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Lima - Pólo II, 3030-790 Coimbra, Portugal.

e-mail: bduarte@isec.pt

and

Weng Kee Wong

Department of Biostatistics, Fielding School of Public Health, UCLA, 10833 Le Conte Ave.,
Los Angeles, California 90095-1772, U.S.A.

e-mail: wkwong@ucla.edu

Abstract: This paper uses Semidefinite Programming (SDP) to construct
Bayesian optimal design for nonlinear regression models. The setup here ex-
tends the formulation of the optimal designs problem as a SDP problem
from linear to nonlinear models. Gaussian Quadrature Formulas (GQF) are
used to compute the expectation in the Bayesian design criterion, such as
D-, A- or E-optimality. As an illustrative example, we demonstrate the ap-
proach using the power logistic model and compare results in the literature.
Additionally, we investigate how the optimal design is impacted by different
discretizing schemes for the design space, different amount of uncertainty in
the parameter values, different choices of GQF and different prior distribu-
tions for the vector of model parameters, including normal priors with and
without correlated components. Further applications to find Bayesian D-
optimal designs with two regressors for a logistic model and a two-variable
generalized linear model with a gamma distributed response are discussed
and some limitations of our approach are noted.
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1. Introduction

The field of optimal experimental designs dates back as early as the formal work
of Smith (1918) and probably beyond. Early researchers worked sporadically in
this area from the theoretical approach. Kiefer (1959) recognized the general de-
sign problem for a regression model was very difficult to solve even for relatively
simple problems. As an example, the design problem for optimally estimating
the three parameters in a homoscedastic quadratic polynomial model was only
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solved in Gaffke and Kraft (1982). In a voluminous series of papers collected in
Kiefer (1985), Kiefer proposed using approximate designs to solve general design
problems for regression models. Approximate designs are essentially probability
measures on the design space and are characterized by its design points and the
weights at these points. The approach assumes the objective function is a convex
function of the design to take advantage of the results from convex analysis. In
particular, there are algorithms for finding different types of designs and equiv-
alence theorems can be employed to verify the optimality of a design using the
directional derivative of the design criterion. Equivalence theorems are widely
discussed in design monographs and we provide more details in the discussion
section.

A key result in the field is from Kiefer and Wolfowitz (1960), where they
established two very different design criteria always lead to the same optimal
design when the models are homoscedastic. Specifically, the D-optimal design
for estimating all model parameters and the G-optimal design for minimizing
the maximal variance of the fitted response surface across the design space
are the same. Nowadays, optimal experimental designs are increasingly applied
in different disciplines to find efficient approximate designs in the biological
sciences, engineering, food science, pharmaceutical studies and education arena.
A sample of applications of optimal design ideas to solve various real problems
are given in Berger and Wong (2009).

Nonlinear models seem to be the norm in the biological sciences with typical
applications ranging from modeling kinetic reaction velocity when the enzyme
concentration varies (Dette, Melas and Wong, 2005) to the prediction of morbid-
ity after lung resection (López-Fidalgo and Garcet-Rodriguez, 2004). Following
convention, the worth of a design is measured by the Fisher Information Matrix
(FIM) defined in the next section. One useful property of the FIM is that it
is inversely proportional to the covariance matrix of the estimated model pa-
rameters. For nonlinear models, the FIM depends on the parameters and so all
design criteria formulated in terms of the FIM also depends on the unknown
parameters which we want to estimate. This seems to be a roundabout problem,
prompting Cochran (1973) to remark “You tell me the values of the parame-
ters and I promise to find the best experiment to estimate the values of the
parameters”. In practice, there are a few different ways to handle this problem.

The first approach is the simplest and follows from the above idea. Nominal
values of the model parameters are required from previous studies or experi-
ments and they are then treated as known so that the FIM does not contain
unknown parameters in the design criterion. As such, the resulting optimal
design is termed locally optimal (Chernoff, 1953). For example, if interest is
in estimating model parameters and nominal values are given, the generalized
variance is minimized by careful choice of the design points and weights. Data
from the designed experiment are then used to re-estimate the parameters and
they are then used as new nominal values to construct another locally optimal
design. Usually a few iterations result in convergence of the values of the esti-
mated parameters and the resulting design is termed a locally optimal design.
Further discussion of this procedure is in Sitter and Wu (1999).
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Another way to overcome the dependence of the FIM on the parameters
in the model is to adopt a minimax or maximin approach. Minimax optimal
designs minimize the worst possible performance of the design over all possible
designs defined on the given design space (Wong, 1992). For example, if we wish
to design a study to predict the response over a certain region and we are not
sure exactly where the precise location in the region is, we may want to first
consider the variance of a point in the region and then design to minimize the
largest variance among the predicted responses in the region of interest. This
method however is notoriously difficult and analytical solution for a nonlinear
model is rarely possible except for very simple problems. The two major reasons
are that the minimax criterion is non-differentiable and there are no algorithm
that we know of that will converge to a minimax optimal design for a general
regression model (with heteroscedastic errors).

The third method is Bayesian and this approach seems like an intermediate
one between the locally and minimax paradigms in terms of information required
before the design can be constructed. The conceptual framework behind the
Bayesian optimal design is the assumption that the prior information of the
parameters of interest and their uncertainty can be adequately captured in the
prior distribution. This prior density averages out the parameter values and the
criterion is no longer dependent on the parameters. The Bayesian optimal design
is then found by optimizing the expectation of the design criterion. A review of
work in Bayesian optimal designs is given in Chaloner and Verdinelli (1995).

The theory for the construction of Bayesian optimal design depends uniquely
on the model and the criterion, and the mathematics required to solve the opti-
mization problem is challenging even for linear models (Dette and Wong, 1996,
1998). In practice, Bayesian optimal designs are determined numerically using
various types of algorithms such as those discussed in Fedorov (1972), Wynn
(1972), Chaloner and Larntz (1989), Molchanov and Zuyev (2002) and Chang
and Lin (2007). For instance, Chaloner and Larntz (1989) used the Nelder-Mead
method which is a simplex based approach to find Bayesian D-optimal designs
for the logistic model, and Molchanov and Zuyev (2002) used a steepest-ascent
algorithm that guarantees convergence to the optimum but can become slow
in its vicinity. Nonlinear programming (NLP) stochastic approaches such as
genetic algorithms (GA) were also employed to find optimal designs (Heredia-
Langner et al., 2004). Zhang (2006) used a hybrid approach by combining GA
and a local NLP solver relying on General Reduced Gradient (GRG) or Square
Quadratic Programming (SQP) algorithms to increase the convergence rate to
the global optimum. Another way to increase the convergence rate is to include
a procedure that removes design points that cannot support a D-optimal design
measure (Harman and Pronzato, 2007). A review of such algorithms for finding
optimal designs is Pronzato (2008).

Many algorithms require that the design space be discretized before the op-
timization process begins. After the initial grid on the design space is selected,
many problems for finding an optimal design can be treated as a problem of
minimizing a convex function. This suggests that any convex optimization algo-
rithm such as SQP and recent Interior Point (IP) based algorithms are suitable
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candidates (Ye, 1997).
In this paper, we focus on use of Semidefinite Programming to find Bayesian

optimal designs for nonlinear models. This method as an optimization tool is
often used in engineering and other applied fields, but seems greatly under-
utilized in statistical research. The SDP approach first requires that the design
space be discretized into a finite set of points. The FIM at each candidate point
is computed and assuming observations are independent, we then sum these in-
formation matrices to obtain the total FIM. The design criterion is formulated
as a function of the total FIM before application of SDP to find the optimal
design. For example, Vandenberghe and Boyd (1996) developed a SDP formula-
tion to find optimal designs for estimating parameters in linear models using D-,
A- and E-optimality criteria discussed in Pukelsheim (1980). Further applica-
tions of the SDP based framework for linear models include (i) finding optimal
designs for multi-response linear models (Boyd and Vandenberghe, 2004), (ii)
finding maximin efficient designs (Filová, Trnovská and Harman, 2011), (iii)
use of a generalization of the Elfving’s theorem to transform the c-, A- and D-
optimality SDP formulations into more efficient Second Order Cone Program-
ming (SOCP) formulations (Sagnol, 2011), (iv) finding sparse c-optimal designs
for single-response trigonometric regression models (Qi, 2011), and (v) finding
support points of optimal design for model with a mean response given by a
rational regression function (Papp, 2012). Collectively, these papers emphasize
the simplicity and efficiency of using the SDP based approach to find a solution
to the optimization problem even though the optimal design may depend on the
discretization scheme on the design space.

The goal of this paper is to extend the SDP formulation for linear models to
find Bayesian optimal designs for nonlinear models. A unique feature of our SDP
approach is that it will lead to a conic programming problem which is solved
via a semidefinite programming solver to produce the globally Bayesian optimal
design. The method allows for arbitrary prior distributions and the integration
is handled using multidimensional Gaussian Quadrature Formulas (GQF). Sec-
tion 2 provides background and discusses different types of Bayesian optimal
designs. Section 3 formulates our design problem as a semidefinite program to
determine Bayesian optimal designs for nonlinear models. Section 4 applies SDP
to an illustrative case when we wish to generate a variety of Bayesian optimal
designs for the logistic model and compares our results to those available in
the literature. In section 5 we determine various optimal designs for the more
complicated power logistic model and models with two regressors where we note
that in one case, SDP can encounter some numerical problems in the search of
an optimal design. We end with a discussion in Section 6.

2. Background

We focus on approximate designs which are probability measures defined on the
given compact design space X . Given X , a statistical model and a given design
criterion, the goal is to find an optimal approximate design. The setup assumes
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that the total sample size, n, is fixed and the criterion is convex as a function
of the FIM. If an approximate design ξ has k support points at xi with weight
wi, i = 1, . . . , k, the implemented design takes roughly n × wi observations
at the design point xi, subject to n × w1 + . . . + n × wk = n. Consequently
the implemented designs may not be unique. The main advantages of working
with approximate designs are that they are easier to find and understand. In
addition, if the criterion is differentiable, there are algorithms that will iterate
from a non-singular starting design and converge to the optimal design.

To fix ideas, consider the power logistic model proposed by Prentice (1976)
for modeling binary responses in a dose response study using the mean function:

p(x, θ) =
1

{1 + exp [−β (x− µ)]}s , x ∈ X, θT = [µ, β, s] ∈ Θ. (1)

Here Θ ⊂ R
3 is a known compact region containing all possible values for the

3× 1 vector of parameters θT = [µ, β, s]. The set Θ is sometimes referred to as
the plausible set of values for θ. Typically the dose x is confined in a compact
interval X representing the range of doses of interest in the study and the
binary outcome is coded as 1 for response and 0 otherwise. The probability
of a response at dose x is p(x, θ). When s = 1, we have the logistic model
and θT = [µ, β] ∈ Θ ≡ [µL, µU ] × [βL, βU ] ∈ R

2 with × representing the
cartesian product. Here, µL is the known lower bound of µ and µU is its known
upper bound. Similarly, βL is the known lower bound of β and βU is its known
upper bound. More generally, if m is number of parameters to estimate, we have
Θ ≡ ×mi=1[θ

L
i , θ

U
i ] ∈ R

m, with θUi representing its upper bound and θLi its lower
bound for the ith parameter θi. Similarly if X is multi-dimensional, we assume
it also has a cartesian product structure.

Suppose our design ξn takes n independent observations from x1, x2, ..., xk
and there are ri responses from the ni subjects randomly assigned to dose xi,
i = 1, · · · , k. Subject to n1 + · · ·+ nk = n, the log likelihood function is

L(ξn, θ) =
k
∑

i=1

log

[

ni!

(ni − ri)! ri!

]

+ ri log [p(xi, θ)] + (ni− ri) log [1− p(xi, θ)] .

Let M(ξ, θ) denote the FIM using design ξn. The elements of M(ξ, θ) are the
expectation of the negative of the second derivatives of the log likelihood with
respect to the parameters. Specifically, the FIM is proportional to

M(ξ, θ) =− E

{

∂

∂θ

(

∂L(ξ, θ)
∂θT

)}

.

Approximate designs require that we work with the weights wi’s that may not
be ratios of two positive integers as in the case for exact designs like ξn where
wi = ni/n, i = 1, . . . , k. Accordingly, when responses are independent, the FIM
of an approximate design ξ with weight wi at xi, i = 1, . . . , k is proportional to

M(ξ, θ) =

∫

X

M(x, θ) dξ(x) =

k
∑

i=1

wi M(xi, θ),
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whereM(xi, θ) = h(xi, θ) h(xi, θ)
T and h(xi, θ) is the mean response. If we have

a binary response model with mean response p(x, θ) and θ is m-dimensional, the
FIM of the design at the point xi is M(xi, θ) = h(xi, θ) h(xi, θ)

T, where

h(xi, θ) =
1

√

p(xi, θ) (1− p(xi, θ))

(

∂p(xi, θ)

∂θ

)

,
∂p(xi, θ)

∂θ
=









∂p(xi,θ)
∂θ1
...

∂p(xi,θ)
∂θm









.

When we approximate X by a finite set X q ∈ R
q×d populated with q discrete

points of X uniformly distanced ∆ units apart in each of the d design spaces in
the cartesian product, the FIM is approximated by

M(ξ, θ) ≈
∑

x∈X q

M(x, θ) χ(x),

where χ is a selected weight function on X q used to approximate the integral
using weight χ(x) at x ∈ X q.

Common design criteria are formulated in terms of the FIM and include D-
and A-optimality for estimating model parameters. They can be formulated as
Φ(M(ξ, θ)), where Φ is a function that maximizes the information obtained from
experiments in a certain way. When errors are independent and normally dis-
tributed, the D-optimality minimizes the generalized variance by minimizing the
volume of the confidence ellipsoid of the model parameters. For A-optimality, we
minimize the (squared) diagonal of the bounding box of the confidence ellipsoid.
For E-optimality, we minimize the squared in-ball radius geometrically by max-
imizing the minimum eigenvalue of the FIM (Dette and Studden, 1993). More
specifically, let Ξ be the set of all feasible designs on X . Then for D-optimality,
we seek a design ξD that satisfies

ξD = argmin
ξ∈Ξ

{− log (det[M(ξ, θ)])} .

For A-optimality, we seek a design ξA that satisfies

ξA = argmin
ξ∈Ξ

{

tr[M(ξ, θ)−1]
}

,

and for E-optimality, we seek a design ξE that satisfies

ξE = argmax
ξ∈Ξ

{λmin[M(ξ, θ)]}

where λmin is the minimum eigenvalue of the FIM for a given θ value. The
Bayesian paradigm assumes a prior density π(θ) is available for θ and the
Bayesian D-optimal design ξBayesD is defined by

ξBayesD = argmin
ξ∈Ξ

∫

Θ

{− log (det[M(ξ, θ)])} π(θ) dθ.
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Similar representations apply to Bayesian versions for A- and E-optimality cri-
teria. When Θ is approximated by a finite discrete set T ι ∈ R

ι×m containing
ι parameter combinations in the space Θ, the discrete version of the Bayesian
D-optimal design becomes

ξBayesD ≈ argmin
ξ∈Ξ

∑

θ∈T ι

{− log (det [M(ξ, θ)])} π(θ) γ(θ),

where γ(θ) is the weight of θ in the integral approximation.
The SDP based strategy treats the design problem as a general conic program

where the variables are the weights of the points generated from the discretized
set X q and associated with the degenerate information matrices M(xi, θ). SDP
minimizes a linear function of a matrix in the positive semidefinite matrix cone
subject to affine constraints. Depending on the objective function, this results
in a polyhedral or a non-polyhedral feasibility region but in either case, we have
a convex optimization problem (Ye, 1997) that allows us to generalize that any
locally optimal design found is a globally optimal one (Boyd and Vandenberghe,
2004). The optimization problems so formulated are solved using accurate effi-
cient solvers, such as SeDuMi (Sturm, 1999).

2.1. Semidefinite Programming

Semidefinite Programming is an extension of linear programming where some
vector variables are replaced by matrices, and some of the non negativity elemen-
twise constraints are replaced by positive semidefiniteness constraints (Wolkow-
icz, Saigal and Vandenberghe, 2000). Furthermore, SDP is a class of convex
optimization involving linear objective functions subject to constraints requir-
ing that an affine combination of symmetric matrices is positive definite (Boyd
and Vandenberghe, 2004). The primal formulation of a general SDP problem,
proposed by Nesterov and Nemirovskĭı (1994), is as follows:

min
Z∈Sn

〈C,Z〉

s.t Z � 0




〈A1, Z〉
· · ·

〈Am, Z〉



 = b

where 〈•, •〉 represents the inner (Frobenius) product, C, A1, · · · , Am ∈ Sn are
constant matrices, Sn is the space of n × n symmetric matrices, Z ∈ Sn is
the matrix of decision variables, b ∈ R

m is also a vector of constants, Z � 0
indicates that Z belongs to the cone of positive semidefinite matrices, and
〈C,Z〉 = tr(CT Z). A dual formulation, frequently employed in numerical algo-
rithms, can be found in Ye (1997). A book length volume on SDP is Boyd and
Vandenberghe (2004). General SDP formulations for local D-, A- and E-optimal
designs of experiments can be found in Vandenberghe, Boyd and Wu (1998) and
Vandenberghe and Boyd (1999).
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2.2. Gaussian Quadrature Formulas

Gaussian Quadrature Formulas are a class of methods that use appropriate
weights and nodes to numerically integrate a complex function f(x) to a high
degree of accuracy. For a one dimension integral over an arbitrary compact
interval [a, b], the formula is:

∫ b

a

w(x) f(x)dx
.
=

n
∑

j=1

wj,n f(xj,n)

where w(x) is a weighting function, and n is the number of points, also desig-
nated as nodes, used in the integration. The accuracy of the approximation of
the integral as a sum depends on the selected weight wj,n at the nodes xj,n. A
major advantage of GQF is that with judicious choices of the nodes and weights,
it needs only n points to exactly integrate polynomials of degree 2 n− 1 or less.
This means that only n evaluations of the function f(x) are required (Gerald
and Wheatley, 1994). For w(x) = 1, a = −1 and b = 1 the nodes correspond
to the zeros of the nth order Legendre polynomials; see, for example, (Atkin-
son, 1989). For w(x) = 1 and an arbitrary compact interval on the real line,
the weights and nodes are determined from recursive algorithms such as those
presented in Davis and Rabinowitz (1984). Multiple dimension regular domain
based integrals may be determined employing one GQF in each dimension or
Gaussian Cubature Formulas (Bernardo, Pistikopoulos and Saraiva, 1999). For
example, if we follow the former strategy to integrate f(x) with x ∈ R

p, the
weight at each node is the product of the weights for the one dimension inte-
gration and the nodes correspond to the intersection of one dimension nodes in
R
p space.

3. SDP based formulation for Bayesian optimal designs

Let x1, · · · , xq be a set of points X q in X ∈ R. X q is constructed from a dis-
cretization scheme, say with a constant step, where x1 = min(X) and the other
points determined recursively with a rule xj = xj−1 +∆x, j = 2, · · · , q. When
X is a compact d-dimensional Euclidean subspace discretized into x1, · · · , xq,
each point xj , j ∈ {1, · · · , q} is characterized by a vector with d components
resulting from discretizing the space X with a rectangular mesh.

We use GQF to approximate the expectation integral of the optimality cri-
terion by first discretizing the parameter space Θ ⊂ R

m. If ι is the number of
points used in the integral approximation, the discretization points of the set
T ι ≡ {θp : p = 1, · · · , ι} correspond to the set of m-dimension combinations
of roots of the (κ − 1)th order Legendre polynomials in each dimension of the
space Θ and γp, p ∈ {1, · · · , ι} are the corresponding weights (Abramowitz and
Stegun, 1972). It follows that each discretization point θp ∈ R

m, p = {1, · · · , ι}
of T ι is obtained by the cartesian product of the sets containing GQF points
from each one of the dimensions of Θ. Let ρ ∈ R

κ be the vector of roots of the
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(κ − 1)th order Legendre’s polynomial on the interval [−1, 1] and let 1 be the
κ × 1 vector of all ones. Then assuming κ is equal for all dimensions of Θ, we
have ι = κm and

T ι = ×mi=1

{

ρ

(

θUi − θLi
2

)

+

(

θUi + θLi
2

)

1

}

.

Similarly, the ι-dimensional vector of weights γ is given by

γ =
m
∏

i=1

[

×mi=1ω

(

θUi − θLi
2

)]

,

where ω ∈ R
κ is the vector of weights of the Legendre polynomials on the

interval [−1, 1]. We choose GQF because the method tends to provide more
accurate approximations than Monte Carlo or Hammersley sequence sampling
schemes for an equal number of points (Bernardo, Pistikopoulos and Saraiva,
1999; Reber, 2004).

We now extend the SDP formulation proposed by Vandenberghe and Boyd
(1999) to construct Bayesian D-, E- and A-optimal designs. To this end, define
the FIM for a single point θp by M(χ, θp) =

∑q
j=1M(xj , θp) χj and note that

(i) the formulations of Vandenberghe and Boyd (1999) are for linear models and
can be used to find locally optimal designs for nonlinear models; (ii) a Bayesian
design can be interpreted as a convex linear combination of local designs with
θ varying in the domain of Θ (Fedorov and Hackl, 1997), and (iii) the use of
GQF to numerically represent the expectation of a Bayesian criterion over a
pre-defined parameter domain guarantees the design criterion is convex and
the weight of each locally optimal design can be represented in a normalized
domain with positive values that sum to 1. It follows that if one applies SDP to
a linear model, one obtains a global solution and if the model is nonlinear but the
parameters are fixed, one obtains a locally optimal design. Further, if one seeks
a Bayesian optimal design for a nonlinear model by using GQF to compute the
expectation, one first obtains several locally optimal designs before they have
to be averaged via the weights of GQF to obtain the Bayesian optimal design.
The weights can be scaled to the interval domain [0,1].

For D-optimality, the formulation is:

max
χ

ι
∑

p=1

log {det [M(χ, θp)]} π(θp) γp

s.t. χj ≥ 0, j = 1, · · · , q
q
∑

j=1

χj = 1

θp ∈ T ι, xj ∈ X q

(2)

The formulation in (2) is pseudo-SDP because of the log term in the ob-
jective function. The cvx solver used to solve all SDP problems supports the
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log(det) function which is concave and non-monotonic, but uses a sequence of
SDP problems to successively approximate the original problem.

It is helpful to reformulate the optimization problem (2) to produce an SDP-
representable problem that can be addressed exactly with a SDP solver, thus
improving the numerical efficiency. We base our reformulation upon the theoret-
ical results from Ben-Tal and Nemirovskĭı (2001) who proved that −[det(B)]1/m
is semidefinite representable for a matrix B ∈ R

m×m if B � 0. Accordingly, one
can use a Linear Matrix Inequality (LMI) to represent the hypograph (set of
points lying on or below a function) of [det(B)]1/m, ς , by:

[

B C
CT diag(C)

]

� 0 (3)

ς ≤
(

m
∏

i=1

δi

)1/m

. (4)

Here C is a lower-triangular matrix and diag(C) is the m ×m diagonal matrix
with diagonal elements δi, i ∈ {1, · · · ,m} obtained from the diagonal elements
of C. It follows that the function to be maximized in (2) can be rewritten as
m
∑ι

p=1 log(ςp) π(θp) γp where ςp represents the hypograph of the geometric
mean for each point θp. Exponentiating, we can equivalently maximize the left
hand side of:

ι
∏

p=1

ςmπ(θp)γpp ≃
ι
∏

p=1

ςαp/2
ℓ

p . (5)

where the right hand side is its approximation, having had mπ(θp)γp replaced
by a rational number via dyadic fractions (Reznik, 2008). Having the power now
as a ratio of two integers provides a pure SDP representation of the Bayesian
D-optimal design. This approximation is always possible because we can find
integer αp for all p and an integer ℓ ∈ N such that

ι
∑

p=1

αp
2ℓ

≤ 1, αp = [mπ(θp)γp 2ℓ],

and [·] represents the rounding to the nearest integer. The right hand side of
(5) is a concave monomial, and recalling that κ is the number of points in the
GQF, we may choose ℓ = m+κ to ensure

∑ι
p=1

αp

2ℓ
≤ 1 holds and so a LMI can

be used to find the hypograph (Ben-Tal and Nemirovskĭı, 2001, Ch. 2):

ψ ≤
ι
∏

p=1

ςαp/2
ℓ

p (6)

If αp/2
ℓ is already a rational fraction for each p, no approximation is required.

The monomial in (6) reduces to a weighted geometric mean which can also
be represented by a LMI, and consequently has an exact SDP representation
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(Boyd and Vandenberghe, 2004). The upshot is that the SDP reformulation of
the problem (2) is:

max
χ,∆p,ς,ψ

ψ

s.t.

[

M(χ, θp) ∆p

∆T
p diag(∆p)

]

� 0, p ∈ {1, · · · , ι}

ςp ≤
(

m
∏

i=1

δi,p

)1/m

, p ∈ {1, · · · , ι}

ψ ≤
ι
∏

p=1

ςαp/2
ℓ

p

χj ≥ 0, j = 1, · · · , q
q
∑

j=1

χj = 1

θp ∈ T ι, xj ∈ X q, αp = [mπ(θp)γp 2ℓ]

(7)

where ∆p are lower-triangularm×mmatrices, and δi,p are the diagonal elements
of each one. The inequalities involving monomial terms are geometric constraints
that can be expressed as LMI to produce an exact SDP formulation for Bayesian
D-optimal design.

For finding A-optimal designs, the formulation yields:

min
χ,a

ι
∑

p=1

q
∑

j=1

ai,p π(θp) γp

s.t.

[

M(χ, θp) ui
uTi ai,p

]

� 0, i = 1, · · · ,m, p = 1, · · · , ι

χj ≥ 0, j = 1, · · · , q
q
∑

j=1

χj = 1

θp ∈ T ι, xj ∈ X q

(8)

where ui ∈ R
m is a unit vector, a ∈ R

m×ι is the matrix of decision variables
ai,p with each representing an eigenvalue of a singular FIM from a point of T ι.
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For E-optimal designs, the formulation is:

min
χ,e

−
ι
∑

p=1

ep π(θp) γp

s.t. M(χ, θp)− ep I � 0, p = 1, · · · , ι
χj ≥ 0, j = 1, · · · , q
q
∑

j=1

χj = 1

θp ∈ T ι, xj ∈ X q

(9)

where I is the q×q identity matrix and eT = [e1, e2, · · · , eι] ∈ R
ι is the vector of

decision variables with each ep representing the minimum eigenvalue of all FIM
evaluated at the pth. point of T ι. In practice, the problems (2), (7), (8) and (9)
were first codified using cvx, a Matlab compatible environment that supports a
particular approach to convex optimization (Grant, Boyd and Ye, 2012) before
employing SeDuMi, a SDP solver. This solver in turn uses the IP method with
a primal-dual predictor-corrector scheme and a self dual embedding (Sturm,
1999). The tolerance used in all problems is a user-selected constant tol = 10−8.

After SDP solves the design problem, a pruning procedure is usually required
to select points from the discretized design space as support points for the
optimal design. A common rule is to include them if their weights are not very
small. This means that support points of the SDP-generated optimal design are
selected from the set C = {xj ∈ X q : χj ≥ ǫ}, where ǫ is a user-selected small
positive constant and to discard points with weights smaller than ǫ. The number
of support points of the design is k = card(C) and the optimal design ξ found
by SDP is formed from the points in the set C along with the ith support point
having weight wi equal to χi.

4. Bayesian optimal designs for the logistic model

In this section we apply the SDP formulation in (7) to solve all design prob-
lems in this section. As a start, we consider some Bayesian design problems in
Chaloner and Larntz (1989) and compare our optimal designs with their results.
We then generate and compare Bayesian optimal designs using different sizes of
the region Θ, different discretization schemes and different integration schemes.
In addition, we construct new Bayesian D-optimal designs using bivariate nor-
mal prior densities with varying degrees of correlation, and A- and E-optimal
designs not discussed in Chaloner and Larntz (1989).

The model is the simple logistic model with s = 1 in Equation (1) commonly
used to study binary outcomes. For example in dose response study, we wish
to model whether the subject responds or not to different doses of a drug.
Typically the doses are appropriately scaled to the interval X ∈ [−1, 1]. The two
parameters θ = [µ, β]T have meaningful interpretation and we assume they have
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nominal values in a user-selected plausible region, say with θ ∈ Θ = [−0.1, 0.1]×
[6.9, 7.1]. The FIM for this model is given in various bibliographic references,
such as King and Wong (2000). Following Chaloner and Larntz (1989), we used
independent uniform prior densities for µ and β for comparison purposes but
also use bivariate normal prior densities with varying correlation coefficients to
show the flexibility of the SDP method. Unless otherwise stated, GQF were all
based on 6 points for each parameter space, resulting in a total of 36 points
needed to compute the bivariate integral. The grid employed for discretizing X
is equally spaced with ∆x = 0.01, and in all examples we consider ǫ = 10−5.

The Bayesian D-optimal designs in Table 1 show good agreement with those
reported in Chaloner and Larntz (1989). We note that when Θ = [−0.1, 0.1]×
[6.9, 7.1], Chaloner and Larntz (1989) reported the Bayesian D-optimal design
has only 2 support points, one between -0.23 and -0.22, and the other between
0.22 and 0.23. Our designs have 4 points with the weights shared at two adjacent
points. This is due to the discrete grid we employed to search over the design
space, implying that the discretization scheme can have an effect on the optimal
design. The optimal design found for the case when Θ = [−0.3, 0.3]× [6.0, 8.0]
has the same 3 support points reported in Chaloner and Larntz (1989).

In general, one observes that our Bayesian optimal designs require more sup-
port points when the plausible region Θ is wider, a phenomenon already ob-
served by several other authors. The designs obtained are symmetric even if no
symmetry constraints are included in the optimization problem. The CPU time
in seconds (secs) required to solve each problem is shown in Table 1 and other
tables. Our computer has a Intel Core i7 machine running 64 bits Windows
7 operating system with 2.80 GHz. In all cases, our reported CPU times are
relatively short compared with our earlier experience with other algorithms.

Table 2 compares D-optimal designs when Θ = [−0.3, 0.3] × [6.0, 8.0] and
various discretization schemes were applied to the design space X . For this
particular setup and a tighter grid, the SDP-generated design has 5 points and
the one resulting from ∆x = 0.01 has 3 support points. One may expect that
different solutions might be originated in some cases when the grid becomes
thinner. Let us consider that a grid with ∆x(1) leads to a design with a support

point located at x
(1)
i . For a different grid, say constructed with ∆x(2) = ∆x(1)/2,

the optimal support point obtained x
(2)
i ∈ {x(1)i −∆x(2), x

(1)
i , x

(1)
i +∆x(2)}, but

might indeed be different from x
(1)
i . However, both grids guarantee very similar

designs, and design efficiencies.
Table 3 presents Bayesian D-optimal designs when Θ = [−0.3, 0.3]× [6.0, 8.0]

and GQF of 7th, 9th and 11th orders in each dimension were used, resulting in
a total of 16, 25 and 36 integration points, respectively. The optimal designs are
similar suggesting that different polynomial orders may not matter a lot and
that integration errors using GQF based on the fourth, fifth and sixth order
polynomials are quite comparable for practical applications. The CPU times
required to produce the optimal designs always increases when higher order
polynomials are used.

Table 4 presents Bayesian D-optimal designs using 3 different prior distri-
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Table 1

Bayesian D-optimal designs with independent uniform prior densities for the simple logistic
model using different regions Θ when X ∈ [−1, 1] and ∆x = 0.01.

µ
β [−0.1, 0.1] [−0.3, 0.3] [−1.0, 1.0]

[6.9, 7.1] (-0.2300,0.1385) (-0.3100,0.2520) (-0.9500,0.1023)
(-0.2200,0.3615) (-0.3000,0.1183) (-0.8200,0.0136)
(0.2200,0.3615) (0.0000,0.2593) (-0.8100,0.0309)
(0.2300,0.1385) (0.3000,0.1183) (-0.4400,0.2294)

(0.3100,0.2520) (0.0000,0.2479)
(0.4400,0.2294)
(0.8100,0.0309)
(0.8200,0.0136)
(0.9500,0.1023)

CPU (secs) 8.0965 7.4568 6.9264
[6.0, 8.0] (-0.2300,0.1193) (-0.3100,0.3666) (-0.9600,0.0940)

(-0.2200,0.3807) (0.0000,0.2668) (-0.8100,0.0552)
(0.2200,0.3807) (0.3100,0.3666) (-0.4400,0.2264)
(-0.2300,0.1193) (0.0000,0.2487)

(0.4400,0.2264)
(0.8100,0.0552)
(0.9600,0.0940)

CPU (secs) 7.3476 6.8484 6.3024
[4.0, 10.0] (-0.2200,0.5000) (-0.3200,0.3562) (-1.0000,0.0749)

(0.2200,0.5000) (0.0000,0.2876) (-0.7800,0.0938)
(0.3200,0.3562) (-0.4300,0.0584)

(-0.4200,0.1519)
(0.0000,0.2421)
(0.4200,0.1519)
(0.4300,0.0584)
(0.7800,0.0938)
(1.0000,0.0749)

CPU (secs) 7.8313 7.0044 4.8048
(x.xxxx,w.wwww) = (design point, weight).

butions when Θ = [−0.3, 0.3] × [6.0, 8.0] and 6 points were employed in the
GQF. The first set of priors is independent uniform priors on Θ with U [θL, θU ]
and the other two sets of priors are bivariate normal distributions given by
N [(θL + θU )/2,Σj], j ∈ {1, 2}, with

Σ1 =

[

0.3 0.0
0.0 0.1

]

, Σ2 =

[

0.3 0.075
0.075 0.1

]

.

Table 4 shows the computing time required to generate the optimal designs are
about the same for the different priors and the optimal designs obtained under
different priors are not too different after rounding. Table 5 extends Table 4
and displays Bayesian D-optimal designs under the same bivariate normal prior
distribution but with different values of the covariance, σµ,β , between the two
components.

Table 6 shows the D-, A-, and E-optimal designs when Θ = [−0.3, 0.3] ×
[6.0, 8.0]. All designs are symmetric. We observe A-optimal designs have support
points further apart than D and E-optimal designs and E-optimal designs have
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Table 2

Bayesian D-optimal designs with independent uniform prior densities for the simple logistic
model using different discretization schemes on the design interval X when X ∈ [−1, 1] and

Θ = [−0.3, 0.3]× [6.0, 8.0].

∆x = 0.02 ∆x = 0.01 ∆x = 0.005
(-0.3200,0.1225) (-0.3100,0.3666) (-0.3100,0.2696)
(-0.3000,0.2479) (0.0000,0.2668) (-0.3050,0.0984)
(0.0000,0.2594) (0.3100,0.3666) (0.0000,0.2641)
(0.3000,0.2479) (0.3050,0.0984)
(0.3200,0.1225) (0.3100,0.2696)

CPU (secs) 5.7252 6.8484 6.0996
(x.xxxx,w.wwww) = (design point, weight).

Table 3

Bayesian D-optimal designs with independent uniform prior densities for the simple logistic
model using different integration schemes on the parameter region Θ when X ∈ [−1, 1] and

Θ = [−0.3, 0.3]× [6.0, 8.0].

GQF based on 4 points GQF based on 5 points GQF based on 6 points
(-0.3100,0.3662) (-0.3100,0.3665) (-0.3100,0.3666)
(0.0000,0.2676) (0.0000,0.2670) (0.0000,0.2668)
(0.3100,0.3662) (0.3100,0.3665) (0.3100,0.3666)

CPU (secs) 3.4320 3.9936 6.8484
(x.xxxx,w.wwww) = (design point, weight).

larger weights at the non-zero support points compared with the A and D-
optimal designs.

Table 7 compares the Bayesian D-optimal designs obtained using different
SDP formulations in section 3. We denote results from the pseudo-SDP formu-
lation (2), the SDP formulation with αp rational (7) and the SDP formulation
with αp allowed to be irrational by p-SDP, rα-SDP and irα-SDP, respectively
in the table. The first requires approximate successive algorithms, the latter
treats the powers of the monomial terms as a sequence of LMI’s which may
extend the dimension of the problem considerably, and the second requires the
approximation of αp by rational terms given by quotients of integer numbers.
One may observe that for this particular setup the designs produced by all the
formulations are somewhat similar, with rα-SDP offering the best efficiency.

Table 4

Bayesian D-optimal designs with uniform and normal prior densities for the simple logistic
model when X ∈ [−1, 1] and Θ = [−0.3, 0.3]× [6.0, 8.0] .

U [θL, θU ] N [(θL + θU )/2,Σ1] N [(θL + θU )/2,Σ2]
(-0.3100,0.3666) (-0.3000,0.1150) (-0.2900,0.3548)
(0.0000,0.2668) (-0.2900,0.2727) (-0.2800,0.0353)
(0.3100,0.3666) (0.0000,0.2247) (0.0000,0.2148)

(0.2900,0.2727) (0.2900,0.3951)
(0.3000,0.1150)

CPU (secs) 6.8484 6.8640 7.2540
(x.xxxx,w.wwww) = (design point, weight).
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Table 5

Bayesian D-optimal designs for the simple logistic model with X ∈ [−1, 1],
Θ = [−0.3, 0.3]× [6.0, 8.0] and bivariate normal prior densities with different covariances

σµ,β .

σµ,β = 0.05 σµ,β = 0.1 σµ,β = 0.15
(-0.2900,0.3904) (-0.2900,0.3645) (-0.2900,0.2613)
(0.0000,0.2161) (-0.2800,0.0244) (-0.2800,0.1276)
(0.2900,0.3935) (0.0000,0.2154) (0.0000,0.1718)

(0.2900,0.3956) (0.0100,0.0407)
(0.2900,0.3725)
(0.3000,0.0260)

CPU (secs) 6.8172 6.4740 6.5676
(x.xxxx,w.wwww) = (design point, weight).

Table 6

Bayesian D-, A- and E-optimal designs with independent uniform prior densities for the
simple logistic model when X ∈ [−1, 1] and Θ = [−0.3, 0.3]× [6.0, 8.0].

D-optimal design A-optimal design E-optimal design
(-0.3100,0.3666) (-0.4300,0.3865) (-0.4100,0.4174)
(0.0000,0.2668) (0.0000,0.2271) (0.0000,0.1651)
(0.3100,0.3666) (0.4300,0.3865) (0.4100,0.4174)

CPU (secs) 6.8484 4.0404 2.7612
(x.xxxx,w.wwww) = (design point, weight).

5. Extensions to More Complicated Models

We now apply SDP to find various Bayesian optimal designs for the more com-
plicated power logistic model where we now permit the power s to additionally
vary over a known interval. We also find Bayesian D-optimal designs for the
exponential growth model with homoscedastic error with a single regressor. Ad-
ditionally, we find Bayesian D-optimal designs for two models each with two
regressors. The first is a logistic model with two regressors and two known pa-
rameters in the meann function and the second is a generalized linear model
with a Gamma distributed response and a reciprocal link function.

5.1. Power-logistic model

The power-logistic model has an additional power parameter s that enables it to
fit skewed binary data. Different values of s signify varying degrees of skewness

Table 7

Bayesian D-optimal designs with different SDP formulations for the simple logistic model
when X ∈ [−1, 1], Θ = [−0.3, 0.3]× [6.0, 8.0].

p-SDP rα-SDP irα-SDP
(-0.3100,0.3666) (-0.3100,0.3666) (-0.3100,0.3666)
(0.0000,0.2668) (0.0000,0.2668) (0.0000,0.2668)
(0.3100,0.3666) (0.3100,0.3666) (0.3100,0.3666)

CPU (secs) 19.6093 6.8484 15.7093
(x.xxxx,w.wwww) = (design point, weight).
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in the data. As before, let θT = [µ, β, s] and assumed that each parameter has a
known range of possible values with s ∈ S ≡ [sL, sU ], β ∈ [βL, βU ], µ ∈ [µL, µU ]
and θ ∈ Θ with Θ being a cartesian product of the three ranges of nominal values
for µ, β and s. This setup is more complicated than the one considered in King
and Wong (2000) where they allowed s to be a singleton set only.

For this model, a direct calculation shows the elements in the function h(x, θ)
for an observation at xi are:

h(xi, θ) =











−s (xi−µ) exp(−β(xi−µ))

(1+exp(−β(xi−µ)))
√

(1+exp(−β(xi−µ)))s−1
β s exp(−β(xi−µ))

(1+exp(−β(xi−µ)))
√

(1+exp(−β(xi−µ)))s−1
log(1+exp(−β(xi−µ)))√
(1+exp(−β(xi−µ)))s−1











We use the same setup employed in section 4 and suppose that s ∈ [0.5, 1.0]
and the priors for all three parameters are independent uniform densities over
their range. The design interval is discretized using ∆x = 0.01 and the inte-
gration scheme has a 5-point GQF for each parameter space, thus rendering a
total of ι = 125 points to evaluate the expectation. Selected Bayesian D-optimal
designs are shown in Table 8.

The results show that the Bayesian optimal designs for the power logistic
model have more support points than the corresponding number of support
points required when the model is logistic. The additional points are needed to
estimate an additional parameter. Generally, it is very difficult to determine the
exact relationship between the number of support points in the optimal design
and the size of S and Θ. We also note that (i) D-optimal Bayesian designs for
the power logistic model are generally non symmetric unless s = 1 and, (ii) the
notable increase in the CPU time required to find the optimal design for the
power logistic model versus the logistic model when s = 1. This is also due to
the larger number of discretized points required for the additional parameter in
the power logistic model to evaluate the expectation which now also has more
number of constraints in the SDP problem than when the model is logistic.

We note that when there is greater uncertainty on the power parameter
s, as signified by a larger domain of S (e.g., S ≡ [0.2, 1.0]), we observe that
the optimal design requires additional support points, and the smallest two
of them are located at smaller dose values to capture the increasingly skewed
trend. Table 9 compares the D-, A- and E-optimal designs found by SDP when
Θ = [−0.3, 0.3]× [6.0, 8.0]× [0.5, 1.0].

5.2. Exponential growth model

We now apply SDP to find Bayesian D-optimal designs for the exponential
growth model with normally distributed homoscedastic errors (Braess and Dette,
2007). The model has two parameters, β1 and β2 and a single regressor:

y(x, θ) = β0 + exp(−β1 x), x ∈ X, θT = [β0, β1] ∈ Θ (10)
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Table 8

Bayesian D-optimal designs with independent uniform prior densities for the simple logistic
model (s = 1) and the power logistic model when X ∈ [−1, 1],

Θ = [−0.3, 0.3]× [6.0, 8.0]× [0.5, 1.0].

s = 1 s ∈ [0.5, 1] s ∈ [0.2, 1]
(-0.3100,0.3666) (-0.7000,0.2638) (-0.8200,0.2451)
(0.0000,0.2668) (-0.2400,0.2474) (-0.8100,0.0238)
(0.3100,0.3666) (0.0900,0.0118) (-0.2800,0.0095)

(0.1000,0.2412) (-0.2700,0.2378)
(0.4600,0.2357) (0.0800,0.2478)

(0.4400,0.1841)
(0.4500,0.0520)

CPU (secs) 6.8484 46.5195 52.9467
(x.xxxx,w.wwww) = (design point, weight).

Table 9

Bayesian D-, A- and E-optimal designs with independent uniform prior densities for the
power logistic model when X ∈ [−1, 1], Θ = [−0.3, 0.3]× [6.0, 8.0]× [0.5, 1.0].

D-optimal design A-optimal design E-optimal design
(-0.7000,0.2638) (-0.8400,0.1369) (-0.8500,0.0363)
(-0.2400,0.2474) (-0.2700,0.1418) (-0.8400,0.0965)
(0.0900,0.0118) (-0.0200,0.0287) (-0.2600,0.0871)
(0.1000,0.2412) (-0.0100,0.0083) (-0.2500,0.0505)
(0.4600,0.2357) (0.1500,0.1721) (0.1200,0.2035)

(0.1600,0.0198) (0.5900,0.5262)
(0.5700,0.3474)
(0.5800,0.1450)

CPU (secs) 46.5195 34.7882 7.0668
(x.xxxx,w.wwww) = (design point, weight).

To fix ideas m = 2, X ∈ [0, 1], and Θ ≡ [βL0 , β
U
0 ]× [0, βU1 ]. The FIM for any

design for this model is given in Braess and Dette (2007),where they showed this
matrix is does not depend on β0 and consequently the optimal design depends
only on the prior density for β1 and its domain. We assumed the the prior density
for β1 is uniform distribution over its domain which has the form domain [0, βU1 ].
To implement SDP, we discretized the design interval using ∆x = 0.01 and an
integration scheme based on 7 points GQF over [0, βU1 ]. This results in a total
of ι = 7 points to evaluate the expectation with selected Bayesian D-optimal
designs for different values of βU1 shown in Table 10. The optimal designs were
able to capture a phenomenon commonly observed in Braess and Dette (2007)
and several others that more uncertainty in prior information for the model
parameter as reflected by a larger domain in this case requires more support
points in the optimal design. We note that in Table 10, the extreme ends of the
design interval are always support points of the optimal design and the weight
of the optimal design at x = 0.0000 decreases when βU1 increases, as will be the
case when prior information on β1 becomes increasingly vague.
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Table 10

Bayesian D-optimal designs with a uniform prior on [0.0, βU
1
] for β1 for the exponential

growth model with one regressor when X ∈ [0, 1].

βU
1

= 1.0 βU
1

= 5.0 βU
1

= 20.0 βU
1

= 50.0
(0.0000,0.5000) (0.0000,0.4435) (0.0000,0.3152) (0.0000,0.0792)
(1.0000,0.5000) (0.3300,0.3965) (0.0900,0.4442) (0.0400,0.4544)

(1.0000,0.1600) (0.5300,0.1215) (0.1800,0.1128)
(1.0000,0.1191) (1.0000,0.3536)

CPU (secs) 4.3836 5.7408 5.3196 5.2572
(x.xxxx,w.wwww) = (design point, weight).

5.3. Simple logistic model with two regressors

In this section we consider a logistic model with m = 3 parameters, βi, i ∈
{0, 1, 2}, and two regressors discussed in Haines et al. (2007):

p(x, θ) =
1

1 + exp (β0 + β1 x1 + β2 x2)
, x1 ∈ X1, x2 ∈ X2,

θT = [β0, β1, β2] ∈ Θ (11)

Following Haines et al. (2007), we assumed β1 and β2 are known (set equal to
1) and β0 is the unknown intercept parameter with plausible values between
two known limits βL0 and βU0 . The design problem is to find a Bayesian design
to estimate β0 assuming Θ = [βL0 , β

U
0 ] × {1} × {1} using various uniform prior

densities for β0 on [βL0 , β
U
0 ]. The FIM for any design for this model can be

directly worked out and is given in Haines et al. (2007).
To fix ideas, we set X1 ≡ X2 ≡ [0, 6] and discretize each of the design spaces

using a step size of 0.06. . The integration in the design criterion was evaluated
using a 6-point GQF. Table 11 presents Bayesian D-optimal designs when the
prior density is (i) degenerate at β0 = −4.0; (ii) uniform on [−4.0,−1.0]; (iii)
uniform on [−4.0, 2.0]. The results for (i) agree closely with those presented
by Haines et al. (2007), noting that the differences arise mainly from the dis-
cretization scheme employed by SDP. We note that as the uncertainty of the
value of θ0 increases, the plausible region Θ grows in size and the CPU time
required to compute the Bayesian optimal design increases. This is a common
trend observed here and in other examples reported in the literature (Chaloner
and Larntz, 1989). One also observes that the computing time to find A-optimal
designs is similar to that for D-optimal designs.

Table 12 further compares Bayesian D-, A- and E-optimal designs when β0
is uniformly distributed on the interval [−4.0, 2.0] and X ≡ [0, 6]× [0, 6] for the
logistic model with two regressors. One observes that the E-optimal designs has
the largest weight at the point (x1, x2) = (0.0000, 0.0000), followed by A- and
D-optimal designs, respectively. The A-optimal design has 9 support points, the
E-optimal design has 5 points and the D-optimal design has 7 points.
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Table 11

Bayesian D-optimal designs for the logistic model with two regressors when X ∈ [0, 6]× [0, 6]
and uniform prior distributions over different Θ regions.

Θ = {−4.0} Θ ∈ [−4.0,−1.0] Θ ∈ [−4.0, 2.0]
(0.0000,2.7000,0.1896) (0.0000,1.0800,0.1184) (0.0000,0.0000,0.2887)
(0.0000,5.3400,0.3104) (0.0000,1.1400,0.0588) (0.0000,2.4600,0.1663)
(2.7000,0.0000,0.1896) (0.0000,4.0200,0.0263) (0.0000,3.7200,0.0495)
(5.3400,0.0000,0.3104) (0.0000,4.0800,0.2965) (0.0000,3.7800,0.1399)

(1.0800,0.0000,0.1184) (2.4600,0.0000,0.1663)
(1.1400,0.0000,0.0588) (3.7200,0.0000,0.0495)
(4.0200,0.0000,0.0263) (3.7800,0.0000,0.1399)
(4.0800,0.0000,0.2965)

CPU (secs) 69.0616 69.4048 75.1769
(x1.xxxx, x2.xxxx,w.wwww) = (design point, weight).

Table 12

Bayesian D-, A- and E-optimal designs when β0 ≈ U [−4.0, 2.0] for the logistic model with
two regressors when Θ = [−4.0, 2.0] and X ∈ [0, 6]× [0, 6].

D-optimal design A-optimal design E-optimal design
(0.0000,0.0000,0.2887) (0.0000,0.0000,0.3944) (0.0000,0.0000,0.6244)
(0.0000,2.4600,0.1663) (0.0000,2.0400,0.1782) (0.0000,3.1200,0.1481)
(0.0000,3.7200,0.0495) (0.0000,2.1000,0.0391) (0.0000,3.1800,0.0397)
(0.0000,3.7800,0.1399) (0.0000,4.5600,0.0385) (3.1200,0.0000,0.1481)
(2.4600,0.0000,0.1663) (0.0000,4.6200,0.0470) (3.1800,0.0000,0.0397)
(3.7200,0.0000,0.0495) (2.0400,0.0000,0.1782)
(3.7800,0.0000,0.1399) (2.1000,0.0000,0.0391)

(4.5600,0.0000,0.0385)
(4.6200,0.0000,0.0470)

CPU (secs) 75.1769 67.4860 68.5936
(x1.xxxx, x2.xxxx,w.wwww) = (design point, weight).

5.4. Two-dimensional model with a Gamma distributed response

Here we consider a model with six parameters with two predictors to further
test the ability of SDP to find the optimal design. The generalized linear model
is defined on the design space X ∈ [0, 1]× [0, 1] and has a Gamma distributed
response with a two-dimensional mean function given by

µ = E(y|x) = g−1(β0 + β1 x1 + β2 x2 + β3 x
2
1 + β4 x

2
2 + β5 x1 x2) (12)

where g(µ) = 1/µ is the link function and the region for the parameter values
is Θ ≡ [βL0 , β

U
0 ]× [βL1 , β

U
1 ]× [βL2 , β

U
2 ]× [βL3 , β

U
3 ]× [βL4 , β

U
4 ]× [βL5 , β

U
5 ]. The FIM

for this model is given in Dette et al. (2013). To implement SDP, we discretized
the design space using ∆x1 = ∆x2 = 0.1 and used an integration scheme based
on a 3-point GQF for each of the six components of Θ. This requires evaluation
of the expectation using ι = 36 = 729 points. Following Dette et al. (2013), we
employed independent uniform prior for each parameter with βL0 = 0.5, βU1 =
2.0, βL1 = βL2 = βL3 = βL4 = βL5 = 0.0, and βU1 = βU2 = βU3 = βU4 = βU5 = 1.0.
The SDP-generated Bayesian optimal designs for different criteria are shown in
Table 13.

In this example, the SDP solver we employed experienced difficulty in han-
dling the large number of constraints and variables to optimize. A main reason
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is that the integration schemes used to compute the expectation require a large
number of points ι to minimize the numerical error that in turn requires SDP
representations to have a large number of LMIs and equality constraints. Con-
sequently, this presents a more and more challenging task for for the IP solvers.
Table 13 reports our SDP- generated designs and the two last lines in the table
show the large number of variables and the large number of equality constraints
involved in the optimization problem. For this problem, the high dimensionality
of the problem will only increase exponentially if higher order GQFs are used.
To avoid this problem, we may reduce the number of discretization points in
the space of regressors, however this strategy might lead to designs with low
efficiency since the small number of candidate points initially considered may
not adequately capture the features of the problem. One way to overcome this
limitation might be to use of grid adaptive algorithms combined with SDP or use
a Monte-Carlo sampling scheme to perform the integration. We do not discuss
these latter two possibilities here.

Table 13

Bayesian optimal designs for the quadratic mean model with 2 regressors and a Gamma
distributed response when X ∈ [0, 1]× [0, 1] and independent uniform prior density for each

of the 6 parameters (βL
0

= 0.5, βU
0

= 2.0, βL
1

= βL
2

= βL
3

= βL
4

= βL
5

= 0, and
βU
1

= βU
2

= βU
3

= βU
4

= βU
5

= 1).

D-optimal design A-optimal design E-optimal design
(0.0,0.0,0.1532) (0.0,0.0,0.1393) (0.0,0.0,0.1238)
(0.0,0.4,0.1333) (0.0,0.4,0.1668) (0.0,0.4,0.1659)
(0.0,1.0,0.1651) (0.0,1.0,0.0942) (0.0,1.0,0.0581)
(0.4,0.0,0.1333) (0.4,0.0,0.1668) (0.4,0.0,0.1659)
(0.4,0.4,0.0880) (0.4,0.4,0.1593) (0.4,0.4,0.1985)
(1.0,0.0,0.1651) (0.4,1.0,0.0386) (0.4,1.0,0.0099)
(1.0,1.0,0.1619) (1.0,0.0,0.0942) (1.0,0.0,0.0581)

(1.0,0.4,0.0386) (1.0,0.3,0.0646)
(1.0,1.0,0.1022) (1.0,0.4,0.0099)

(1.0,1.0,0.0807)
CPU (secs) 260.1629 134.8941 61.4176

# vars 73049 56984 15431
# eqls 21271 15430 850

(x.x, x.x,w.wwww) = (design point, weight)
# vars - number of variables involved in the SDP problem
# eqls - number of equality constraints involved in the SDP problem

6. Discussion

Our work here illustrates how to formulate an optimal design problem into
a SDP problem and find optimal designs for nonlinear models. We focus on
Bayesian optimal designs and show SDP was able to verify published results
in the literature. We produced new Bayesian A-, E- and D-optimal designs
for the logistic model using bivariate prior normal distributions and explored
how the correlation coefficient affects the optimal design, along with the choice
of the discretized design space and the number of points used in the GQF
approximation to the integration problem. We also applied SDP to find Bayesian
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D-optimal designs for the more complicated power logistic model, a logistic
model with two variables and a gamma distributed response model with two
variables.

SDP provides a general framework for determining locally optimal designs for
linear and nonlinear models with several regressors and parameters. We showed
here that extensions of SDP to find Bayesian optimal designs for nonlinear
models can be systematically carried out. The problem formulation relies on ro-
bust and accurate solvers that guarantee a global optimal solution that depends
on the grid set. For SDP-generated optimal design to be globally optimal, the
discretization scheme should be sufficiently fine to capture all the true design
points. The global optimality of the SDP-generated design can be verified using
an equivalence theorem available for each convex design criterion. For instance,
if we let δx be the point mass design at x, the equivalence theorems for D- and
A-optimality are as follow:

ξD is globally D-optimal if and only if

tr
{

[M(ξD, θ)]
−1 M(δx, θ)

}

− card(θ) ≤ 0, ∀x ∈ X,

and

ξA is globally A-optimal if and only if

tr
{

[M(ξA, θ)]
−2 M(δx, θ)

}

− tr
{

[M(ξA, θ)]
−1
}

≤ 0, ∀x ∈ X.

E-optimal designs do not have a differentiable criterion and the equivalence
theorem is more complicated. We do not report it here but its details, along with
derivation of the other equivalence theorems are available in design monographs,
such as Fedorov (1972) and Pukelsheim (1993). The equivalence theorems can
be extended to their Bayesian versions directly. For instance, for D-optimality,
ξBayesD is Bayesian D-optimal among all designs on X if and only if:

∫

Θ

tr
{

[M(ξ, θ)]−1 M(δx, θ)
}

π(θ) dθ − card(θ) ≤ 0, ∀x ∈ X.

Corresponding equivalence conditions can be stated similarly for Bayesian A-
and E-optimality. We note that in all the above equivalence theorems, equality
holds at the support points of the optimal design. In practice, one may verify
the optimality of the SDP-generated design by checking whether the above
inequality is satisfied with equality at the support points. For other convex
Bayesian design criterion, one can similarly calculate the directional derivative
of the criterion at the SDP-generated design to obtain an equivalence theorem
and perform the integration using GQF. For a high level of precision in the
integration, one may have to use higher degree Legendre polynomials and refine
the discretized design space to verify optimality.

Figure 1(a) displays the directional derivative of the Bayesian D-optimality
criterion for the SDP-generated design when Θ = [−0.3, 0.3]×[6.0, 8.0]. The plot
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satisfies the conditions in the equivalence theorem and confirms that the 3-point
design is optimal. Figures 1(b) and 1(c) show the directional derivatives of the
A- and E-optimality criteria at the SDP-generated designs and the plots also
confirm their optimality. The corresponding plot for the Bayesian D-optimal
design for the power logistic model with the additional parameter s ∈ [0.5, 1.0]
is shown in Figure 1(d).
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Fig 1. Directional derivative for the Bayesian criterion of the SDP-generated design on X =
[−1, 1] with independent uniform priors on Θ = [−0.3, 0.3]×[6.0,8.0] for the logistic model: (a)
D-optimality, (b) A-optimality, (c) E-optimality; and D-optimality with independent uniform
priors on Θ = [−0.3, 0.3]× [6.0, 8.0]× [0.5, 1.0] for the power logistic model.

Figure 2 displays the directional derivative plots for the SDP-generated de-
signs using bivariate normal priors with varying degrees of correlation between
the two components. Likewise, Figure 3 displays the directional derivative for
the SDP-generated BayesianD-optimal design for the logistic model with two re-
gressors and a unknown intercept with a uniform prior distribution on β0 ∈ [−4.0,−1.0]
and the design space is X = [0, 6]× [0, 6].

In summary, our experience is that if one is willing to discretize the design
space to find locally or Bayesian optimal designs, SDP is an effective tool. Our
last example with 2 regressors and a Gamma distributed response shows that
SDP can encounter problems when the user-selected solver cannot solve the ap-
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Fig 2. Directional derivatives for the Bayesian D-optimal criterion of the SDP-generated
designs for the simple logistic model when Θ = [−0.3, 0.3]×[6.0, 8.0], X = [−1, 1] and bivariate
normal prior densities in Table 5 with different covariances: (a) σµ,β = 0.05; (b) σµ,β =
0.075; (c) σµ,β = 0.10; (d) σµ,β = 0.15.

proximated optimization problem with thousands of variables to be optimized
and hundreds of constraints that have to be satisfied. Otherwise, SDP is gen-
erally effective for finding locally and Bayesian optimal designs when there are
not too many variables for the solver cvx to handle. Despite the general effec-
tiveness of SDP, it is a curiosity that SDP is not used more often in mainstream
statistical applications. We hope that this paper encourages more statisticians
to consider using SDP in their future work.
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