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Abstract

There are two competing descriptions of nematic liquid crystal dynamics: the
Ericksen-Leslie director theory and the Eringen micropolar approach. Up to this
day, these two descriptions have remained distinct in spite of several attempts
to show that the micropolar theory includes the director theory. In this paper
we show that this is the case by using symmetry reduction techniques and in-
troducing a new system that is equivalent to the Ericksen-Leslie equations and
includes disclination dynamics. The resulting equations of motion are verified to
be completely equivalent, although one of the two different reductions offers the
possibility of accounting for orientational defects. After applying these two ap-
proaches to the ordered micropolar theory of Lhuiller and Rey, all the results are
eventually extended to flowing complex fluids, such as nematic liquid crystals.
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1 Introduction

The Ericksen-Leslie (EL) equations for the dynamics of nematic liquid crystals are widely
accepted and have been experimentally verified [4, 2, 22]. However, when orientational
defects (disclinations) are present in the system, this model requires further development
in order to provide a reliable description. For example, in the presence of defects, the
liquid crystal molecules may undergo phase transitions, e.g., from uniaxial to biaxial,
and the director field n in the Ericksen-Leslie equations is no longer an appropriate order
parameter variable.

Among the various descriptions that incorporate defect dynamics, the micropolar
theory developed by Eringen [7, 8] provides a general description of the motion of mi-
crofluids, including liquid crystals. Indeed, besides incorporating molecular shape effects
into a microinertia tensor j, the Eringen model encodes disclination dynamics in the so
called wryness tensor γ, which is expressed in terms of (∇n)×n when defects are absent
[8].

Nematic liquid crystals comprise a familiar example of microfluids. However, despite
several attempts, the EL description has not yet been derived from Eringen’s micropolar
theory. For example, the relation γ = (∇n)×n proposed by Eringen [8, formula (11.2)]
fails to return the correct EL equations [19] as shown in [10, Theorem 8.11] by two
different methods (symmetry considerations and a direct computation). Thus it is not
completely clear how γ may be expressed in terms of the director n. However, we
point out that in [7], Eringen himself realized that the definition of γ is not determined
uniquely in terms of n and, therefore, the relation γ = ∇n × n cannot be used to
formulate a consistent theory, although “the non-uniqueness of γ does not affect the
free energy” (see [7, page 612]).

2



Recent new understanding of defect dynamics has been obtained from reduction
theory [14, 10], which underlies the gauge-theory approach [5]. This theory applies to
very general systems since it incorporates disclination dynamics in different contexts,
such as frustrated spin glasses [15, 5], for example. In this setting, one is naturally
led to consider the wryness tensor γ as the magnetic vector potential of a Yang-Mills
field (or, equivalently, a connection one-form) taking values in the Lie algebra so(3)
of antisymmetric 3 × 3 matrices (usually identified with vectors in R3) of the rotation
group SO(3). The quantity γ is also known as ‘spatial rotational strain’ [14] and it
expresses the amount by which a specified director field rotates under an infinitesimal
displacement. Due to its tensorial nature, the gauge potential γ may be conveniently
expressed in terms of an appropriate basis as

γ = γi dx
i = γaea = γai ea dxi (1.1)

where {ea} is a fixed basis of R3 ' so(3). Then, its corresponding magnetic vector field
is given componentwise by

Bi = εijk
(
∂jγk + γj × γk

)
, (1.2)

where we sum over repeated indices and we have used the equivalence between two-
forms and vector fields on physical space (see §3.5 for the coordinate-free definition).
In the gauge-theory approach developed in [5], the absence of disclinations is given
by a vanishing magnetic field B, rather than by a vanishing potential γ. Thus, the
presence of γ in a mathematical model must be compatible with EL dynamics, as long
as B = 0. In the context of reduction theory, one recognizes that a vanishing magnetic
field B = 0 simply amounts to the homogeneous initial condition γ0 = 0 [5]. If the latter
condition is not satisfied, then the gauge-theory model would extend the EL formulation
to incorporate non-trivial disclination dynamics.

On the other hand, Eringen’s micropolar theory does not seem to possess a gauge-
theory formulation, since the wryness tensor (∇n)× n, as defined by Eringen, does not
transform as a magnetic potential under SO(3) gauge transformations; see [10, Lemma
8.10]. Nevertheless, Eringen’s theory still shares many analogies with gauge-theory mod-
els and the coexistence of the wryness and microinertia tensors in the dynamics provides
an interesting opportunity to address for the shape evolution of the molecules interacting
with disclination lines.

These considerations motivate the present work, which uses Euler-Poincaré varia-
tional methods to provide a unifying framework for incorporating defect dynamics in
continuum systems with broken internal symmetry (e.g., liquid crystals) and shows that
Eringen’s micropolar theory includes Ericksen-Leslie dynamics. This is done upon notic-
ing that taking the gradient of the relation

n(x, t) = χ(x, t) e3,

that relates director dynamics to the dynamics of the rotation matrix χ(x, t) ∈ SO(3)
in EL theory, immediately leads to

∇n = (∇χ)e3 = (∇χ)χ−1 n .
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Here e3 := (0, 0, 1). Then, one observes that the new variable

γ̂ := −(∇χ)χ−1 (1.3)

is precisely a connection one form taking values in so(3) [14, 10]. It is straightforward
to see that analogous relations hold independently of the order parameter space. Then,
upon using the isomorphism so(3) ' R3 given by the (inverse of the) hat map

ai = −εijk âjk , ∀ â ∈ so(3) , (1.4)

one can simply replace the relation

∇n = n× γ
into the EL equations to account for the potential γ as an extra dynamical variable.
Notice that, although the latter relation is satisfied by the choice γ = (∇n) × n, this
expression is only defined up to a component parallel to n. Thus, γ cannot be entirely
expressed in terms of the director n and it needs to be specified by all three columns of
the matrix χ(x, t).

The second key observation is that a different symmetry reduction of the same mate-
rial Lagrangian yields a new set of equations for nematodynamics. We show that these
are completely equivalent to the original Ericksen-Leslie equations. However, this new
system allows for the description of disclinations, something that the Ericksen-Leslie
equations could not handle, as discussed above.

As we shall see, all the above considerations hold regardless of the background fluid
motion and they are a particular feature of the micro-order. Thus, we shall mainly
confine our treatment to motion-less liquid crystal continua in order to emphasize the
high points of the discussion. The extension to flowing fluid systems will be presented
briefly at the end of this paper.

Remark 1.1 (Dissipative vs. conservative dynamics) Notice that this paper ne-
glects dissipative terms in order to focus on inertial effects of liquid crystal dynamics.
A possible strategy for including dissipation within the same treatment is found in [11].
As will become clear from our treatment, the relationships among various models of
nematodynamics established in this paper, remain unchanged when dissipation is added
(e.g., by Rayleigh’s method [1, 11], double bracket terms [1, 17], etc). �

Plan of the paper. This paper starts (Section 2) by showing how reduction theory
can be applied to Ericksen-Leslie nematodynamics in two different fashions, thereby pro-
ducing two different sets of equations of motion. The resulting dynamical systems are,
however, completely equivalent. In Section 3, these two equivalent reduction methods
are then formulated in a general context, for an arbitrary order parameter space. Mo-
mentum map properties are presented in detail for the two constructions, which are then
specified to micropolar continua. In Section 4, Eringen’s theory of micropolar media is
shown to comprise Ericksen-Leslie nematodynamics. This requires a specified choice of
the micropolar free energy, which in turn reduces to the Frank energy under the as-
sumption of uniaxial molecules. While Section 5 deals with the Lhuiller-Rey theory of
ordered micropolar continua [20], Section 6 extends all the results to liquid crystal flows,
thereby showing how the hydrodynamic Ericksen-Leslie equations possess a micropolar
formulation.
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2 Two equivalent reductions for nematic systems

This section develops the guiding example of this paper, i.e., the dynamics of nematic
media. In particular, this section shows how the reduction producing EL nematodynam-
ics is accompanied by an equivalent reduction procedure that naturally incorporates the
connection γ = −(∇χ)χ−1 as an extra dynamical variable. The latter construction will
be presented after the following review of the reduction underlying EL dynamics.

2.1 Notation

We regard the director field as a smooth map n : D → S2. In more generality, it is
convenient to introduce the notation

F(D,M) := {f | f : D →M} ,

which defines the set of all smooth mappings D → M , where M is some differentiable
manifold. In this notation, we have n ∈ F(D, S2) and χ ∈ F(D, SO(3)). In particular,
F(D, SO(3)) is referred to as the gauge group.

In a similar fashion, we denote by Ωk(D, V ), the space of exterior differential k-forms
taking values in the vector space V . Analogously, X(D, V ) denotes the space of vector
fields on D taking values in V , i.e., contravariant V -valued one-tensors.

Conforming with standard notation used in both elasticity theory and liquid crystals,
in this paper ∇ denotes the derivative (or tangent) of a map between two manifolds or
the exterior derivative if the target manifold is a vector space. Thus, for example, if
n ∈ F(D,M), then ∇n := Tn : TD → TM , and if M = R3, then ∇n := dn : TD → R3

is the usual R3-valued exterior differential of a function, i.e., a R3-valued one-form on
D. If O is a Lie group and χ ∈ F(D,O), then ∇χ := Tχ : TD → TO. As opposed to
standard notation in Riemannian geometry, if p ∈ F(D,R), then ∇p := dp, the exterior
derivative of the function p, so, with these conventions, ∇p is an exact one-form on D.

In this paper, D ⊂ R3 has non-empty interior and if it has a boundary, then it is
smooth. However, all results and their proofs remain unchanged for an arbitrary smooth
oriented manifold D, possibly with smooth boundary, with volume form µ; one needs
only change ∇ to the appropriate obvious derivative in the calculus on manifolds and
assume appropriate boundary conditions.

2.2 Background on the Ericksen-Leslie and Eringen models

The director field of a nematic medium takes values in the space of unsigned unit vectors
n(x, t) ∈ S2, with n ∼ −n. In the physics literature, it is customary to work simply
with unit vectors in physical space R3, by making sure that all relations are invariant
under reflections. This avoids many complications that may arise from working on the
real projective plane.

The dynamics of the director field is typically governed by the Ericksen-Leslie equa-
tions

J
∂2n

∂t2
−
(

n · h + J n · ∂
2n

∂t2

)
n + h = 0 . (2.1)
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Here, J is the microinertia constant, while the molecular field

h :=
∂F

∂n
− ∂

∂xi
∂F

∂(∂xin)
(2.2)

is expressed in terms of the Frank energy F :

F (n,∇n) := K2 (n · curl n)︸ ︷︷ ︸
chirality

+
1

2
K11 (div n)2︸ ︷︷ ︸

splay

+
1

2
K22 (n · curl n)2︸ ︷︷ ︸

twist

+
1

2
K33 ‖n× curl n‖2︸ ︷︷ ︸

bend

,

(2.3)

where each term possesses a precise physical meaning, as indicated above. (Here, K2 6= 0
for cholesterics and K2 = 0 for nematics). The free energy can also contain additional
terms due to external electromagnetic fields.

It is easy to verify that equation (2.1) is an Euler-Lagrange equation on the tangent
bundle TS2, as it arises from the Lagrangian

L(n, ∂tn) =
J

2

∫
D
‖∂tn‖2 d3x−

∫
D
F (n,∇n) d3x , (2.4)

where D ⊂ R3 is the spatial domain occupied by the nematic medium. Notice that the
Euler-Lagrange equations arising from the above Lagrangian will require using covariant
derivatives on the unit sphere (as shown in [12]). In what follows, the volume element
d3x will be replaced by the measure µ. Since n(x, t) ∈ S2, then it is convenient to
encode its rotational dynamics into an orthogonal matrix χ(x, t) ∈ SO(3) so that

n(x, t) = χ(x, t)n0

where n0 is the initial condition on the director. In this paper, we shall consider the par-
ticular case in which n0 = e3 = (0, 0, 1). Then, the director dynamics can be expressed
in terms of the evolution of χ.

After introducing the rotation matrix χ, Eringen’s theory uses the relation ∇n =
−γ × n, where γ̂ is given by (1.3). Then, the dynamics can be expressed in terms of
n and γ. The relation ∇n = −γ × n has the algebraic solution γ = (∇n) × n, which
is used in Eringen’s work [8, formula (11.2)]. However, a careful analysis shows that,
since it is not satisfied at all times, this algebraic solution yields an erroneous dynamical
theory. The next sections analyze this situation in more detail from the point of view
of Euler-Poincaré reduction by symmetry. As we shall see, the relation ∇n = −γ × n
yields a consistent theory of nematic dynamics, without the identification γ = (∇n)×n.

2.3 Reduction for the Ericksen-Leslie equations

The reduction process producing the EL equations has been widely explained in [14, 10].
This process starts by identifying the configuration space of a nematic continuum with
the space F(D, SO(3)) of SO(3)-valued functions on the domain D ⊂ R3. Then, one
makes use of the Lagrangian [14, 10]

L(χ, χ̇) =
1

2
J

∫
D
‖χ̇n0‖2µ−

∫
D
F (χn0,∇(χn0))µ , (2.5)
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where, as usually, n0 = e3 (although it can be an arbitrary director field n0(x)) and J
is the microinertia constant. In order to apply the Euler-Poincaré theory for systems
with broken symmetry (see [16, 12]), we define an extended Lagrangian L by writ-
ing L(χ, χ̇) =: L(χ, χ̇,n0), where L : TF(D,SO(3)) × F(D, S2) → R is a functional
on the extended domain TF(D,SO(3)) × F(D, S2). Observe that L is invariant un-
der the following right action of the gauge group F(D,SO(3)) on the extended space
TF(D,SO(3))×F(D, S2):

(χ,n0) 7→
(
χψ, ψ−1n0

)
,

where ψ ∈ F(D, SO(3)). This invariance property yields the reduced Euler-Poincaré
Lagrangian

`1(ν,n) =
1

2
J

∫
D
‖ν×n‖2µ−

∫
D
F (n,∇n)µ , (2.6)

where ν̂ = χ̇χ−1 and n = χn0, where ν ∈ R3 7→ ν̂ ∈ so(3) denotes the usual Lie algebra
isomorphism defined by ν̂ab = −εabcνc. We thus obtain the following equations [14, 10]

∂

∂t

δ`1

δν
= ν × δ`1

δν
+ n× δ`1

δn

∂tn + n× ν = 0

(2.7)

by applying the usual Euler-Poincaré variational principle

δ

∫ t1

t0

`1(ν,n) dt = 0 , (2.8)

subject to the variations δν = ∂tη+ν×η and δn = η×n for arbitrary η ∈ R3 ' so(3)
satisfying η(t0) = η(t1) = 0. More precisely, these variational relations arise from the
definitions ν̂ = χ̇χ−1 and n = χe3, respectively, upon defining η̂ = (δχ)χ−1.

At this point, upon computing the variational derivatives

δ`1

δν
= −J n× (n× ν) = J n× ∂tn ,

δ`1

δn
= −J ν × (ν × n)− h = −J ν × ∂tn− h,

equations (2.7) become{
J ∂t

(
n× (n× ν)

)
= J ν ×

(
n× (n× ν)

)
+ n×

(
J ν × (ν × n) + h

)
∂tn + n× ν = 0

(2.9)

which reduce to

J ∂t
(
n× ∂tn

)
= J ν ×

(
n× ∂tn

)
− n×

(
J ν × ∂tn + h

)
= −n× h ,

by he Jacobi identity. Thus we get the Ericksen-Leslie equations (2.1) with molecular
field h given by (2.2).

Notice that we have n ·δ`1/δν = 0, which means that there is no angular momentum
δ`1/δν in the direction of the director n. This is interpreted in terms of the rod-like
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nature of uniaxial molecules, as explained in [12]. However, when disclination lines
are present, molecules may change their shape (e.g., from uniaxial to biaxial) and the
projection n · δ`1/δν cannot be a constant. The next section considers an alternative re-
duction for nematic systems, which can be naturally extended to account for disclination
dynamics.

Remark 2.1 (Kinetic energy) Notice that one can replace the first term in the La-
grangian (2.5) by the expression

1

2
J

∫
D
‖χ̇‖2µ

in which case, the same invariance holds and the first term in the reduced Lagrangian
`1 reads

1

2
J

∫
D
‖ν‖2µ.

The Ericksen-Leslie equations are recovered by imposing the constraint ν0 · n0 = 0 on
the initial conditions. This constraint is preserved by the dynamics, see Lemma 8.3
in [10]. �

2.4 Alternative reduction for nematic systems

While the EL equations are well known and widely accepted as a reliable model, this
section presents an alternative set of equations that are completely equivalent to EL
dynamics. These new equations have the advantage that they can be easily extended to
consider non-trivial disclination effects, as we shall see later.

The starting point is the same unreduced Lagrangian (2.5) producing EL dynamics.
We notice that, if n0 is an arbitrary constant director, the Lagrangian L in (2.5) possesses
the alternative invariance property

L(χ, χ̇) = L(χ̇χ−1, χn0,−(∇χ)χ−1)

where ∇ denotes the usual differentiation operator and γ := −(∇χ)χ−1 ∈ Ω1(D, so(3))
is a new dynamical variable. More precisely, if n0 is a constant vector field, then we can
rewrite the Lagrangian L in (2.5) as

L(χ, χ̇) =
1

2
J

∫
D
‖χ̇n0‖2µ−

∫
D
F
(
χn0, ((∇χ)χ−1)(χn0)

)
µ (2.10)

and consider L as coming from a Lagrangian L = L(χ, χ̇,n0, γ0) defined on TF(D, SO(3))×
F(D,R3)× Ω1(D, so(3)), which is invariant under the right action

(χ,n0, γ0) 7→
(
χψ, ψ−1n0, ψ

−1γ0ψ + ψ−1∇ψ
)
.

In the present case, the initial value of γ is zero, that is, we have γ0 = 0 so that

L(χ, χ̇) = L(χ, χ̇,n0, 0) .
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Then, the reduced Lagrangian corresponding to (2.10) takes the form

L(χ̇χ−1, χn0,−(∇χ)χ−1) =
1

2
J

∫
D
‖ν × n‖2µ−

∫
D
F (n,−γ × n)µ

=: `2(ν,n,γ) , (2.11)

where we allow for γ = −(∇χ)χ−1 ∈ Ω1(D, so(3)) to be an extra dynamical variable,
we denote by γ = (γ1,γ2,γ3) the corresponding R3-valued one-form, γi ∈ Ω1(D),
i = 1, 2, 3, and γ × n ∈ Ω1(D,R3) is defined by

(γ × n)(vx) = γ(vx)× n, vx ∈ TxD, (2.12)

or, in local coordinates, γ×n = (γi × n) dxi. In Appendix A it is shown how the Frank
energy is written in terms of n and γ.

It is important to notice that the expression for L = L(χ, χ̇,n0, γ0) may not be
defined when γ0 6= 0. In this case `2 is only defined on the orbit of γ0 = 0, that is,
on γ of the form γ = −(∇χ)χ−1. However, this does not affect the reduction process,
as long as the expression L(χ, χ̇,n0, 0) is invariant under the isotropy group of γ0 = 0.
It is interesting to observe that this construction is identical to the reduction process
occurring for the dynamics of polymer chains, see [6, 9] to which we also refer for more
details about the reduction processes when γ0 = 0.

Remark 2.2 (Symmetry breaking and isotropy subgroup) Notice that, in the con-
text of symmetry breaking [12], the above reduction is no longer performed with re-
spect to the isotropy subgroup of e3, i.e., F(D, S1) = F(D, SO(3))e3 , as it happens
for Ericksen-Leslie dynamics. Rather, since the isotropy subgroup of γ0 = 0 is given
by SO(3) ⊂ F(D, SO(3)), the entire reduction process is with respect to the isotropy
subgroup

F(D, SO(3))(e3,0) = F(D, S1) ∩ SO(3) = S1 .

See Section 3 for a more detailed discussion on this topic. �

At this point, the resulting associated Euler-Poincaré variational principle is

δ

∫ t1

t0

`2(ν,n,γ) dt = 0 , (2.13)

subject to the variations δν = ∂tη + ν × η and δ(n,γ) = (η × n,−∇γ η) for η(t0) =
η(t1) = 0. Here η̂ = (δχ)χ−1 and ∇γ denotes the covariant differentiation

∇γa := ∇a + γ × a ∈ Ω1(D,R3) ,

for any a ∈ F(D,R3). Then, the affine Euler-Poincaré equations are
d

dt

δ`2

δν
= ν × δ`2

δν
+ divγ δ`2

δγ
+ n× δ`2

δn

∂tn + n× ν = 0

∂tγ + γ × ν +∇ν = 0, γ0 = 0 ,

(2.14)
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where we have introduced the covariant divergence of κ ∈ X(D,R3) by

divγ κ := divκ+ Tr(γ × κ) =
∂κi

∂xi
+ γi × κi ∈ F(D,R3) .

Note that the above definition follows, as usual, from the requirement that the operators
∇γ and divγ are related by

〈κ,∇γa〉 :=

∫
D

(∇γa) (κ)µ = −
∫
D

a · divγ κµ =: −〈divγ κ, a〉 .

Notice that, the final form of the Lagrangian (2.11) yields the equations of motion
Jn× (n× ∂tν) = J(n× (n× ν))× ν +

∂

∂xi
∂Φ

∂γi
+ γi ×

∂Φ

∂γi
+ n× ∂Φ

∂n

∂tn + n× ν = 0,

∂tγ + γ × ν +∇ν = 0, γ0 = 0 ,

(2.15)

where the free energy Φ(n,γ) is defined in terms of the Frank energy F (n,∇n) in (2.3)
as

Φ(n,γ) := F (n,n× γ) , (2.16)

through the relation ∇n = n× γ (see Appendix A).
Upon using (2.11), combining the first two equations yields

J∂2
t n−

(
n · h + J n · ∂2

t n
)
n + h = 0, (2.17)

where the molecular field is expressed as

h =
∂Φ

∂n
− n×

(
∂

∂xi
∂Φ

∂γi
+ γi ×

∂Φ

∂γi

)
. (2.18)

Notice that, contrarily to what happens for (2.1), the dynamics of ν must be computed
to evaluate the instantaneous value of Φ and h.

Thus, if we suppose that the reference director field n0 is constant, then (2.7) and
(2.14) are equivalent since they are induced by the same Euler-Lagrange equations for
L(χ, χ̇) on TF(D, SO(3)). We shall verify this fact explicitly in the next subsection.

Remark 2.3 (The initial condition γ0) When one allows for γ0 6= 0, the reduced
equations in (2.14) still make sense, thereby extending EL dynamics to account for
disclination dynamics. Notice that in this case, equations (2.14) still preserve the relation
∇n− n× γ = 0, since (

∂

∂t
− ν×

)
(∇n− n× γ) = 0 .

Thus, the initial conditions γ0 and n0 may be strictly related through the relation
∇n0 = n0 × γ0. It is important to emphasize that the projection n0 · γ0 gives zero
contribution to the gradient ∇n0. Then, Eringen’s expression of the wryness tensor
γ0 = ∇n0×n0 (that is n0 · γ0 = 0) becomes a convenient initial condition, which is not
preserved in time. �
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2.5 Compatibility

Upon choosing n = χn0 and γ̂ = −(∇χ)χ−1, the induced variational principles (2.8)
and (2.13) must be the same:

δ

∫ t1

t0

`1(ν,n) dt = δ

∫ t1

t0

Ln0(χ, χ̇) dt = δ

∫ t1

t0

L(n0,0)(χ, χ̇) dt = δ

∫ t1

t0

`2(ν,n,γ) dt

for any variation of χ vanishing at the endpoints and δ(n,γ) = (η × n,−∇γ η), where
η̂ = (δχ)χ−1. Thus, upon denoting by 〈· , ·〉 the pairing between vectors and convectors
on either the director space F(D,S2) or the space Ω1(D, so(3)), one has∫ t1

t0

〈
δ`1

δn
, δn

〉
dt =

∫ t1

t0

(〈
δ`2

δn
, δn

〉
+

〈
δ`2

δγ
, δγ

〉)
dt

so that ∫ t1

t0

〈
δ`1

δn
,η × n

〉
dt =

∫ t1

t0

(〈
δ`2

δn
,η × n

〉
−
〈
δ`2

δγ
, dγη

〉)
dt,

where we ignore variations in ν since they give equal contributions which cancel each
other because δ`1/δν = δ`2/δν. In conclusion, isolating η yields

n× δ`1

δn
= n× δ`2

δn
+ divγ δ`2

δγ
(2.19)

which can be used to show that (2.14) is compatible with (2.7). Indeed, we check that
equations (2.14) still produce

∂

∂t

(
δ`2

δν
· n
)

= J
∂

∂t
(ν · n) = 0 , (2.20)

since by (2.19) all terms involving δ`2/δγ are orthogonal to n and give zero contribution.
Notice that the above constant is actually a momentum map arising from the invariance
of EL dynamics under the isotropy group F(D, S1) of e3; see [12] and also (3.5) below.
The conservation of n · δ`2/δν is then to be considered a conservation law arising from
Noether’s theorem, which is inherited from the system (2.7). In conclusion, we have
proven the following result.

Theorem 2.4 The Ericksen-Leslie equations (2.1) (with the molecular field (2.2)) are
equivalent to equations (2.15) (with free energy given by (2.16)).

Proof. As we have seen, systems (2.9) and (2.15) are the Euler-Poincaré equations
associated to the Lagrangians (2.6) and (2.11), respectively. In turn, these two La-
grangians arise by Euler-Poincaré reduction relative to two different symmetry groups
from the same Lagrangian (2.5) in material representation. Therefore, using (2.19) we
conclude

n× h =
∂

∂xi
∂Φ

∂γi
+ γi ×

∂Φ

∂γi
+ n× ∂Φ

∂n
, (2.21)
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thereby transforming the first equation in (2.15) into the first equation in (2.9). Thus,
the γ-equation decouples in (2.15). Since we already showed in Section 2.3 that (2.1) is
equivalent to (2.9), the statement follows. �

Notice that, if γ0 6= 0, the uniaxial property ν0 ·n0 = 0 is not preserved, since (2.19)
is no longer true. This indicates that changes occur in the molecular configuration of
the system. Thus, the director parameter must be replaced by a suitable inertia tensor,
which becomes the new order parameter field. This is precisely what happens in the
Landau-deGennes dynamics of the alignment tensor [4]. This treatment is the basis of
the micropolar theory of liquid crystals, which was pioneered by Eringen [7, 8]. However,
before approaching this problem, we shall show how the two constructions presented in
this section are actually special cases of two reduction processes that can be carried out
for any continuous medium with broken symmetry.

3 Reductions for continua with broken symmetry

This section generalizes the two constructions previously applied to nematic liquid crys-
tals to arbitrary continuum systems with broken symmetry. More precisely, the rotation
group SO(3) for the orientational order is replaced by an arbitrary Lie group O acting
transitively on an order parameter manifold M and so(3) ∼= R3 by the Lie algebra o of
O. Then, if n0 ∈ M is a given order parameter variable, it follows that M is the coset
manifold O/P , where P := On0 ⊂ O is the isotropy subgroup fixing n0, i.e.

On0 := {χ ∈ O | χn0 = n0} .

Here, the concatenation notation χn0 is used for the O-action on M . The explicit
expression of this group action depends on the special case under consideration. This is
precisely the same setting as in [12].

For continuous media, one replaces O and M by F(D,O) and F(D,M), where D
is the spatial domain of the medium, so that F(D,O)n0 = F(D,P) ⊂ F(D,O), where
n0 ∈M is identified with a constant function onD. Note that here we consider the action
of F(D,O) on F(D,M) naturally induced by the O-action on M . At the fundamental
unreduced level, one starts with a Lagrangian functional L : TF(D,O) → R, which is
typically of the type

L(χ, χ̇) =

∫
D

L (χ, χ̇, χn0,∇(χn0))µ (3.1)

so that the fixed order parameter n0 appears in the Lagrangian density L through both
χn0 and its differential ∇(χn0). In all cases under consideration, the Lagrangian L
possesses the following invariance properties:

L(χ, χ̇) =

∫
D

L (χ, χ̇, χn0,∇(χn0))µ =

∫
D

L (χ̇χ−1, χn0,∇(χn0))µ = `1(ν, n) (3.2)

and, if n0 is constant in space,

L(χ, χ̇) =

∫
D

L (χ, χ̇, χn0,∇(χn0))µ =

∫
D

L (χ̇χ−1, χn0, ((∇χ)χ−1)M(χn0))µ

=: `2(ν, n, γ) , (3.3)
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for ν := χ̇χ−1, n := χn0 and γ := −(∇χ)χ−1. Here ((∇χ)χ−1)M(χn0) : TD → TM is
defined by

((∇χ)χ−1)M(χn0)(vx) =
(
∇χ(vx)χ(x)−1

)
M

(χ(x)n0(x)) ∈ Tn(x)M, vx ∈ TxD,

where ξM ∈ X(M) denotes the infinitesimal generator associated to the Lie algebra
element ξ ∈ o. Note that in the formula above we have ξ = ∇χ(vx)χ(x)−1 ∈ o. Each of
these invariance properties involves a distinct reduction procedure that, in turn, produces
different Euler-Poincaré equations of motion. As is explained below, these two reduced
systems are compatible since they arise from the same unreduced Lagrangian L(χ, χ̇).

3.1 First reduction

This reduction procedure is based on the invariance property (3.2) and it follows precisely
the same steps as in Section 2.1 of [12] (see theorem 2.1 therein). In particular, this
reduction is performed with respect to the isotropy subgroup F(D,O)n0

= F
(
D,On0

)
,

because of the diffeomorphism

TF(D,O)/F
(
D,On0

)
−→ F(D, o)×F(D,M)

[(χ, χ̇)] 7→
(
χ̇χ−1 , χn0

)
;

see [12, Remark 2.5 and equation (3.1)].
Since the invariance property (3.2) implies

δ

∫ t1

t0

L(χ, χ̇) dt = δ

∫ t1

t0

`1(ν, n) dt = 0 ,

the Euler-Poincaré variational principle for `1 involves the variations

δν =δ
(
χ̇χ−1

)
= ∂tη + [ν, η]

δn =δ(χn0) = ηM(n),

where η := (δχ)χ−1 ∈ F(D, o) and the dot notation stands for partial time derivative.
Here the index M on ηM(n) for η ∈ F(D, o) and n ∈ F(D,M), denotes the infinitesimal
generator of the F(D,O)-action on F(D,M), which is formally given at x ∈ D by
η(x)M(n(x)). Thus, the resulting equations of motion read

∂

∂t

δ`1

δν
+ ad∗ν

δ`1

δν
= J

(
δ`1

δn

)
, ∂tn = νM(n) , (3.4)

where J : T ∗F(D,M)→ F(D, o∗) is the momentum map of the cotangent lifted action
of F(D,O) on F(D,M), which is given by [21, Theorem 12.1.4]

〈J(αn), ξ〉 = 〈αn, ξM(n)〉 ∀αn ∈ T ∗nF(D,M) ,

and 〈· , ·〉 denotes the pairing between vectors and covectors on either the gauge Lie
algebra F(D, o) or the order parameter space F(D,M).
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Notice that F
(
D,On0

)
-invariance of L(χ, χ̇) = `1(ν, n) yields, by Noether’s theorem,

the following momentum map conservation (see [12, §4])

∂

∂t

(
i∗
(

Ad∗χ
δ`1

δν

))
= 0 , (3.5)

where i∗ is the dual of the Lie algebra inclusion i : F(D, on0) → F(D, o). This is the
immediate generalization of the relation (2.20) for uniaxial nematics, for which On0 = S1

and i(r) = (0, 0, r). The above conserved quantity is readily seen to arise as a momentum
map J : T ∗F(D,O)→ F

(
D, o∗n0

)
by the following computation

〈J (αχ), ζ〉 = 〈αχ, ζO(χ)〉 = 〈αχ, χi(ζ)〉 =
〈
χ−1αχ, i(ζ)

〉
=
〈
i∗
(
χ−1αχ

)
, ζ
〉

where χ−1αχ = Ad∗χ(αχχ
−1) and ζ ∈ F(D, on0) is arbitrary. The index O on ζO denotes

the infinitesimal generator of the right F
(
D,On0

)
-action on F(D,O). This Lie algebra

action is given by χ 7→ χ i(ζ).

3.2 Second reduction

In this section we restrict all considerations to a given initial condition n0 ∈ M ⊂
F(D,M) (i.e., n0 spatially constant) in order to perform the reduction arising from the
invariance property (3.3). The construction in this section is based on the treatment in
[10], involving affine actions of the gauge group F(D,O).

Property (3.3) arises mainly from the following observation:

∇n = ∇(χn0) = (∇χ)n0 =
(
(∇χ)χ−1

)
M
χn0 =

(
(∇χ)χ−1

)
M
n =: −γM(n) , (3.6)

which defines the connection one form γ := −(∇χ)χ−1 ∈ Ω1(D, o). Here, γM(n)(vx) :=
(γ(vx))M (n(x)) ∈ Tn(x)M for any vx ∈ TxD. Thus, it becomes natural to incorporate γ
in the equations of motion as an extra dynamical variable. This step requires precisely
the reduction given by the invariance (3.3), and hence we conclude

L(χ, χ̇) =

∫
D

L (χ̇χ−1, χn0, ((∇χ)χ−1)M(χn0))µ =

∫
D

L (ν, n,−γM(n))µ

=: `2(ν, n, γ). (3.7)

In this case, the reduction proceeds with respect to the isotropy subgroup of (n0(x), γ0(x)) =
(n0, 0), which is necessarily a subgroup of F(D,O)n0

. More precisely, since F(D,O)n0
=

F
(
D,On0

)
and F(D,O)γ0=0 = O one has

F(D,O)(n0,0) = F
(
D,On0

)
∩ O = On0 .

Thus, the second invariance property (3.3) leads to a reduction involving the isotropy
group On0 , which is much smaller than the isotropy F

(
D,On0

)
used in the first reduction

presented in §3.1 arising from the invariance property (3.2).
Notice that, upon considering the gauge action of F(D,O) on Ω1(D, o)

γ0 7→ ψ−1γ0ψ + ψ−1∇ψ , (3.8)
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the invariance property (3.3) takes the form

L(χ, χ̇) =

∫
D

L
(
χ̇χ−1, χn0,−(χ−1γ0)M(χn0)

)
µ =

∫
D

L (ν, n,−γM(n))µ =: `2(ν, n, γ)

where γ0 = 0 is a fixed initial condition. At this point, since the invariance property
(3.3) implies

δ

∫ t1

t0

L(χ, χ̇) dt = δ

∫ t1

t0

`2(ν, n, γ) dt = 0 ,

the Euler-Poincaré variational principle for `2 involves the variations

δν =δ
(
χ̇χ−1

)
= ∂tη + [ν, η]

δn =δ(χn0) = ηM(n)

δγ =δ
(
χ−1γ0

)
= −ηΩ1(γ0) = −∇γη,

where ∇γλ := ∇λ+ [γ, λ] ∈ Ω1(D, o) is the covariant differential of λ ∈ F(D, o) and the
subscript Ω1 on ηΩ1 denotes the infinitesimal generator of the affine action (3.8). In the
variations above, η is a path in F(D, o) vanishing at t0 and t1.

The resulting equations of motion are

∂

∂t

δ`2

δν
+ ad∗ν

δ`2

δν
= J

(
δ`2

δn

)
+ divγ

(
δ`2

δγ

)
,

(∂tn, ∂tγ) = (νM(n),−∇γν) , γ0 = 0.

(3.9)

The covariant divergence is now written as

divγ
(
δ`2

δγ

)
:= div

δ`2

δγ
− Tr

(
ad∗γ

δ`2

δγ

)
=

∂

∂xi

(
δ`2

δγi

)
+ ad∗γi

δ`2

δγi
∈ F(D, o∗);

this follows from the defining relation

〈κ,∇γζ〉 :=

∫
D

(∇γζ) (κ)µ = −
∫
D
〈divγ κ, ζ〉 µ =: −〈divγ κ, ζ〉 ,

for any ζ ∈ F(D, o) and κ ∈ X(D, o∗), where the pairing in the second integrand
is the duality pairing 〈 , 〉 : o∗ × o → R. Here, J : T ∗F(D,M) → F(D, o∗) is the
same momentum map as in §3.1, while K(γ, w) := divγ w is the momentum map K :
T ∗Ω1(D, o)→ F(D, o∗) induced by the cotangent lifted action of F(D,O) on Ω1(D, o).

3.3 Compatibility of the two approaches

Since the two approaches arise from the same unreduced Lagrangian, they are compat-
ible. This compatibility is reflected in the following relations

∂

∂t

δ`1

δν
+ ad∗ν

δ`1

δν
− J

(
δ`1

δn

)
=

∂

∂t

δ`2

δν
+ ad∗ν

δ`2

δν
− J

(
δ`2

δn

)
− divγ

(
δ`2

δγ

)
= 0
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which arise from the variational principles

δ

∫ t1

t0

`1(ν, n) dt = δ

∫ t1

t0

`2(ν, n, γ) dt = 0.

In the particular case when δ`1/δν = δ`2/δν we obtain

J

(
δ`1

δn

)
= J

(
δ`2

δn

)
+ divγ

(
δ`2

δγ

)
, (3.10)

which generalizes the analogous relation (2.19) previously found for nematodynamics.
Therefore, since by construction, the systems (3.9) and (3.4) arise from the same unre-
duced Lagrangian (3.1), we obtain the following result:

Theorem 3.1 Upon using the relation ∇n = −γ̂M(n), the equations (3.9) and (3.4)
are equivalent.

We want to emphasize that many of the subsequent results are corollaries of this theorem
for special Lagrangians.

3.4 More general Lagrangians

So far, we considered the case in which the parameter n0 appears in the Lagrangian
density L only through the term χn0 and its gradient ∇(χn0). Then we showed how
such a Lagrangian possesses the two invariance properties (3.2) and (3.3). However, one
can consider the more general case of an invariant Lagrangian of the type

L(χ, χ̇) =

∫
D

L (χ, χ̇, χn0,∇χ)µ =

∫
D

L (χ̇χ−1, χn0, (∇χ)χ−1)µ = `2(ν, n, γ) ,

which has a free dependence on the variable γ, still possessing the initial condition γ0 = 0.
In this case, the only invariance property is of the type (3.3) and there is no reduction
other than that of second type. As above, one regards L as a Lagrangian L(χ, χ̇, n0, 0)
invariant under the isotropy group of γ0 = 0. A simple concrete example of such a
situation is when n0 = (0, 0, 0) ∈ R3 and O = SO(3), which produces the framework
for spin glass dynamics [5, 15]. Then, the momentum map associated to the residual
SO(3)-symmetry (recall that SO(3) ⊂ F(D, SO(3))) is J : T ∗F(D, SO(3)) → so(3)∗,
J (αχ) =

∫
D χ
−1αχµ, and therefore yields (by Noether’s theorem) the conservation law

d

dt

∫
D

(
Ad∗χ

δ`2

δν

)
µ =

∫
D

Ad∗χ

(
divγ

δ`2

δγ

)
µ = 0 , (3.11)

where the second equality follows from the general formula [21, formula (9.3.7)]

∂

∂t

(
Ad∗χσ

)
= Ad∗χ

(
σ̇ + ad∗χ̇χ−1σ

)
and from equations (3.9) with n0 = (0, 0, 0) = n. As we have seen, in the case of liquid
crystals, the two reductions are both possible (producing `1 and `2). However, when `1

does not exist (e.g., for spin glasses), the only possible conservation law is

d

dt
j∗
(∫
D

(
Ad∗χ

δ`2

δν

)
µ

)
= 0 , (3.12)
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where j∗ is the dual of the Lie algebra inclusion j : on0 ↪→ o. In the case of spin glasses,
n = (0, 0, 0) yields on0 = so(3) = o, so that j∗ reduces to the identity. On the other
hand, for liquid crystals On0 = S1 ⊂ SO(3) = O, so that the above conservation law is
immediately implied by applying Noether’s theorem to `1, as we did already in (3.5).

The next section will apply this general setting to the case of microfluids. In this
context the order parameter field is the molecule inertia tensor (microinertia) taking
values in M = Sym(3), the space of 3 × 3 symmetric matrices. Both reductions above
apply naturally in this context.

3.5 Reductions for micropolar media

Micropolar media are continuum media in which the shape of each rigid particle may
change in time, depending on the point in space. The molecule shape is given by an
appropriate microinertia tensor, which also appears in the expression of the free energy,
denoted by Φ. Then, the unreduced Lagrangian is given by

L(χ, χ̇) =

∫
D

L
(
χ, χ̇, χj0χ

−1,∇(χj0χ
−1)
)
µ

=
1

2

∫
D

Tr
(
(i0χ

−1χ̇)Tχ−1χ̇
)
µ−

∫
D

Υ1(χj0χ
−1,∇(χj0χ

−1))µ, (3.13)

where Υ1 denotes the free energy, j0 is the microinertia tensor and i0 := 1
2

Tr(j0)I3 − j0
(or, equivalently, j0 = i0 − Tr(i0)I3). Upon repeating exactly the main steps as in the
previous sections, one considers j0 ∈ F(D, Sym(3)) as the order parameter field and, by
defining j = χ j0 χ

−1, one obtains the first reduced Lagrangian

`1(ν, j) :=

∫
D

L
(
χ̇χ−1, χj0χ

−1,∇(χj0χ
−1)
)
µ =

1

2

∫
D

(jν) · νµ−
∫
D

Υ1(j,∇j)µ, (3.14)

where
j0 7→ χ j0 χ

−1

defines the action of F(D,SO(3)) on F(D, Sym(3)).
On the other hand, if j0 is constant in space, then we obtain the second reduced

Lagrangian

`2(ν, j, γ) :=

∫
D

L
(
χ̇χ−1, χj0χ

−1, [(∇χ)χ−1, χj0χ
−1]
)
µ

=
1

2

∫
D

(jν) · νµ−
∫
D

Υ2(j,γ)µ, (3.15)

where γ := −(∇χ)χ−1 (with γ0 = 0), the Lie bracket [·, ·] is the ordinary matrix com-
mutator, and Υ2(j,γ) := Υ1(j,−[γ̂, j]). Then, each of the above reduced Lagrangians
produces the following equivalent sets of equations, respectively:

∂

∂t

δ`1

δν
= ν × δ`1

δν
−
−−−−−→[
δ`1

δj
, j

]
∂tj + [j, ν̂] = 0

(3.16)
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∂

∂t

δ`2

δν
= ν × δ`2

δν
−
−−−−−→[
δ`2

δj
, j

]
+ divγ δ`2

δγ

∂tj + [j, ν̂] = 0

∂tγ + [γ, ν̂] +∇ν̂ = 0 , γ0 = 0,

(3.17)

with the notation
−→
A i := −εijkAjk, A ∈ so(3), for the dual of the hat map (1.4), i.e., for

any A ∈ so(3) and any a ∈ R3, we have Tr
(
AT â

)
= −Tr (Aâ) =

−→
A · a. Upon using the

Lagrangians (3.14) and (3.15), the systems (3.16) and (3.17) become
j∂tν = jν × ν +

−−−−−−→[
∂Υ1

∂j
, j

]
−
−−−−−−−−−−−→[
∂

∂xi
∂Υ1

∂(∂xij)
, j

]
∂tj + [j, ν̂] = 0 ,

(3.18)

and 
j∂tν = jν × ν − ∂

∂xi
∂Υ2

∂γi
+ γa × ∂Υ2

∂γa

∂tj + [j, ν̂] = 0,

∂tγ + γ × ν +∇ν = 0, γ0 = 0 ,

(3.19)

where we have used the identities
−̂→
A = 2A for any A ∈ so(3) and

−−−−−−→[
j,
∂Υ2

∂j

]
= γa × ∂Υ2

∂γa
+ γi ×

∂Υ2

∂γi
; (3.20)

for the notations γa ∈ Ω1(D) and γi ∈ F(D,R3) see (1.1) and for the identity above see
[10, Lemma 8.5] which is a consequence of the axiom of objectivity for the free energy
Υ2.

Theorem 3.2 Systems (3.18) and (3.19) are equivalent.

Proof. As we have seen, systems (3.18) and (3.19) are the Euler-Poincaré equations
associated to the Lagrangians (3.14) and (3.15), respectively. In turn, these two La-
grangians arise by Euler-Poincaré reduction relative to two different symmetry groups
from the same Lagrangian (3.13) in material representation. Therefore, upon replacing
n ∈M by j ∈ Sym(3) and

J

(
δ`i
δj

)
=

−−−−−→[
j,
δ`i
δj

]
, i = 1, 2,

in formula (3.10), we conclude

−−−−−−→[
∂Υ1

∂j
, j

]
−
−−−−−−−−−−−→[
∂

∂xi
∂Υ1

∂(∂xij)
, j

]
= − ∂

∂xi
∂Υ2

∂γi
+ γa × ∂Υ2

∂γa
,
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where we have used formula (3.20) in the right hand side. Therefore the γ-equation
decouples in (3.19), which proves the statement. �

While (3.18) are the well known equations for micropolar media [7, 8], the second
set of equations (3.19) provide an alternative formulation of the same dynamics, as
long as γ0 = 0. When the latter initial condition is dropped, the two systems are not
equivalent and (3.17) yield Eringen’s formulation of micropolar liquid crystals, which
accounts for disclination dynamics through the disclination density B in (1.2). Notice
that the latter quantity possesses a coordinate-free definition in terms of the Yang-Mills
curvature two-form

B(ux, vx) := dγ(ux, vx) + γ(ux)× γ(vx) ux, vx ∈ TxD ,

where d denotes the exterior differential. Then, if γ0 6= 0, the unreduced Lagrangian is

L(χ, χ̇) =
1

2

∫
D

Tr
(
(i0χ

−1χ̇)Tχ−1χ̇
)
µ−

∫
D

Ψ(χj0χ
−1, χ∇χ−1 + χγ0χ

−1)µ, (3.21)

with some free energy Ψ and the following reduced expression

`2(ν, j, γ) =
1

2

∫
D

(jν) · νµ−
∫
D

Ψ(j,γ)µ. (3.22)

The discussion in the next section shows how this micropolar formulation recovers
Ericksen-Leslie nematodynamics if the free energy Ψ equals the Frank energy (2.3).

4 Comparing Eringen and Ericksen-Leslie theories

In the previous section, Eringen’s micropolar theory was shown to account for disclina-
tion dynamics when γ0 6= 0. Now we shall show how Eringen’s formulation of micropolar
liquid crystals recovers EL nematodynamics, upon assuming that all molecules are uni-
axial. In turn, this last constraint enforces the dynamics to neglect the presence of
defects (i.e., γ0 = 0), which otherwise would induce variations in the molecule shape.

4.1 Micropolar theory for uniaxial nematics

In Eringen’s theory, the assumption of uniaxial molecules leads to a microinertia tensor
of the form

j = J(I− n⊗ n), (4.1)

which corresponds to i := 1
2

Tr(j)I− j = Jn⊗n. Here we assume that ‖n‖2 = 1. Then,
this relation transforms Eringen’s Lagrangian `2(ν, j,γ), given in (3.22), to

`′2(ν,n,γ) : = `2(ν, J(I− n⊗ n),γ)

=
J

2

∫
D
‖ν × n‖2µ−

∫
D

Ψ(J(I− n⊗ n),γ)µ,
(4.2)

thereby producing the equations (2.14), where the initial condition γ0 = 0 has not yet
been imposed. Since we already know how equations (2.14), with Lagrangian (2.11),

19



are related to EL nematodynamics, we need to choose a free energy Ψ which equals the
Frank energy (2.3). Thus, we need to prove that there exists Ψ such that

Ψ(j,γ) = Ψ(J(I− n⊗ n),γ) = F (n,n× γ) = F (n,∇n), (4.3)

where F is the Frank energy and the last equality follows from the relation ∇n = n×γ,
which is preserved by the dynamics (2.14). Notice that imposing ∇n = n× γ amounts
to considering a subsystem of (2.14), unless γ0 = 0. The next section shows how an
appropriate free energy Ψ can be derived.

4.2 The expression of the free energy

This section shows how all terms in the Frank energy (2.3) can be rewritten in terms of
the variables j = J(I− n⊗ n) and γ, the latter being introduced through the invariant
relation ∇n = n×γ. Thus, the explicit expression for the micropolar free energy Ψ(j, γ)
of nematic media will be written after computing the micropolar expression for each term
in the Frank energy (2.3). Some equalities are shown in detail in Appendix A.

Twist. Using n⊗ n = I− j/J , we have

n · ∇ × n = −n · γ(n) + ‖n‖2 Tr(γ) =
1

J
Tr (jγ) =

1

J
Tr
(
jγS

)
.

where γi(n) := γiana, with a being the so(3) ' R3-index, and γS denotes the symmetric
part of γ, i.e., γS =

(
γ + γT

)
/2, where we see γ as a 3×3 matrix with components γia.

Splay. We introduce the vector (γ)b = εabcγac, defined by the condition γ ·u = Tr(u×
γ), for all u ∈ R3, where u × γ is the matrix with components (u × γ)ia = (u × γi)a.
We compute

(div n)2 = (γ · n)(γ · n) = γ · (n⊗ n)γ

= γ · (I− j/J)γ = ‖γ‖2 − 1

J
γ · jγ

= 2 (Tr(j)/J − 1) Tr
(
(γA)2

)
− 4

J
Tr
(
j(γA)2

)
,

where γA denotes the skew part of γ, i.e. γA =
(
γ − γT

)
/2 and where we used the

equality γ̂ = −2γA. The latter can be shown by noting that we have the equalities

Tr
(
γ̂ û

)
= −2γ · u = −2 Tr(γû) for all u ∈ R3.

Bend. For all u ∈ R3, we have

(n× (∇× n)) · u = −∇nn · u = −(n× γ(n)) · u = −(u× n) · γ(n)

= −ûn · γ(n) = −Tr((ûn)Tγn)

= Tr ((n⊗ n)ûγ) = Tr ((I− j/J)ûγ)

= Tr(u× γ)− 1

J
Tr(u× (γj))

= γ · u− 1

J
γj · u,
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so we get

n× (∇× n) = γ − 1

J
γj

and therefore

‖n× (∇× n)‖2 =

∥∥∥∥ 1

J
γj − γ

∥∥∥∥2

= −2 Tr

((
1

J
(γj)A − γA

)2
)
.

Thus, we proved the following result.

Proposition 4.1 (Eringen [7]) Upon using the relations ∇n = n × γ and j = J(I −
n⊗ n), the micropolar form of the Frank free energy (2.3) is given by

Ψ(j,γ) =
K2

J
Tr(jγ) +

K11

J

(
Tr
(
(γA)2

)
(Tr(j)− J)− 2 Tr

(
j(γA)2

))
+

1

2

K22

J2
Tr2(jγ)− K33

J
Tr
((

(γj)A − JγA
)2)

. (4.4)

Remark 4.2 (Surface terms) Notice that analogous expressions can be found for cer-
tain surface terms that are often added to the expression (2.3) for the Frank energy; for
example, Tr ((∇n)2) = −γhi γljεjhkεilp (1− j/J)kp. �

When j = J(I−n⊗n) and the above free energy Ψ(j, γ) replaces Υ2(j,γ) in equations
(3.19), the latter are completely equivalent to the Ericksen-Leslie equation (2.1). This
is shown in the next subsection.

4.3 Recovering Ericksen-Leslie nematodynamics

The relations j = J(I − n ⊗ n) and ∇n = n × γ implied that the Frank energy has a
micropolar formulation Ψ(j,γ) = F (n,n× γ), to be used in the Lagrangian `2(ν, j,γ).
Here we restrict to the case γ0 = 0, so that the equations (2.14) arising from `′2 can now
be transformed into a system of the type (2.7). In this way, the reduced Lagrangian
`2(ν,n,γ) transforms to a functional `′1(ν,n), by using F (n,n×γ) = F (n,∇n). Then,
the resulting Lagrangian

`′1(ν,n) =
J

2

∫
D
‖ν × n‖2 µ−

∫
D
F (n,∇n)µ , (4.5)

coincides with (2.6). The procedure outlined in Section 2.3 (see also Theorem 2.4)
shows that Eringen’s micropolar theory recovers Ericksen-Leslie nematodynamics. It is
worth emphasizing that the solutions of the Ericksen-Leslie equations arising from the
Lagrangian `′1 still lie on the zero-level set n · δ`′1/δν = 0, thereby showing that there
is no angular momentum J n × ∂tn along the director field n. Again, this reflects the
uniaxial nature of the nematic molecules described by Ericksen-Leslie theory.

Summarizing these considerations and the equivalence between equations (2.1) and
(2.9), we get the following result.
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Theorem 4.3 Under the assumption j = J(1− n⊗ n), the system of equations (3.19)
with Υ2(j,γ) = Ψ(j,γ) given in (4.4), are equivalent to the Ericksen-Leslie equations
(2.1).

Remark 4.4 (The one-constant approximation) Notice that, for the one constant
approximation, K2 = 0 and K11 = K22 = K33 =: K and the Frank free energy
F (n,∇n) = (K/2)

∫
D ‖∇n‖2µ yields expression (4.4) in the form

Ψ(j,γ) =
K

2J
(γi · jγi) .

Then, the resulting equations of Eringen’s micropolar theory are obtained upon replacing
Υ2(j,γ) = Ψ(j,γ) in (3.19). Eventually, one obtains the equations of motion:

J
(
j∂tν − jν × ν

)
= −K

(
j∂xiγi + jγi × γi

)
∂tj + [j, ν̂] = 0,

∂tγi + γi × ν + ∂xiν = 0, γ0 = 0 ,

(4.6)

where we have used the relations (3.20) and∇j = [j, γ̂]. The above equations can also be
expressed in terms of the director field n, upon using the relation (4.1). It is interesting
to observe that the first equation in (4.6) can be rewritten in the particularly suggestive
form

J∂t(jν) +K∂xi(jγi) = 0 ,

which is then accompanied by ∇j = [j, γ̂] as well as the second and third equations in
(4.6). �

4.4 Remarks on biaxial nematics

The case of biaxial liquid crystals offers a good opportunity to express all variables in
terms of the order parameter quantities. For example, the well known expression [18]

j = J1 (I− n⊗ n) + J2 (m⊗m− (n×m)⊗ (n×m))

of the (microinertia) tensor order parameter in terms of the two directors n and m (with
n ·m = 0), was shown in [12] to remain invariant in the absence of disclinations, i.e.,
when γ0 = 0 and γ̂ = −(∇χ)χ−1. In this case, the above expression of the tensor order
parameter yields a Lagrangian of the type `(ν,n,m) where ν̂ = χ̇χ−1 and (n,m) =
(χn0, χm0) (see [12]). Then, upon choosing the initial conditions n0 = e3 and m0 = e2,
the orthogonal matrix χ can be expressed as

χ = (m× n m n)

Then, by using the orthogonality of the rows and columns of χ and χT , one has

ν =
1

2
(n× ∂tn + m× ∂tm + (m× n)× ∂t(m× n)) (4.7)

γ =
1

2
(∇n× n +∇m×m +∇(m× n)× (m× n)) (4.8)
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so that all dynamical variables are expressed explicitly in terms of the two directors.
Notice that if J2 = 0, the case of uniaxial molecules treated previously in this section,
prevents the potential γ to be expressed uniquely in terms of the director n. Indeed,
setting m = 0 is evidently forbidden by the orthogonality property of χ ∈ SO(3). This
fact is particularly interesting because it contrasts with Eringen’s definition in [7, 8],
which suffers from not being gauge invariant.

On the other hand, the dynamics of biaxial nematics in the absence of disclinations is
completely equivalent to the Euler-Lagrange dynamics arising from Hamilton’s principle
δ
∫ t2
t1
L(χ, χ̇) dt = 0 on the total space TF(R3, SO(3)) since the two directors completely

determine the rotation matrix χ, which then identifies by itself all degrees of freedom of
the system. This is due to the fact that for biaxial molecules, the rotational symmetry
is completely broken and thus reduction theory returns the total space TF(R3, SO(3)).

Then, in this case one observes that the process illustrated in Section 3.1 can still be
implemented according to

L(χ, χ̇) =

∫
D

L (χ, χ̇, χn0, χm0,∇χn0,∇χm0)

=

∫
D

L (χ̇χ−1,n,m,∇n,∇m) = `1(ν,n,m) .

However, the directors (n,m) completely determine the rotation matrix χ, so that
`1(ν,n,m) = `(ν, χ). This means that the reduced space coincides with the total
space TF(R3, SO(3)), as it can be seen by applying the inverse trivialization (ν̂, χ) =
(χ̇χ−1, χ) 7→ (χ̇, χ). Notice that when inertial effects are neglected, which amounts to
enforcing (∂t + ν×) δ`/δν = 0, the equations resulting from this approach (see [12])
coincide with those found by [24].

The variable γ̂ = ∇χχ−1 can be also introduced for physical purposes by following
the procedure outlined in Section 3.2. An example of how this quantity is used in
condensed matter media is provided by frustrated spin glasses; see [5, 13] and references
therein.

When disclinations are present in biaxial nematic media, then the gauge-invariant
potential γ̂ = χγ̂0χ

−1 + χ∇χ−1 appears as an extra variable in the system, since in
this case γ0 6= 0 so that γ possesses its own evolution. Again, this situation fits in
the description given by equations (3.9): the order parameter n coincides with the
two directors n = (n,m) and the Lagrangian is of the type `2(ν,n,m,γ), so that the
momentum map in (3.9) is given by

J

(
δ`2

δn
,
δ`2

δm

)
= n× δ`2

δn
+ m× δ`2

δm
.

Notice that in this case the relations (∇n0,∇m0) = (n0 × γ0,m0 × γ0) prevent estab-
lishing a unique correspondence between the directors (n,m) and the rotation matrix χ,
so that the potential γ can no longer be expressed explicitly in terms of the directors,
as it was done in equation (4.8).
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5 Two reductions for the Lhuillier-Rey theory

The Lhuillier-Rey theory is an alternative description for liquid crystals of molecules
with variable shape [20]. In this description, the order parameter field is given by two
components: the microinertia tensor j and the director field n. In accordance with
Section 3, we continue assuming that ∇n0 = 0 and ∇j0 = 0. Because of the coexistence
of these two order parameters, one can keep the expression of the Frank free energy
(2.3) in the Lagrangian while allowing for a variable molecular shape, represented by
the microinertia tensor appearing in the kinetic energy. The unreduced Lhuillier-Rey
Lagrangian is

L(χ, χ̇) =

∫
D

L (χ, χ̇, χn0, χj0χ
−1,∇(χn0))µ

=
1

2

∫
D

Tr
(
(i0χ

−1χ̇)Tχ−1χ̇
)
µ−

∫
D
F (χn0,∇(χn0))µ . (5.1)

Again, this Lagrangian possesses two reductions, which are produced by the invariance
properties

L(χ, χ̇) =

∫
D

L (χ, χ̇, χn0, χj0χ
−1,∇(χn0))µ

=

∫
D

L (χ̇χ−1, χn0, χj0χ
−1,∇(χn0))µ = `1(ν, j,n) (5.2)

and

L(χ, χ̇) =

∫
D

L (χ, χ̇, χn0, χj0χ
−1)µ

=

∫
D

L (χ̇χ−1, χn0, χj0χ
−1,−(∇χ)χ−1)µ = `2(ν, j,n, γ), (5.3)

where the second invariance arises naturally when n0 is constant in space, since one has
∇n = (∇χ)χ−1n.

The first invariance yields the Euler-Poincaré form of the Lhuiller-Rey equations
∂

∂t

δ`1

δν
= ν × δ`1

δν
−
−−−−−→[
δ`1

δj
, j

]
+ n× δ`1

δn

∂tj + [j, ν̂] = 0

∂tn + n× ν = 0 ,

(5.4)

while reduction for the second group action yields the equivalent set of equations

∂

∂t

δ`2

δν
= ν × δ`2

δν
−
−−−−−→[
δ`2

δj
, j

]
+ n× δ`2

δn
+ divγ δ`2

δγ

∂tj + [j, ν̂] = 0

∂tn + n× ν = 0

∂tγ + γ × ν +∇ν = 0, γ0 = 0,

(5.5)
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where we used the relation F (n,∇n) = F (n,n× γ) (see Appendix A). The Lagrangian
(5.1) yields

`1(ν, j,n) =
J

2

∫
D
‖jν‖2 µ−

∫
D
F (n,∇n)µ (5.6)

and

`2(ν, j,n,γ) =
J

2

∫
D
‖jν‖2 µ−

∫
D
F (n,n× γ)µ , (5.7)

so that the systems (5.4)-(5.4) become
j∂tν = jν × ν − n× h

∂tj + [j, ν̂] = 0

∂tn + n× ν = 0 ,

(5.8)

(where the molecular field h is given in (2.2)) and

j
∂ν

∂t
= jν × ν − ∂

∂xi
∂Φ

∂γi
− γi ×

∂Φ

∂γi
− n× ∂Φ

∂n

∂tj + [j, ν̂] = 0

∂tn + n× ν = 0,

∂tγ + γ × ν +∇ν = 0, γ0 = 0 ,

(5.9)

where Φ(n,γ) is given as in (2.16), as it arises from the relation ∇n = n × γ. In view
of the identity (2.21), we get the following result.

Theorem 5.1 The systems of equations (5.8) and (5.9) are equivalent.

Notice that, the relations (∇j,∇n) = ([j, γ̂] ,n × γ) determine an invariant sub-
system, regardless of the initial conditions (j0,n0,γ0). Indeed, the possibility of an
inhomogeneous initial condition γ0 6= 0 extends the Lhuiller-Rey theory to account for
disclination dynamics. Upon taking O = SO(3) and M = Sym(3)× S2, it is easy to see
that the two Lhuiller-Rey formulations (5.4) and (5.5) follow directly from applying the
general theory of Section 3 to the Lagrangian (5.1).

It is interesting to notice that similar arguments to those in Section 4.3 show im-
mediately how Lhuiller-Rey theory recovers Ericksen-Leslie nematodynamics. Indeed,
while the relation ∇n = n× γ can be used to transform `2 into `1, the initial condition

j0 = J(I− n0 ⊗ n0)

readily produces the Lagrangian (4.5), as was shown in Section 4.3, to recover the
Ericksen-Leslie equations.
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6 Flowing liquid crystals

This section extends the previous discussions to the case of flowing liquid crystals. In
this case, upon denoting the fluid flow by the diffeomorphism η ∈ Diff(D), the gradient
of the director field n = (χn0) ◦ η−1 = η∗(χn0) is computed to be

∇n = η∗
(
∇χn0

)
= η∗

((
∇χχ−1

)
χn0

)
=
(
η∗
(
∇χχ−1

))
(η∗(χn0)) =: n× γ ,

where we have used standard properties of the push-forward η∗ and we have defined

γ̂ = −η∗
(
∇χχ−1

)
.

A similar argument actually holds for any order parameter space M that is acted upon
by a Lie group O. In this more general case, the previous relation reads as (3.6). This
suggests that all the considerations in Section 3 have a natural correspondent in the case
of liquid crystal flows.

6.1 Euler-Poincaré and affine Euler-Poincaré reductions

Upon restricting to incompressible fluid flows for convenience, the general form of the
Lagrangian for flowing uniaxial liquid crystals is

L(η, η̇, χ, χ̇) =

∫
D

L (η, η̇, χ, χ̇, (χ0) ◦ η−1,∇
(
(χn0) ◦ η−1

)
µ ,

so that L is a functional of the type

L : T
(
Diffvol(D)sF(D,O)

)
→ R

where the semidirect product structure reflects the fact that the microstructure variable
χ ∈ F(D,O) is pulled around the domain D by the fluid flow η ∈ Diffvol(D) [10]. More
precisely, the Lagrangian of a flowing uniaxial liquid crystal is

Ln0(η, η̇, χ, χ̇) =
1

2

∫
D
‖η̇‖2µ+

1

2
J

∫
D
‖χ̇‖2µ−

∫
D
F
(
(χn0) ◦ η−1,∇((χn0) ◦ η−1)

)
µ ,

where F is the Frank free energy. Again, the fixed order parameter n0 appears in
the Lagrangian density L through both χn0 and its differential ∇(χn0). Then, the
Lagrangian L possesses the following invariance properties:

L(χ, χ̇) =

∫
D

L (η, η̇, χ, χ̇, χn0,∇(χn0))µ

=

∫
D

L (η̇ ◦ η−1, (χ̇χ−1) ◦ η−1, (χn0) ◦ η−1,∇((χn0) ◦ η−1))µ

=:

∫
D

L (u, ν, n,∇n)µ = `1(u, ν, n), (6.1)
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and, if n0 is constant in space,

L(χ, χ̇) =

∫
D

L (η, η̇, χ, χ̇, χn0,∇(χn0))µ

=

∫
D

L (η̇ ◦ η−1, (χ̇χ−1) ◦ η−1, (χn0) ◦ η−1, (η∗((∇χ)χ−1))((χn0) ◦ η−1))µ

=:

∫
D

L (u, ν, n,−γM(n))µ = `2(u, ν, n, γ) , (6.2)

where one defines u := η̇◦η−1 ∈ Xdiv(D) (the space of divergence free vector fields tangent
to the boundary of D), ν := (χ̇χ−1) ◦ η−1 ∈ F(D, o), n := (χn0) ◦ η−1 ∈ F(D,M), and
γ̂ := −η∗((∇χ)χ−1) ∈ Ω1(D, o).

We notice that all the symmetry breaking arguments from Section 3 transfer to this
case without essential changes. However, in the present case all variables are acted upon
by the diffeomorphism η ∈ Diffvol(D), which affects the way variations are taken in the
variational principles

δ

∫ t1

t0

`1(u, ν, n) dt = 0 , δ

∫ t1

t0

`2(u, ν, n, γ) dt = 0 .

Indeed, upon making use of the Lie derivative notation £, the variations

δu = ∂tw + £uw

δν = ∂tω −£wν + £uω + [ω, ν]

δn = −£wn+ ωM(n)

δγ = −£wγ −∇γω

lead to the replacement all time derivatives in the equations (3.4) and (3.9) for motionless
media by appropriate material derivatives, as is usual in the Euler-Poincaré theory of
fluid flows [16]. Here, w := δη ◦ η−1 is a path in Xdiv(M) and ω := (δχ)χ−1 is a path in
F(D, o), both vanishing at t0 and t1. Then, the resulting equations are

D

Dt

δ`1

δu
+

〈
δ`1

δν
,∇ν

〉
+

〈
δ`1

δn
,∇n

〉
= −∇p, div u = 0,

D

Dt

δ`1

δν
+ ad∗ν

δ`1

δν
= J

(
δ`1

δn

)
,

Dn

Dt
= νM(n) ,

(6.3)

and
D

Dt

δ`2

δu
+

〈
δ`2

δν
,∇ν

〉
+

〈
δ`2

δn
,∇n

〉
− δ`2

δγ
� γ = −∇p, div u = 0,

D

Dt

δ`2

δν
+ ad∗ν

δ`2

δν
= J

(
δ`2

δn

)
+ divγ

(
δ`2

δγ

)
,

(
Dn

Dt
,
Dγ

Dt

)
= (νM(n),−∇γν) ,

(6.4)

where the material time derivative D/Dt is expressed in terms of the Lie derivative
operator £u as

D

Dt
=

∂

∂t
+ £u ,
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while the diamond operator is defined by

〈κ � γ,u〉 := −〈κ,£uγ〉 , κ ∈ X(D, o∗), γ ∈ Ω1(D, o)

and its expression in local coordinates is (κ � γ)h = −κja∂hγaj + ∂j(κ
j
aγ

a
h). The pressure p

in (6.3) and (6.4) and in all subsequent sections is determined like in the standard ideal
incompressible homogeneous Euler equations. This means that p is the solution to the
Neumann problem (up to a constant) obtained by requiring that its negative Laplacian
equals the divergence of the left hand side of the equation in which p appears and the
boundary condition is given by the negative normal derivative of p equal to the inner
product of the left hand side with the unit normal to the boundary. Of course, the
divergences are taken here as one-forms on D.

It remains to explain the terms involving a pairing in both systems (6.3), (6.4). Since
ν ∈ F(D, o), it follows that its differential ∇ν : TD → o and δ`1/δν ∈ F(D, o∗). Thus,〈
δ`1
δν
,∇ν

〉
∈ Ω1(D) is defined by〈

δ`1

δν
,∇ν

〉
(vx) :=

〈
δ`1

δν
(x),∇ν(vx)

〉
,

for any vx ∈ TxD, and the pairing in the right hand side is the duality pairing 〈 , 〉 :
o∗ × o→ R.

The understanding of the terms
〈
δ`i
δn
,∇n

〉
∈ Ω1(D), i = 1, 2, is more involved and

relies on the observation that ∇n : TD → TM can be thought of as an element of
Ω1 (D, n∗(TM)), the vector space of n∗(TM)-valued one-forms on D. Here n∗(TM) :={

(x, un(x)) | x ∈ D, un(x) ∈ Tn(x)M
}
→ D is the pull back vector bundle over D of the

tangent bundle TM →M by the map n : D →M ; recall that the fiber of this pull back
bundle at x ∈ D is Tn(x)M . Consequently, δ`i

δn
∈ F (D, n∗(T ∗M)) and hence〈

δ`i
δn
,∇n

〉
(vx) :=

〈
δ`i
δn

(x),∇n(vx)

〉
for all vx ∈ TxD, where on the right hand side we use the duality pairing 〈 , 〉 : T ∗n(x)M ×
Tn(x)M → R.

Remark 6.1 (Noether’s Theorems) Noether’s theorems (3.5) and (3.12) become

D

Dt
i∗
(

Ad∗χ◦η−1

δ`1

δν

)
= 0 or, equivalently,

d

dt
i∗
(

Ad∗χ

(
δ`1

δν
◦ η
))

= 0 and

d

dt
j∗
(∫
D

(
Ad∗χ◦η−1

δ`2

δν

)
µ

)
= 0,

where i∗ and j∗ are the duals of the Lie algebra inclusions i : F(D, on0) = F(D, o)n0 ↪→
F(D, o) and j : on0 ↪→ o, respectively. Note that in the first Noether theorem, the
left hand side formulation is an Eulerian quantity, whereas the right hand side is a
Lagrangian quantity.

The first Noether theorem follows from the expression of the momentum map

J : T ∗(Diffvol(D)sF(D,O))→ F(D, o)∗n0
, J(αη, κχ) = i∗(χ−1κχ),
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together with the equality κχχ
−1 = δ`1

δν
◦ η, which yield

J(αη, κχ) = i∗(χ−1κχ) = i∗
(

Ad∗χ◦η−1

δ`1

δν

)
◦ η.

One obtains the second Noether theorem in a similar way.

Remark 6.2 (From incompressible to compressible flows) Although in this sec-
tion we focussed on incompressible fluid flows, extending to the compressible case re-
quires no additional argument than those already present in [10]. Then, the mass density
appears as an additional parameter in the Lagrangian L, whose symmetry properties
(3.2) and (3.3) are accompanied by the relation ρ0 = η∗ρ for the mass density ρ. This
is also explained in [16]. The dynamics of compressible liquid crystal dynamics can
thus be obtained by simply combining the above results with standard principles in
Euler-Poincaré theory.

6.2 Micropolar liquid crystals and Ericksen-Leslie theory

This section extends the results of §4.3 to account for fluid motion. In the case of mi-
cropolar liquid crystals, the order parameter field is j ∈ Sym(3) and the Euler-Poincaré
Lagrangians arising from the two different reductions read

`1(u,ν, j) =
1

2

∫
D
‖u‖2µ+

1

2

∫
D

(jν) · νµ−
∫
D

Υ1(j,∇j)µ,

and

`2(u,ν, j,γ) =
1

2

∫
D
‖u‖2µ+

1

2

∫
D

(jν) · νµ−
∫
D

Υ2(j,γ)µ , (6.5)

where compatibility of the two reductions enforces the energy relations

Υ1(j,∇j) = Υ1(j, [j, γ̂]) = Υ2(j,γ) .

Then, upon specializing to uniaxial nematics, the microinertia tensor is given by

j = J(I− n⊗ n) ,

and the corresponding free energy must transform as

Υ2(j,γ) = Ψ(j,γ) = Ψ(J(I− n⊗ n),γ) = F (n,n× γ) = F (n,∇n) , (6.6)

with the expression of Ψ(j,γ) given in (4.4). In conclusion, the Lagrangian `2 is trans-
formed to

`′1(u,ν,n) =
1

2

∫
D
‖u‖2µ+

1

2
J

∫
D
‖ν × n‖2µ−

∫
D
F (n,∇n)µ ,

29



which in turn produces the equations (6.3) in the form
D

Dt

δ`′1
δu

= −∇ν · δ`
′
1

δν
−∇n · δ`1

δn
−∇p, div u = 0,

D

Dt

δ`′1
δν
− ν × δ`1

δν
= n× δ`′1

δn
,

Dn

Dt
= ν × n.

(6.7)

Upon inserting the variational derivatives

δ`′1
δu

= u ,
δ`′1
δν

= −J n× (n× ν) ,
δ`′1
δn

= −h− J ν × (ν × n)

and by repeating analogous steps to those in §4.3, one obtains the hydrodynamic Ericksen-
Leslie equations

∂u

∂t
+ (u · ∇)u = −∇p− ∂i

(
∇n · ∂F

∂n,i

)
, div u = 0,

J
D2n

Dt2
− 2

(
n · h + J n · D

2n

Dt2

)
n + h = 0 .

(6.8)

On the other hand, the Lagrangian (6.5) also gives the equations (6.4) in the form

∂u

∂t
+ (u · ∇)u = −∇p− ∂

∂xi

(
∂Ψ

∂γai
γa
)
, div u = 0,

j
Dν

Dt
= jν × ν − ∂

∂xi
∂Ψ

∂γi
+ γa × ∂Ψ

∂γa
Dj

Dt
+ [j, ν̂] = 0,

∂tγ + (u · ∇)γ + γi∇ui + γ × ν +∇ν = 0, γ0 = 0 ,

(6.9)

where the index i refers to the spatial coordinates in D while the indexes a, b, . . . refer
to vectors in R3.

Theorem 6.3 Under the assumption j = J(1 − n ⊗ n), Eringen’s incompressible mi-
cropolar system (6.9) with Ψ(j,γ) given in (4.4), are equivalent to the Ericksen-Leslie
liquid crystal equations (6.8).

Proof. Using relation (3.20), the system of equations (6.9) becomes

∂u

∂t
+ (u · ∇)u = −∇p− ∂

∂xi

(
∂Ψ

∂γai
γa
)
, div u = 0,

j
Dν

Dt
= jν × ν − divγ ∂Ψ

∂γ
+

−−−−−→[
j,
∂Ψ

∂j

]
Dj

Dt
+ [j, ν̂] = 0,

∂tγ + (u · ∇)γ + γi∇ui + γ × ν +∇ν = 0, γ0 = 0 .

30



The assumption j = J(I− n⊗ n) takes this system to

∂u

∂t
+ (u · ∇)u = −∇p− ∂

∂xi

(
∂Φ

∂γai
γa
)
, div u = 0,

Jn×
(

n× Dν

Dt

)
= J (n× (n× ν))× ν + divγ ∂Φ

∂γ
+ n× ∂Φ

∂n
Dn

Dt
+ n× ν = 0,

∂tγ + (u · ∇)γ + γi∇ui + γ × ν +∇ν = 0, γ0 = 0 ,

(6.10)

where Φ(n,γ) has been obtained from (4.4) through the relation

Φ(n,γ) = Ψ(J(I− n⊗ n),γ)

and we have used the identity

n× ∂Φ

∂n
= −
−−−−−→[
j,
∂Ψ

∂j

]
.

In turn, from (6.6), we have Φ(n,γ) = F (n,n× γ) = F (n,∇n) as in (2.16). Moreover,
the relation ∇n = n× γ, is used to give the functional relations

∂Φ

∂γi
=

∂F

∂n,i
× n.

Then, we conclude that
∂Φ

∂γai
γa = ∇n · ∂F

∂n,i
.

Recalling relation (2.21), i.e.,

n× h = divγ ∂Φ

∂γ
+ n× ∂Φ

∂n
,

the second equation in (6.10) becomes

Jn×
(

n× Dν

Dt

)
= J (n× (n× ν))× ν + n× h

which can be rewritten as
D

Dt
(n× (n× ν)) = n× h

upon using the Jacobi identity. Recalling the third equation in system (6.10), and
taking the cross product on the left with n gives second equation in (6.8). Therefore,
the γ-equation decouples in (6.10) which proves the theorem. �

Remark 6.4 (One constant approximation with fluid flow) Using the same ar-
gument as in Remark 4.4, we may easily specialize equations (6.9) to the case of the one
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constant approximation of the free energy, i.e., Ψ(j,γ) = K
2J

(γi · jγi). Indeed, the last
summand in the first equation of system (6.9) becomes

∂

∂xi

(
∂Ψ

∂γai
γa
)

=
K

J

∂

∂xi
(
jabγbi γ

a
)

=
K

J
γa · ((jγi)× γi)

a +
K

J
jab

∂

∂xi
(
γbiγ

a
)

by using the relation ∂xij = [j, γ̂i]. We get

∂u

∂t
+ (u · ∇)u = −∇p− K

J

(
γa · ((jγi)× γi)

a + jab
∂

∂xi
(
γbiγ

a
))

, div u = 0,

J
(
j∂tν + j(u · ∇)ν − (jν)× ν

)
= −K

(
j∂xiγi + (jγi)× γi

)
,

∂tj + (u · ∇)j + [j, ν̂] = 0,

∂tγk + (u · ∇)γk + γi∂xku
i + γk × ν + ∂xkν = 0, γ0 = 0 .

The above equations can also be expressed in terms of the director field n, upon using
the relation (4.1). It is interesting to observe that the equations above can be rewritten
in the form

∂u

∂t
+ (u · ∇)u = −∇p− K

J

(
γa · ((jγi)× γi)

a + jab
∂

∂xi
(
γbiγ

a
))

, div u = 0,

J(∂t + u · ∇)(jν) +K∂xi(jγi) = 0,

∂tj + (u · ∇)j + [j, ν̂] = 0,

∂t(jγk) + (u · ∇)(jγk) + (jγi)∂xku
i + ν × jγk + j∂xkν = 0, γ0 = 0 ,

which are then accompanied by ∂xij = [j, γ̂i]. �

Remark 6.5 (Compressible flows) We have presented above the incompressible case.
Everything works out in the same way for the corresponding compressible variants. �

7 Conclusions

In this paper, we have proved the equivalence among various descriptions of conservative
liquid crystal dynamics. This was achieved by applying reduction by symmetry in a
systematic way, starting from the Hamilton’s principle formulation for Ericksen-Leslie
dynamics in the material description, whose Lagrangian is given in (2.5).

By using Eringen’s gauge-invariant definition of the wryness tensor γ = −(∇χ)χ−1,
we used the resulting relation ∇n = n × γ to reformulate Ericksen-Leslie theory in
terms of the wryness tensor dynamics. This has led to the new set of dynamic equations
presented in (2.15).

As a second step, we established the equivalence between Eringen’s micropolar theory
in (3.19) and a new formulation of liquid crystal dynamics, whose order parameter field
is identified with the microinertia tensor j. Indeed, the invariant relation ∇j = [j, γ̂]
has led to the new set of dynamic equations presented in (3.18). Then, we implemented
the additional invariant relation j = J(I−n⊗n) to recover the two equivalent theories
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found previously, whose equations of motion are (2.15) and the Ericksen-Leslie equations
in the form (2.9). As a consequence, we showed that the relations ∇j = [j, γ̂] and
j = J(I − n ⊗ n) establish the equivalence of the four theories given by the systems
(2.9), (2.15), (3.19), and (3.18).

Finally, we considered the model proposed by Lhuillier and Rey in [20], which was
shown to allow for an alternative formulation in terms of Eringen’s wryness tensor. We
have used the relation ∇n = n × γ to transform the Lhuillier-Rey equations (2.9) into
the new system (2.15).

In conclusion, in this paper we established the equivalence of the six systems (2.9),
(2.15), (3.18), (3.19), (2.9), and (2.15). In particular, we identified explicit necessary
conditions for the equivalence of these six systems. These conditions were given in the
theorems reported in the various sections and always require a zero value for the initial
wryness tensor γ0 as well as the rod-like assumption j = J(I−n⊗n) on the microinertia
tensor.

(3.18) �
∇j=[j,γ̂] - (3.19) Eringen

Ericksen-Leslie (2.9)

j=J(I−n⊗n)

6

� ∇n=n×γ - (2.15)

j=J(I−n⊗n)

6

Lhuillier-Rey (5.8)

j=J(I−n⊗n)

?
� ∇n=n×γ - (5.9)

j=J(I−n⊗n)

?

This diagram relates the various equations of motion in each of the six models. The
arrows characterize the transformations that are required to pass from one model to the
other. In particular, the relations attached to the various arrows clarify the conversions
that transfer one system to another, in the sense of the arrow. The dashed arrows
emphasize the relations arising from the two different reductions on the same Lagrangian
in each case.

Having equivalent equations of motion for the same model is advantageous since
certain questions may be easier to treat in one of the formulations as opposed to the
other. For example, in [3], short time existence and uniqueness of strong solutions for
the initial value problem for the viscous non-dissipative EL equations (the dissipative
part of the stress tensor and the dissipative part of intrinsic body force are set equal
to zero) was proved in two situations: the space-periodic problem and the case of a
bounded domain with spatial Dirichlet boundary conditions on the Eulerian velocity
and the cross product of the director field with its time derivative. However, the paper
did not work directly with the viscous non-dissipative version of the EL equations (2.9)
on a two dimensional domain, but with the equivalent viscous non-dissipative version of
system (2.15); an upper bound for the speed of propagation of the director field is also
given in [3].

Notice that, although this paper was restricted to consider conservative dynamics,
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the invariant relations j = J(I− n⊗ n) and ∇j = [j, γ̂] are not affected by the possible
presence of dissipative effects that can be included within the various theories, for ex-
ample by Rayleigh’s method (see [11]). Moreover, we observe that the generality of the
reduction processes guarantees that the methods apply to dynamical theories involving
probability density functions encoding the microscopic properties of nematodynamics.
See [23] for how these methods apply in this context within the Hamiltonian framework.

The results in this paper are summarized in the previous diagram, while the following
one relates the various Lagrangians underlying the different theories.

L(χ, χ̇, χj0χ
−1,∇(χj0χ

−1))

`1(ν, j,∇j) � ∇j=[j,γ̂] -
�

j=
χj0

χ
−1

6

`2(ν, j,γ)

j=χj0χ−1
γ=−(∇χ)χ−1

-

L(χ, χ̇, χn0,∇(χn0))

j0=J(I−n0⊗n0)

`1(ν,n,∇n)

j=J(I−n⊗n)

6

� ∇n=n×γ -
�

n=χ
n0

`2(ν,n,γ)

j=J(I−n⊗n)

6

n=χn
0

γ=−(∇χ)χ−1
-

L(χ, χ̇, χj0χ
−1, χn0,∇(χn0))

j0=J(I−n0⊗n0)

?

`1(ν, j,n,∇n)

j=J(I−n⊗n)

?
� ∇n=n×γ -

�

n=χ
n0

j=
χj0

χ
−1

`2(ν, j,n,γ)

j=J(I−n⊗n)

?

n=χn
0 , j=χj0χ−1

γ=−(∇χ)χ−1
-

The Lagrangians on the center line identify the material descriptions of the models. The
slanted arrows denote the Euler-Poincaré reduction processes while vertical arrows show
how the theories are embedded in each other. Notice that the angular frequency ν is
defined everywhere by the relation ν̂ := χ̇χ−1. By Euler-Poincaré reduction theory, all
the various Lagrangians related by a dashed arrow are equivalent. One of the conse-
quences of this diagram is that any concrete question in a given model can be treated,
equivalently, with any of the three Lagrangians in a given triangle.
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A Expression of the Frank energy

We show that the relation ∇n = −γ × n allows the Frank free energy F (n,∇n) to be
expressed only in terms of γ(x) and n(x), so that F (n(x),∇n(x)) = Ψ(n(x),γ(x)).

Twist. We compute

n · (∇× n) = −1

2
Tr
(
n̂2(∇n)A

)
= −Tr (n̂∇n)

= −Tr (n̂(n× γ)) = −Tr (n̂n̂γ)

= −n · γ(n) + ‖n‖2 Tr(γ).

Splay. Define the vector γ by the equality

γ · u = Tr(u× γ), i.e., γa = εiabγ
b
i or

(̂
γ
)

= −2γA

and we compute

(div n)2 = (Tr(∇n))2 = (Tr(n× γ))2 = (γ · n)(γ · n).

Bend. For all u ∈ R3, we have

(n× (∇× n)) · u = −∇nn · u = −(n× γ(n)) · u = −(u× n) · γ(n)

= −ûn · γ(n) = −Tr((ûn)Tγ(n))

= Tr ((n⊗ n)ûγ) ,

so we get
n× (∇× n) = γ(n⊗ n) = −n× γ(n)

and therefore,

‖n× (∇× n)‖2 = ‖n× γ(n)‖2 = ‖n‖2‖γ(n)‖2 − (n · γ(n))2

Putting all these results together, we conclude that there exists a function Ψ(n(x),γ(x)),
such that Ψ(n(x),γ(x)) = F (n(x),∇n(x)), that is,

Ψ(n(x),γ(x)) = −K2

(
‖n‖2 Tr(γ)− n · γ(n)

)
+

1

2
K11(γ · n)2

+
1

2
K22

(
‖n‖2 Tr(γ)− n · γ(n)

)2

+
1

2
K33

(
‖n‖2‖γ(n)‖2 − (n · γ(n))2

)
.
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