x) = x1x2. The (only) global solution is
x∗ = o, where TM (x∗) =

{
x ∈ R2

+ : x1x2 = 0
}
⊂ Γ(x∗) = R2

+, so both ACQ
and RACQ are violated while GCQ is satisfied as both dual cones are equal
to R2

+.
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Remark 1.2 Given any set of multipliers u = [u1, . . . , um]> ∈ Rm+ for the
inequality constraints gi(x) ≤ 0, we will employ the RACQ for a subproblem

Mu = {y ∈M : gi(y) = 0 if ui > 0} ,

i.e., for the objective function f , the equality constraints hi and gi(ui > 0),
and the inequality constraints for gi(ui = 0). For a KKT point x̄ with
multipliers u, the reduced tangent cone Γ0(x̄) obviously coincides with the
polyhedral tangent cone of Mu because v ⊥ ∇f(x̄) = −

∑
i ui∇gi(x̄) and

v ∈ Γ(x̄) implies v ⊥ ∇gi(x̄) if ui > 0. While the LICQ are inherited from
[M,Γ(x̄)] by [Mu,Γ0(x̄)], neither MFCQ nor ACQ nor RACQ are inherited,
as the following example [5, Ex.2.3] shows:

Let m = n = 2 and g1(x1, x2) = e−x1 + x1 − x2 − 1 as well as g2(x1, x2) =
ex1−x1−x2−1, which have at x̄ = o the same gradients ∇g1(o) = ∇g2(o) =
[0,−1]>. Hence for

M = {x ∈ R2 : gi(x) ≤ 0 , 1 ≤ i ≤ 2}

even the MFCQ at the point x̄ = o are satisfied: indeed for v = [0, 1]> we
obtain v>∇gi(x̄) < 0 for all i. The tangent cone is Γ(x̄) = {v ∈ R2 : v2 ≥ 0}.
For any objective function f with gradient ∇f(o) = [0, 1]>, the point x̄ = o
satisfies the KKT-conditions, any admissible set u of Lagrange multipliers
fulfilling u1 + u2 = 1. Now

Γ0(x̄) = {v ∈ R2 : v2 = 0} .

If both u1 > 0 and u2 > 0, then Mu = {o} and ACQ, and likewise RACQ,
is obviously violated. If, however, u1 = 1 and u2 = 0, then

Mu = {x ∈M : g1(x) = 0}
= {x ∈ R2 : x2 ≥ ex1 − x1 − 1 and x2 = e−x1 + x1 − 1}
= {x ∈ R2 : sinhx1 ≥ x1 and x2 = e−x1 + x1 − 1}
= {x ∈ R2 : x1 ≥ 0 and x2 = e−x1 + x1 − 1} ,

which also violates ACQ, because v = [−1, 0]> ∈ Γ0(x̄) cannot be a starting
tangent vector of any trajectory in Mu starting in x̄ = o. But −v is such a
tangent vector, so RACQ holds. Similarly, also for u = [0, 1]>, ACQ is not
met by

Mu = {x ∈ R2 : x2 = ex1 − x1 − 1 and x1 ≤ 0} .

Here v = [1, 0]> is no starting tangent vector but −v is one, so again RACQ
holds. All these examples also violate the GCQ.
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1.2 Second-order conditions for local optimality

For problem (1), we define the Lagrangean function

L(x; u) = f(x) +
m∑
i=1

uigi(x) +

q∑
i=1

ui+mhi(x) ,

where ui ≥ 0 for all i ∈ {1, . . . ,m} and ui ∈ R for all i ∈ {m+ 1, . . .m+ q}
are the Lagrange multipliers of the constraints.

We now are ready to prove necessary and sufficient second-order opti-
mality conditions with only a small gap in-between them. A precursor using
ACQ instead of RACQ, and applied to a more general setting, can be found
in [3] who apparently had the final word up to now in a series of publications
dealing with similar second-order optimality conditions (e.g., [4, 8]).

The key notion for formulating these conditions is that of copositivity.
Given a symmetric n× n matrix Q and a cone Γ ⊆ Rn, we say that

Q is Γ-copositive if v>Qv ≥ 0 for all v ∈ Γ , and that

Q is strictly Γ-copositive if v>Qv > 0 for all v ∈ Γ \ {o} .

Strict copositivity generalizes positive-definiteness (all eigenvalues strictly
positive) and copositivity generalizes positive-semidefiniteness (no eigen-
value strictly negative) of a symmetric matrix.

Theorem 1.1 Let x̄ be a KKT point with Lagrange multipliers ū.

(a) If D2
xL(x̄; ū) is strictly Γ0(x̄)-copositive, then x̄ is a strict local minimizer

of f over M . More precisely, there are ε > 0 and ρ > 0 such that

f(x) ≥ f(x̄) + ρ‖x− x̄‖2 for all x ∈M with ‖x‖ < ε .

(b) If Mū satisfies RACQ at x̄ (in the sense of Remark 1.2), and if x̄ is a
local minimizer of f over M , then D2

xL(x̄; ū) is Γ0(x̄)-copositive.

Proof. (a) Assume the contrary, so that there are xs ∈ M with ts =
‖xs − x̄‖ ↘ 0 and ρs → 0 as s↘ 0 with

f(xs) < f(x̄) + ρst
2
s as s↘ 0 . (2)

Consider the directions vs = 1
ts

(xs−x̄) of unit length and assume without loss
of generality that vs → v as s↘ 0. Then v ∈ Γ(x̄) as noted in Definition 1.1.
Obviously

v>∇f(x̄) = lim
s↘0

v>s ∇f(x̄) = lim
s↘0

1

ts
[f(xs)− f(x̄)] ≤ lim

s↘0

ρst
2
s

ts
= 0 ,
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so that v ∈ Γ0(x̄) \ {o} and therefore by assumption v>D2
xL(x̄; ū)v > 0. Now

we estimate, by help of (2),

f(x̄) + ρst
2
s > f(xs) ≥ L(xs; ū) = L(x̄; ū) + t2s

2 v>s D
2
xL(x̄; ū)vs + o(t2s)

= f(x̄) + t2s
2 v>s D

2
xL(x̄; ū)vs + o(t2s) ,

subtract f(x̄) and divide by t2s > 0, to arrive at

ρs ≥ 1
2 v
>
s D

2
xL(x̄; ū)vs + o(1) ≥ 1

3 v
>D2

xL(x̄; ū)v > 0

for all small enough s > 0, a contradiction.
(b) Suppose v ∈ Γ0(x̄) satisfies v>D2

xL(x̄; ū)v < 0. Further, assume without
loss of generality that v ∈ TMū(x̄); indeed, otherwise replace v with −v which
won’t change the quadratic form v>D2

xL(x̄; ū)v. Then choose a close enough
direction vs and step sizes ts ↘ 0 as s ↘ 0 such that xs = x̄ + tsvs ∈ Mū.
Then we have by continuity also v>s D

2
xL(x̄; ū)vs < 0 if s > 0 is small enough,

and therefore

f(xs) = L(xs; ū) = L(x̄; ū) + t2s
2 v>s D

2
xL(x̄; ū)vs + o(t2s) < f(x̄)

if s > 0 is small enough, contradicting local optimality of x̄. 2

Remark 1.3 The necessary second-order conditions can also be satisfied if
RACQ fails: this example is due to F. Facchinei, A. Fischer (personal com-
munication) and M. Herrich who adapted [7, Ex.2.2], see also the references
therein; also cf. [5, Ex.2.2]: Let n = 3, m = 2, q = 0 and consider the non-
convex problem given by f(x) = x2

1−x2
2+x2

3 and G(x) = [x2
1+x2

2−x2
3, x1x3]>.

Obviously, f(x) ≥ 2x2
1 ≥ 0 on the feasible set (which is unbounded), so x∗ = o

is optimal. Further, the Lagrangian has derivatives

∇xL(x; u)=

2(1 + u1)x1 + u2x3

2(u1 − 1)x2

2(1− u1)x3 + u2x1

, D2
xL(x; u) = 2

1 + u1 0 u2
2

0 u1 − 1 0
u2
2 0 1− u1

.
We conclude there is a continuum (in fact, two branches) of further optimal
solutions x±t = [0, t,±t]> as t 6= 0 at which the dual variables ut are unique,
since they all equal u∗ = [1, 0]>, while at x∗, any u ∈ R2

+ satisfy the KKT
system ∇xL(x∗; u) = o. It is easy to see that there are no other KKT points
for this problem. Next we investigate

DxG(x±t ) =

[
0 2t ±2t
±t 0 0

]
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to see that the LICQ are satisfied for t 6= 0 while they fail at x∗ (just put
t = 0). Now for t = 0 (i.e., at x∗) as well for all other t, we have

Γ(x±t ) =
{
v ∈ R3 : tv2 ≤ ±tv3 and ± tv1 ≤ 0

}
,

which means Γ(x∗) = R3. Further, the reduced tangent cones are Γ0(x∗) =
R3 still while

Γ0(x±t ) =

{ {
v ∈ R3 : ±v1 ≤ 0 and v2 = ±v3

}
, if t > 0 ,{

v ∈ R3 : ±v1 ≤ 0 and v2 = ±v3

}
, if t < 0 .

Anyhow, we see that D2
xL(x±t ; u∗) is positive-semidefinite for all t and there-

fore Γ0(x±t )-copositive (including t = 0, i.e., also at x∗), while for all other
choices of u, the Hessian D2

xL(x∗; u) is not Γ0(x∗)-copositive. Nevertheless,
even at x∗, RACQ is clearly violated for

Mu∗ =
{
x ∈ R3 : x2

1 + x2
2 = x2

3, x1x3 ≤ 0
}
,

i.e., for (G,H) = (g2, g1). Note that x∗ is not an isolated (local) solution
to the problem, and that GCQ is satisfied for Mu∗ at x∗ as [TMu∗ (x

∗)]? =
[TMu∗ (x

∗)]⊥ = {o} = [Γ0(x∗)]?. This example will be analyzed further in
Section 4 dealing with the SDP relaxation of all-quadratic problems of this
type.

1.3 Special case: quadratic optimization over polyhedra (QP)

Theorem 1.1 says

strict copositivity⇒ strict local solution⇒ local solution⇒ copositivity ,
(3)

and for quadratic optimization problems over polyhedra, the leftmost and
the rightmost implications in (3) become equivalences. This has been known
before, see, e.g. [2, p.5] and the references therein. But in the strict case,
one can specify an explicit error bound (implying even strong optimality
rather than strict optimality), and this will done below (apparently for the
first time in literature).

For ease of particular reference, we provide a separate proof also for the
implications which already have been established in Theorem 1.1. Before-
hand we note that both f and L are quadratic functions so that the Taylor
expansions of order two are exact for both functions, and that their Hessians
coincide: D2

xf(x) = D2
xL(x; u) = Q, a constant matrix. Further note that no

constraint qualifications are needed in this case.

We need the following auxiliary result.
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Lemma 1.2 Let Γ be a polyhedral cone, Q = Q> an n × n matrix and
c ∈ Rn. Suppose c ∈ Γ? and denote by Γ0 = Γ ∩ c⊥.
(a) If Q is strictly Γ0-copositive, then there is an ε > 0 and a ρ > 0 such
that

c>v +
1

2
v>Qv ≥ ρ‖v‖2 for all v ∈ Γ with ‖v‖ < ε ;

(b) If Q is Γ0-copositive, then there is an ε > 0 such that

c>v +
1

2
v>Qv ≥ 0 for all v ∈ Γ with ‖v‖ < ε .

Proof. (a) Since Γ is polyhedral, it is generated by finitely many extremal
rays, i.e., there are r1, . . . , rk with ‖ri‖ = 1 such that Γ = R+conv (r1, . . . , rk).
Further, define B0 = {v ∈ Γ0 : ‖v‖ = 1}; then, by assumption, we have δ :=
min
v∈B

v>Qv > 0. First, consider the case that Γ ⊆ c⊥ so that Γ0 = Γ and for

ρ = δ
2

c>v +
1

2
v>Qv =

1

2
v>Qv ≥ ρ‖v‖2

even for all v ∈ Γ regardless of their norm. A bit more care is required if
Γ0 6= Γ. Assume without loss of generality that c>ri = 0 for 1 ≤ i ≤ s and
c>ri > 0 for s < i ≤ k. By rescaling everything, we may and do also assume
that ‖c‖ = 1. Hence r̄i = (c>ri)c is the orthoprojection of ri onto Rc. Next,
for any v ∈ Γ there are µi ≥ 0 such that v =

∑k
i=1 µiri and we define

w =

k∑
i=s+1

µir̄i =

(
k∑

i=s+1

µic
>ri

)
c ,

y =
k∑

i=s+1

µi(ri − r̄i) ,

z =

k∑
i=1

µiri ∈ Γ0 .

This way we obtained a decomposition v = w+ y+ z with w = ‖w‖c orthog-
onal to y + z. Indeed, we have c>y =

∑
i>s

µi(c
>ri − ‖c‖2c>ri) = 0, so y ⊥ c

and furthermore

‖y‖ ≤
∑
i>s

µi‖ri − r̄i‖ =
∑
i>s

µi
√

1− (c>ri)2

≤
∑
i>s

µiη(c>ri) = η‖w‖ ,

 (4)

where η = max
s<i≤k

√
1−(c>ri)2

c>ri
. The first equality above follows by

‖ri − r̄i‖2 = ‖ri‖2 − ‖r̄i‖2 = 1− (c>ri)
2‖c‖2 = 1− (c>ri)

2 .
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We note for later use that this implies

‖v‖ ≤ (1 + η)‖w‖+ ‖z‖ and thus

‖v‖2 ≤ (1 + η)(2 + η)‖w‖2 + (2 + η)‖z‖2 .

}
(5)

Next choose a number β > 0 such that |p>Qq| ≤ 2β‖p‖ ‖q‖ for all {p, q} ⊂
Rn. It follows from v = w + y + z, from c>w = ‖w‖ and from (4) that

c>v + 1
2v
>Qv

= c>w + 1
2w
>Qw + w>Qy + w>Qz + y>Qz + 1

2y
>Qy + 1

2z
>Qz

≥ ‖w‖ − β‖w‖2 − 2β‖w‖ (‖y‖+ ‖z‖)− 2β‖y‖ ‖z‖ − β‖y‖2 + δ‖z‖2

≥ ‖w‖
(
1− β‖w‖ − 2βη‖w‖ − 2β‖z‖ − 2βη‖z‖ − βη2‖w‖

)
+ δ‖z‖2

= ‖w‖
(
1− β(1 + η)2‖w‖ − 2β(1 + η)‖z‖

)
+ δ‖z‖2 .


(6)

Now w = ‖w‖c is orthogonal to y + z, so ‖v‖2 = ‖w‖2 + ‖y + z‖2. Hence
the inequality relation ‖v‖ ≤ ε entails both ‖w‖ ≤ ε and also ‖y + z‖ ≤ ε.
Therefore also

‖z‖ ≤ ‖y + z‖+ ‖y‖ ≤ ε+ η‖w‖ ≤ ε(1 + η) . (7)

Now the factor of ‖w‖ in the last line of (6) exceeds (1 + η)δ‖w‖ if[
(1 + η)δ + (1 + η)2β

]
‖w‖+ 2(1 + η)β‖z‖ ≤ 1 ,

and this can in turn be achieved if ε > 0 is selected so small that

(1 + η)δ + 3(1 + η)2β ≤ 1

ε
,

using the relations ‖w‖ ≤ ε and ‖z‖ ≤ ε(1 + η) established in (7). Then we
arrive via (6) and (5) at

c>v + 1
2 v
>Qv ≥ (1 + η)δ‖w‖2 + δ‖z‖2 ≥ δ

2+η ‖v‖
2 .

Claim (a) is proved by putting ρ = δ
2+η and, e.g., ε = [4(1+η)2 max {δ, β}]−1.

Assertion (b) can be found in [1, Lemma 1]. The proof of (a) above is a
refinement of the arguments there. 2

Theorem 1.2 Let f(x) = 1
2x
>Qx+q>x be quadratic and M be a polyhedron,

and suppose that x̄ be a KKT point. Then

(a) Q is strictly Γ0(x̄)-copositive if and only if x̄ is a strict local solution;
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(b) Q is Γ0(x̄)-copositive if and only if x̄ is a local solution.

Proof. We first show that (strict) copositivity implies (strict) optimality.
Let c = ∇f(x̄) = Qx̄ + q ∈ Γ?(x̄), and apply Lemma 1.2 to Q = D2

xf(x̄).
For any x ∈ M with ‖x − x̄‖ < ε, let v = x − x̄. Then by convexity of the
polyhedron M we get v ∈ Γ(x̄) and ‖v‖ < ε. We conclude

f(x) = f(x̄) + c>v + 1
2 v
>Qv ≥ f(x̄) + r(v) ,

where r(v) = ρ‖v‖2 in case of strict copositivity while r(v) = 0 for the merely
copositive case.
Next we show the converse: (strict) optimality implies (strict) copositivity.
So suppose that v ∈ Γ0(x̄) \ {o}, in particular that v>∇f(x̄) = 0. We infer
that for small enough t > 0, we have x = x̄+tv ∈M since M is a polyhedron,
and 0 < ‖x− x̄‖ < ε, so that

f(x̄) < f(x) = f(x̄) + t v>∇f(x̄) + t2

2 v>Qv = f(x̄) + t2

2 v>Qv

in case of a strict local solution, or weak inequality in case of a local solution,
which implies (strict) Γ0(x̄)-copositivity of Q, as claimed. 2

2 Second-order conditions for global optimality

2.1 The general case: a sufficient global optimality condition

We return to the general non-linear case and proceed to a sufficient global
optimality condition. This condition is weaker than convexity of the La-
grangian function L(.; ū) which in turn would be implied by the convexity
of the problem (1) (which means that f and all gi are convex and hi are
affine-linear). Nevertheless it requires checking copositivity of the Hessian
matrices D2

xL(x; ū) for all x ∈ M , which may be tedious unless we know
that these Hessians do not depend on x. So the quadratic problems over
polyhedra studied in Theorem 1.2 provide a good motivation to consider
this case, but also, more generally, the case where all f,G,H are composed
of quadratic functions.

Theorem 2.1 Suppose that M is convex. If x̄ is a KKT point for prob-
lem (1) with multipliers ū and if

D2
xL(x; ū) is Γ(x̄)-copositive for all x ∈M ,

then x̄ is a global solution to (1).
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Proof. For any x ∈ M , define the trajectory z(t) = (1 − t)x̄ + tx ∈ M (so
that v = x − x̄ = 1

t [z(t) − z(0)] ∈ Γ(x̄) as before), as well as the function
ϕ(t) = L(z(t); u) for 0 ≤ t ≤ 1. Now ϕ is twice continuously differentiable
and by the Mean Value Theorem there is some t with 0 < t < 1 such that

f(x) ≥ L(x; ū) = ϕ(1) = ϕ(0) + ϕ̇(0) + 1
2 ϕ̈(t)

= L(x̄; ū) + v>L(x̄; ū) + 1
2 v
>D2

xL(z(t); ū)v

≥ L(x̄; ū) = f(x̄) ,

and the assertion is shown. 2

2.2 Second-order global optimality criterion for QP case

Again, for the QP case, the situation is much simpler, and necessary and
sufficient conditions for global optimality coincide. Consider again

min
{
f(x) = 1

2 x
>Qx + q>x : x ∈M

}
, (8)

with Q a symmetric n × n matrix, M = {x ∈ Rn : Ax ≤ b}, A an m × n
matrix with rows a>i , and b ∈ Rm. Due to linearity of the constraints, we
have

Γ(x) = R+(M − x) =
{
v ∈ Rn : a>i v ≤ 0 for all i ∈ I(x)

}
. (9)

Denote by s = b−Ax the vector of slack variables, and by J(x) = {0, . . . ,m}\
I(x̄). To have a consistent notation, we can also view as J(x) as the set of
inactive constraints if we add an auxiliary inactive constraint of the form
0 < 1 by enriching (A, b) with a 0-th row to

Ā =


a>0

A

 =


o>

a>1
...
a>m

 , b̄ =


b0

b

 =


1
b1
...
bm

 ,
and put s̄ = b̄ − Āx̄ ≥ o. Then J(x) = {i ∈ {0, . . . ,m} : s̄i > 0}. The 0-
th slack and the corresponding constraint will be needed for dealing with
unbounded feasible directions. However, if v is a bounded feasible direction,
then there is an i ∈ J(x) \ {0} such that a>i (x+ tv) > bi for some t > 0, and
the maximal feasible stepsize in direction of v

t̄v = min

{
s̄i

ā>i v
: i ∈ J(x̄) , ā>i v > 0

}

11



is finite.

Note that feasibility of a direction v ∈ Rn is fully characterized by the
property a>i v ≤ 0 for all i with si = 0, i.e., for all i in the complement of
J(x̄). If in addition, a>i v ≤ 0 for all i ∈ J(x̄), i.e., Av ≤ o but v 6= o, then
we have an unbounded feasible direction with t̄v = +∞ by the usual default
rules, consistent with the property that x̄ + tv ∈ M for all t > 0 in this
case. In the opposite case where t̄v = si

a>i v
< +∞, we have i 6= 0, and the

i-th constraint is the first inactive constraint which becomes active when
travelling from x̄ along the ray given by v: then x̄+ t̄vv ∈M , but x̄+ tv /∈M
for all t > t̄v.

By consequence, the feasible polyhedron M is decomposed into a union
of polytopes Mi(x̄) = {x = x̄ + tv ∈M : 0 ≤ t ≤ t̄v} for i ∈ J(x̄) \ {0}, and
M0(x̄) = {x ∈ Rn : Ax ≤ Ax̄}, the (possibly trivial, but otherwise) unbounded
polyhedral part of M .

To be more precise, we need the (m + 1) × n-matrices Di = s̄ a>i − s̄iĀ
to define the polyhedral cones

Γi = {v ∈ Rn : Div ≥ o} , i ∈ J(x̄) . (10)

Then
⋃
i∈J(x̄) Γi = Γ(x̄) from (9), and Mi(x̄) = M∩(Γi+x̄) contains all points

x ∈ M where i ∈ J(x̄) denotes the first inactive constraint which becomes
active when travelling along direction x − x̄ starting from x̄ (as mentioned
above, the case i = 0 captures unbounded feasible directions).

After these preparations dealing with the feasible set only, we turn to
the objective function. With the gradient ∇f(x̄) = Qx̄ + q, we construct
rank-two updates of Q:

Qi = ai∇f(x̄)> +∇f(x̄) a>i + s̄iQ , i ∈ J(x̄) . (11)

Theorem 2.2 For the QP (8), we have that x̄ is a global solution to (8) if
and only if x̄ is a KKT point and

Qi are Γi-copositive for all i ∈ J(x̄) .

Else, if v>Qiv < 0 and Div ≥ o for some i ∈ J(x̄) \ {0}, then a>i v > 0 and

x̃ = x̄ + t̄vv is an improving feasible point,

whereas v>Q0v < 0 for some v with D0v ≥ o if and only if (8) is unbounded.

Proof. As already noted before, any KKT point satisfies the weak first-
order ascent condition v>∇f(x) ≥ 0 for all v ∈ Γ(x). Further, strict first-
order ascent directions may be negative curvature directions as

f(x + tv)− f(x) = t
[
v>∇f(x) + t

2 v
>Qv

]
> 0 , (12)

12



if t > 0 is small enough and v>∇f(x) > 0, even if v>Qv < 0. For these
negative curvature directions (v>Qv < 0), the extremal increment

θx̄(v) = f(x̄ + t̄vv)− f(x̄)

satisfies, due to (12),

f(x̄ + tv)− f(x̄) ≥ 0 for all x = x̄ + tv ∈M , i.e., t ∈ [0, t̄v] ,

if and only if θx̄(v) ≥ 0. For v ∈ Γi, the condition θx̄(v) ≥ 0 can be expressed
as v>Qiv ≥ 0. Hence the result. 2

Note that the result above also applies to QPs for which the Frank/Wolfe-
Theorem is non-trivial, i.e., where the objective function f is bounded from
below over an unbounded polyhedron M .

Comparing Theorems 1.2 and 2.2, we see that the effort of checking
local versus global optimality is not that different: at most m copositivity
checks instead of merely one. Also note that any vector v violating the
copositivity conditions in Theorem 2.2 yields with basically no effort an
improving feasible point x̃, hence allows for escaping from inefficient local
solutions x towards which a local optimization procedure may have driven
us before.

Remark 2.1 Of course, Theorems 2.1 and 2.2 immediately yield via global
optimality that Γ(x̄)-copositivity of D2

xL(x;u) = Q implies that all Qi are
Γi-copositive. However it may be instructive to see how the copositivity con-
ditions are related directly. To this end, observe that the 0-th row of Di
in (10) equals a>i , so that a>i v ≥ 0 holds for all v ∈ Γi. Further, any
v ∈ Γi ⊆ Γ(x̄) satisfies v>∇f(x̄) ≥ 0. Therefore (11) renders

v>Qiv ≥ s̄i v>Qv ≥ 0 for all v ∈ Γi .

On the other hand, also the local optimality condition of Theorem 1.2 can
be retrieved readily in a direct way, noticing that v>Qiv = s̄i v

>Qv for all
v ⊥ ∇f(x̄) and the fact that Γ(x̄) =

⋃
i∈J(x̄) Γi.

3 Application: the classical trust region problem

3.1 Definition and basic properties

Now we specialize our findings to the well studied classical trust region
problem where f(x) = 1

2 x
>Qx + q>x is quadratic and the feasible set M is

13



the (convex) Euclidean ball centered at the origin with radius one:

min
{
f(x) = 1

2 x
>Qx + q>x : x ∈ Rn , ‖x‖ ≤ 1

}
. (13)

All results in this section are well known since quite a while; however, for il-
lustration we derive them from our copositivity principles established above.
Thus, we have m = 1 inequality constraint g1(x) = r(x) = 1

2(‖x‖2−1) and no
equality constraints. If r(x) = 0, then the gradient ∇r(x) = x is linearly in-
dependent, so LICQ (and therefore RACQ) holds in any case. We conclude
that all local solutions must be KKT points x satisfying (Q + uIn)x = −q
for some u ≥ 0, with u = 0 if ‖x‖ < 1 or else u = ū := −x>Qx − q>x, so u
is uniquely determined by x. The Lagrangian function reads

L(x;u) = 1
2 x
>(Q + uIn)x + q>x− u

2

and has a Hessian Hu = Q + uIn which does not depend on x.

3.2 Application of second-order optimality conditions

We now illustrate a simple application of preceding general principles to
the trust-region problem. First we show that zero multipliers imply global
optimality for this problem.

Corollary 3.1 Suppose x is a local solution to (13) (and hence a KKT
point) with a multiplier u = 0. Then x is globally optimal. In fact, then f
is a convex function because Q is indeed positive-semidefinite.

Proof. If u = 0, then Mu = M and ∇f(x) = o as the KKT conditions are
satisfied. Therefore Γ0(x) = Γ(x), and all constraint qualifications hold as
detailed above (these are only necessary if strict complementarity is violated,
i.e., if r(x) = u = 0), Thus Theorem 1.1(b) implies Γ(x̄)-copositivity of
H0(x) = Q. Now for ‖x‖ < 1 we have Γ(x) = Rn and the result follows. If
however r(x) = 0, then Γ(x̄) =

{
v ∈ Rn : v>x̄ ≤ 0

}
is a halfspace, and again

Q must be positive-semidefinite. 2

Hence, any local non-global (LNG) solution x̄ must lie on the boundary
of M and has a strictly positive multiplier ū > 0. Again,

Γ(x̄) =
{
v ∈ Rn : v>x̄ ≤ 0

}
is a half-space and since ∇f(x̄) = −ūx̄, its boundary hyperplane is Γ0(x̄) =
x̄⊥. So only boundary KKT points satisfying strict complementarity can be
LNGs. We collect further observations on LNGs in the following

14



Corollary 3.2 Suppose x̄ is a KKT point of (13) with ‖x̄‖ = 1 and unique
multiplier ū = −x̄>Qx̄ − q>x̄ > 0 and denote by Hū = Q + ūIn the Hessian
of the Lagrangian. Denote by λ1 ≤ λ2 ≤ · · · ≤ λn the ordered eigenval-
ues of Q (counting multiplicities), and by vi the corresponding orthonormal
eigenvectors. Then

(a) If x̄ is a local solution to (13) then v>Hūv ≥ 0 if v>x̄ = 0. So Hū can
have at most one negative eigenvalue (and then with multiplicity one).

(b) If x̄ is a LNG solution to (13), then −λ2 ≤ ū < −λ1 and v>1 x̄ 6= 0.

(c) Further, if x̄ is a LNG solution to (13), then v>1 q 6= 0 and v>2 x̄ 6= 0.

(d) Further, if x̄ is a LNG solution to (13), then even −λ2 < ū < −λ1. In
particular, Hū is nonsingular.

Proof. (a) We have Mū = ∂M = {x ∈ Rn : ‖x‖ = 1} and any v ∈ x̄⊥ =
Γ0(x) gives rise to a starting tangent of a trajectory y(t) = 1

‖x̄+tv‖(x̄ + tv) ∈
Mū. Hence Theorem 1.1(b) applies and yields v>Hūv ≥ 0 if v>x̄ = 0.
Suppose there are two linear independent v1, v2 such that all non-trivial
linear combinations v = αv1+βv2 give a negative quadratic form v>Hūv < 0.

Then, e.g., v1 ⊥ x̄ is absurd, so v>1 x̄ 6= 0. Choose β = 1 and α = − v>2 x̄

v>1 x̄
to

obtain the contradiction v>x̄ = 0.

(b) If ū ≥ −λ1, then Hū = Q + ūIn would be positive-semidefinite, and
Theorem 2.1 would give global optimality of x̄. Hence ū < −λ1. On the
other hand, by (a) Hū can have at most one negative eigenvalue, so ū+λ2 ≥ 0
must hold. Hence −λ2 ≤ ū < −λ1. In particular, λ1 < λ2. Since v>1 Hūv1 =
v>1 (λ1 − λ2)v1 = (λ1 − λ2) < 0, assertion (a) implies v>1 x̄ 6= 0.

(c) Now we basically follow Mart́ınez’ impressive argumentation [9]. First
we show that v1 cannot be orthogonal to q; indeed, suppose the contrary.
Now, if ū > −λ2, then Hū is nonsingular, and expanding q in terms of

the orthonormal basis {v1, . . . , vn}, we see from Hūx = q =
n∑
i=1

γivi where

γi = v>i q (hence the assumption means γ1 = 0), that

x = −
n∑
i=1

γi
λi + ū

vi = −
n∑
i=2

γi
λi + ū

vi ⊥ v1 ,

contradicting assertion (b). Hence ū = −λ2. To be more precise, assume
that λ2 = . . . = λk < λk+1 for some k ∈ {2, . . . n} (with a trivial modification
if λ2 = λn), so that {v2, . . . , vk} span the null space of Hū. As Hūx = −q
must hold, it follows

x̄ = −H+
ū q +

k∑
j=2

αjvj ,
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for some suitable coefficients αj ∈ R, where, with V = [v1, . . . , vn],

H+
ū = Vdiag [

1

λ1 − λ2
, 0, . . . , 0,

1

λk+1 − λ2
, . . . ,

1

λn − λ2
]V>

is the Moore-Penrose generalized inverse of Hū (cf. Lemma 4.1 below for
details). Again using the assumption γ1 = v>1 q = 0, we arrive at H+

ū q =∑
j>k

γj
λj−λ2

vj , yielding again a contradiction to (b), namely

x̄ =
k∑
j=2

αjvj −
∑
j>k

γj
λj − λ2

vj ⊥ v1 .

Hence the assumption is absurd, and we conclude v>1 q 6= 0. Next we prove
v>2 x̄ 6= 0. Suppose the contrary. We pass again to coordinates w.r.t. the
orthonormal basis {v1, . . . , vn} and consider w = V>x instead of x. Of course
‖x‖ = ‖w‖ and

f(x) = 1
2 x
>Qx + q>x =

∑n
i=1[λi2 w

2
i + γiwi] ,

so that w = V>x is a local solution to the problem

min

{
n∑
i=1

[
λi
2
w2
i + γiwi] : ‖w‖ = 1

}
.

The assumption v>2 x = 0 translates into w2 = 0; further, from (b) we know
also that w1 = v>1 x 6= 0, and suppose that w1 > 0 (the opposite case w1 < 0
can be treated in complete symmetry). Next we fix all coordinates wj = wj
for j ≥ 3, so that w2

1 + w2
2 = w2

1 + w2
2 = w2

1, and thus w1 = +
√
w2

1 − w2
2

for all such w close to w. We conclude, removing now constant terms, that
w2 = 0 is a local (unconstrained) minimizer of

a(w2) =
λ1

2
(w2

1 − w2
2) +

λ2

2
w2

2 + γ1b(w2) + γ2w2 ,

where b(w2) = w1c(
w2
w1

) with c(t) =
√

1− t2. Note that the k-th derivative

of b satisfies b(k)(w2) = w1−k
1 c(k)(w2

w1
). We calculate the first four derivatives:

ċ(t) = − t

c(t)
, c̈(t) = − 1

c3(t)
,

...
c (t) = − 3t

c5(t)
, c(4)(0) = −3 .

Hence b(0) = w1 and

ḃ(0) = 0 , b̈(0) = − 1

w1
,

...
b (0) = 0 , b(4)(0) = − 3

w3
1

.

Therefore, since γ2 = v>2 x = 0 by assumption (and the source of all this
trouble), and since

0 = v>1 o = v>1 [Hūx+q] = x̄>Hūv1+v>1 q = x̄>(λ1−λ2)v1+γ1 = (λ1−λ2)w1+γ1 ,
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we arrive at the conclusion that ȧ(0) = γ2 = 0 as well as

ä(0) = (λ2 − λ1)− γ1

w1
= 0

and
...
a (0) = γ1

...
b (0) = 0 as well, but finally

a(4)(0) = −3γ1

w3
1

< 0 ,

which would contradict the fact that w2 = 0 is a local minimizer of a, so
that x cannot be a LNG of (13), contradicting the assumption γ2 = 0.

(d) Now assume that ū = −λ2. For the same v = v2 −
v>2 x̄

v>1 x̄
v1 ⊥ x̄ as in (a)

above we now arrive, using Hūv2 = (Q − λ2I)v2 = o and (a) again, at the
contradiction

0 ≤ v>Hūv = α2v>1 Hūv1 + (v2 + 2αv1)>Hūv2 = α2(λ1 − λ2) < 0 ,

because α = − v>2 x̄

v>1 x̄
6= 0 due to (c). Hence even ū > −λ2. We conclude that

Hū = Q + ūIn is nonsingular, otherwise we would obtain another eigenvalue
of Q strictly between λ1 and λ2. 2

3.3 The secular function; at most one LNG exists

For any LNG solution x̄ we have for the unique multiplier ū that Hū is
nonsingular. The KKT conditions read therefore

Hūx̄ = −q or x̄ = −(Q + ūIn)−1q .

This implies that the value of the multiplier ū in turn uniquely determines
the KKT point x̄. Given the data (Q, q), we consider the secular function

ψ(u) := ‖(Q + uIn)−1q‖2 , u ∈ R \ {−λn, . . . ,−λ1} .

From Corollary 3.2(d) we conclude that ū belongs to the domain of ψ and
moreover is a 1-root of ψ, i.e. ψ(ū) = ‖x̄‖2 = 1. Also this function can
be simplified by means of diagonalization of Q = Vdiag (λ1, . . . , λn)V> with
V = [v1, . . . , vn] being an orthonormal n× n matrix. Putting

µi(u) :=
1

λi + u
6= 0 (in fact, µ1(ū) < 0 < µi(ū) for all i ∈ {2, . . . , n} ) ,

we obtain (Q + uIn)−1 = Vdiag (µ1(u), . . . , µn(u))V>, then (Q + uIn)−1q =∑
i γiµi(u)vi with γi = v>i q. We note for further use that

x = −
n∑
i=1

γiµi(ū)vi . (14)
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Finally, by orthonormality of all vi,

ψ(u) =
∑
i

γ2
i µ

2
i (u) ≥ 0 for all u ∈ R \ {−λn, . . . ,−λ1} . (15)

We calculate µ̇i(u) = −µ2
i (u) and thus

ψ̇(u) =
∑

i γ
2
i [µ2

i (u)]˙ = −2
∑

i γ
2
i µ

3
i (u) ,

ψ̈(u) = −2
∑

i γ
2
i [µ3

i (u)]˙ = 6
∑

i γ
2
i µ

4
i (u) > 0 ,

and hence ψ is strictly convex on the open interval defined by −λ2 < u <
−λ1. Hence there are at most two different 1-roots of ψ in this interval, and
among these at most one u with ψ̇(u) ≥ 0. With some effort it can be shown
that whenever x̄ is a LNG for (13) with multiplier ū, then indeed ψ̇(ū) ≥ 0.
This way we arrive at Mart́ınez’ theorem [9]:

Theorem 3.1 There is at most one LNG solution to (13).

Proof. Following again [9], we define w = [γ2µ2(ū), . . . , γnµn(ū)]> ∈ Rn−1

and the n× (n− 1) matrices

T =

[
w>

−γ1µ1(ū)In−1

]
as well as W = VT .

From Corollary 3.2(c) we infer γ1 = v>1 q 6= 0, thus rank W = n − 1, and
moreover Wej = VTej = wjv1 − γ1µ1(ū)vj+1 which implies via (14)

x̄>Wej = −
n∑
i=1

γiµi(ū)v>i [γj+1µj+1(ū)v1 − γ1µ1(ū)vj+1]

=
n∑
i=1

γ1γi µ1(ū)µi(ū) v>i vj+1 −
n∑
i=1

γiγj+1 µi(ū)µj+1(ū) v>i v1

= γ1γj+1 µ1(ū)µj+1(ū)− γ1γj+1 µ1(ū)µj+1(ū) = 0

for all j ∈ {1, . . . , n− 1}, so that the columns of W form a basis for the
hyperplane x̄⊥. Therefore, by Corollary 3.2(a), the (n− 1)× (n− 1) matrix
B := W>HūW is positive-semidefinite, so that det B ≥ 0. Now

B = T>V>QVT + ūT>T = T>DT

with D = diag (λ1 + ū, . . . , λn + ū) (note that the upper left entry of D is
negative). We will further rephrase B now and calculate det B then. First
note that

DT =

[
(λ1 + ū)w>

−γ1µ1(ū)diag (λ2 + ū, . . . , λn + ū)

]
and recall T =

[
w>

−γ1µ1(ū)In−1

]
.
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Hence for D̂ = γ2
1µ1(ū)2diag (λ2 + ū, . . . , λn + ū) we get

B = T>DT = (λ1 + ū)ww> + D̂ = D̂
[
In−1 + (λ1 + ū)D̂−1ww>

]
,

so that, using the formula det [In−1 + ab>] = 1 + b>a, we arrive at

0 ≤ det B = det D̂
[
1 + (λ1 + ū)w>D̂−1w

]
. (16)

Since det D̂ = [γ1µ1(ū)]2n−2
∏n
j=2(λj + ū) > 0, we deduce

1 + µ−1
1 (ū)w>D̂−1w ≥ 0 . (17)

Now [γ1µ1(ū)]2w>D̂−1w = w>diag (µ2(ū), . . . , µn(ū))w =
n∑
j=2

γ2
jµ

3
j (ū), so

that [µ1(ū)]−1w>D̂−1w = γ−2
1 [µ1(ū)]−3

n∑
j=2

γ2
jµ

3
j (ū), and (17) reduces to

1 +
1

γ2
1µ

3
1(ū)

n∑
j=2

γ2
jµ

3
j (ū) ≥ 0

or, multiplying by −2γ2
1µ

3
1(ū) > 0,

ψ̇(ū) = −2
n∑
j=1

γ2
jµ

3
j (ū) ≥ 0 ,

which proves the assertion. Indeed, we showed there can be at most one
multiplier ū belonging to a LNG, and since ū determines the LNG uniquely,
there can be at most one LNG to (13). 2

4 Duality of all-quadratic problems and SDPs

In this section we show that the Langrangian (and Wolfe) dual of an all-
quadratic problem coincides with the dual of its SDP relaxation under mild
assumptions. Also these results are well known and are discussed here only
to complement above illustrations and counterexamples. Consider

q0(x) → min ! subject to
qi(x) ≤ 0 , i ∈ {1, . . . ,m} , (18)

where qi(x) = x>Qix−2b>i x+ ci are all quadratic functions (we may assume
c0 = 0) for i ∈ {0, 1, . . . ,m}. We denote by z∗Q the optimal value (possibly
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not attained, or also equal to −∞ (in the unbounded case) or to +∞ (in
the infeasible case).

We start by recalling a basic result on Schur complementation. To this
end, recall the notion of the Moore-Penrose generalized inverse H+ of a
symmetric matrix H, which is again symmetric, of the same order as H, and
satisfies HH+H = H as well as H+HH+ = H+. A linear system Hx = d is
solvable in x if and only if HH+d = d, in which case x = H+d is the solution
with the least distance to the origin o (if Hx = d is inconsistent, then HH+d
is the least squares solution to this system). We abbreviate the fact that H
is positive-semidefinite by H � O. It is well known that H � O also implies
H+ � O.

Lemma 4.1 Let H be a symmetric n × n matrix, v ∈ Rn, and α ∈ R, and
form the symmetric (n+ 1)× (n+ 1) matrix

M =

[
α v>

v H

]
.

Then M is positive-semidefinite if and only if the following three conditions
hold:

(a) H is positive-semidefinite;

(b) v ∈ H(Rn), or, equivalently, v ⊥ ker H;

(c) α ≥ v>H+v.

Proof. Let M be positive-semidefinite. To establish (a), choose x = [0, y>]>

with y ∈ Rn arbitrary; then 0 ≤ x>Mx = y>Hy. For (b), assume the
contrary, i.e., that there is a vector y ∈ ker H such that v>y < 0, and choose,
for large t > 0, the vector xt = [1, ty>]>. Then 0 ≤ x>t Mxt = α+2tv>y+0 < 0
if t is large enough, a contradiction. To show (c), take x = [−1, (H+v)>]>

which gives

0 ≤ x>Mx = α− 2v>H+v + v>H+HH+v = α− v>H+v .

For sufficiency, we only need v = Hw for some w ∈ Rn and note that[
α v>

v H

]
= (α− v>H+v)

[
1
o

]
[1, o>] +

[
w>

In

]
H[w In] � O ,

because v>H+v = w>HH+Hw = w>Hw. Thus the result. 2

The counterexample H = 0 in M =

[
1 1
1 0

]
shows that condition (b) above
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cannot be dispensed with.

Now we return to (18) and denote by Hu = Q0 +
m∑
i=1

uiQi, by du =

b0 +
m∑
i=1

uibi and by c = [c1, . . . , cm]>. Then the Lagrangian function and

its derivatives w.r.t. x read

L(x; u) = x>Hux− 2d>u x + c>u ,

∇xL(x; u) = 2[Hux− du] and

D2
xL(x; u) = 2Hu for all (x; u) ∈ Rn × Rm+ .

By the Frank/Wolfe theorem in its unrestricted (therefore easy) version,
Θ(u) := inf {L(x; u) : x ∈ Rn} > −∞ if and only if (a) Hu is positive-
semidefinite; and (b) the linear equation system Hux = du has a solution.
In this case, we have Θ(u) = L(x; u) for any x with Hux = du, in particular,
say, for the least-norm solution xu := H+

u du. So the Wolfe dual and the
Lagrangian dual problem coincide, namely to

z∗DQ := sup
{
L(xu; u) : Hu � O , HuH

+
u du = du

}
, (19)

where Hu � O denotes positive-semidefiniteness of Hu and the other con-
dition exactly characterizes solvability of the system Hux = du in x. Weak
duality ensures z∗DQ ≤ z∗Q. Furthermore, by (19), for any (x, u) ∈ Rn × Rm+
with Hu � 0 and Hux = du, (in particular, for x = xu = H+

u du in case
HuH

+
u du = du) we see

Θ(u) = L(x; u) = x>du − 2d>u x + c>u = c>u− d>u x . (20)

We pass to the semidefinite relaxation of the problem (18): to this end
we need the symmetric (n+ 1)× (n+ 1) matrices

Mi =

[
ci −b>i
−bi Qi

]
, i ∈ {0, 1, . . . ,m} .

The SDP relaxation now uses Frobenius duality 〈X,S〉 = trace(XS) on ma-
trices of this order and reads in its primal form

z∗SP := inf {〈M0,X〉 : 〈Mi,X〉 ≤ 0 , 〈J0,X〉 = 1 , X � O} (21)

with J0 = [1, 0, . . . , 0]>[1, 0, . . . , 0], while its dual is given by

z∗SD := sup
{
y0 ∈ R : Z(y) � O, y = [y0, u

>]> ∈ R× Rm+
}
, (22)

where

Z(y) := M0 − y0J0 +

m∑
i=1

uiMi =

[
c>u− y0 −d>u
−du Hu

]
(23)
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is the slack matrix.

The standard lifting X = [1, x>]>[1, x>] shows z∗SP ≤ z∗Q, and weak
duality of the primal-dual SDP pair shows z∗SD ≤ z∗SP . It can easily be shown
that strict feasibility of (18) implies strict feasibility of (21). Moreover, if Qi
is (strictly) positive-definite for at least one i ∈ {1, . . . ,m}, then also (22)
is strictly feasible, so that full strong duality holds for the primal-dual SDP
pair: z∗SD = z∗SP , this optimal value is attained in both SPDs, i.e., there is an
X∗ � O feasible to (21) and a y∗ = [y∗0, (u

∗)>]> ∈ R×Rm+ feasible to (22) such
that 〈M0,X

∗〉 = z∗SP = z∗SD = y∗0 and, by complementary slackness of the
positive-semidefinite matrices, Z(y∗)X∗ = O; in particular, the first column
z of Z(y∗)X∗ must equal the zero vector. Now decompose the symmetric
(n+ 1)× (n+ 1) matrix X∗

X∗ =

[
1 (x∗)>

x∗ Y∗

]
so that

[
c>u∗ − y∗0 − d>u∗x

∗

−du∗ + Hu∗x
∗

]
= z =

[
0
o

]
, (24)

due to (23); in particular, we get Hu∗x
∗ = du∗ and, by Z(y∗) � O, also

Hu∗ � O. Hence, by (20) and (24),

z∗DQ ≥ Θ(u∗) = c>u∗ − d>u∗x
∗ = y∗0 = z∗SD . (25)

We will show that in fact equality z∗SD = z∗DQ holds under these condi-
tions. To this end, consider an arbitrary u ∈ Rm+ feasible to (19) and define
y0 = Θ(u) = c>u − d>u xu = c>u − d>uH

+
u du; see again (20). By Lemma 4.1,

it follows from (23) that Z(y) � O for y = [y0, u
>]> ∈ R × Rm+ so that the

latter vector is feasible to (22). Hence Θ(u) = y0 ≤ z∗SD and therefore the
reverse inequality follows; summarizing, we obtain, under strict feasibility
of (18) and strict positive-definiteness of at least one Qi, 1 ≤ i ≤ m, that

z∗DQ = z∗SD = z∗SP ≤ z∗Q .

Remark 4.1 Continuing with the example of Remark 1.3, we see that, at
the (non-isolated) global solution x∗ = o and for any u ∈ R2

+ \ {u∗}, the
Hessian Hu is indefinite so Θ(u) = −∞ for all u 6= u∗ = [1, 0]>. On the
other hand, obviously Θ(u∗) = 0. So z∗DQ = 0 = zQ∗ and (x∗, u∗) is a primal-
dual optimal pair, so full strong duality holds. Moreover, we concluded above
that z∗SD ≥ z∗DQ is always true even without any strict feasibility, so in fact
we get, by weak duality for the SDP and the fact that this is a relaxation of
the original problem

0 = z∗DQ ≤ z∗SD ≤ z∗SP ≤ z∗Q = 0 ,

despite the fact that

Z(y) =

[
−y0 o>

o Hu

]
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can never be positive-definite (not even for u = u∗ = [1, 0]>). Needless to
stress that no Qi is positive-definite in this example.
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