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Abstract Inference based on ratio of two independent Poisson rates is common in epidemiological studies.

We study the performance of a variety of unconditional MOVER methods of combining separate confidence

intervals for two single Poisson rates to form a confidence interval for their ratio. We consider confidence

intervals derived from (i) the Fieller’s theorem, (ii) the logarithmic transformation with the delta method

and (iii) the substitution method. We evaluate the performance of 13 such types of confidence intervals by

comparing their empirical coverage probabilities, empirical confidence widths, ratios of mesial non-coverage

probability and total non-coverage probabilities. Our simulation results suggest that the MOVER Rao score

confidence intervals based on the Fieller’s theorem and the substitution method are preferable. We provide

two applications to construct confidence intervals for the ratio of two poisson rates in a breast cancer study

and in a study that examines coronary heart diseases incidences among post menopausal women treated with

or without hormones.

Keywords Agresti-Coull Binomial method · Bayes interval · Fieller’s theorem · Jeffreys interval ·MOVER

method · Rao score
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1 Introduction

The Poisson probability model can be used to describe the occurrence of a wide variety of rare events

(Haight 1967). It is frequently used when the events of interest occur randomly in time or space. In many

biological, epidemiological, and medical studies, comparing Poisson rates (i.e. the number of occurrences per

unit of time or space) from two independent samples is of great interest. For instance in a breast cancer

study two groups of women were compared to determine whether those who had been examined using X-ray

fluoroscopy during treatment for tuberculosis had a higher rate of breast cancer than those who had not

been examined using X-ray fluoroscopy (Rothman & Greenland 1998; Graham et al. 2003). Forty-one cases

of breast cancer in 28010 person-years at risk were reported in the treatment group with women receiving

X-ray fluoroscopy and 15 cases of breast cases in 19017 person-years at risk in the control group with women

not receiving X-ray fluoroscopy. In this trial, the goal was to determine whether the two Poisson rates were

equivalent by comparing limits of a 100(1− α)% confidence confidence for the ratio of the two Poisson rates

with the equivalence limits, say (δ0, δ1) with δ0 and δ1 being some clinical acceptable threshold (usually δ0

= 1/δ1). This means that if the 100(1 − α)% confidence interval for the ratio of the two Poisson rates lies

entirely inside the interval (δ0, δ1), one concludes that the two treatments are equivalent. Consequently, the

construction of a confidence interval for the ratio of two Poisson rates plays an important role here.

A variety of approaches have been proposed for constructing a confidence interval for the ratio of two

Poisson rates. There are three ways to construct a confidence interval for the ratio of two independent Poisson

means (Sahai & Khurshid 1993) and there are further extensions of their method (Graham et al. 2003; Price

& Bonett 2000). Tang and Ng (2004) studied the performance of three non-iterative confidence intervals

for the ratio of two Poisson rates and noted that the aforementioned intervals were respectively identical to

the square-root transformation interval, the interval based on converting the Wilson’s interval for binomial

parameter, and the log-linear model Wald’s interval.

We use unconditional approaches to study confidence intervals for the ratio of two Poisson rates. For this

purpose we construct separate confidence intervals for the two individual Poisson rates, then combine them

into a single confidence interval for the ratio of the rates using the MOVER approach. An alternative method

generally referred to as the square-and-add approach can also be a simple and effective method for finding a

confidence interval for a difference between two independent proportions when separate confidence intervals

for the two individual proportions are available (Donner & Zou 2002). The square-and-add approach preserves

boundary-respecting properties, which makes it particularly suitable for comparing proportions. Justifications

for the procedure were detailed in and summarized under the acronym MOVER (Method of variance estimates

recovery) in a few papers (Zou & Donner 2008; Zou 2008). The MOVER and square-and-add methods combine

confidence intervals based on separate samples and both methods are now known to be equivalent.

The aims of this paper are (i) to show that the MOVER method can be applied to find a confidence
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interval for the ratio of the two Poisson rates using separate confidence intervals constructed for each of the

Poisson rates, (ii) to show that unequal sampling time frames can be directly accounted for in our analysis,

and (iii) to use a simulation study to evaluate the performance of the MOVER method for finding a confidence

interval for the ratio of the two Poisson rates when different methods of constructing confidence intervals for

the separate confidence intervals are used. Specifically, we use a variety of performance measures to compare

different methods and make recommendations how the MOVER can be best used to find a confidence interval

for the ratio of the two Poisson rates.

Section 2 presents various MOVER approaches for constructing confidence intervals for the ratio of two

Poisson rates and call them Fieller-type confidence intervals. We briefly review confidence intervals based

on the delta method and confidence intervals based on the substitution method. For a single Poisson rate,

we consider four types of confidence intervals constructed from the “Second Normal” method, the Rao score

method, the Freeman and Tukey method and the Jeffrey’s method. We also review non-MOVER types of

confidence interval found from the mesially shrunk logit Wald method, the Wilson’s Binomial method (WBM)

and the Agresti-Coull’s Binomial method (ACBM). We select these methods to study because they are re-

portedly the better-performing methods in the literature for finding accurate confidence interval(Brown et al.

2003; Swift 2009). In Section 3, we conduct a simulation study and use different performance measures to

evaluate the performance of the MOVER method and other methods for finding a confidence interval for the

ratio of two Poisson rates. In Section 4, we analyze data from a breast cancer study and a prospective study

for examining the relationship between hormone use and coronary heart disease in post-menopausal women.

Section 5 concludes with a discussion.

2 Confidence Intervals for the Ratio of two Poisson Rates

Suppose that two independent Poisson processes with parameters λ1 and λ2 are observed over times or

space of size t1 and t2, respectively. Let X1 and X2 be the numbers of events in the two groups. That is,

Xi ∼ Poisson(tiλi) for i = 1, 2. Our main goal is to construct a confidence interval for R = λ2/λ1 using a

variety of unconditional methods and determine which method or methods perform well. Such a ratio can be

used to make inference on many types of problems, for example, on the number of automobile accident death

on highways before and after a safety training program (Stapleton 1995) or the number of leukemia event rate

per year in a pre and post nuclear accident period (Fleiss et al. 2003) and in the clinical applications described

in Section 4.

It is instructive to first briefly review the MOVER method for finding a confidence interval for a risk differ-

ence. We then apply the method to find confidence interval for the ratio of the two Poisson rates. Both require

separate confidence intervals for the two single rates and for this reason, we also briefly review various methods

for finding a confidence interval for a single Poisson rate and different methods for estimating R = λ2/λ1 using

2



a confidence interval. Justifications for the confidence limits can be found in the references provided.

2.1. MOVER confidence intervals (MOVER-D)

Suppose we wish to construct a 100(1− α)% two-sided confidence interval for θ1 − θ2 and its lower limit

is L and its upper limit is U . Let θ̂1 and θ̂2 be the estimates for θ1 and θ2, and let V ar(θ̂1) and V ar(θ̂2) be

their corresponding variances. By the Central Limit Theorem, if θ̂1 and θ̂2 are independent, the lower limit L

and the upper limit U are given by

L = θ̂1 − θ̂2 − zα/2

√
V ar(θ̂1) + V ar(θ̂2)

and

U = θ̂1 − θ̂2 + zα/2

√
V ar(θ̂1) + V ar(θ̂2).

Unfortunately, this procedure performs well only when sample sizes are sufficiently large or when the sampling

distributions of θ̂i (i = 1, 2) are close to normal distribution. Noticing the duality between the 2-sided

hypothesis testing problem and the confidence interval construction problem, it is easy to see that L and U

can be regarded as the minimum and maximum parameter values that satisfy

[(θ̂1−θ̂2)−L]2

Var(θ̂1)+Var(θ̂2)
= z2α/2 and [U−(θ̂1−θ̂2)]

2

Var(θ̂1)+Var(θ̂2)
= z2α/2,

respectively. Let (l1, u1) and (l2, u2) be any two-sided (1 − α)100 percent confidence intervals for θ1 and θ2,

respectively. Among the plausible values for θ1 and θ2 in each of the two intervals, the values closest to the

minimum L and maximum U are respectively l1−u2 and u1−l2 in the spirit of the score-type confidence interval

(Bartlett 1953). By the Central Limit Theorem, if we set θ1 = l1 and θ2 = u2, the variance estimates can now

be recovered as V̂ ar(θ̂1) = (θ̂1 − l1)
2/z2α/2 and V̂ ar(θ̂2) = (u2 − θ̂2)

2/z2α/2 (Stapleton 1995). Accordingly, the

lower limit is

L = θ̂1 − θ̂2 −
√
(θ̂1 − l1)2 + (u2 − θ̂2)2 (1)

and similarly, the upper limit is

U = θ̂1 − θ̂2 +

√
(u1 − θ̂1)2 + (θ̂2 − l2)2. (2)

2.2. MOVER Fieller-type confidence interval (MOVER-R) To construct a confidence interval for R

= λ2/λ1, first consider finding a confidence interval for λ2 −Rλ1. Let L
′ and U ′ denote the lower and upper

confidence limits for R respectively. For a given significance level α, these limits satisfy Pr(L′ ≤ λ2/λ1 ≤
U ′) = 1− α, or equivalently,

Pr(λ2 − U ′λ1 ≤ 0 ≤ λ2 − L′λ1) = 1− α.
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When values of L′ and U ′ are fixed, we apply (1) to λ2 − L′λ1 and (2) to λ2 − U ′λ1 with θ1 = λ2 and θ2 =

λ1 and obtain

L′ =
λ̂2λ̂1 −

√
(λ̂2λ̂1)2 − l1(2λ̂2 − l1)[u2(2λ̂1 − u2)]

u2(2λ̂1 − u2)
(3)

and

U ′ =
λ̂2λ̂1 +

√
(λ̂2λ̂1)2 − u1(2λ̂2 − u1)[l2(2λ̂1 − l2)]

l2(2λ̂1 − l2)
(4)

where λ̂2 = X2/t2, λ̂1 = X1/t1 and ti is the sampling time frame for Xi, i = 1, 2. Other authors have arrived

at the same set of equations as well (Li et al. 2010; Donner and Zou 2010; Zou and Donner 2010).

To obtain confidence interval for λ2/λ1 using (3) and (4), we require two separate confidence intervals,

denoted by (l1, u1) and (l2, u2), for θ1 = λ2 and θ2 = λ1, respectively. We now list various formulae for the

confidence limits (l1, u1) and (l2, u2) for the two individual Poisson rates when t1, t2 are the observed time

frames for the two processes. They include

(1) the “Second Normal” interval (Byrne & Kabaila 2005):

li =
Xi− 1

2+zα/2

√
Xi− 1

2

ti
and ui =

Xi+
1
2+zα/2

√
Xi+

1
2

ti
, i = 1, 2.

(2) the Rao score interval (Altman et al. 2000):

li =
Xi+

1
2 z

2
α/2−zα/2

√

Xi+
1
4 z

2
α/2

ti
and ui =

Xi+
1
2 z

2
α/2+zα/2

√

Xi+
1
4 z

2
α/2

ti
, i = 1, 2.

(3) the Freeman and Tukey interval (Byrne & Kabaila 2005):

li =
1
4 [(

√
Xi+

√
Xi+1−zα/2)

2−1]

ti
and ui =

1
4 [(

√
Xi+

√
Xi+1+zα/2)

2−1]

ti
, i = 1, 2.

(4) The Jeffreys interval

A Bayesian confidence interval can be constructed from the Jeffrey’s prior which is proportional to the

square root of the determinant of the Fisher information matrix (Brown et al. 2003). The equal tailed Jeffrey’s

intervals for the Poisson rate is determined from the percentiles of the standard gamma distribution:

li = Γα/2,Xi+1/2,1/ti and ui = Γ1−α/2,Xi+1/2,1/ti , i = 1, 2.

2.3. MOVER logarithmic transformation confidence interval (MOVER-DL)

A simple method to construct a confidence interval for the ratio λ2/λ1 is to first consider finding a confi-

dence interval for log(λ2/λ1) (i.e., logλ2 − logλ1). Let (Llog, Ulog) be such an interval. From (1) and (2), we

obtain a 100(1− α)% confidence interval for the log rate difference and so a 100(1− α)% confidence interval

for λ2/λ1 is [exp(Llog), exp(Ulog)]. To obtain confidence interval for logλ2 − logλ1, we need two separate

confidence intervals for logλ2 and logλ1. There are two common methods:
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(A) Delta method

Let θ̂ be an estimator for a parameter θ of interest and let σ2 be its variance. According to the delta

method, we have log(θ̂) ≈ log(θ) + (θ̂ − θ)/θ and V ar[log(θ̂)] ≈ σ2/θ2 (Stamey & Hamilton 2006). It follows

that a 100(1− α)% confidence interval for log(θ) is given by

[log(θ̂)− zα/2s/θ̂, log(θ̂) + zα/2s/θ̂],

where s2 is an estimate of σ2. For our two samples, we have s21 = λ̂1/t1, θ̂1 = λ̂1 = (X1 + 0.5)/t1 (or

θ̂1 = λ̂1 = X1/t1), s
2
2 = λ̂2/t2, θ̂2 = λ̂2 = (X2 + 0.5)/t2 (or θ̂2 = λ̂2 = X2/t2). It is not clear which of the two

estimator for λi performs better as an interval estimator (Stamey & Hamilton 2006). Our simulation study

also includes comparison of the two estimators: λ̂i = (Xi + 0.5)/t1 or λ̂i = (Xi)/ti, i=1,2.

(B) Substitution method

The second method is the simple substitution method. As the name suggests, it substitutes a 100(1−α)%

confidence interval for θ, say [lθ, uθ] by a 100(1− α)% confidence interval for log θ by

[log(lθ), log(uθ)].

Accordingly, the four types of confidence intervals for θ1 = λ2 and θ2 = λ1 described in Section 2.2 can also

be applied to obtain a confidence interval for the ratio of the two rates.

2.4. Three other confidence intervals for the ratio of two Poisson rates

There are at least three additional sets of confidence limits for the ratio of two Poisson rates (Tang & Ng

2004; Price & Bonett 2000).

(i) Mesially shrunk logit Wald method

Some authors (see Tang & Ng 2004; Price & Bonett 2000) proposed the statistic ln[(X2 +0.5)/(X1+0.5)]

was used to derive the following Wald confidence interval for φ = t1λ2/(t2λ1):

φL = t1
t2

(
X2+0.5
X1+0.5

)
exp

[
−zα/2

√
1

X1+0.5 + 1
X2+0.5

]
and φU = t1

t2

(
X2+0.5
X1+0.5

)
exp

[
zα/2

√
1

X1+0.5 + 1
X2+0.5

]
.

This implies that the limits of the confidence interval for R = λ2/λ1 are

L =
(

X2+0.5
X1+0.5

)
exp

[
−zα/2

√
1

X1+0.5 + 1
X2+0.5

]
and U =

(
X2+0.5
X1+0.5

)
exp

[
zα/2

√
1

X1+0.5 + 1
X2+0.5

]
.

(ii) Wilson’s Binomial method
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Given X2 + X1 = y, X2 follows the binomial distribution B(y, π) with π = λ2/(λ1 + λ2). If [πL, πU ]

ia a confidence interval for π, the confidence interval limits for R = λ2/λ1 are L = (1 − πU )/(πU ) and

U = (1 − πL)/(πL). Setting π̂ = X2/y, we have

πL = y
y+z2

α/2

{
π̂ +

z2
α/2

2y − zα/2

√
1
y [π̂(1− π̂) +

z2
α/2

4y ]

}
and πU = y

y+z2
α/2

{
π̂ +

z2
α/2

2y + zα/2

√
1
y [π̂(1− π̂) +

z2
α/2

4y ]

}
.

For different time frames, the confidence interval limits for φ = t1λ2/(t2λ1) are φL = (t1 − t1πU ))/(t2πU )

and φU = (t1 − t1πL)/(t2πL). The corresponding limits for R can then be easily deduced.

(iii) Agresti-Coull Binomial method

We let X2 +X1 = y as before and let π̂α = (y + 2)/(y + 4). The confidence limits from the Agresti-Coull

Binomial method are

πL = π̂α − zα/2

√
π̂α(1−π̂α)

y+4 and πU = π̂α + zα/2

√
π̂α(1−π̂α)

y+4 .

The point estimate of the success probability is not the sample proportion, but one that often refers to

as a modified proportion estimate where we “add two successes and add two failures” to the sample propor-

tion. The confidence interval for the ratio of the two Poisson rates is then given by (L,U) as in (i) and (ii) above.

3 A Simulation Study

In this section, we evaluated the performance of different types of confidence intervals constructed using

the various methods in the previous section. For a given set of values for ti and λi, i = 1, 2, let L and U

denote respectively, the lower and upper limit of the constructed confidence interval. Confidence intervals for

estimating the ratio R constructed from different methods were compared using the following performance

measures: exact coverage probabilities (ECPs), expected widths (EWs), mesial non-coverage probabilities

(MNCP) and distal non-coverage probabilities (DNCP). We expect good methods for constructing confidence

intervals have their ECP s close to the pre-specified 1 − α level. When the ECPs are well controlled, one

then prefers confidence intervals with shorter widths: i.e., smaller EW values. When the EW are smaller,

one would also prefer MNCP/NCP to be between 0.4 and 0.6. These measures are discussed in Newcombe

(1998) and Krishnamoorthy and Thomson (2004), and are defined as follows

ECP =
∞∑

k1=0

∞∑

k2=0

e−t1λ1(t1λ1)
k1

k1!

e−t2λ2(t2λ2)
k2

k2!
I{R ∈ [L,U ]},
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EW =

∞∑

k1=0

∞∑

k2=0

e−t1λ1(t1λ1)
k1

k1!

e−t2λ2(t2λ2)
k2

k2!
(U − L),

MNCP =

∞∑

k1=0

∞∑

k2=0

e−t1λ1(t1λ1)
k1

k1!

e−t2λ2(t2λ2)
k2

k2!
I{R ∈ A1}, and

DNCP =

∞∑

k1=0

∞∑

k2=0

e−t1λ1(t1λ1)
k1

k1!

e−t2λ2(t2λ2)
k2

k2!
I{R ∈ A2},

where

A1 =





(0, L), when R > 1;

(0, L)
⋃
(U,+∞), when R = 1;

(U,+∞), when R < 1;

A2 =





(U,+∞), when R > 1;

∅, when R = 1;

(0, L), when R < 1;

Clearly, computing the exact coverage probability and the expected widths directly from the theoretical

distribution involve infinite series and approximations. Alternatively, following Tang and Ng (2004), Ng and

Tang (2005), Ng et al. (2007) and Tang et al. (2009), one may choose to perform, as we did here, a Monte

Carlo simulation study to evaluate the various methods for constructing the intervals. The simulation studies

were conducted with different parameter settings. In the first simulation study, we considered scenarios with

different sampling time frames as measured by d = t2/t1 = 0.5, 1.0, 2.0 and λ1 and λ2 were generated from the

uniform distributions (0.5, 5) and (5, 10) and different type 1 error rates α = 0.01, 0.05, 0.10, 0.15, 0.20. Without

loss of generality we assumed throughout that t1 = 1. For a fixed α and each of the 6 combinations of the three

d values and the 2 values from uniform variates, we used MATLAB to generate 1000 λ1 and 1000 λ2 values and

each time computed the corresponding value of R = λ2/λ1. This procedure was repeated M = 10000 times to

independently generate a value X
(m)
1 from Poisson(λ1) and a value X

(m)
2 from Poisson(dλ2) and construct an

α-sized confidence interval with limits L(m) and U (m). For each of the 3× 5× 1000× 2 = 30000 sets of three d

values, five α levels, 1000 λ1 values and 1000 λ2 values, we computed estimates ÊCP , ÊW , ̂MNCP , ̂DNCP

for the above 4 measures based on M = 10000 sets of X
(m)
1 and X

(m)
2 values. The corresponding confidence

limits L(m) and U (m) for each of the 13 methods listed in Table 1 were then computed and compared. The

reader may write to the first author and request the code used in our simulation study.
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Table 1. Summary of abbreviations for various confidence interval estimators

Abbreviation Confidence interval CI

Dlog1 : 1 MOVER logarithmic transformed CI based on delta method (θ̂i = (Xi + 0.5)/ti)

Dlog2 : 2 MOVER logarithmic transformed CI based on delta method (θ̂i = (Xi/ti)

SNIlog : 3 MOVER Second Normal CI based on substitution method

RSIlog : 4 MOVER Rao score CI based on substitution method

FTIlog : 5 MOVER Freeman and Tukey CI based on substitution method

FJIlog : 6 MOVER Jeffreys CI based on substitution method

FSNI: 7 MOVER Second Normal CI based on Fieller’s theorem

FRSI: 8 MOVER Rao score CI based on Fieller’s theorem

FFTI: 9 MOVER Freeman and Tukey CI based on Fieller’s theorem

FJI:10 MOVER Jeffreys CI based on Fieller’s theorem

AWM:11 CI based on mesially shrunk logit Wald method

WBM:12 CI based on Wilson’s Binomial method

ACBM:13 CI based on Agresti-Coull Binomial method

We evaluate the performance of each method using conventional performance measures for interval esti-

mators, see for example (Tang et al. 2009). As before let R be the ratio of the two poisson rates, let M be

the number of repetitions used in the simulation, let I(.) be the indicator function and let (L(m), U (m)) be the

confidence interval obtained from the m-th simulated run.

(1) Empirical Coverage Probability

The empirical coverage probability is defined by

ÊCP =

M∑

m=1

e−t1λ1(t1λ1)
X

(m)
1

X
(m)
1 !

e−t2λ2(t2λ2)
X

(m)
2

X
(m)
2 !

I{R ∈ [L(m), U (m)]}.

For WBM and ACBM , whenever X1 = X2 = 0, we defined L = 0 and U = ∞; U = ∞ whenever X1 = 0 but

X2 > 0; and L = 0 whenever X2 = 0 but X1 > 0. For ACBM, we set L to be the L of WBM whenever U > 1;

and U to be the U of WBM whenever L ≤ 0.

(2) Expected Interval Width

An obvious measure of the usefulness of the interval estimator is its expected width. To preserve invariance
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properties, we measured the width of the confidence interval on an alternative transformed scale as follows

(Newcombe 2012):

ÊW =

M∑

m=1

e−t1λ1(t1λ1)
X

(m)
1

X
(m)
1 !

e−t2λ2(t2λ2)
X

(m)
2

X
(m)
2 !

[
U (m)

1 + U (m)
− L(m)

1 + L(m)

]
.

When X1 = 0 and X2 = 0, the resulting confidence intervals from ACBM and WBM produced either infinite

upper confidence limits or were very wide. Accordingly, we abandoned confidence intervals constructed from

these methods for conditional expected confidence width calculation.

(3) Empirical Mesial Non-Coverage Probabilities (MNCPs) and Distal Non-Coverage Probabilities (DNCPs)

These are relatively new ways to judge whether the method used to construct a confidence interval performs

adequately by examining the interval location in terms of its mesial and distal non-coverage probabilities. The

terms mesial and distal are defined relative to the true value of R. For R > 1, when the interval is too far to

the right to include R, this is sometimes referred to as non-coverage at the left or mesial end of the interval.

Conversely, when the interval is too far to the left to include R, this is sometimes referred to as non-coverage

at the right or distal end of the interval. However, if R < 1, when the interval is too far to the right to include

R, this is sometimes referred as non-coverage at the left or distal end of the interval. Conversely, when the

interval is too far to the left to include R, this is sometimes referred to d as non-coverage at the right or mesial

end of the interval. Consequently, the definitions of MNCP and DNCP need to be interchanged here. When R

= 1, left and right non-coverage should be balanced. By definition, only mesial non-coverage can occur. The

mesial non-coverage probabilities (MNCP) and distal non-coverage probabilities (DNCP) can be estimated by

̂MNCP =
M∑

m=1

e−t1λ1(t1λ1)
X

(m)
1

X
(m)
1 !

e−t2λ2(t2λ2)
X

(m)
2

X
(m)
2 !

I{R ∈ A
(m)
1 }, and

̂DNCP =

M∑

m=1

e−t1λ1(t1λ1)
X

(m)
1

X
(m)
1 !

e−t2λ2(t2λ2)
X

(m)
2

X
(m)
2 !

I{R ∈ A
(m)
2 },

where

A
(m)
1 =





(0, L(m)), when R > 1;

(0, L(m))
⋃
(U (m),+∞), when R = 1;

(U (m),+∞), when R < 1;

A
(m)
2 =





(U (m),+∞), when R > 1;

∅, when R = 1;

(0, L(m)), when R < 1;

The ratio ̂MNCP/( ̂MNCP+ ̂DNCP ) = ̂MNCP/N̂CP clearly lies between 0 and 1 and provides an effective

location assessment separate from the overall coverage assessment. This ratio measure is considered generally

as satisfactory if it is between 0.4 and 0.6. We call the interval too mesially located if it is below 0.4 and too

distally located if it is above 0.6. Further details are in Newcombe (1998, 2012).
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Figures 1 to 3 display our simulation results using box plots for the various measures. We recall that each

box in the box plots contains the middle 50% of the data points in a data set with the median highlighted, the

upper edge of the box represents the 75th percentile of the data set, and the lower edge represents the 25th

percentile. The whiskers extend to the minimum and maximum values in the data set, with the maximum

extension bounded to be 1.5 times of the inter-quartile range.

Each figure has several subfigures. Each subfigure displays the box plots of the measure of interest for all

13 methods and numbered as in Table 1. Different figures correspond to different settings for the parameters

in the simulation study when some of the parameters are fixed and, each subfigure corresponds a selected

varying parameter. We note that when R = 1, only mesial non-coverage can occur and so in the middle panel

of the 3rd row of Figure 2, all MNCP/NCP values should be 1 (Newcombe, 1998, 2012) and this is what the

subfigure suggests.

Following Singer (2010), it is also helpful to investigate the effect of the Poisson rate on the performance

of the various confidence intervals. Figure 4 displays results from a simulation study that briefly considers the

case when d = t1 = t2 = 1, α = 0.05 and λ1 = λ2. We generated 1000λ1 values from uniform (0.5, 10) and used

the same procedure as before to evaluate the performance of the confidence intervals. For all combinations

of d, R and λ, we summarize the results in Table 2 in terms to mean coverage probability (MCP), minimum

coverage probability (MinCP), mean expect width (MEW), mean MNCP/NCP . Figure 5 is a graphical

representation of Table 2 when α = 0.2, 0.1, 0.05 and 0.01.

We summarize our main findings from the simulation studies as follows.

• (1) Effect of different sampling time frame ratios d: Figure 1 shows the coverage probability, expected

width and the ratio MNP/NCP for the 13 types of 95% confidence intervals for different sampling time

frame ratios d = 0.5, 1 and 2. Confidence intervals constructed from FFTI: 9 are always liberal. The

confidence intervals obtained from ACBM: 13 when d = 2 and from FTIlog: 5 when d = 1 are slightly

liberal. The two methods RSIlog: 4 and FRSI: 8 outperform the others in the sense that the coverage

probabilities on average are close to the nominal levels and expected widths are shorter than those

constructed from other confidence intervals. For a pre-specified confidence level, the mean expected

confidence width decreases as the sampling ratio d increases.

• (2) Effect of different Poisson rates R: Figure 2 summarizes results from the second simulation study

with α = 0.05 and d = 1 when R = 0.5, 2/3, 1 and 1.5, 2. In the figure, R < 1 correspond to the case

when R = 0.5and2/3, and R > 1 correspond to the case when R = 1.5and2. Except for the two mehtods

FFTI: 9 and FTIlog: 5, we observe that all other methods seem robust to varying values of R. The

expected widths of FJIlog: 6 and FJI: 10 are wider than those of the other confidence intervals. For the
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commonly used 95% confidence level and equal sampling time frames (d=1), the mean expected width

decreases as the value of the ratio of the Poisson rates R increases.

• (3) Effect of α: As expected, from Figures 3, the medians of the expected widths increase with increasing

nominal levels (or decreasing α values). When α values increase, SNIlog: 3, FTIlog: 5 and FSNI:7 tend

to be slightly liberal.

• (4) Effect of λ: To better examine the effect of λ, the coverage probabilities and widths of the confidence

intervals are plotted against the values of λ with α = 0.05 and d = 1 in Figures 4. For λi ∈ (0.5, 5)(i =

1, 2), FFTI: 9 and FTIlog: 5 are liberal and the expected widths of FJIlog: 6 and FJI: 10 are wider.

For λi ∈ (5, 10)(i = 1, 2), except AWM: 11, all other methods are robust. Further, the plots indicate

that the expected widths of all the confidence intervals decrease when the common value of λ1 and λ2

increases.

• (5) Effect of combination: From Table 2, the RSIlog : 4 and FRST : 8 methods perform well in the

sense that they (1) well control their expected coverage probabilities around the pre-assigned coverage

level; (2) generally yield balanced mesial and distal non-coverage probabilities, and (3) have larger

MinCP. These observations led us to recommend the hybrid Rao score confidence interval based on the

Fieller’s theorem and substitution method (i.e., RSIlog and FRSI) for practical applications.

4 Examples

4.1. Breast cancer study

Our first application concerns a breast cancer study (Ng & Tang 2005). In the study, X1 and X2 were,

respectively, the number of reported cancer cases in patients who were examined using X-ray fluoroscopy during

treatment for tuberculosis and those who had not been examined using X-ray fluoroscopy. Here, X1 = 41,

X2 = 15, t1 = 28010, t2 = 19017. The ratio between the incidence rates of receiving X-ray fluoroscopy

and not receiving X-ray fluoroscopy is estimated to be 0.539. Table 3 reports the 95% confidence intervals

for λ2/λ1 based on various methods. Since all resulting confidence intervals do not contain the value 1, our

conclusion is that the incidence rate of breast cancer is greater for women who had been examined using X-ray

fluoroscopy during treatment for tuberculosis that those who had not been examined using X-ray fluoroscopy.

This result is the same as the one reported elsewhere (Ng et al. 2007), where their inference was based on the

risk difference.

4.2. Coronary Heart Disease

Consider a prospective study examining the relationship of post-menopausal hormone use and coronary

heart disease (CHD) (see Stampfer & Willett 1985). With postmenopausal hormone use in 54308.8 person
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years, there are 30 CHD cases; without postmenopausal hormone use in 51477.5 person-years, there are 60

CHD cases. In this study, we have X1 = 30, X2 = 60, t1 = 54308.8, t2 = 51477.5. The ratio between the

incidence rate of CHD in post-menopausal hormone-use group and non-hormone-use group is estimated to be

2.11. Table 4 reports the 90% confidence intervals for λ2/λ1 based on various methods are reported. Since all

resulting confidence intervals do not contain the value 1, our conclusion is that the incidence rates of CHD in

the non-hormone-use group is higher than that in post-menopausal hormone-use group. This result agrees with

the one reported elsewhere (Gu et al. 2008), where their inference was based on a hypothesis testing framework.

5 Conclusion

We proposed an unconditional MOVER method for constructing a confidence interval for the ratio of

two Poisson rates by combining the two separate confidence intervals for the two individual Poisson rates.

Specifically, we incorporated the MOVER method to construct confidence intervals for the ratio of two Poisson

rates using the (i) Fieller’s theorem; (ii) logarithmic transformation based on the delta method; and (iii) the

substitution method. According to our simulation results, the MOVER Rao score confidence interval based on

the Fieller’s theorem and the substitution method outperform the rest in a number of ways. In particular, the

method (1) adequately controls the expected coverage probabilities around the pre-assigned coverage level; (2)

have shorter interval widths; (3) generally yields balanced mesial and distal non-coverage probabilities. Based

on these empirical findings, we highly recommend the MOVER Rao score confidence intervals based on the

Fieller’s theorem and substitution method (i.e., RSIlog and FRSI) for making inference on the ratio of two

Poisson rates in practical applications.
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Figure 1: Box plots of coverage probability (top row), expected width (middle row) and the ratio

MNCP/NCP (bottom row) for the 13 CIs when α = 0.05 and different sampling time frame ratios d.
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Figure 2: Box plots of coverage probability (top row), expected width of confidence interval (middle row)

and the ratio MNCP/NCP (bottom row) for the 13 CIs when α = 0.05, d = 1.0 and different values of the

Poisson rates Ratio R.

CP

0.6

0.7

0.8

0.9

1.0

1 2 3 4 5 6 7 8 9 10 11 12 13

0<R<1

0.6

0.7

0.8

0.9

1.0

R=1.0

0.6

0.7

0.8

0.9

1.0

R>1

Wi
dth

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10 11 12 13

0<R<1

2

4

6

8

10

12
R=1.0

2

4

6

8

10

12
R>1

MN
CP

/NC
P

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7 8 9 10 11 12 13

0<R<1
0.0

0.2

0.4

0.6

0.8

1.0

R=1.0
0.0

0.2

0.4

0.6

0.8

1.0

R>1

16



Figure 3: Box plots of coverage probability (top row), expected width of confidence interval (middle row)

and the ratio MNCP/NCP (bottom row) for the 13 CIs for different α levels.
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Figure 4: Plots of coverage probability (CP) and expected width (EW) of the 13 confidence intervals when

α = 0.05, d = 1.0 and λ1 = λ2 has values between 0.5 and 10:
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Table 2: Mean coverage probability(MCP), minimal coverage probability (MinCP), mean expected width
(MEW) and mean ratio MNCP/NCP of the 13 types of confidence intervals for various parameter

configurations when λ1 = λ2 is repeatedly sampled from a uniform distribution on (0.5, 10) 1000 times.
1− α method MCP MinCP MEW mean MNCP/NCP
0.80 Dlog1: 1 0.815 0.769 1.012 0.483

Dlog2: 2 0.810 0.765 1.051 0.489
SNIlog: 3 0.831 0.449 1.113 0.495
RSIlog: 4 0.804 0.643 0.988 0.493
FTIlog: 5 0.806 0.666 1.079 0.496
FJIlog: 6 0.800 0.734 1.113 0.496
FSNI: 7 0.833 0.564 1.114 0.496
FRSI: 8 0.805 0.760 0.983 0.494
FFTI: 9 0.807 0.765 1.161 0.499
FJI: 10 0.801 0.738 1.107 0.495
AWM: 11 0.772 0.663 1.012 0.496
WBM: 12 0.781 0.651 1.049 0.496
ACBM: 13 0.784 0.664 0.997 0.495

0.85 Dlog1: 1 0.865 0.825 1.137 0.480
Dlog2: 2 0.861 0.823 1.181 0.485
SNIlog: 3 0.878 0.714 1.257 0.497
RSIlog: 4 0.855 0.821 1.107 0.492
FTIlog: 5 0.852 0.654 1.129 0.496
FJIlog: 6 0.850 0.808 1.256 0.497
FSNI: 7 0.879 0.713 1.250 0.494
FRSI: 8 0.856 0.821 1.097 0.491
FFTI: 9 0.840 0.511 1.359 0.561
FJI: 10 0.851 0.814 1.248 0.495
AWM: 11 0.836 0.683 1.137 0.496
WBM: 12 0.825 0.680 1.162 0.498
ACBM: 13 0.826 0.692 1.113 0.495

0.90 Dlog1: 1 0.914 0.879 1.299 0.478
Dlog2: 2 0.912 0.875 1.349 0.482
SNIlog: 3 0.922 0.891 1.429 0.496
RSIlog: 4 0.906 0.874 1.260 0.489
FTIlog: 5 0.903 0.714 1.300 0.496
FJIlog: 6 0.899 0.856 1.444 0.497
FSNI: 7 0.923 0.892 1.421 0.493
FRSI: 8 0.906 0.874 1.244 0.488
FFTI: 9 0.887 0.565 1.423 0.587
FJI: 10 0.900 0.866 1.435 0.495
AWM: 11 0.889 0.804 1.299 0.497
WBM: 12 0.891 0.802 1.305 0.497
ACBM: 13 0.884 0.814 1.273 0.495

0.95 Dlog1: 1 0.960 0.935 1.548 0.472
Dlog2: 2 0.959 0.933 1.608 0.478
SNIlog: 3 0.963 0.939 1.674 0.493
RSIlog: 4 0.954 0.931 1.490 0.487
FTIlog: 5 0.951 0.902 1.592 0.506
FJIlog: 6 0.950 0.928 1.742 0.499
FSNI: 7 0.964 0.941 1.664 0.490
FRSI: 8 0.955 0.931 1.464 0.518
FFTI: 9 0.934 0.607 1.664 0.652
FJI: 10 0.950 0.929 1.729 0.498
AWM: 11 0.943 0.629 1.548 0.495
WBM: 12 0.933 0.629 1.518 0.497
ACBM: 13 0.931 0.628 1.557 0.500

0.99 Dlog1: 1 0.993 0.982 2.035 0.463
Dlog2: 2 0.993 0.982 2.113 0.462
SNIlog: 3 0.993 0.983 2.123 0.479
RSIlog: 4 0.991 0.980 1.922 0.472
FTIlog: 5 0.990 0.975 2.079 0.514
FJIlog: 6 0.989 0.976 2.359 0.498
FSNI: 7 0.993 0.984 2.109 0.476
FRSI: 8 0.992 0.980 1.881 0.471
FFTI: 9 0.951 0.397 2.141 0.504
FJI: 10 0.990 0.978 2.337 0.491
AWM: 11 0.965 0.888 2.035 0.492
WBM: 12 0.973 0.906 1.915 0.492
ACBM: 13 0.978 0.559 2.115 0.629
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Figure 5: Graphical Comparison of the Performance of the 13 Methods for Constructing Confidence Intervals

using the 4 Measures in Table 2 (Triangle: MEW; Plus: minCP; Cross: MCP and Square: MNCP/NCP). The

red horizontal line is the targeted Confidence Coefficient level: 80%(top left), 90%(top right), 95%(bottom

left) and 99%(bottom right).
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Table 3 Various 95% CIs for λ2/λ1 based on
the Breast Cancer Data Set.

Method Lower limit Upper limit
Dlog1 0.3070 0.9859
Dlog2 0.2983 0.9735
SNIlog 0.2873 0.9882
RSIlog 0.2993 0.9682
FTIlog 0.2834 0.9538
FJIlog 0.2913 0.9548
FSNI 0.2889 0.9916
FRSI 0.3007 0.9714
FFTI 0.2850 0.9559
FJI 0.2928 0.9573
AWM 0.3070 0.9859
WBM 0.3008 0.9655
ACBM 0.3002 0.9711

Table 4 Various 90% CIs for λ2/λ1 based on
the Coronary Heart Disease Study.

Method Lower limit Upper limit
Dlog1 1.4523 3.0154
Dlog2 1.4607 3.0480
SNIlog 1.4422 3.1071
RSIlog 1.4625 3.0470
FTIlog 1.4675 3.0849
FJIlog 1.4678 3.0660
FSNI 1.4408 3.1017
FRSI 1.4611 3.0424
FFTI 1.4666 3.0793
FJI 1.4667 3.0608
AWM 1.4523 3.0154
WBM 1.4636 3.0418
ACBM 1.4520 3.0022
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