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Abstract

Particle swarm optimization (PSO) is an increasingly popular metaheurisitc
search algorithm for complex optimization problems. Its popularity is due to
its repeated successes in finding an optimum or a near optimal solution for
problems in many applied disciplines. The algorithm makes no assumption
of the function to be optimized and for biomedical experiments like those
presented here, PSO typically finds the optimal conditions in a few seconds
of CPU time using a garden variety laptop. We apply PSO to find various
optimal designs for popular models in real-life experiments and demonstrate
its flexibility via a new website.

Keywords: Approximate design, Ds-optimal design, efficiency,
metaheuristic algorithms, particle swarm optimization

1. Introduction

Optimal experimental designs are gaining in importance steadily over the
last two decades [1]. A main interest is rising cost in conducting experiments
and an increasing realization in more applied fields that optimal design ideas
can save costs substantially without sacrifice in statistical efficiency. Some
real-life examples are given in Dette and Beidermann [2], Dette et al. [3],
Woods et al. [4], Lopez-Fidalgo et al. [5] and, Gilmour and Trinca [6],
where the applications range from reaction kinetics to medical studies with
a time-to-event outcome. Berger and Wong [7] also provide a catalogue of
concrete applications of optimal designs that ranges from biomedical, social
science applications to construction of groundwater wells in the Los Angeles
basin.
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In practice, the construction of optimal designs can be problematic. One
reason is that many real-life experiments are studied using nonlinear models,
which means that the optimal choice of the design depends on both the
model and nominal values of the model parameters [8]. Except for the
simplest nonlinear models, formulae for optimal designs are rarely possible
and when they are available, they are oftentimes too complicated or limiting
to be useful for the practitioners. For instance, the formula is invariably
derived under a strict set of assumptions that may not apply to the problem
at hand. In particular, either they are too simplistic or are made on technical
grounds that are unrealistic for practical applications. As a specific example,
the dose interval and the nonlinear mean function in a dose response study
are always assumed in the construction of an optimal design and it may not
be clear at all how the optimal design changes if the dose interval is changed
or if the mean function is slightly changed.

There are many algorithms for finding optimal designs and most are
based on heuristics or intuition and they do not have a theoretical basis.
Only a couple of algorithms can be proven to converge to the optimal designs
and prominent ones include Fedorov’s and Wynn’s algorithms for generating
D and c-optimal designs [9, 10]. The former designs are useful for estimating
all parameters in the mean function and the latter targets estimation of
a specific function of the model parameters by minimizing, respectively,
the volume of the confidence ellipsoid and the asymptotic variance of the
estimated function of interest. For the few algorithms that can be shown
to converge mathematically, problems may still exist and they include (i)
they take too long to converge, (ii) they may fail to converge for more
complicated setups that they are not designed, such as for nonlinear for
mixed effects nonlinear models, and (iii) numerical issues due to rounding
problems or the intrinsic nature of sequential process; for example, many
algorithms produce clusters of support points as the algorithm proceeds
and these clusters require periodic and judicious collapsing into the correct
distinct but unknown support points.

In the next section, we propose an exciting, easy and effective algorithm
to generate optimal designs for practitioners. This algorithm has been used
for almost a dozen of years in the computer science and engineering circles,
and exponentially more so in recent years due to its repeated successes in
solving an increasing large class of applied problems. The main reasons
for its popularity are its flexibility, ease of implementation and utility, and
general applicability to solve complex optimization problems (or nearly so)
without making specific assumptions on the objective function. Section 3
presents the methodology with a few specific applications to find a variety
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of optimal designs for nonlinear models in the biomedical arena. Section 4
concludes with a discussion.

2. Particle Swarm Optimization (PSO)

Nature-inspired algorithms have been gaining popularity and dominance
in the last decade both in academia and industrial applications after adjust-
ing for different types of biases [11, 12].One of the most prominent examples
of a nature-inspired algorithm is Particle Swarm Optimization (PSO) based
on swarm intelligence. It is a metaheuristic algorithm and comes about
from the research in fish and swarm movement behavior. PSO is intrigu-
ing in that they always seem to be able to quickly solve the optimization
problem or provide good quality solutions for many types of complex opti-
mization problems, even though the method itself lacks a firm theoretical
justification to date. An attempt to explain its success from a biological
viewpoint is given in Garnier, et al. [13] and an overview of PSO is available
in Poli et al. [14]. Common characteristics of PSO includes its ability to
find the optimal solution to a complex problem or gets close to the optimal
solution quickly without requiring any assumption on the function to be
optimized. The PSO generic code is easily available on many websites such
as http://www.swarmintelligence.org and or in books on metaheuristic
methods such as Yang [15]. MATLAB also has a toolbox for running the
PSO code (http://www.mathworks.com/matlabcentral/fileexchange/7506).

PSO begins its search for the optimum with a population of randomly
generated candidate particles that cover the search space. In our context,
the particles are candidate designs or starting designs. The number of such
designs to begin with is the flock size and is user-controlled. Each design or
particle has the same number of support points which is again pre-selected
by the user; this number is typically chosen to be the number of parame-
ters in the model. At any time point, each particle sequentially adapts its
movement toward where it believes the optimum is and does so with an
velocity that depends on its current and perceived optimum locations (i.e.
the self-perceived best position pi) as well the location that other particles
collectively believe is the optimum (i.e. the global position pg). These move-
ments are elegantly governed by two key equations with a few parameters
that includes random vectors that are responsible for the stochastic move-
ment of the designs, a cognitive learning parameter and a social learning
parameter. These latter two parameters are time invariant and not specific
to a specific particle. In terms of the animal interpretation as birds flocking
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in the sky to seek for food, these parameters measure the self-learning abil-
ity and the sharing information ability of the flock to locate the optimum
(where the food is on the ground). There is also another inertia parameter
that controls the direction of the path it takes next based on knowledge at
that particular time point.

Two basic equations that drive movement for the each particle in the
PSO algorithm in its search to optimize an objective function h() is as
follows. At times t ant t+ 1, the movement of particle i is governed by

vt+1
i = ωtv

t
i + γ1β1 ⊙ (pi − xt

i) + γ2β2 ⊙ (pg − xt
i), (1)

and
xt+1
i = xt

i + vt+1
i . (2)

Here, vt
i is the particle velocity at time t and xt

i is the current particle po-
sition at time t. The inertia weight ωt adjusts the influence of the former
velocity and can be a constant or a decreasing function with values between
0 and 1. For example, a linearly decreasing function over the specified time
range with initial value 0.9 and end value 0.4 [16]. Further, the vector pi is
the personal best (optimal) position as perceived by the ith particle and the
vector pg is the global best (optimal) position as perceived by all particles,
up to time t. This means that up to time t, the personal best for particle i
is pbesti = h(pi) and gbest = h(pg). The two random vectors in the PSO
algorithm are β1 and β2 and their components are usually taken to be in-
dependent random variables from U(0, 1). The constant γ1 is the cognitive
learning factor and γ2 is the social learning factor. These two constants
determine how each particle moves toward its own personal best position
or overall global best position. The default values for these two constants
in the PSO codes are γ1 = γ2 = 2 and they really seem to work well in
practice for nearly all problems that we have investigated so far. Note that
in equation (1), the product in the middle two terms is Hadamard product.
The pseudo code for the PSO procedure for a flock of size n is as follows.
(1) Initialize particles

(1.1) Initiate positions xi and velocities vi for i = 1, . . . , n.
(1.2) Calculate the fitness values h(xi) for i = 1, . . . , n.
(1.3) Determine the personal best positions pi = xi and the global position pg.

(2) Repeat until stopping criteria are satisfied.
(2.1) Calculate particle velocity according Eq. (1).
(2.2) Update particle position according Eq. (2).
(2.3) Calculate the fitness values h(xi).
(2.4) Update personal and global best positions pi and pg.

(3) Output pg = argminh(x) with gbest = h(pg).
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In every iteration, each particle is updated by following two “best” val-
ues. The first one is the best solution (fitness) it has achieved so far. (The
fitness value is also stored.) This personal best value is called pbest. An-
other “best” value that is tracked by the particle swarm optimizer is the best
value, obtained so far by any particle in the population. This best value is
a global best and called gbest. When a particle takes part of the population
as its topological neighbors, the best value is a personal best.

In practice, particles’ velocities along each dimension are restricted to a
user-specified maximum value of Vmax. This is to prevent particles searching
beyond the design space which sometimes happens because of accelerations
due to the stochastic elements in the process. The initial velocity for each
particle may be set equal to 0 or be randomly assigned from U(0, 1).

3. Generating Optimal Designs for Biomedical Studies using PSO

In this section, we apply PSO to find various types of optimal designs for
common models in the biomedical studies. These models may appear small
in terms of number of parameters they have but as noted in Konstantinou
el at. [8], among many others, they can still be difficult to find by tradi-
tional numerical methods or analytically. Here and throughout, our focus is
approximate designs, which are probability measures defined on the given
design space [17]. The worth of a design is measured by its Fisher informa-
tion matrix defined as minus of the expectation of the second derivatives of
its log likelihood function with respect to the parameters. Our goal is to
minimize an appropriate convex function of the information matrix. Given
a fixed sample size, a model and a design criterion, an optimal approximate
design minimizes the criterion by choice of (i) the number (k) of points,
(ii) where these design points x1, . . . , xk are and (iii) the mass distribution
p1, . . . , pk at the design points subject to the constraint that the nonnegative
weights pi’s sum to unity. Because each design criterion is convex, we can
use results from convex analysis and verify the optimality of an approximate
design ξ by examining the plot of its directional derivative over the design
space. If the design is not optimal, using results from convex analysis, one
can also ascertain how close the design is to the optimum without knowing
the latter by means of an efficiency lower bound. Details can be found in
standard design monographs such as Berger and Wong [7], Fedorov [9] and
Silvey [18].

Our experience is that PSO can also find optimal designs for more com-
plicated models just as efficiently. To date we had used PSO and successfully
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found optimal designs for experiments up to 8 factors for a mixture model,
nonlinear models up to 6 parameters and also for more involved design cri-
teria, such as a minimax type of optimality criterion. We discuss these
“larger” models further in the last section.

The PSO code is initiated as follows. The user first selects the flock
size, the number of iterations desired and parameters for the design prob-
lem, such as the limits of the design space and the nominal values of the
model parameters for the particular problem at hand. The rest of the PSO
parameters like the inertia, cognitive and social learning parameters are all
set to their default values. Consequently, we only have to fuss with the
flock size and the number of iterations. This simplifies the process and is an
appealing feature of PSO. The search for the optimal design by PSO begins
with a randomly generated flock of size specified by the user. These designs
all have the same fixed number of points, k equal to the number of parame-
ters in the mean response function. When the algorithm is run, the k-point
optimal design is usually found very quickly. When the design optimality
criterion is convex, which is true for all our examples, the generated design
can be verified using an equivalence theorem derived from the directional
derivative.

If the above strategy fails to produce the optimal design, meaning that
repeated searches by PSO with different number of iterations and different
flock sizes produced a design that did not meet the equivalence theorem
conditions, we continue the search to all designs with k + 1 points. Our
experience is that such a strategy always produce a locally optimal design
and we only need to search among designs with k + j points where j is
usually 1 or 2. For Bayesian optimal designs, j can be much larger than 2
especially if the prior distribution is diffuse. On the other hand, if we have
over-specified the number of support points required by the optimal design,
then PSO will report an optimal design with some identical points or some
points with extremely small weights. The masses at these identical points
are then summed to obtain the optimal design. Such situations arise when
the optimal design has a singular information matrix and an example of such
a case is provided below when we want to find the locally optimal design for
estimating the area under curve in the 3-parameter compartmental model.

We have set up mirror websites at 3 places with examples discussed in
this paper so that the reader can download the P-codes, verify our results
and appreciate how PSO works in practice. One site is housed at UCLA at
http://optimal-design.biostat.ucla.edu/podpack/ and the other two
sites are housed in Taiwan at http://www.math.ntu.edu.tw/~optdesign
and http://www.stat.ncku.edu.tw/optdesign. Many of the codes can be
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readily changed to find another type of optimal design for he same model or
a different model. Typically, the only changes that are required are in the
information matrix and the design criterion while leaving much of the rest
of the code intact. For example, it took the first author about 15 minutes
to re-code the PSO code for finding the c-optimal design for estimating the
area under the curve in the compartmental model to one for estimating
the two model parameters in the survival model, excluding of time to read
the paper by Konstantinou el at. [8]. Our website has a swarm movement
plot that shows whether the particles visually converge to a single location.
However this plot sometimes can be misleading because of the default values
we simply employed for the other parameters in the PSO algorithm. To
obtain a more accurate picture of the swarm movement and its convergence,
other PSO parameters will have to be properly fine-tuned. However, we do
not think it is worth the trouble as the plot is only a visual guide whether
the PSO-generated design is truly optimal or not. A more definitive way to
confirm optimality is via an equivalence theorem by examining properties
of the directional derivative of the convex functional evaluated at the PSO-
generated design. For this purpose, we also provide an ‘equivalence’ plot to
verify optimality of the PSO-generated design.

The instructions for downloading the MATLAB P-codes are available on
our website. After the specific code for a particular problem is downloaded
into the reader’s computer and activated, the software provides a window for
the reader to input the necessary design parameters for the problem. These
typically include the design interval and the nominal values for the model
parameters. For the PSO operation, at least two inputs are needed: the
flock size and the number of iterations. Sometimes, for more complicated
problems such as minimax design problems, additional PSO parameters will
be required to be specified but for the most part, we minimize the need to
change the default values that come with the PSO codes. Upon hitting the
button ‘run’, PSO finds the optimal design iteratively and stops when the
maximum number of iterations allowed is reached. Typically, one will notice
PSO gets to the vicinity of the optimum quickly after a few iterations and
spends the rest of the time converging to it and making sure the support
points and weights all agree to 5 or 6 decimal places. By hitting the button
‘Swarm plot’ on the interface window we observe the swarm in action and
whether it converges or not. Note that this plot is usually a 2-dimensional
plot and sometimes a 3-dimensional plot, so not all support points of the
PSO-generated design are displayed in the swarm plot. There is an addi-
tional button that says ‘Equivalence Plot’, and that shows the plot of the
directional derivative of the PSO-generated design. If PSO finds the opti-
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mum, the shape of the graph should exhibit properties of an optimal design
discussed in the context of the equivalence theorem in Section 1. In each
case, the CPU time required to generate the design is also reported in the
interface window. We invite the reader to download the P-code into their
own computer and use their MATLAB software to view demonstrations on
how PSO works for some of these applications and verify the results claimed
in the next section. Figures generated from the interface can be saved as eps
files. Because of the stochastic nature of the algorithm, the numerical results
from the MATLAB P codes and the reported CPU times in this paper will
not be identical. All CPU times reported in the paper were obtained using
a laptop equipped with an Intel i5 2520M, 2.5GHz. 8GB RAM, Windows 7
professional operating system and Matlab version 2010b.

In what follows, we present different types of optimal designs found by
PSO for the following model: (i) a 3-parameter compartmental models used
in pharmacokinetics, (ii) 2 and 3-parameter logistic models for studying bi-
nary responses, (iii) a double exponential model for studying tumor regrowth
rate and (iv) a 2-parameter survival model. These models are selected to
facilitate comparisons with known reported results from the literature. The
design criteria are D or Ds or c-optimality but as we discuss in the last
section, we have also applied PSO successfully to generate optimal designs
under more complicated design criteria and optimization problems that in-
volve a hundred dimensions or more. We provide a bit more technical details
and discuss impact of choices of flock size and number of iterations for the
first example to show some characteristics of PSO. Similar pattern of obser-
vations also apply to the other examples.

3.1. Locally optimal designs for compartmental models

Compartmental models are commonly used to model drug movement
through the body, and is represented as

η(x, θ) = θ3{exp(−θ2x)− exp(−θ1x)}, x > 0.

They are not limited to pharmaceutical applications; for instance, the 3-
parameter model described below was also used by Fresen [19] in veterinary
science to model the effect of theophylline on horses and the 2-parameter
model is used to study homogeneous chemical reactions [20, 21]. For space
consideration, we focus on the 3-parameter model in this paper.

Let θ = (θ1, θ2, θ3)
T be the vector of model parameters for the 3-parameter

compartmental model and let θ0 = (θ01, θ
0
2, θ

0
3)

T be the nominal values for θ
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for the compartmental model given by

η(x, θ) ≈ η(x, θ0) + [
∂η(x, θ)

∂θ
|θ0 ]

T (θ − θ0)

with θ2 > θ1 > 0 and θ3 > 0. A direct calculation shows the gradient of the
approximated mean function at the point x is

fT (x, θ0) =(
∂η(x, θ)

∂θ1
,
∂η(x, θ)

∂θ2
,
∂η(x, θ)

∂θ3
)|θ0 ,

with

∂η(x, θ)

∂θ1
=xθ3exp(−θ1x)

∂η(x, θ)

∂θ2
=− xθ3exp(−θ2x)

∂η(x, θ)

∂θ3
=exp(−θ2x)− exp(−θ1x).

When the sample size is fixed and the design ξ takes independent ob-
servations at x1, . . . , xn, the total information matrix is proportional to
M(ξ) =

∑

i

f(xi, θ
0)fT (xi, θ

0). If there are replications, we use weights

p1, . . . , pk to represent the proportions of observations at these points and
the information matrix becomes

∑

i

pif(xi, θ
0)fT (xi, θ

0), apart from an unim-

portant multiplicative constant. For D-optimality, the objective function is
to maximize log(det(M(ξ)), or equivalently, minimize the convex functional
-log(det(M(ξ))) by choice of a design. Here and elsewhere, we have for sim-
plicity, suppressed the dependence of the information matrix on the vector
of model parameters.

To implement PSO to find locally optimal design for the 3-parameter
compartment model, we assumed for comparison purposes, we have the same
dose interval and same set of nominal parameters used in Atkinson, Donev
and Tobias’s book [22] with θ01 = 0.05884, θ02 = 4.298 and θ03 = 21.8. These
values were obtained from the least square estimates of the parameters from
Fresen’s dataset [19].

As a first attempt, we used 100 iterations and a flock size of 100 par-
ticles each with 3 support points in the PSO algorithm to find the locally
D-optimal design for this compartmental model. This is a 5 dimension
optimization problem to find the best choices of x1, x2, x3, p1, p2, where
0 < x1 < x2 < x3 < 30, 0 < p1 < 1, 0 < p2 < 1,0 < p3 = 1 − p1 − p2.
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The PSO-generated design was equally supported at 0.2288, 1.3886 and
18.4168 and it coincides with the locally D-optimal design in Atkinson,
Donev and Tobias’s book [22] on page 264. The equivalence plot confirms
the optimality of the design over all designs on the designated dose interval
and we do not need to search further. The CPU time was 0.408 seconds
and if we had used just 50 particles and 50 iterations, we would also have
obtained the same design in 0.381 seconds. In both cases, the swarm plot
almost converged and the ‘equivalence’ plot confirms optimality. Interest-
ingly, if had used 8 particles and 50 iterations, the PSO took 0.308 seconds
to generate a design supported at 0.2305, 1.4197 and 18.8277 with mass
distribution at these points equal to 0.3687, 0.3109 and 0.3204 respectively.
The swarm converged but the plot shows the PSO-generated design is not
optimal, suggesting that more particles are required and the swarm plot can
be misleading. Even with 1000 iterations and 8 particles, the optimal de-
sign is still not found. A reason for this is that there was simply not enough
starting designs (particles) to cover the design space adequately to bring
about an effective search.

Three common characteristics of a drug are time to maximum concen-
tration in the target compartment, maximum concentration and the average
time it spends inside the compartment. We discussed only the latter two
objective for space consideration because finding optimal design for the first
objective can be carried out in a similar way. The locally c-optimal design
for estimating the time to max concentration of a drug can be found by
integration directly from the model. This time as a function of the model
parameters is

g(θ) =
logθ1 − logθ2

θ1 − θ2
.

Our goal then is to choose a design to minimize the asymptotic variance of
the estimated time given by

[
∂g(x, θ)

∂θT
]M(ξ)−

∂g(x, θ)

∂θ
.

Here ∂g(x,θ)
∂θT

= (a/θ1−b)/a2, (b−a/θ2)/a
2, 0) where a = θ1−θ2, b = log θ1−

log θ2 and M(ξ)− is a generalized inverse of the information matrix. Using
the same set of nominal values of the parameters, we use PSO to minimize
the variance of g(θ̂) in a similar way as before. In our case here, we started
with two points implying that we sought to minimize by choice of (x1, x2, p1),
0 < x1 < x2 < 30, 0 < p1 < 1, p2 = 1− p1.

The locally optimal design for estimating the time to maximum concen-
tration is a c-optimal design with only 2 support points, which means that
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its information matrix is singular because the matrix is now a sum of two
rank-one matrices. To get around having to find the inverse of singular in-
formation matrix M(ξ), we followed convention and added a small multiple
to the identity matrix and worked with the invertible matrix

Mǫ(ξ) = M(ξ) + ǫI3.

We implemented PSO to find the optimal values of x1, x2, p1 subject to
0 < x1 < x2 < 10 and 0 < p1 < 1 with p2 = 1 − p1. The PSO parameters
we used were ǫ = 10−6 and 200 particles all with k = 2 points. Expecting a
singular information matrix for the optimal design, we allowed for a larger
number of iterations and after 1000 iterations, PSO generated a two-point
design supported at 0.1793 and 3.5658 with weight 0.3938 at the latter
point. This optimal design also agrees with the c-optimal design reported
in Atkinson, Donev and Tobias’s book [22] on page 264.

A similar procedure is used to find the optimal design for estimating the
time the drug spends inside the compartment. A direct calculation shows
this function is simply 1/θ1−1/θ2. Proceeding as before, we applied PSO to
minimize the asymptotic variance of the estimated AUC. Setting k = 2 and
using 100 particles and 1000 iterations, PSO took 6.185 seconds to generate
a two-point design supported at 0.2326 and 17.6339 with mass 0.0135 at the
smaller point. This design also agreed with the optimal design in Atkinson,
Donev and Tobias’s book [22] on page 264.

It is interesting to observe what happens if we had used starting de-
signs all with k = 3 points. the PSO-generated design obtained using 200
particles and 500 iterations was supported at 0.2337, 17.6269 and 17.7176
with mass distribution at these points equal to 0.0135, 0.8983 and 0.0882.
Increasing the number of iterations to 1000 results in a design support at
0.2332, 17.6336 and 17.6626 with mass distribution at these points equal to
0.0135, 0.9535 and 0.03296. These results are consistent with the expecta-
tion that a longer iteration and/or more particles usually produces a higher
quality solution. It also shows a very nice feature of PSO in that when we
over-specify the number of support points the optimal design has, PSO can
also automatically find the optimal design directly; in the above case, the 3
points found above get increasingly closer to 2 points as more iterations are
used, leaving the mass at the smaller point unchanged.

3.2. Locally Optimal Designs for the simple and quadratic logistic models

For modeling binary responses, logistic models are among the most pop-
ular because of their simplicity and ease of interpretation. Frequently, we
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have simple logistic models with two parameters and sometimes quadratic lo-
gistic models with three parameters. We consider locally D and Ds-optimal
designs for estimating all or a user-selected subset of the model parameters.
Probably the first description of the locally D-optimal design for the simple
logistic model was given in a doctoral thesis [23] for the prototype interval
[−1, 1] and reported in Silvey [18]. The formula is complicated for a rela-
tively simple model. When we ran PSO to compare results, we were unable
to verify Ford’s results. A corrected formula for the locally D-optimal de-
sign on an arbitrary interval was given in Sebastiani and Settimi [24] and
we were able to verify the results using the MATLAB P-code available on
the website.

Quadratic logistic models are sometimes employed to explore possible
curvature in the model or for estimating an interesting characteristic of an
agent in a dose response study. For example, in radiology and radiotherapy,
there is often interest in estimating the ratio of the coefficients associated
with the linear and quadratic terms in the quadratic logistic model [25]
Selected locally c-optimal designs for the quadratic logistic model were found
theoretically in Fornius and Nyquist [26]after re-parameterizing the model
in the following way using their notation:

log
Ey

1− Ey
= α+ β(x− µ)2.

Here y is the binary response taking on values 0 or 1 with certain probabil-
ities at dose x. We provide on our website PSO codes for generating locally
D-optimal design on an arbitrary interval and as usual, we began our search
for the locally D-optimal design among all 3- point designs first. As an
example, suppose the design interval is [−3, 1] and the nominal values for
the 3 parameters are α = 2, β = 3 and µ = 0. With a flock size of 128 and
the number of iterations set at 150, the PSO-generated design took 6.623
seconds to find a design equally supported at −0.7270, 0 and 0.7270. The
directional derivative plot confirms the D-optimality of this design. If fewer
number of iterations were used, say 50 iterations, the pattern of the opti-
mal design will also emerge quickly and clearly, except that the weights are
only approximately equal and the extreme support points are less symmetric
about 0. PSO took 3.104 seconds to produce the design and also reports
the design has an efficiency of 99.98%. Interestingly, when the maximum
probability of response is high, there are 4-point locally D-optimal designs.
For instance suppose the design interval is [−1, 1] and the nominal values for
the 3 parameters are α = 3, β = −5 and µ = 0. With a flock size of 256 and
the number of iterations set at 200, the PSO-generated design took 18.317
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Figure 1: The plot of the directional derivative of the D-optimal criterion for the PSO-
generated 4-point design for the quadratic logistic model when (α0, β0, µ0) = (3,−5, 0).

seconds to find a symmetric design supported at −0.9217,−0.5921, 0.5921
and 0.92170. The weights at −0.9217 and at −0.5921 are 0.2966 and 0.2034,
respectively. As always here and elsewhere, in order to ensure a higher
chance that PSO will generate the optimal design, we report flock size and
number of iterations larger than are usually necessary. Frequently, smaller
flock size and smaller number of iterations will suffice which mean shorter
CPU time can usually also produce the optimal design. Figure 1 is obtained
from the P-code and it shows the plot of the directional derivative of the
D-optimal criterion for this PSO-generated 4-point design for the quadratic
logistic model. The plot is bounded above by 0 throughout the design in-
terval with equality at the support points of the PSO-generated design and
so the figure confirms its D-optimality.

Oftentimes in practice, certain parameters are more important or more
biologically meaningful than others. For example, in the Michaelis-Menten
model, the Michaelis-Menten constant is clearly more interesting than the
other parameter and so more resources should be used for estimating the
more interesting parameter. Optimal designs for estimating selected model
parameters are called Ds-optimal designs and they are usually more in-
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volved than D-optimality [20, 27] One partitions the information matrix
appropriately and minimizes only the determinant of the covariance matrix
corresponding to the selected parameters of interest. For example, suppose
we are interested to make inference on the last two parameters in the above
compartmental model, i.e. θ2 and θ3. The optimal design that provides the
best inference for this purpose is the design ξ∗ that satisfies

ξ∗ = argmin
ξ

|M22(ξ)−M21(ξ)M
+
11(ξ)M12(ξ)| = argmax

ξ
|M(ξ)/|M11(ξ)|.

Here M11(ξ) is the top left part or the (1, 1) element of the appropriately
block partitioned 2 × 2 matrix M , M+

11(ξ) is the Moore-Penrose inverse of
the matrix M11(ξ) with similar interpretations for the submatrices M21(ξ)
and M12(xi). The resulting design ξ∗ is called a Ds-optimal design with the
subscript s standing for subset (of the model parameters).

We implemented PSO codes in a few lines of codes for finding locally Ds-
optimal design on the website. For example, the PSO-generated Ds-optimal
design for estimating both β and µ only was found to be unequally sup-
ported at 1, 1.2126 and 1.5725 with mass distribution at these points equal
to 0.1995, 0.3166 and 0.4839. The dose interval was arbitrarily set to [1, 4],
the nominal values for the 3 parameters were α = −2, β = 4 and µ = 0 and
PSO took 3.1 seconds to locate the above design among all 3-point designs
using a flock size of 64 and 100 iterations. This design has at least 99.99%
efficiency even though the directional derivative plot suggests optimality.
If we had used only 25 iterations with everything else the same as before,
the PSO-generated design found in 1.310 seconds still had an efficiency at
least equal to 87.41%. In this case, of course the directional derivative plot
clearly shows that the generated design is not optimal. Additional locally
D-optimal designs and locally and Ds-optimal designs for estimating the
two parameters β and µ in the quadratic logistic regression model are given
in Tables 1 and 2.

There are additional interesting design questions for the quadratic model
that a c-optimal can be useful. Quadratic logistic models are sometimes
employed to explore possible curvature in the model or for estimating an
interesting characteristic of an agent in a dose response study. In the former
case estimating the coefficient associated with the quadratic term provides
an indication of curvature presence in the the model. An example of an
interesting quantity to estimate in radiology and radiotherapy is the ratio
of the coefficients associated with the linear and quadratic terms in the
quadratic logistic model [25]. PSO codes can also be implemented directly
to find these c-optimal designs.
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3.3. Locally optimal designs for a double exponential model

Double-exponential regrowth model was developed by Demidenko [?
] to describe the dynamics of post-irradiated tumors based on the two-
compartment model. One may categorize tumor cells as proliferating or
quiescent and under appropriate assumptions, the natural logarithm of the
tumor volume of the two kinds of cells may be expressed as

yi = α+ ln[βeνti + (1− β)e−φti ] + εi,

where εi ∼ N(0, σ2). After linearizing the model by a Taylor’s first order
expansion of the mean function, the gradient vector is

f(t, θ) = (1,
eνt − eφt

βeνt + (1− β)e−φt
,

βteνt

βeνt + (1− β)e−φt
,

−(1− β)te−φt

βeνt + (1− β)e−φt
)T ,

where θ = (α, β, ν, φ)T is the vector of model parameters. To find the locally
D-optimal design, we assume θ0 is the vector of nominal values for θ and
maximize det(M(ξ)).

Li and Balakrishnan [28] had shown that det(M(ξ) depends only on
β0 and ν0 + φ0, which implies that only two nominal values are required
to generate the locally D-optimal design, i.e. a nominal value for β and
a nominal value for the sum of the two parameters ν and φ. Proceeding
as before, PSO readily generated locally D-optimal designs that matched
those in Li and Balakrishnan [28]. Some of these locally D-optimal designs
for selected nominal parameter settings are given below. PSO codes for
generating the locally D-optimal designs can be downloaded from the cited
website and the reader can run and verify directly the above claimed results.
For instance, suppose we used the default values in the code, namely set
β = ν + φ = 0.2 and the interval is [0, 10]. Then the PSO code with 100
particles and 100 iterations produced in 1.041 seconds the locally D-optimal
design equally supported at 0, 2.660, 6.707 and 10 reported on the first line
in Table 3 in Li and Balakrishnan [28]. Likewise, the same flock size and
same number of iterations will also produce in 1.085 seconds the optimal
design in the last row of their Table where β = 0.8 and ν + φ = 1. Other
cases including the case for verifying the c-optimal designs reported in their
paper can be similarly verified.

3.4. Locally optimal designs for a survival model

Konstantinou et al. [8] investigated a two-parameter exponential model
with type I right censored data, where all individuals entered the study at the
same time and stayed until a user-specified time c or until failure, whichever
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was earlier. Right-censoring occurs when survival times are greater than
c. Let t1, ..., tn be the observed values for n subjects and xi ∈ χ be the
experimental condition at which the ith observation was taken. The design
space could be a dose interval or the set {0, 1} representing two treatment
conditions, say treated or not. The maximum time for observing outcomes
in the study is c = 30 so that all observations are right censored if the
outcome is not observed by that time. They used an exponential regression
model with probability density function f(ti) and a survival function S(ti)
given respectively by

f(ti) = eα+βxi exp(−tie
α+βxi)

and
S(ti) = exp(−tie

α+βxi).

Without loss of generality, we assumed that the first k observations were
failure times and rest n−k observations were right censored. A direct calcu-
lation shows that when all observations are independent, the log-likelihood
is

l(α, β, x1, ..., xn) = log{

k
∏

i=1

f(ti)

n
∏

i=k+1

S(ti)} =

k
∑

i=1

(α+βxi)−

n
∑

i=k+1

ti exp(α+βxi).

It follows that the information matrix using design ξ is

M(ξ, α, β) =

n
∑

1

pi(1− exp(−ceα+βxi))

[

1 xi
xi x2i

]

.

The information matrix M(ξ) depends on unknown parameters α and
β because the model is nonlinear. Four sets of nominal value were used to
find the locally D-optimal design, which is always equally supported at two
points. Using 20 particles and 50 iterations, PSO was able to find the locally
D-optimal designs as claimed in their paper.

In practice, the parameter β in the model always has a clear biological
interpretations and so it is often of interest. If we have a dose response study,
β measures the effect of increasing dose on the response and if we have two
treatment conditions, β represents the effect on the hazard of death when say
the new treatment is compared with the placebo condition. An appropriate
design to use here for estimating β is the locally c-optimal design that gives
the smallest asymptotic variance of the estimate. This design is the same
as the Ds-optimal design for minimizing the criterion

[

0 1
]

M−(ξ)

[

0
1

]

.
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For this two-parameter model, it can be shown that the c-optimal design
is always supported at 0 and 1 but with unequal weights that depend on
the nominal values. Using 20 particles and 50 iterations, PSO was able to
find and verify all the c-optimal designs for the four sets of nominal values
considered in Konstantinou et al. [8] and these weights are shown in Table
3.

4. Discussion

We discussed using PSO to find locally D, Ds and c-optimal designs
for compartmental models, logistic models, a double exponential model use-
ful for monitoring tumor regrowth and estimating parameters in a survival
model. The computational experience we had with these and many other
problems we had looked at were similar to what is reported in the liter-
ature. First, many parameters in the PSO did not seem to matter much;
following convention, we used default parameters in the PSO algorithm in all
our examples. Interestingly, our experience also supports what is reported
in the literature that setting γ1 = γ2 = 2 seemed to be the most efficient
choice; other values tended to take a longer time for the swarm to converge,
if it did at all. The only two parameters that we changed from problem
to problem were number of iterations and the flock size. For optimal de-
signs with a singular information matrix or with Bayesian optimal designs
(not reported here), a larger number of iterations and a larger flock size are
usually required for convergence.

In general, PSO generates the optimal designs very quickly for all our
examples in this paper and elsewhere compared with our experiences with
other algorithms. The CPU time for generating each optimal design each
time for the same setting varies slightly because of the stochastic nature
of the algorithm. Convergence for the PSO was defined as when the design
criterion value does not change by more than 10−7 deviation from the known
optimum value. Table 4 below reports the CPU times for PSO to generate
the various optimal designs averaged over 30 replications, along with their
standard deviations.

From Table 4, we observe that on average, less than 0.3 second in CPU
time was required to find the locally D-optimal designs and a longer time is
required to generate c-optimal designs with a singular information matrix.
In the latter case, CPU time required is generally still short and only required
less than 10 seconds to find the locally c-optimal designs for estimating time
to maximum concentration or the area under the curve in the 3-parameter
compartmental model. Not surprisingly, a larger number of particles to
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cover a larger area of search space to begin with will require a longer time
to find the optimal designs, but the increase in time is quite negligible for
all our examples. We note that the standard deviations of the CPU times
for PSO to generate the design with 20 particles are usually larger than
those when a large number of particles is used. This is because the smaller
number of starting designs (particles) were not enough to cover the design
space adequately and in a consistent manner, and so more variability in the
search capability.

PSO differs from current algorithms for finding optimal designs in a
number of ways. First, unlike the setup for the Fedorov-Wynn’s types of
algorithms for finding optimal designs [9, 10], the design criterion does not
need to be convex and differentiable for PSO to work. PSO requires no
assumption on the function to be optimized. Second, PSO uses many ran-
dom particles from the start to search for the optimum and these particles
communicate with each other; traditional algorithms typically start with a
single design and improves upon it sequentially to locate the optimum. PSO
is therefore appealing because it uses many starting designs (particles) at
the initial stage to cover the search space and so one can expect such an
approach is preferable to the traditional approach that uses only a single
starting design to find the optimal design. Third, the traditional algorithms
usually produce several clusters of support points because at each iteration
one point is added to the current design sequentially and over time one has
to collapse these clusters of points judiciously to a few points that suppos-
edly are the support points of the optimal design. PSO finds the optimal
design neatly; very often it identifies a candidate optimal design after a few
iterations and subsequent iterations only seek to ensure that all the points
and weights of the candidate optimal design agree up to 4 or 5 decimal
places.

Our experience is that in terms of time, PSO typically identifies the op-
timum usually in a few seconds of CPU time for most of the problems we
had worked with. They include different types of optimal designs for non-
linear models with up to 5 parameters or models with rational polynomials
as mean functions. Additionally, we have applied PSO to solve minimax
design problems which are notoriously difficult to solve because they involve
two layers of optimization over two spaces. If one of these spaces is discrete,
as in E-optimal design problems or minimax single-parameter optimal de-
sign problems, time required to determine the optimal design is significantly
shorter than when the two spaces are non-discrete, as in finding a design to
minimize the maximum variance of the predicted response over a compact
design interval. For such minimax problems, where optimization is sought
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over two non-discrete compact spaces, we are not aware of any traditional
algorithm that converge to the minimax optimal design even for linear mod-
els. Our boldest attempt to date was to test PSO search ability for finding
the D-optimal design for the Scheffe’s quadratic mixture model with 10 fac-
tors. This optimization problem involved optimizing hundreds of variables
and we were pleased that PSO was able to get very close to the optimal
design and found a design with a D-efficiency of 99.98%.

In conclusion, particle swarm optimization techniques seem like a very
powerful, interesting but under-utilized tool for solving optimization prob-
lems in the pharmaceutical industry and more so in general statistical re-
search work. We have shown here that PSO is an efficient and flexible
method for finding optimal experimental designs for several biomedical stud-
ies, but clearly the applications are not restricted to biomedicine. A further
strong point for PSO is that, it being a metaheuristic algorithm, it does not
respect the technical requirements imposed on the problem to obtain the op-
timal designs. For example, Konstantinou et al. [8] and Li and Balakrishnan
[28] assumed technical conditions to arrive at the theoretical descriptions of
the optimal designs. PSO does not incorporate the technical conditions in its
search, suggesting that PSO can generate optimal designs for a wider class of
problems, including optimal design problems in this journal [29, 30, 31, 32].

We close with a note that the only role the convexity assumption in
our design criterion plays is that it enables us to definitively confirm the
quality of the generated design. Our repeated successes with PSO this far
have now encouraged us to further apply PSO to find optimal designs under
non-convex criteria, where there is no definitive and general way to check
whether the generated design is optimal. Some examples are the design cri-
teria for finding exact optimal designs, minimum bias designs and designs
that minimize the mean squared error. We hope to report further results in
the near future.
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Table 1: Locally D-optimal designs for estimating the the three parameters in the
quadratic logistic model for different nominal values and different design intervals.

(α0, β0, µ0) Design space Locally D-optimal designs

(0,−1, 0) [−1, 1]

(

−1.0000 0.0000 1.0000
0.3333 0.3333 0.3333

)

(0,−1, 0) [−2, 2]

(

−1.4073 0.0000 1.4073
0.3333 0.3333 0.3333

)

(3,−1, 0) [−1, 1]

(

−1.0000 0.0000 1.0000
0.3333 0.3333 0.3333

)

(3,−1, 0) [−2, 2]

(

−2.0000 −1.2506 1.2506 2.0000
0.3061 0.1939 0.1939 0.3061

)

(3,−1, 0) [−4, 4]

(

−2.0609 −1.3239 1.3239 2.0609
0.2966 0.2034 0.2034 0.2966

)

Table 2: Locally Ds-optimal designs for estimating the two parameters β and µ in the
quadratic logistic model for different nominal values and different design intervals.

(α0, β0, µ0) Design space Locally Ds-optimal designs for estimating β and µ

(0,−1, 0) [−1, 1]

(

−1.0000 0.0000 1.0000
0.3423 0.3153 0.3423

)

(0,−1, 0) [−2, 2]

(

−1.5449 0.0000 1.5449
0.3779 0.2442 0.3779

)

(3,−1, 0) [−1, 1]

(

−1.0000 0.0000 1.0000
0.3042 0.3916 0.3042

)

(3,−1, 0) [−2, 2]

(

−2.0000 −1.0516 1.0516 2.0000
0.2963 0.2037 0.2037 0.2963

)

(3,−1, 0) [−4, 4]

(

−2.1428 −1.1867 1.867 2.1428
0.3063 0.1937 0.1937 0.3063

)

Table 3: Weights of selected locally c-optimal designs for the Survival Model.

Nominal values p1 p2
α0 = −2.163, β0 = −0.1 0.498 0.502

α0 = −2.163, β0 = −0.405 0.491 0.509
α0 = −2.163, β0 = −1.526 0.425 0.575
α0 = −2.163, β0 = −2.623 0.324 0.676
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Table 4: CPU times in seconds (standard deviations) required by PSO to generate the
various locally optimal designs averaged over 30 replications.

Particle D-optimal design for AUC-optimal design for Time-To-Max Conc-optimal
number compartmental model compartmental model design for compartmental model

20 1.477 (4.005) 4.514 (2.455) 6.511 (2.871)
40 0.131 (0.027) 4.796 (3.822) 6.012 (1.808)
60 0.146 (0.032) 6.026 (1.346) 6.674 (2.064)
80 0.160 (0.022) 6.137 (1.867) 7.427 (2.089)
100 0.179 (0.018) 6.312 (1.548) 8.565 (2.195)
120 0.193 (0.020) 6.295 (1.924) 9.044 (2.711)
140 0.225 (0.026) 7.513 (1.367) 9.302 (2.236)
160 0.240 (0.031) 6.608 (2.362) 9.273 (2.530)
180 0.251 (0.029) 7.609 (2.730) 10.233 (3.325)
200 0.275 (0.020) 8.741 (2.519) 9.708 (3.082)

Particle D-optimal design for D-optimal design for c-optimal design for
number double exp. model survival model survival model

20 0.773 (2.117) 0.042 (0.021) 0.010 (0.004)
40 0.483 (0.258) 0.040 (0.004) 0.011 (0.003)
60 1.172 (2.641) 0.047 (0.005) 0.013 (0.002)
80 0.990 (1.138) 0.056 (0.007) 0.014 (0.001)
100 1.074 (1.043) 0.065 (0.007) 0.016 (0.002)
120 1.562 (1.226) 0.073 (0.008) 0.018 (0.003)
140 1.293 (0.615) 0.084 (0.008) 0.020 (0.002)
160 1.802 (1.780) 0.092 (0.009) 0.023 (0.003)
180 2.443 (2.428) 0.098 (0.009) 0.025 (0.002)
200 1.617 (0.773) 0.104 (0.017) 0.026 (0.002)
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