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1. Introduction

Mixture experiments are widely used in food processing, chemical, manufacturing, agricul-

tural, cosmetics and pharmaceutical industries. This list is growing as interest in mixture

models expands and optimal designs are becoming more available thorough computer codes,

software packages and interactive online websites. Cornell (1990) provides an excellent in-

troduction and broad coverage in mixture experiments. A comprehensive review of mixture

models and their optimal designs can be found in Chan (2000) and a more recent review of

research work in mixture experiments over the last 50 years is the work of Piepel in Chapter

12 of an edited volume by Khuri (2009).

The aim of this paper is to introduce a modified version of a popular optimization technique

already widely used in engineering and computer science research for finding optimal designs

for mixture models. The technique has been around for more than ten years, but interestingly

hasn’t had much impact in statistical methodology to date. Our experience reinforces the

widely held findings that PSO is a very simple and powerful optimization tool. PSO requires

no assumption of the objective function and has few and easy to work with parameters.

PSO is intriguing because despite its lack of a firm theoretical basis, its repeated successes

and increasing widespread use in various disciplines have even resulted in new journals that

simply track its applications in various fields.

Section 2 provides statistical setup and briefly reviews general theory for optimal exper-

imental designs before discussing mixture models and their optimal designs. In Section 3,

we propose a meta-heuristic method for finding a variety of optimal designs for different

types of mixture experiments. The stochastic search is based on a modified version of the

particle swarm optimization first proposed by Kennedy and Eberhart (1995). In Section 4

we demonstrate this procedure is efficient for finding various optimal designs for different

types of mixture models, including new models for which optimal designs are not known
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analytically. We conclude in Section 5 with a summary of the advantages of the proposed

PSO method over current methods for generating optimal designs.

2. Background

Our interest is in the general linear model given by

y = β′f(x) + ε. (1)

Here y is the response variable, β is a t-dimensional column vector of unknown coefficients,

f(x) is a given vector of regression functions defined on a user-defined compact multi-

dimensional design space. The error ε is random noise with zero mean and constant variance

and we assume all errors are normally and independently distributed. An approximate design

ξ is defined by its design points (xi’s) and the proportions (pi’s) of observations to be taken at

these points. Once the sample size n is fixed, either by cost or time considerations, and an op-

timality criterion is given, the optimization problem is to determine the number (k) of points

needed and the values of xi, pi, i = 1, . . . , k subject to p1 + . . . + pk = 1. The implemented

design takes roughly npi observations at xi, i = 1 . . . , k subject to np1 + . . .+ npk = n.

Following convention, the worth of a design is measured by its Fisher information matrix

which is obtained by taking the negative of the expectation of the second derivative of

the logarithm of the likelihood function with respect to β. Given the above statistical

model, this matrix is M(ξ) = Eξ(f(x)f(x)′), which is inversely proportional to the variance-

covariance matrix of the estimated parameters β. Following convention, the design criterion

is formulated as a convex function of the information matrix. For example, D-optimality for

estimating model parameters seeks to minimize the generalized variance using the convex

functional Φ(ξ) = −ln |M(ξ)|. Another popular and useful criterion is L-optimality defined

by Φ(ξ) = tr L M(ξ)−1 and L is a user-selected matrix; if the goal is to minimize the average

of the variances of the estimated parameters, we set L = I, the identity matrix whereupon
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L-optimality reduces to A-optimality. Alternatively, if we like to estimate some average of

the response over a user-selected region R, one chooses L =
∫
R
f(x)f ′(x)µ(dx) and µ is a

a selected measure over for R. This corresponds to estimating the response surface over R

with weights specified by the measure µ with more important parts of R receiving a higher

weight assignment from µ. If there is equal interest over the region R, one chooses µ to be

the uniform measure on R. We obtain I-optimality when µ is the uniform measure and R is

the same as the design space.

When the design criterion is a convex function of the information matrix, as it is for all

the above criteria, Kiefer and Wolfowitz (1960), Kiefer (1974, 1975) showed an effective way

to check whether a design is optimal for any model. In particular if Model (1) holds and

each of the following inequalities holds for all x in the design space, then (a) a design ξ is

D-optimal if and only if f(x)′M−1(ξ)f(x) 6 t; (b) a design ξ is L-optimal if and only if

f(x)′M−1(ξ) L M−1(ξ)f(x) 6 trL M−1(ξ).

The above results are frequently referred to as equivalence theorems or more informally

as checking conditions and are derived from considerations of the Frechet derivatives of the

convex functionals. When the regression model has one or two independent variables, the

equivalence theorem can be easily applied to check the optimality of any design graphically.

For instance, to check for D-optimality, we plot the function on the left hand side of

the inequality (a) over the design space and determine whether the inequality is satisfied

throughout the design space. If it is, the design ξ is D-optimal; otherwise it is not. In the

latter case, one can also obtain a lower bound on the efficiency of the design by examining

the plot (without knowing the optimum). Details are in standard design monograph such as

Pazman (1986).
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2.1 Mixture Models

Clearly optimal designs are dependent on model assumptions and for nonlinear models they

depend on the nominal values of the model parameters as well, see for example, Cobby

et al. (1986), where they considered using a D-optimal design to estimate parameters in an

inverse quadratic with 4 parameters in agronomy. In mixture problems, it appears much of

the recent design work for mixture models focuses on constructing designs robust to model

mis-specification. For example, Huang et al. (2009) is one of the recent papers to study

robustness properties of optimal designs for mixture models when there is uncertainty in the

model assumptions. Specifically, they investigated how to find A-optimal designs for mixture

experiments that are robust to the linear and quadratic models proposed by Scheffé (1958).

In addition, Huang and Huang (2009a) and, Huang and Huang (2009b) found D- and A-

optimal designs for linear log contrast and quadratic log contrast models for experiments with

mixtures, respectively. Some new criteria were proposed in Mandal and Pal (2008) and Pal

and Mandal (2008). The former advocated a trace criterion to estimate the best proportions

for the ingredients or components and the latter explored a minimax criterion to estimate the

response surface in a mixture experiment, including using a deficiency criterion to measure

the goodness of a mixture experiment. In both papers, the model was a quadratic polynomial

in several factors over the simplex region.

We assume our mixture experiments have q factors x1, x2, . . . , xq defined on the regular q

simplex Sq−1 = {x′ = (x1, x2, . . . , xq) ∈ [0, 1]q :
∑q

i=1 xi = 1}. Some common mixture models

used in practice are Scheffé’s polynomials of degree n. If ε denotes random error, the simplest

is an additive polynomial mixture model when n = 1 and f(x)′ = (x1, x2, . . . , xq) given by

y = β′x =

q∑
i=1

βixi + ε, (2)

When f(x)′ = (x1, x2, . . . , xq, x1x2, x1x3, . . . , xq−1xq) and n = 2 the second degree Scheffé’s

polynomial mixture model is
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y =

q∑
i=1

βixi +
∑

16i<j6q

βijxixj + ε. (3)

This is an example of a Scheffé quadratic canonical polynomial models widely used in

blending experiments in engineering, agriculture, biological and the medical sciences. In

the notation of model (1), t = q for model (2) and t = q + q(q + 1)/2 for model (3). More

generally, the Scheffé polynomial of order n for a q-component mixture model is

y =

q∑
i=1

θixi +
∑

16i<j6q

φijxixj + · · ·+
∑

16i1<···<in6q

φi1···inxi1 · · ·xin + ε. (4)

Becker (1968, 1978) proposed a flexible modeling techniques for studying mixture experi-

ments with additive effects using Becker polynomials. They are also useful for modeling the

mean response when it also depends linearly on the total amount A used in the experiment

and all components in the regression function are homogenous of degree 1. Becker’s models

include

y =

q∑
i=1

θixi +
∑
i<j

φij min(xi, xj) + · · ·+ φ1,2,···,q min(x1, · · · , xq) + ε, (5)

y =

q∑
i=1

θixi +
∑

16i<j6q

φijxixj
xi + xj

+ · · ·+ φ1,2,···,qx1x2 · · · , xq
(x1 + · · ·+ xq)q−1

+ ε, (6)

y =

q∑
i=1

θixi +
∑

16i<j6q

φij(xixj)
1/2 + · · ·+ φ1,2,···,q(x1x2 · · ·xq)1/q + ε. (7)

In metallurgy, when there are q = 2 ingredients in a mixture experiment, Kasatkin (1974)

found a certain type of polynomials is useful for modeling the response and he called them

Kasatkin’s polynomials. Such a polynomial of nth order has the form:

y = θ1x1 + θ2x2 +
n−2∑
i=0

φix1x2(x1 − x2)i + ε. (8)

Among these models, Scheffé’s models are the most widely used. Further details on ra-

tionale and specific applications of Becker’s and Kasatkin’s models can be found in Cornell

(1990), Kasatkin (1974), Sobolev and Chemleva (1976), etc. Interestingly, these papers allude

to D-optimal designs for Kasatkin’s polynomial models but we were unable to find them in



6 Biometrics, 000 0000

English publications. We used our proposed method and generate D-optimal designs for some

models in Table 4.

2.2 Optimal Designs

We first briefly review known optimal designs for mixture models from the literature. An-

alytical descriptions of D-optimal designs for different orders of Scheffé polynomial models

were reported in Scheffé (1958), Kiefer (1961), Uranisi (1964), Galil and Kiefer (1977), He

and Guan (1990), Yu and Guan (1993) and, Liu and Neudecker (1995). Formulae for A- and

integrated or I-optimal designs are available for a much smaller class of models.

Scheffé (1958) found the theoretical A- and D-optimal designs for the first order linear

models with q factors over Sq−1. Both A- and D-optimal designs coincide and are equally

supported on the q vertices of the simplex given by (1, 0, . . . , 0), . . . , (0, . . . , 0, 1). The A-

optimal design for the quadratic mixture model with q > 4 was found by Yu and Guan (1993)

where they showed that the A-optimal design is the weighted {q, 2} simplex-centroid design.

It has a combined weight of (4q− 3)1/2/(q(4q− 3)1/2 + 2q(q− 1)) equally distributed among

support points of the form (1, 0, . . . , 0), . . . , (0, . . . , 0, 1), and a combined weight of 4r1/(4q−

3)1/2 equally distributed among points of the form (1/2, 1/2, 0, . . . , 0), . . . , (0, . . . , 0, 1/2, 1/2).

When q = 3, they numerically identified the A-optimal as the weighted {q, 3} simplex-

centroid design with (r1, r2, r3) = (0.1418, 0.1873, 0.0128), where r1, r2 are as before and

r3 is now the weight at each of the support point of the form (1/3, 1/3, 1/3, 0 . . . , 0), . . . ,

(0, . . . , 0, 1/3, 1/3, 1/3). Table 1 shows these optimal designs and the {q, 2} simplex-centroid

designs which are A- or D-optimal for the quadratic models.

We next consider two third-degree polynomial models for mixture studies. The first one is

the cubic model without 3-way effect polynomial mixture model, i.e.

E(y) =

q∑
i=1

βixi +
∑

16i<j6q

βijxixj +
∑

16i<j6q+1

γijxixj(xi − xj). (9)

The D-optimal design was found by Mikaeili (1989) to be equally supported at the the
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following design points: Cq+1
1 points given by xi = 1, xj = 0, i 6= j, i = 1, . . . , q, 2Cq+1

2

points given by xi = 1 − xj = 1
2
(1 − 1√

5
), i 6= j, i, j = 1, . . . , q, and xk = 0, k 6= i, j. The

second third-degree polynomial model of interest is the full cubic model with all 2-factor and

3-factor interactions:

E(y) =

q∑
i=1

βixi +
∑

16i<j6q

βijxixj +
∑

16i<j6q

γijxixj(xi − xj) +
∑

16i<j<k6q+1

βijkxixjxk. (10)

The D-optimal design was also found by Mikaeili (1993) and is equally supported at the

following design points: Cq+1
1 points given by xi = 1, xj = 0, i 6= j, i = 1, . . . , q, 2Cq+1

2

points given by xi = 1 − xj = 1
2
(1 − 1√

5
), i 6= j, i, j = 1, . . . , q, xk = 0, k 6= i, j, and Cq+1

3

points given by xi = xj = xk = 1/3, xl = 0, l 6= i, j, k; i, j, k = 1, 2, . . . , q + 1.

An analytical description of the optimal design is clearly desirable but there are also

obvious limitations of such a theoretical approach. This is because (i) formulae exist only

for relatively simple problems and even when they exist, they are complicated and are

obtained only after long and tedious mathematical calculation that at times require exploiting

the mathematical properties of the specific regression functions, (ii) frequently artificial

assumptions are imposed to arrive at a closed form solution and (iii) the mathematical

derivation typically works only for one specific model and quickly breaks down for a sub-

model or a slight generalization of the model. An example of the latter situation is finding

D-optimal designs for the above two cubic models with one or two missing interaction terms.

For these reasons, search algorithms are more practical approaches to find optimal designs

than one that relies on mathematics alone. Statistical software packages like SAS, JMP

and Design-Expert have some routines for finding selected types of optimal designs for

some mixture models, however, the scope still seems limiting. Our experience is that most

statistical software packages do not have the flexibility of generating an optimal design for

a user-specified model directly, numerically or otherwise.

The next section describes a PSO-based algorithm with great potential for finding many
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types of optimal designs quickly for a wide variety of mixture models, including optimal

designs for sub-models in (10) for which analytical results remain elusive.

3. Particle Swarm Optimization with Projection Capabilities

Given the mixture model and the optimality criterion, PSO begins its search for the optimal

mixture design with a population of randomly generated candidate designs or particles that

cover the design space. Each design sequentially adapts its movement toward where it believes

is the optimum and does so with an velocity that depends on its current location and locations

that other particles believe is the optimum. Usually these movements are governed by two

key equations with a few parameters that includes random vectors that are responsible for

the stochastic movement of the designs.

For our problem, we first use a projection function to optimize over the hypercube instead

of the simplex. This simplifies the optimization problem and speeds up the computation

process. To fix ideas, suppose the given mixture model has q factors and we wish to find a

k-point optimal design. Let m = k × (q + 1) and let Ξ = [0, 1]m denote the m-dimensional

hypercube. Define the m × 1 vector, ξ̃ = (x
′
1, . . . ,x

′

k,p
′
)
′ ∈ Ξ, where xi is a q × 1 vector

in [0, 1]q, i = 1, . . . , k, and p ∈ [0, 1]k. Let Ξ∗ = Ξ \ {ξ̃ = (x
′
1, . . . ,x

′

k,p
′
)′ ∈ Ξ | 1′k · p =

0 or 1′q · xi = 0 for some i}. To transform ξ̃ into a proper design ξ, we define the projection

function P : Ξ∗ −→ (Sq−1)k × Sk−1 by

P (ξ̃) = (
x

′
1

(1′q � x1)
, . . . ,

x
′

k

(1′q � xk)
,

p′

(1′k � p)
)′. (11)

The projection function P is invariant in the sense that P ◦P (ξ̃) = P (ξ̃) and the design ξ has

support on x
′
i/(1

′
q � xi), i = 1, . . . , k and the components in p′/(1′k � p) are the corresponding

weights. The notation ξ = P (ξ̃) signifies that the design ξ is transformed from ξ̃ via the

projection P .

Our particle swarm optimization is based on the projection function P in Eq. (11) as



Particle Swarm Optimization Techniques for Finding Optimal Mixture Designs 9

follows. We first initialize a random population of n candidates of k-point designs from Ξ∗.

We define two notion at each stage of the iteration: let (i) ξ̃pbesti denote the personal best

position for the ith particle, i.e. the design ξ̃pbesti provides the optimal value for the criterion

among all the positions that the ith particle has ever visited, and (ii) let ξ̃gbest denote the

global best position, i.e. ξgbest provides the optimal value for the criterion among all the

positions that all of the particles have ever visited. The strategy for the ith particle, ξ̃i at the

tth iteration is as follows:

• Generate a new velocity vti to reach to next position given by vti = wtv
t−1
i + c1ε1(ξ̃i

gbest −

ξ̃t−1i ) + c2ε2(ξ̃
pbest
i − ξ̃t−1i ), where vt−1i is the velocity generated at the t − 1 iteration, wt

is the inertia weight, c1, c2 are two pre-specified positive constants, and ε1, ε2 are m × 1

uniform random vectors.

• The next location for the ith particle is

ξ̃ti = ξ̃t−1i + χvti , (12)

where χ is a pre-specified positive constant. If ξ̃ti is not in Ξ∗, we project ξ̃ti to a location

closest to the boundary of Ξ∗.

• Obtain the current design ξt by projecting ξ̃ti to the simplex using i.e. ξti = P (ξ̃i
t
).

• Evaluate the objective function at the new design ξti .

• Update the current best for each particle ξpbesti and ξ̃pbesti .

• Update the inertia weight wt+1 = g(wt), where g is a user-selected monotonic decreasing

function.

After updating all particles, ξ̃ti , we identify ξ̃gbest and ξgbest, and repeat the procedure. The

procedure terminates and reports ξgbest as our “best” design after a pre-specified maximal

number of iterations is reached or when the criterion value does not change much according

to some user-specified tolerance level.

In the above PSO steps, the constant c1 is the cognitive learning factor and the constant c2
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is the social learning factor. Following Kennedy (1997), the convention is to set c1 = c2 = 2.

The constant χ is the constriction factor and usually is set to be 1. The function g is a pre-

selected non-increasing function to control the time-varying inertia weight wt. In our work,

we set the function g to be the linear decreasing function such that wt varies from 0.9 to 0.4.

The key advantage of this modified PSO is that it operates on the simple hypercube first

before it projects any non-feasible point into (Sq−1)k × Sk−1. This simplifies and makes the

computation more efficient. If we had directly implemented PSO to search for the optimal

mixture design and worked with the constraints in the simplex, our experience is that some

of the sequentially generated particles “flew” outside the simplex and the subsequent work

required to ignore them or bring them back to the simplex can complicate and prolong the

search for the best design considerably. This proposed PSO based on the projection is called

ProjPSO.

4. Numerical Results

We now demonstrate our ProjPSO algorithm is an effective way to generate different types

of optimal designs for various mean functions in a mixture experiment. For comparison sake,

the examples we work with include results already reported in the literature and also new

results where analytical formulae for the optimal designs are not available. In the latter case,

we used an equivalence theorem to confirm its optimality and if the PSO-generated design

is not optimal, we assessed its proximity to the optimal (without knowing the optimum) via

an efficiency lower bound obtained from the equivalence theorem. Details in Pazman (1986).

4.1 ProjPSO codes

We implemented the ProjPSO algorithm written in MATLAB codes and they are available

from the authors upon request. Our PC has a 2.67GHz Intel(R) Core(TM) i7 CPU. We

always start with a modest size of the particles and a modest number of the iterations and
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increase them when the dimensionality of the experimental region gets larger or the model

has more parameters. We follow convention and use default values for the other parameters in

PSO algorithm, for example, setting c1 and c2 both equal to 2 in ProjPSO. In almost all our

examples, PSO was able to generate designs which were optimal or very close the theoretical

optimal designs after a few minutes of CPU time. For example, to find the D-optimal design

for the full cubic model with 3 factors, we implemented the codes using 1024 particles and

200 iterations and it took ProjPSO around 2.5 minutes to produce the analytical D-optimal

design.

For each mixture problem, the main generic part of the code remains intact and only the

information matrix and the criterion need to be changed in the code. For all our examples, we

first searched among all designs with design points equal to the number of parameters in the

model using the ProjPSO algorithm. Our guiding principle was larger number of particles or

larger number of iterations for more complex models. This is because the time required to

generate the optimal design is usually fast and the differences in additional computational

time required when the number of particles or iterations are increased is usually not long. For

instance, in the examples below, the number of particles we chose to generate the optimal

designs for the linear Scheffé polynomial models were 64, 128 and 256 for q = 3, 4 and 5 and

the corresponding number of iterations used were 200, 400 and 800.

[Figure 1 about here.]

We applied ProjPSO to find the optimal designs when there are q factors and q = 3, 4

and 5. The generated A- and D-optimal designs for Scheffé’s linear mixture models are all

numerically the same as the theoretical A- and D-optimal designs reported in Table 1. Figure

1 is an illustrative PSO-generated plot that shows the particles representing the support

points of different designs at various stages in the search when q = 3. The sub-figures display

the support points of the 64 particles at the 1st, 5th, 10th, 20th, 30th and the 40th iterations
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and show the very rapid convergence of the ProjPSO procedure to the optimum. In this case,

ProjPSO only takes less than 3 seconds for 40 iterations. When we applied the ProjPSO

algorithm to find D-optimal designs for the Scheffé’s quadratic mixture model (3), we also

obtained the {q, 2} simplex-centroid design in Table 1 and shown by Kiefer to be D-optimal

(Kiefer, 1961).

As specific examples, we applied the ProjPSO algorithm to search for these A-optimal

designs using 1024 particles 600 and 400 numbers of iterations for q = 3 and 4 respectively.

The PSO-generated designs for these two cases were found to be identical to the theoretical

optimal designs for all practical purposes.

We also applied ProjPSO to models with more complex structures. Consider the full cubic

model with q = 3 and the cubic model does not contain 3-way effects. The corresponding best

designs generated by ProjPSO are all the same these reported in Mikaeili (1989, 1993). Here

the number of iterations in ProjPSO is set to be 400, but the number of particles are 128 and

512 for the cubic model without 3-way effect and full cubic model respectively. In addition

to A- and D-optimal criteria, we also study I-optimal design for the Scheffé’s quadratic and

cubic mixture models. To generate the numerical I-optimal designs, we set 1024 particles

and iterate ProjPSO 400 times. The results are shown in Table 2. The equivalence plot of

the I-optimal design for the cubic Scheffé model is shown in Figure 2.

[Figure 2 about here.]

[Figure 3 about here.]

We also used ProjPSO to determine optimal designs for several submodels (or incomplete

models) obtained by deleting a few interaction terms from the full cubic model. As far as

we know, theoretical optimal designs for these submodels or incomplete (IC) models remain

unknown. We used 1024 particles and iterated 400 times. To ensure the generated designs

are D-optimal for the submodels, we used an equivalence theorem for each submodel and
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checked for its optimality. Figure 3 is an example of graphical version of equivalence theorem

for the submodel IC Model 1 in Table 3 and since the 3-dimensional plot is bounded above

by 0, optimality of the reported corresponding design in Table 3 is confirmed.

[Figure 4 about here.]

[Table 1 about here.]

[Table 2 about here.]

[Table 3 about here.]

[Table 4 about here.]

In addition to the Scheffé type models, we also apply ProjPSO to generate D-optimal

designs for the other mixture models to demonstrate the flexibility of our ProjPSO. Here

three Becker’s models, (5) to (7), with q = 3 and Kasatkin’s polynomials, (8), with 3, 4,

and 5 orders are considered. In our ProjPSO code, we only need to change the regressor set-

up according to the target model. The numerical best designs for all 6 models are satisfied

the corresponding equivalence theorem. The equivalence plot for the D-optimal design of

Kasatkin’s polynomial with order 5 is shown in Figure 3.

4.2 Constrained Mixture Experiments

4.2.1 The linear log contrast models. This subsection shows ProjPSO is flexible and can

be directly modified to find optimal designs for related mixture models. Consider the linear

log contrast model proposed by Aitchison and Bacon-Shone (1984) for studying a certain

type of mixture experiments. Such models continue to be of interest and were recently studied

by Huang and Huang (2009a) and, Huang and Huang (2009b) where they found exact D-

and A-optimal designs for linear log contrast and quadratic log contrast models. Chan (1988)
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found the continuous D-optimal design for the log contrast model,

E(y) = β0 +

q−1∑
i=1

βi log(xi/xq).

To ensure a D-optimal design exists, additional constraints on all the factors are required.

One common way to do this is to select a constant δ ∈ (0, 1) with the conditions δ 6 xi/xj 6

1/δ, for all 1 6 i, j 6 q as added constraints on the design region Sq−1.

As an illustration, consider the log contrast model with q = 3. Chan (1988) showed that for

a given δ, the D-optimal design has 3 points and is supported equally at (1/(1 + 2δ), δ/(1 +

2δ), δ/(1 + 2δ)), (δ/(1 + 2δ), 1/(1 + 2δ), δ/(1 + 2δ)), (δ/(1 + 2δ), δ/(1 + 2δ), 1/(1 + 2δ)), or

(1/(2+δ), 1/(2+δ), δ/(2+δ)), (δ/(2+δ), 1/(2+δ), 1/(2+δ)), (1/(2+δ), δ/(2+δ), 1/(2+δ)).

To find the optimal design using ProjPSO, we redefined the regressors as log(xi/xq) and

also amended the projection operator in ProjPSO so that it projects into the right space

that includes the additional constraints, δ 6 xi/xj 6 1/δ for all i. We used ProjPSO to

find the D-optimal designs when δ = 0.145 and 0.2. Using a flock size of 1024 and 100

number of iterations, ProjPSO took approximately 11 seconds of CPU time to generate

the D-optimal designs below, which also agree with the result in Chan (1988). For each of

these two δ’s, there are two optimal designs equally supported at 3 points. For δ = 0.145,

one set of support points is x1
′ = (0.1124, 0.1124, 0.7752), x2

′ = (0.7752, 0.1124, 0.1124)

and x3
′ = (0.1124, 0.1124, 0.7752) and the other set is x1

′ = (0.4662, 0.4662, 0.0676), x2
′ =

(0.0676, 0.4662, 0.4662) and x3
′ = (0.4662, 0.0676, 0.4662). For δ = 0.2, one set of support

points is x1
′ = (0.7143, 0.1429, 0.1429), x2

′ = (0.1429, 0.7143, 0.1429) and x3
′ = (0.1429, 0.1429, 0.7143)

and the other set is x1
′ = (0.0909, 0.4545, 0.4545), x2

′ = (0.4545, 0.0909, 0.4545) and x3
′ =

(0.4545, 0.4545, 0.0909).

It is interesting to note here that this is one situation where we did not obtain good results

using the default values c1 = c2 = 2 in the PSO algorithm. This may be due to the smaller
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design space resulting from the several constraints. Our experience suggests that setting

c1 = c2 = 0.5 seems to work well for log contrast models.

4.2.2 Another constrained mixture problem. Our last example concerns mixture experi-

ments with constraints on the components imposed physically by the problem. Because of

practical or cost considerations, upper or lower bound constraints are imposed on some of

the xi’s with user-specified constants Li and Ui, such that Li 6 xi 6 Ui, i = 1, 2, ..., q. A

commonly cited example is in the making of a 3-component fruit juice comprising water-

melon, pineapple and orange. The limits on the first component are .4 and .8, the limits

on the second component are .1 and .5 and the limits on the third component are .1 and

.3. The design question is how to blend these components so that the drink tastes best

subject to some cost constraints. In this case, the mixture has a larger requirement on the

watermelon component because it is the cheapest among the three. Examples where mixture

experiments have constraints on the components abound in pharmaceutical problems as well.

For instance in tablet formulations, typically a D-optimal design is sought in the constrained

mixture design with limits imposed on the various ingredients, see for example El-Malah et al.

(2006), Jin et al. (2008), Nahata and Saini (2008) and Nahata and Saini (2009).

ProjPSO algorithm can also be modified directly to generate optimal designs for mixture

experiments with constraints on its components. We discuss one such application due to

space consideration. Choisnard et al. (2005) employed a mixture design to study amphiphilic

cyclodextrin nano particles. There were three variables z1, z2 and z3 and their constraints

were 0.4 6 z1 6 0.7; 0 6 z2 6 0.6 and 0 6 z3 6 0.6. Working with pseudo-variables, Crosier

(1986) searched for an optimal design inside the pseudo-variable simplex region defined by

x1, x2 and x3 with the following constraints: 0 6 x1 6 0.5; 0 6 x2, x3 6 1 and
∑3

i=1 xi = 1.

Because this region for the pseudo-variables is not the regular simplex, we modified our
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ProjPSO algorithm to ensure that all design points are projected correctly into the proper

region.

Choisnard et al. (2005) used the full quadratic model in their work without explanation

but because this model contains the intercept, along with the constraint that the components

sum to unity, the information matrix of any design for this model is singular. Accordingly

we worked with an illustrative cubic mixture model without the 3-way effect, i.e.

E(y) =

q∑
i=1

βixi +
∑

16i<j6q

βijxixj +
∑

16i<j6q+1

γijxixj(xi − xj). (13)

There are two constraints for the variables, xi’s. One is
∑3

i=1 xi = 1 and another is x1 6 0.5.

To find the optimal design, we modified ProjPSO by including the additional constraint and

found a 9-point optimal design using 1024 particles and 1000 iterations. This design ξ3pso,D is

equally supported at the 9 support points xi
′ = (x1, x2, x3) shown as columns in this matrix:

0.5000 0.3645 0.0000 0.2135 0.5000 0.0000 0.0000 0.2135 0.0000

0.5000 0.3178 0.0000 0.7865 0.0000 1.0000 0.2764 0.0000 0.7236

0.0000 0.3178 1.0000 0.0000 0.5000 0.0000 0.7236 0.7865 0.2764

Figure 5 is a multi-dimensional plot of the directional derivative of this generated design

ξ3pso,D, which is f(x)′M−1(ξ3pso,D)f(x) − 9. The plot shows the derivative is always bounded

above by 0 with equality at the support points and so confirms the D-optimality of this

design.

[Figure 5 about here.]

5. Conclusions

There are several common methods for finding optimal designs for mixture experiments.

In this section, we mention some of them and discuss comparative advantages of PSO

techniques. Early search algorithms that have been proposed for finding optimal designs

are quite comprehensively reviewed in Cook and Nachtsheim (1980). Roughly they include:
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Dykstra’s method (Dykstra, 1971), Wynn-Mitchell’s method (Mitchell and Miller, 1970;

Wynn, 1972), DETMAX Mitchell (1974) and modified Fedorov’s method. Monographs on

optimal design usually devote a chapter on algorithmic construction of optimal designs.

Statistical software packages like SAS and JMP typically have a few menus for finding

optimal designs and some have specific codes for generating optimal designs for several mix-

ture models. The types of optimal designs available in conventional packages are usually for

Scheffé polynomial models and frequently limited to D- or A-optimal designs and sometimes

also for I-optimal designs. Different packages employ different methods for finding optimal

design; for instance, SAS uses the exchange coordinate type algorithms which requires a

candidate point set be pre-specified, and JMP uses the candidate-free exchange algorithm

for finding the optimal design. When a model is not available, it is not always clear how

to generate the desired optimal design or if such an option is even possible. For instance,

we were unable to find a statistical package capable of generating the D-optimal designs in

Table 4 directly.

There is a R package called AlgDesign that generates optimal designs for several mixture

models. This package uses the Federov exchange algorithm under the name optFederov,

and claims to calculate the approximate designs for D-, A- and I-criteria. Optimal de-

signs for mixture experiments are obtained using the function gen.mixture and details are

freely available at http://cran.r-project.org/web/packages/AlgDesign/AlgDesign.pdf. The

function “optFederov” in AlgDesign quits when no more profitable exchanges are possible.

We now compare PSO performance with AlgDesign which seems like the most appropriate

program to use since it finds optimal continuous designs for different models and criteria in

a mixture experimental problem. Results found from AlgDeisgn and our ProjPSO algorithm

were basically the same but we observed optimal designs found from the latter are sometimes

slightly better in terms of the criterion value. For example, for the full cubic model with
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three factors, the optimal design ξAD−D found by AlgDesign has 33 design points whereas

the one found by ProjPSO ξPSO−D has 10 points. The relative D-efficiency of the two

designs is {det(M(ξAD−D))/det(M(ξPSO−D))}1/10 = 0.9985. As another example, for the

quadratic model with four factors, AlgDesign produced ξAD−A, a 25-point A-optimal design

and ProjPSO produced a design ξPSO−A with only 10 points. The relative A-efficiency of

the two designs is trace M(ξPSO−A)−1/trace M(ξAD−A)−1 = 0.9668. In either case, the

PSO-generated design wins. A possible explanation for the discrepancy in the results is that

AlgDesign does not use an equivalence theorem to verify optimality or incorporate it as part

of the stopping criterion.

To implement optFederov, AlgDesign requires a candidate set of points to be pre-specified

first. The grid set we chose was 100 levels uniformly spread out for each factor. This common

requirement in AlgDesign and several other packages means that the optimal design found

depends on this initial grid set of points. PSO works on the a continuous domain and

differentiates itself from this and other algorithms by not requiring the user to specify a

candidate set of points at the onset. We view this feature of PSO a distinct advantage over

its competitors.

Other advantages of our ProjPSO algorithm over current methods are (1) our experience

is that the time required to generate the optimal design is generally a lot faster than many

of the current methods; a detailed comparison will be reported in another paper; (2) we

have applied ProjPSO successfully to find optimal designs for models not covered in the

standard software packages, suggesting that it is versatile and can generate optimal designs

for a broader range of models; for instance, ProjPSO finds the I-optimal design for the cubic

Scheffé model with three factors quickly and Figure 2 confirms its I-optimality. We were not

able to find current packages that will produce such an optimal design; (3) in the few cases

we had examined, ProjPSO always produced an optimal design with fewer points and higher
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efficiencies compared with other methods; this can be an advantage if taking observations

at a new “site” is expensive or laborious; (4) the ProjPSO algorithm is easy to build after

downloading the basic PSO codes from various websites and then making changes to them;

it is also freely available to interested reader by writing to Dr. Chen, and (5) many current

methods proceed by adding a point to the current design sequentially, necessitating the user

to collapse and redistribute the accumulated points and the cumulative weights to selected

sites as the iteration progresses. PSO does not require such an ad-hoc procedure, which can

be cumbersome.

PSO also compares favorably with other heuristic algorithms in one major aspect. For

example, in genetic algorithms (GA), all tuning parameters have to be carefully selected

before the algorithm works well. Our experience to date is that tuning parameters in PSO

seems easy to use and are not sensitive for solving optimal design problems. Frequently, the

default values for the tuning parameters work well for a broad range of design problems.

For instance, we always set c1 = c2 = 2 in our work here and when we applied PSO to find

minimax optimal designs for nonlinear models in Chen et al. (2012). The only exception we

encountered so far is that for log contrast model where setting c1 = c2 = 0.5 seems to work

better than setting them equal to 2. Our experience this far suggests that for finding an

optimal continuous design, only two parameters in the PSO algorithm may require changes;

the flock size and the number of iterations. A larger size of randomly generated flock of

birds covers a broader range of the search space and so is suitable for more complex and

high dimensional problems. A larger number of iterations minimizes the chance of early

termination and allows PSO additional time to find the optimum, which it usually does not

need for solving our design problems. Our typical value for a flock size is 256 and 512 if

the model is more complex. A typical iteration number that we used is 300. In addition, a
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further advantage of PSO over GA is that there are fewer parameters in PSO to adjust than

in GA (http://www.swarmintelligence.org/tutorials.php).

The numerous optimal designs found here on a regular or irregular simplex for mixture

experiments and our earlier success using PSO to find minimax optimal designs for several

nonlinear models further reinforce the great potential of PSO as a novel, easy and powerful

way to generate optimal experimental designs. An immediate application is to follow up

work in Zhang et al. (2012) to further modify the ProjPSO to search for multiple-objective

optimal designs for mixture models. On a longer term goal, our aim is to create an interactive

web site for practitioners to generate tailor-made optimal designs where users can select the

optimality criterion and input a fully specify the mixture model for their problem and let

ProjPSO does its job.
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Figure 1. The movement of particles in the PSO search for the D-optimal design for the
linear mixture model with q = 3 factors. Each subfigure displays the PSO-generated mixture
design at a particular iteration. At the 40th iteration, ProjPSO seems to have converged in
4 seconds of CPU time to the D-optimal design equally supported at the vertices.
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Figure 2. The plot of the directional derivative of the PSO-generated design confirms that
ξPSO is I-optimal design for cubic Scheffé model.
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Figure 3. The plot of the directional derivative of the PSO-generated design confirms that
ξPSO is D-optimal design for Katkasin polynomial model with order 5.
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Figure 4. The plot of the directional derivative of the PSO-generated design confirms that
ξPSO is D-optimal design for IC Model 1.
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Figure 5. The plot of the directional derivative of the PSO-generated design confirms
that ξPSO is D-optimal design on the restricted design space

∑3
i=1 xi = 1, 0 6 x1 6 0.5 and

0 6 x2, x3 6 1.
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