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Rotating Rayleigh-Bénard convection exhibits, in the limit of rapid rotation, a turbulent state
known as geostrophic turbulence. This state is present for sufficiently large Rayleigh numbers
representing the thermal forcing of the system, and is characterized by a leading order balance
between the Coriolis force and pressure gradient. This turbulent state is itself unstable to the
generation of depth-independent or barotropic vortex structures of ever larger scale through a process
known as spectral condensation. This process involves an inverse cascade mechanism with a positive
feedback loop whereby large-scale barotropic vortices organize small scale convective eddies. In
turn, these eddies provide a dynamically evolving energy source for the large-scale barotropic mode.
Kinetic energy spectra for the barotropic dynamics are consistent with a k−3 downscale enstrophy
cascade and an upscale cascade that steepens to k−3 as the box-scale condensate forms. At the
same time the flow maintains a baroclinic convective component with an inertial range consistent
with a k−5/3 spectrum. The condensation process resembles a similar process in two dimensions
but is fully three-dimensional.

PACS numbers: 47.55.P-,47.27.-i

The evolution of large scale vortex structures from
a turbulent state provides a dramatic example of the
role played by coherent structures in geophysical flows
[1]. In the traditional picture of this process rotation of
the Earth is assumed so dominant that vertical motions
are strongly suppressed and the flow is modeled by two-
dimensional (2D) hydrodynamics [1]. Strongly forced 2D
turbulence is dominated by the effects of two inviscid con-
served quantities, the energy

∫
D
|u|2 dV and the enstro-

phy
∫
D
|∇ × u|2 dV [2]. These conserved quantities are

responsible for a downscale enstrophy cascade to small
scales where it is dissipated and an upscale energy cas-
cade leading to the appearance of larger and larger scales
in the flow [3]. These may be incoherent or organized into
coherent structures. In freely decaying flows this process
manifests itself in the coalescence of small vortices into
larger vortices as the enstrophy decays while the energy
remains bounded [4]. In driven flows the large scale struc-
tures evolve to ever larger scales until the energy growth
in these scales is arrested by physical processes absent
from idealized models, e.g., latitudinal variation of the
Coriolis force or the presence of Rayleigh friction at the
Earth’s surface [5]. A similar process arises in wave tur-
bulence and is called spectral condensation [6, 7].

In this Letter we demonstrate the existence of a similar
condensation process in three-dimensional (3D) rapidly
rotating convection. Fully 3D flows differ from 2D
flows by the absence of an enstrophy cascade. In such
flows the energy cascade is downscale and in steady
state leads to the Kolmogorov k−5/3 energy spectrum
[3]. With increasing rotation rate the increasing two-
dimensionalization of the flow may therefore lead to a
transition from a 3D-like energy spectrum to a 2D-like

spectrum. For this purpose we employ a set of reduced
equations describing thermal convection in the rapid ro-
tation limit Ro ≡ U/LΩ → 0, where U and L are the
characteristic speed and horizontal scale of the flow, and
Ω is the local rotation rate. In this limit the flow is locally
in geostrophic balance (the Coriolis force is balanced by
the pressure gradient at leading order in Ro−1), but ver-
tical flows driven by thermal forcing persist at sufficiently
small horizontal scales [8, 9]. With a suitable choice of
scale and a large enough Rayleigh number measuring the
strength of the forcing a statistically stationary state of
geostrophic turbulence is realized [10, 11].

The development of coherent large scale structures has
been observed in experiments on nonrotating isotropic
turbulence in thin fluid layers [12–15] and in 2D sim-
ulations [16–19]. Simulations in [20] indicate that this
is the case in 3D rotating turbulence as well. In this
Letter we demonstrate that this process is also present
in a convectively forced system, geostrophic turbulence.
Specifically, we identify a self-sustaining positive feed-
back loop between a 2D barotropic (depth-independent)
flow and 3D baroclinic (depth-dependent) motion: non-
linear interactions between baroclinic eddies force large-
scale barotropic vortical motions, while those between
the barotropic and baroclinic components of the flow
organize the baroclinic eddies through advection and
stretching into a baroclinic state that sustains and en-
hances the forcing driving the barotropic mode (Fig. 1).
These effects grow as nonlinear interactions between the
resulting barotropic eddies generate upscale energy trans-
fer from the baroclinic eddy scale to larger scales.

Rapidly rotating Rayleigh-Bénard convec-
tion (RRRBC) is described by the non-dimensional
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FIG. 1: (color online). Volume rendering of vertical vortic-
ity ζ in geostrophic turbulence showing the development of a
large scale dipole and the organization of small-scale convec-
tive eddies for RaE4/3 = 100 and σ = 1 at t = 100.

equations [8–10]

∂tζ + J [ψ, ζ]− ∂Zw = ∇2
⊥ζ, (1)

∂tw + J [ψ,w] + ∂Zψ =
RaE4/3

σ
θ +∇2

⊥w, (2)

∂tθ + J [ψ, θ] + w∂ZΘ =
1

σ
∇2
⊥θ, (3)

∂τΘ + ∂Z
(
wθ
)

=
1

σ
∂2ZΘ, (4)

where ∇2
⊥ = ∂2x + ∂2y and J [ψ, f ] := ∂xψ ∂yf − ∂yψ ∂xf

denotes advection with the horizontal velocity u⊥ ≡
(−ψy, ψx, 0). Here ψ is the pressure, ζ ≡ ∇2

⊥ψ is the
vertical vorticity, w is the vertical velocity and θ is
the temperature fluctuation about the mean tempera-
ture profile Θ; this profile adjusts on the slower time
τ = O(E−2/3) relative to the O(1) convective time t.
The nondimensional parameters are the Rayleigh number
Ra ≡ gα∆Th3/κν � 1, Ekman number E ≡ ν/Ωh2 �
1, and Prandtl number σ ≡ ν/κ = O(1), where κ and ν
are the thermal diffusivity and kinematic viscosity, g is
the gravitational acceleration, α is the coefficient of ther-
mal expansion and ∆T is the destabilizing temperature
difference between the bottom and the top of the layer.
The equations filter out computationally prohibitive fast
inertial waves and thin Ekman layers at the top (Z = 1)
and bottom (Z = 0) while capturing geostrophically bal-
anced convective motions on O(E1/3) horizontal scales.
As a result they extend the regime accessible to direct
numerical simulation of RRRBC [9, 21, 22].

Equations (1)–(4) were evolved in time for Ra =
O(E−4/3) as described in [9, 10]. We set RaE4/3 = 100
and σ = 1, well within the parameter region associated
with geostrophic turbulence [9–11]. The spatial domain
is periodic in the horizontal, impenetrable in the vertical,
and has a nondimensional aspect ratio of 20Lc×20Lc×1,
where Lc = 4.8 is the critical wavelength for linear in-
stability of the conduction state. Wave numbers in the
figures are normalized to the box scale L ≡ 20Lc.

(a) t = 1 (b) t = 10

(c) t = 37.5 (d) t = 100

FIG. 2: (color online). Barotropic vertical vorticity at t = 1,
10, 37.5, and 100, respectively, showing the organization of
the flow into structures at progressively larger scales. The
black lines indicate one-half wavelength of the dynamically-
evolving baroclinic forcing scale 2π/kf defined in the text.

In order to observe the development of the barotropic
mode in a controlled fashion the initial condition at t = 0
was generated by starting from an earlier solution that
had reached a statistically steady state after numerically
suppressing the barotropic vortical mode. The simula-
tion was then restarted and the barotropic mode allowed
to evolve freely to study its growth in an otherwise sat-
urated turbulent flow. The growth of the barotropic
mode described here occurs on the fast timescale t, dur-
ing which the mean temperature profile Θ remains con-
stant and is robust with respect to changes in the ini-
tial condition. Figure 1 shows an example of the large
scale dipole structure or condensate that develops in the
geostrophic turbulence regime at sufficiently large val-
ues of Ra E4/3. Figure 2 shows the development of this
condensate from early to late times. At early times the
characteristic scale of the barotropic mode is that of the
convective scale Lc = L/20 (panel (a)). After t = 10 the
barotropic mode exhibits significant structure at a scale
∼ L/5 (panel (b)). By t = 37.5 the barotropic mode has
organized into a box-filling dipole (panels (c) and (d)).

To understand the formation of the condensate, Eq. (1)
is split into barotropic and baroclinic components. The
barotropic component obeys an equation obtained by
depth-averaging and noting that w = 0 at the bound-
aries Z = 0, 1. The resulting baroclinic vorticity equation
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FIG. 3: (color online). Kinetic energy spectra at t = 1, 10 and
100 for the barotropic (black lines) and baroclinic (red lines)
components. The baroclinic component displays an inertial
range Kbc ∼ k−5/3. The baroclinic forcing wave number kf is
indicated by black arrows. The linear instability wave num-
ber is kc = 20. For small scales Kbt ∼ k−3, consistent with
a downscale enstrophy cascade; for large scales Kbt steep-
ens to Kbt ∼ k−3, consistent with a large-scale condensate.
The inset shows an Okubo-Weiss decomposition [23] of Kbt

at t = 100 showing that spectral steepening is an effect of the
coherent vortex core (◦) while the background (×) reflects the

incoherent k−5/3 2D upscale energy cascade [2].

(BVE) reads

∂t〈ζ〉+ J [〈ψ〉, 〈ζ〉] = −〈J [ψ′, ζ ′]〉+∇2
⊥〈ζ〉, (5)

where 〈f〉(x, y) =
∫ 1

0
f(x, y, Z)dZ. Here f ′ ≡ f − 〈f〉

denotes the baroclinic components of the flow. Equation
(5) has been studied in detail in the context of forced 2D
turbulence [5]. In the absence of viscous diffusion, ∇2

⊥〈ζ〉,
and baroclinic forcing, 〈J [ψ′, ζ ′]〉, Eq. (5) conserves area-
averaged barotropic energy and enstrophy. We expect
therefore an inverse energy cascade within the barotropic
mode with a k−5/3 spectrum. We partition the kinetic
energy into barotropic and baroclinic components, K =
Kbt+Kbc, where Kbt = 1

2 (〈u〉2+〈v〉2) and Kbc = 1
2 (u′2+

v′2 + w′2). The growth of barotropic kinetic energy at
horizontal wave number k obeys

∂tKbt(k) = Tk + Fk +Dk, (6)

where Tk ≡
∑

pq Tkpq and Fk ≡
∑

pq Fkpq represent,
respectively, the symmetrized transfer of energy between
Fourier modes within the barotropic component and the
transfer of energy between convective and barotropic
modes; Dk ≡ −k2Kbt is the viscous dissipation of the

barotropic mode. Moreover,

Tkpq = bpqRe [〈ψk〉〈ψp〉〈ψq〉] δk+p+q,0, (7)

Fkpq = bpqRe
[
〈ψk〉〈ψ′pψ′q〉

]
δk+p+q,0, (8)

bpq = bqp =
1

2
(p2 − q2)(pxqy − pyqx), (9)

where Re [...] indicates the real part and k ≡ |k| etc. The
barotropic fields are functions of horizontal wave num-
ber only, while the baroclinic fields in Eq. (8) are func-
tions of the horizontal wave number and height, and then
depth-averaged. We shall refer to Tk as the barotropic
cascade and Fk as the baroclinic forcing. Much work
has been done to understand the 2D BVE and Tk has
been well characterized [5, 24, 25]. However, the nature
of Fk for physically realistic forcing and in particular for
convective forcing, and its interaction with Tk, has been
heretofore largely unexplored.

Figure 3 shows the spectra of the kinetic energies Kbt

and Kbc. The inertial range for the baroclinic component
(where energy is the only inviscid invariant) is consistent
with the characteristic Kbc ∼ k−5/3 energy cascade of
3D turbulence downscale from the unstable convective
scale 2π/kc. However, the influence of the barotropic
dynamics on the baroclinic component is evidenced by
the growing power at small wave numbers indicating the
genesis of weak large-scale overturning structures which
organize the baroclinic eddies. To quantify the time evo-
lution of the baroclinic forcing scale 2π/kf we introduce a
threshold scale such that scales smaller than the thresh-
old transfer 75% of the energy from 3D to 2D. Figure
3 (arrows) shows that this scale increases strongly with
increasing time.

In contrast, the barotropic kinetic energy displays an
inertial range Kbt ∼ k−3 at scales smaller than 2π/kc,
consistent with a downscale enstrophy cascade [2]. At
larger scales, the growth of the vortex dipole swamps the
expected (incoherent) k−5/3 energy spectrum (Fig. 3, in-
set); when the dipole reaches the box scale the spectrum
steepens to Kbt ∼ k−3, as observed in simulations of 2D
turbulence [16–19], 3D rotating turbulence at moderate
Ro [20] as well as in experiments on nonrotating turbu-
lence in a thin layer [13].

Figure 4 shows the time evolution of the four largest
scales in Kbt along with the total Kbc. One sees that
while Kbt grows from zero to an order of magnitude
larger than Kbc, Kbc remains approximately constant,
indicating that the baroclinic mode serves as a catalyst
for transferring energy from the thermal forcing to the
large-scale barotropic flow. Figure 5 shows the corre-
sponding transfer functions Tkp and Fkp obtained from
the vector transfer functions by integrating over angle
and summing over q: Tkp =

∫
k dθk

∫
p dθp

∑
q Tkpq and

similarly for F . Both T and F have also been time-
averaged over the spans defined in Fig. 4. Figures 4 and
5 show that at early times, t < 1 (time interval I), the
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FIG. 4: (color online). The total baroclinic kinetic energy,
Kbc(t), and the kinetic energy Kbt(k, t), k = 1, 2, 3, 4, of the
four smallest wave numbers k = |k| of the barotropic compo-
nent. The large scale barotropic energy grows rapidly while
the baroclinic energy slowly decreases. Vertical lines define
the boundaries of the time intervals used in Fig. 5.

large-scale barotropic modes grow algebraically while the
barotropic transfer function Tkp remains negligible, i.e.,
no barotropic cascade is present, and likewise for the dis-
sipation Dk (not shown). Thus ∂tKbt(k) ≈ Fk, where
Fk ≡

∑
p Fkp. One sees that Fkp is large and positive

over barotropic wave numbers k ∈ (5, 10) and baroclinic
catalyst wave numbers p ∈ (5, 10), indicating that the
latter are involved in transferring energy from the convec-
tive scale to the barotropic component. The baroclinic
component has yet to experience the feedback from the
growing barotropic component, and Fk shows that the
baroclinic forcing is positive over the range of convec-
tively unstable scales.

During intermediate times, 1 < t < 10 (time interval
II), a wholly different behavior is observed as Kbt rises
to match Kbc. The transfer function for the barotropic
cascade, Tkp, acts differently on scales above and below
the baroclinic forcing scale. When the wave numbers k,
p are larger than kf , the barotropic cascade is localized
to the immediate off-diagonal region, where wave num-
bers p & k put energy into wave number k while p . k
take energy out of wave number k. The net effect seen
in Tk ≡

∑
p Tkp is that the barotropic cascade takes en-

ergy out of these wave numbers. For k, p smaller than kf
the situation is reversed and the barotropic cascade puts
energy into these scales. Overall, the barotropic cascade
is an inverse cascade moving energy from small to large
scales and generating a largely incoherent k−5/3 spec-
trum. However, the baroclinic forcing is now significantly
changed by the feedback from the barotropic mode lead-
ing to increasing coherence. The forcing scale has grown
and energy is predominantly put into the barotropic com-
ponent at large scales (k ∈ (2, 6)) through interaction

(a) Tkp (b) Fkp

FIG. 5: (color online). Detailed transfer maps, Tkp and Fkp,
show how the barotropic self-interaction and the baroclinic-
to-barotropic forcing cooperate to move energy to larger scales
over the three time intervals identified in Fig. 4 (indicated in
the upper right of each panel). Here k represents the scale
at which the barotropic mode is receiving energy and p is the
scale of the catalyst. The color is scaled between −0.2 (blue)
and 0.2 (red). Sums over p, i.e., summing over a horizontal
line, give Tk and Fk, respectively, which are shown as vertical
profiles at the right of each panel. In the Fkp panels the black
arrows show the approximate forcing scale noted in Fig. 3.

with a broad range of baroclinic catalyst wave numbers
p ∈ (2, 16).

At late times, 10 < t < 100 (time interval III), the
coherent box-scale barotropic mode becomes dominant
and the spectrum steepens to k−3. In this regime the
turbulence is constrained by the computational domain
and the behavior of the barotropic component resembles
the 2D case in which u ·∇u is balanced by ut resulting in
a time-evolving box-scale condensate with k−3 spectrum
[17, 26]. The baroclinic forcing is now concentrated in
barotropic wave number k = 1 via a very broad range
of baroclinic catalyst modes p. Large baroclinic scales
(p . 6) take energy out of the box-scale barotropic mode,
while small baroclinic scales (p & 8) put energy into this
mode, the net result being strong positive baroclinic forc-
ing of the box-scale barotropic mode. Apart from this
mode all scales have reached a statistically stationary
state by t = 100.

In this Letter we have described the process of spec-
tral condensation in RRRBC and showed that it closely
resembles that observed in experiments and simulations
of 2D nonrotating turbulence with artificial forcing at
an internal scale. Like the 2D Navier-Stokes equation
the leading order asymptotic equations (1)–(4) manifest
no preference for cyclonic or anticyclonic flow [8, 9]. As
a result these equations are ideally suited for studies of
spectral condensation in 3D.
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