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Abstract

We consider a variant of the classical ‘Rayleigh problem’ (‘Stokes’s first prob-

lem’) in which a semi-infinite region of initially quiescent fluid is mobilised

by a shear stress applied suddenly to its boundary. We show that self-similar

solutions for the fluid velocity are available for any generalised Newtonian

fluid, regardless of its constitutive law. We demonstrate how these solutions

may be used to explore some generic questions about the behaviour of un-

steady, non-Newtonian boundary layers, and in particular the effect of shear

thinning or thickening on the thickness of a boundary layer.

Keywords: generalised Newtonian fluid, Rayleigh problem, Stokes’s first

problem, boundary layer

1. Introduction: the Rayleigh problem

The Rayleigh problem, sometimes called Stokes’s first problem, was first

formulated as a note to the celebrated paper by Stokes [1], and later discussed

more fully by Rayleigh [2]. The problem is to describe the behaviour of a
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semi-infinite region of fluid (y < 0 in the notation we will use), bounded

by a plane wall at y = 0 and initially at rest, when the wall is impulsively

accelerated to move in its own plane at a constant speed U .

For a Newtonian fluid, the momentum equation in the x-direction reduces

to the linear diffusion equation

∂u

∂t
= ν

∂2u

∂y2
, (1)

where the velocity u = u(y, t)i and ν is the constant kinematic viscosity. The

velocity field then has a self-similar form (see e.g. Drazin & Riley [3, §4.2]),

u(y, t) = U (1 + erf(η)) , where η =
y

2(νt)1/2
, (2)

and where erf is the standard error function. Drazin & Riley [3] also note

that by a simple change of variables the solution (2) may be used to describe

the case in which, instead of being driven by a velocity applied suddenly at

y = 0, the flow is driven by a shear stress of magnitude τ0 applied suddenly

at y = 0. The solution in this case is given by

∂u

∂y
=

τ0

ρν
(1 + erf(η)) and u(y, t) =

2τ0

ρ
√

ν
t1/2

[

η (1 + erf(η)) +
1√
π

exp
(

−η2
)

]

,

(3)

where ρ is the fluid density and where η is defined as above.

Aside from its value as an exact solution to the Navier–Stokes equations,

equation (2) provides a useful paradigm for boundary-layer flow, and is of-

ten used pedagogically to illustrate the concepts of momentum and vorticity

diffusion. The Rayleigh problem is thus a valuable starting point when we

consider how non-Newtonian effects may modify the structure of boundary

layers. A large number of variations on the problem have been investigated,
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and we will not attempt to provide a comprehensive review. We will con-

cern ourselves here only with the generalisations from Newtonian to non-

Newtonian fluids, and with those studies that have sought to develop exact

or asymptotic solutions rather than fully numerical solutions.

In the earliest such study, Bird [4] demonstrated that for a power-law

(Ostwald–de Waele) fluid, the equation corresponding to the velocity diffu-

sion equation (1) is non-linear, but still admits self-similar solutions anal-

ogous to equation (2). Bird presented solutions for several shear-thinning

cases, demonstrating that the more strongly shear-thinning the fluid is, the

more gradually the velocity decays with distance from the boundary. This

work was subsequently used [5] to obtain approximate solutions to the Ray-

leigh problem for more general rheological models. Pascal [6, 7] re-derived

the power-law solution, added a yield stress, and considered the behaviour

of the solutions for shear-thickening fluids. For a shear-thickening power-law

fluid the boundary layer is strictly finite; that is, at any instant the velocity is

identically zero beyond a certain distance from the boundary, which emerges

as part of the solution to the problem.

The Rayleigh problem has also been extensively investigated for classes of

viscoelastic fluids for which the momentum equation for unsteady rectilinear

flow reduces to a linear PDE. The first study of this kind was by Tanner [8],

who investigated the Rayleigh problem for an Oldroyd-B fluid. Among the

extensive literature that has since developed, key studies have been those by

Rajagopal [9] for a second-grade fluid and by Phan-Thien & Chew [10] for

a Phan-Thien–Tanner fluid. Christov [11] provides a discussion and critique

of much of the more recent work on the viscoelastic Rayleigh problem. In
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addition, the Rayleigh problem has been extended to more complex fluids,

including a model of a concentrated suspension [12] and of a nematic liquid

crystal [13]; in the former case, self-similar solutions are again available.

From a physical point of view, the classical Rayleigh problem may not

be the most natural one to specify, because in practice it is often easier to

apply a controlled shear stress than a controlled velocity to the boundary of

a fluid. Nevertheless, studies of the Rayleigh problem have confined them-

selves almost exclusively to the velocity-driven, rather than the shear-driven,

version — perhaps because of the essential equivalence of these problems

in the Newtonian case. In the non-Newtonian case, these problems are no

longer equivalent. In the present work, we will demonstrate that self-similar

solutions to the shear-driven problem may be obtained for any generalised

Newtonian rheology; in contrast, such solutions do not in general exist for

the velocity-driven problem. We will derive the form of these self-similar

solutions in section 2, and demonstrate in section 3 how they may be used to

explore some generic properties of unsteady non-Newtonian boundary layers.

2. Problem specification and governing equations

2.1. Two-dimensional unsteady rectilinear flow of a generalised Newtonian

fluid

The mass-conservation and momentum-balance equations for a fluid of

constant density ρ, when body forces are neglected, are

∇ · u = 0 (4)

and

ρ
Du

Dt
= −∇p + ∇ · σ, (5)
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where u, p and σ are the velocity, pressure and extra-stress tensor of the

fluid, and t denotes time.

A generalised Newtonian fluid is one for which the constitutive equation

takes the form

σ = 2µ(q)e, (6)

where e is the rate-of-strain tensor, given by

e =
1

2

(

∇u + (∇u)T
)

, (7)

q is the local shear rate, given by q =
(

2 tr(e2)
)1/2

, and µ = µ(q) is a pre-

scribed shear-rate-dependent viscosity function. The quantity τ =
(

1
2
tr(σ2)

)1/2

= µ(q)q provides a measure of the local extra stress.

For two-dimensional unsteady rectilinear flow with velocity of the form

u = u(y, t)i referred to Cartesian coordinates Oxyz we have ∇ · u = 0 and

u · ∇u = 0 identically, and the only non-zero components of σ are

σ12 = σ21 = µ(q)
∂u

∂y
, where q =

∣

∣

∣

∣

∂u

∂y

∣

∣

∣

∣

. (8)

Note that in such rectilinear flows the vorticity ω = ∂u/∂y, so q = |ω|. For

flows in which the pressure gradient ∂p/∂x is zero, equation (5) reduces to

the nonlinear parabolic equation

ρ
∂u

∂t
=

∂

∂y

(

µ(q)
∂u

∂y

)

. (9)

When the fluid is Newtonian, µ(q) = ρν, a constant, and (9) reduces imme-

diately to (1).

2.2. The shear-driven Rayleigh problem

We consider the situation in which fluid occupies the half space y ≤ 0,

with a boundary at y = 0. Specifically, we consider the problem in which
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the fluid is stationary for t < 0 but for t ≥ 0 is caused to flow with velocity

u = u(y, t)i by a constant shear stress τ0 > 0 in the x direction applied at

the boundary y = 0. Thus at y = 0 we have the boundary condition

σ12 = σ21 =







0 if t < 0,

τ0 if t ≥ 0,
or, equivalently,

∂u

∂y
=







0 if t < 0,

q0 if t ≥ 0,

(10)

where the positive constants τ0 and q0 are related by

τ0 = µ(q0)q0. (11)

We seek solutions for which ∂u/∂y ≥ 0 everywhere and so we may take

q = ∂u/∂y ≥ 0; the velocity u must then be maximum at y = 0, and we

may reasonably expect the shear rate q also to be highest at the boundary,

although we do not require this.

2.2.1. Nondimensionalisation

We nondimensionalise variables via

y = Ly∗, t =
ρL2

µr
t∗, u =

Lτ0

µr
u∗, q =

τ0

µr
q∗, τ = τ0τ

∗, µ = µrµ
∗,

(12)

where µr is an appropriate ‘reference’ viscosity (for example, the zero-shear-

rate viscosity) and L is an arbitrary lengthscale. Note that the dimensionless

shear stress τ ∗ is not an additional variable but is given by τ ∗(q∗) = µ∗(q∗)q∗.

The non-dimensionalisation (12) contains the artificial lengthscale L, which

remains undetermined by the boundary and initial conditions. This is an

indication that self-similar solutions can be found. The only combination

of y∗ and t∗ that is independent of L is y∗/t∗1/2 = (ρ/µr)
1/2y/t1/2, while
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the only combination of u∗ and t∗ that is independent of L is u∗/t∗1/2 =

((ρµr)
1/2/τ0)u/t1/2. Requiring that when a solution u(y, t) is non-dimensional-

ised the corresponding solution u∗(y∗, t∗) should not depend on L thus leads

us to consider solutions of the self-similar form

u∗ = 2t∗1/2f(η), where η =
y∗

2t∗1/2
, (13)

and where the factors of 2 have been introduced for convenience. For so-

lutions of this form, q∗ = f ′(η) and µ∗ = µ∗(f ′) are also independent of

L.

Although µr is not an artificial scale in the sense that L is, it is not

uniquely defined. In particular, if we wish to compare results for different

constitutive laws µ(q), this will naturally lead us to compare solutions for

which µr is defined in different ways. There is then a danger that the effects of

changing the choice of µr will be confused with the qualitative effects of non-

Newtonian behaviour. To avoid this, in section 3.2 we will seek quantities

that are independent both of L and of µr. In particular, the only combination

of q∗ and η that is independent of µr is given by η2q∗ = (ρ/(4τ0))y
2q/t. A

particular example of this combination of variables will be of interest when

we examine boundary-layer thickness in section 3.2.

2.2.2. The boundary-value problem for the self-similar solution

With the non-dimensionalisation (12), equation (9) becomes

∂u∗

∂t∗
=

∂

∂y∗

(

µ∗(q∗)
∂u∗

∂y∗

)

, where q∗ =
∂u∗

∂y∗
. (14)

Seeking a solution of the form (13) to equation (14), we find that the unknown

function f(η) must satisfy the nonlinear ordinary differential equation

2(f − ηf ′) = [µ∗(f ′)f ′]′. (15)
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Equation (15) is to be integrated subject to the boundary conditions

f ′(0) = q∗0, and f(η) → 0 as η → −∞, (16)

where q∗0 = q0µr/τ0, and q0 is defined by (11), so in dimensionless terms

µ∗(q∗0)q
∗

0 = 1. (17)

Numerical solutions to the boundary-value problem (15)–(17) may be ob-

tained, once µ∗(q∗) is specified, using standard software packages such as

Maple or Mathematica; we present several examples in the following section,

but we emphasise that these are not the only rheologies for which solutions

can be obtained.

Note that such self-similar solutions can be constructed for general µ∗(q∗)

only when the flow is forced by a suddenly applied shear stress (or, equiv-

alently, a suddenly applied shear rate) at y = 0. In particular, it is not

generally possible to construct such solutions for the classical version of the

Rayleigh problem in which the velocity at y = 0 is suddenly increased. In

solutions to this classical problem, q∗ is necessarily a function of t∗ as well

as of η; now, t∗ can be eliminated from the governing equation (14) only if

µ∗(q∗) can be written as the product of a function of η and a single power of

t∗, and this is possible only when µ∗(q∗) is a monomial in q∗ (as in [6]).

It is also of interest that if equation (14) is differentiated with respect to

y∗ then it can be written as a concentration-dependent diffusion equation for

q∗,

∂q∗

∂t∗
=

∂

∂y∗

(

D(q∗)
∂q∗

∂y∗

)

, where the diffusivity D(q∗) =
dτ ∗

dq∗
. (18)
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The problem we consider here is thus formally identical to some of those

investigated by [14] and by [15]; our approach differs from theirs, however,

in that we explore the properties of the solution on the understanding that

µ∗(q∗) is specified, rather than by seeking forms of D∗(q∗) that yield exact

solutions for q∗.

3. Specific solutions and their properties

3.1. Low-shear behaviour and finite boundary layers

Pascal [6] presented explicit solutions to the velocity-driven Rayleigh

problem for power-law fluids, in which µ(q) = µnqn−1, where n is the power-

law index and µn is a dimensional consistency parameter. In this case, equa-

tion (14) becomes a form of the ‘porous medium equation’, and an interesting

feature of the solutions is that for shear-thickening fluids, for which n > 1,

the boundary layer is finite. (The behaviour of compactly-supported solu-

tions to the porous medium equation has been extensively studied: see for

example [16].) A finite boundary layer is also found under oscillatory forcing

(Stokes’s second problem) for a shear-thickening power-law fluid [17].

In the light of these results for power-law fluids, it is natural to ask what

properties of a general viscosity function µ∗(q∗) are required in order for finite

boundary layers to exist, and the boundary-value problem (15)–(17) provides

a useful way to approach this question. We assume that at small shear rates,

q∗ → 0, the asymptotic behaviour of the viscosity is µ∗(q∗) ∼ Aq∗α for

some positive constant A; although α may be positive, negative or zero, it is

physically realistic to require that α > −1 so that τ ∗ is an increasing function

of q∗. We will in turn postulate a finite boundary layer and a far-field decay
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of the velocity, and we will obtain the conditions on α that are required for

each type of behaviour to occur.

(i) A finite boundary layer. We postulate a finite boundary layer solution

of the form

f(η) ∼ B(η − η0)
k as η → η+

0 , (19)

where the edge of the boundary layer is at η = η0 < 0, and where B and k

are positive constants. For simplicity, we write ǫ = η − η0 > 0. Expanding

(15) in powers of ǫ and retaining only the leading-order terms, we find that

−2η0akǫk−1 ∼ A(Bk)α+1(α + 1)(k − 1)ǫ(α+1)(k−1)−1. (20)

Equating the powers of ǫ, we deduce that k = (α+1)/α, and the requirement

that k > 0 then yields the condition α > 0. The constants B and η0 are

therefore related by

−2η0 = ABα

(

α + 1

α

)α+1

, (21)

and we note that η0 < 0 as required. We also note that for a power-law

fluid α = n − 1 , so the condition α > 0 yields n > 1 (shear thickening)

consistently with the results of [6].

(ii) Algebraic decay in the far field. We now postulate a far-field solution

of the form

f(η) ∼ − C

γ + 1
(−η)γ+1, so that f ′(η) ∼ C(−η)γ, as η → −∞, (22)

where γ < 0 and C > 0 are constants. Expanding (15) in powers of −η and

retaining leading-order terms, we find that

2Cγ

γ + 1
(−η)γ+1 ∼ −ACα+1γ(α + 1)(−η)αγ+γ−1. (23)
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Equating the powers of −η, we deduce that γ = 2/α, and the requirement

that γ < 0 then yields the condition α < 0. The constant C is then given by

2α

(α + 2)(α + 1)
= −ACα, (24)

and we note that C > 0 as long as −1 < α < 0. We also note that for a

power-law fluid, the condition α < 0 yields n < 1 (shear thinning), again

consistently with the results of [6].

Finally, we note that when the viscosity tends to a constant at small

shear rates, i.e. in the special case α = 0, Newtonian behaviour is recovered

in this limit and the velocity decays as exp(−η2)/η2 at large distances from

the boundary. Although other low-shear-rate behaviours for µ∗(q∗) could be

postulated, the three regimes defined by −1 < α < 0, α = 0 and α > 0 cover

the vast majority of commonly employed rheological models.

3.2. Shear thinning or thickening and boundary-layer thickness

With the exception of the power-law and Herschel–Bulkley fluids, most

rheological models possess a non-zero limiting viscosity at low shear rates,

µ(q) → µ0 as q → 0. Consequently, at sufficient distances from the boundary

such fluids will behave like Newtonian fluids with viscosity µ0, but closer to

the boundary non-Newtonian effects will become apparent. The self-similar

solutions described in section 2.1 allow us readily to quantify this distance

and thus to determine the importance of the non-Newtonian behaviour. In

particular, we address the following question: if the viscosity at high shear

rates is lower (or greater) than that at low shear rates, how much narrower

(or wider) is the boundary layer than an estimate based on the limiting

low-shear viscosity would suggest?
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3.2.1. The displacement thickness

To answer this question we require a robust definition of the boundary-

layer thickness. A natural definition to choose is the velocity displacement

thickness

δ(t) =
1

u(0, t)

∫ 0

−∞

u(y, t)dy, (25)

which for self-similar solutions of the form (13) can be written as

δ(t) = 2

√

µr

ρ
t1/2ηd, where ηd =

1

f(0)

∫ 0

−∞

f(η)dη. (26)

The displacement thickness δ(t) is precisely analogous to the familiar velocity

displacement thickness in classical boundary-layer theory [e.g. 18, §5.8], while

the dimensionless coefficient ηd defines a value of η that characterises the

thickness of the boundary layer.

For a Newtonian fluid with constant viscosity µr, the boundary-value

problem (15)–(17) has the solution

f(η) = η (1 + erf(η)) +
1√
π

exp(−η2) (27)

(cf. (3)), for which

ηd =

√
π

4
≈ 0.443. (28)

Note that the result (28) depends on the viscosity µr employed in the non-

dimensionalisation. However, recalling the discussion from section 2.2.1, we

conclude that quantities of the form η2
dq

∗ are independent of the choice of µr.

In particular, the product of η2
d with the shear rate q∗0 at the surface,

F = η2
dq

∗

0 = η2
df

′(0) (29)

is independent of µr, and takes the value F = π/16 for any Newtonian fluid.

In the investigation of non-Newtonian fluids below, we will seek to separate
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the effects of non-Newtonian behaviour from those of the choice of µr. The

quantity F defined by (29) will be useful in doing so, because any deviation

of F from the value F = π/16 must be due to non-Newtonian effects.

3.2.2. Results for a Carreau fluid

To illustrate the effect of shear thinning and thickening on the displace-

ment thickness, we consider a specific rheology, the Carreau model [e.g. 19,

§1.5]. In dimensional form the Carreau model may be written as

µ(q) = µ∞ +
µ0 − µ∞

[1 + (λq)2](1−n)/2
, (30)

where n < 1, where µ0 and µ∞ are the limiting viscosities at low and high

shear rates respectively, and where the inverse reference shear rate λ has the

dimension of time. We take the reference viscosity for non-dimensionalisation

to be µr = µ0, so the dimensionless viscosity becomes

µ∗(q∗) = µ∗

∞
+

1 − µ∗

∞

[1 + (λ∗q∗)2](1−n)/2
, (31)

where we define

µ∗

∞
=

µ∞

µ0
and λ∗ =

λτ0

µ0
. (32)

The extent to which non-Newtonian effects are evident depends on the

magnitude of λ∗q∗0 . Recall that the shear rate is greatest at the boundary,

q∗ = q∗0 at y∗ = 0. Thus if λ∗q∗0 ≪ 1 then the term λ∗q∗ is negligible

everywhere, and the fluid behaves simply like a Newtonian fluid with constant

dimensionless viscosity 1. If, conversely, λ∗q∗0 ≫ 1, then close to the boundary

we have µ∗(q∗) ∼ µ∗

∞
. The initial decay of the velocity with distance from the

boundary is therefore that of a Newtonian fluid with dimensionless viscosity
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µ∗

∞
. This region of Newtonian behaviour extends until λ∗q∗ ∼ 1, when non-

Newtonian effects assert themselves; there is then a region of non-Newtonian

behaviour, and further still from the boundary the velocity must again follow

the Newtonian solution with constant dimensionless viscosity 1.

Figure 1 illustrates the profiles of velocity, shear rate (vorticity) and

shear stress for a Newtonian fluid compared with two Carreau fluids, one

strongly shear-thinning (in which λ∗q∗0 ≈ 42) and one shear-thickening (in

which λ∗q∗0 ≈ 2.3). Shear thinning is associated with higher shear rates,

correspondingly lower viscosities and consequently lower momentum diffu-

sivity, so the disturbance is confined within a relatively thin boundary layer

close to y = 0. Shear thickening, conversely, is associated with lower shear

rates, correspondingly higher viscosities and consequently higher momen-

tum diffusivity, so the boundary layer is somewhat wider. The difference in

boundary-layer thickness is most obvious in the plots of shear stress (figure

1 c), where it is not obscured by differences in the values of f and f ′ at η = 0.

Figure 2 a shows how the displacement thickness coefficient ηd varies

with the rheological parameters µ∗

∞
and λ∗. Unsurprisingly, when either

µ∗

∞
is close to unity (weak shear thinning or thickening) or q∗ is small (a

weak applied shear stress), the non-Newtonian effects are negligible and ηd

remains close to its Newtonian value ηd ≈ 0.443. Even outwith this regime,

the variation of ηd is not strong: even when µ∗

∞
= 0.1 and λ∗ = 10, ηd

remains more than half of its Newtonian value (cf. figure 1).

The variation of the shear rate at the boundary with the rheological

parameters is closely correlated with that of ηd. In fact, throughout the

region of parameter space plotted, the relationship F = π/16, which would
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be exact for a Newtonian fluid, is approximately satisfied (figure 2 b), with

deviations everywhere smaller than 25%. It is interesting that this result

holds approximately even when the fluid is strongly non-Newtonian, and it

offers a quick means of estimating the boundary-layer thickness in a Carreau

fluid simply from the boundary condition on q, without having to solve the

full boundary-value problem. Written in dimensional terms using (26) this

result corresponds to the statement that

δ(t) = 2

√

µ0

ρ
t1/2ηd ≈

√
πτ0

2
√

ρq0
t1/2, where µ(q0)q0 = τ0. (33)

3.2.3. Power-law fluids revisited

The results presented above for Carreau fluids appear at first to contradict

the finding (see [4], and §3.1 above) that for power-law fluids, increased

shear thinning leads to more gradual decay in the far field, and thus to

wider boundary layers. To quantify the latter point, figure 3 presents the

variation of ηd with n for shear-thinning power-law fluids with µ∗(q∗) = q∗n−1;

the corresponding results for shear-thickening cases require more effort to

compute numerically because of the finite boundary layer, and are omitted

here.

Figure 3 a shows how ηd varies with the power-law index n. This figure

corresponds to figure 2 a for the Carreau fluid, but appears to show the op-

posite trend: the more strongly shear thinning the fluid is (the further to the

left in each plot), the larger ηd becomes for a power-law fluid (figure 3 a), but

the smaller it becomes for a Carreau fluid (figure 2 a). To resolve this seeming

contradiction we must carefully consider the reference quantities chosen to

non-dimensionalise the problem. The argument presented in the discussion of

figure 1 above is premised on a non-dimensionalisation in which the limiting
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viscosity in the far field is the same for all fluids, so shear thinning or thicken-

ing corresponds to a decrease or an increase in the viscosity near to the wall.

In contrast, for power-law fluids no equivalent non-dimensionalisation is pos-

sible: instead, the definition µ∗(q∗) = q∗n−1 implicitly takes the viscosity at

the wall for its reference value, fixing µr = µ
1/n
n τ

1−1/n
0 and f ′(0) = q∗0 = 1 in

the process. Thus, in the dimensionless problem, shear thinning corresponds

to an increase in viscosity in the far field rather than to a decrease in viscosity

close to the wall.

A more relevant comparison is between figures 3 b and 2 b. In figure

3 b, the quantity F defined by (29), which is independent of the choice

of µr, is plotted as a function of n. The trend of F with increased shear

thinning (lower n) 3 b is the same as the trend of F with increased shear

thinning (lower µ∗

∞
) in figure 2 b. This resolution of the seeming contradic-

tion illustrates the important point that, because the parameters appearing

in different rheological models have different roles, and even different dimen-

sions, these models may be incommensurable unless the ways in which they

are compared are carefully defined.

4. Summary

The class of generalised Newtonian fluids is a large one, and it is not easy

to make general statements about their flow, whether steady or unsteady. It

is therefore noteworthy that for a variation of the classical Rayleigh prob-

lem, in which a deep fluid layer flows under the influence of a shear stress

applied suddenly at the boundary, self-similar solutions are available for any

generalised Newtonian fluid regardless of its constitutive law. In these solu-
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tions, both the velocity at the boundary and the thickness of the boundary

layer always increase as the square root of time. Full numerical solutions for

any given constitutive law may be obtained by solving the boundary-value

problem defined by the second-order ODE (15) and the boundary conditions

(16)–(17).

These self-similar solutions may provide a useful benchmark for simula-

tions of generalised Newtonian fluids. They also provide a prototype for un-

steady boundary-layer flow, and may be interrogated to yield generic insight

into such flow. In particular, we have demonstrated that a finite boundary

layer can be expected to occur for any rheology that shares the asymptotic

behaviour of shear-thickening power-law fluids in which the viscosity decays

to zero algebraically at low shear rates. We have also used the self-similar

solutions to quantify the extent to which shear-thinning and -thickening prop-

erties reduce or increase the boundary-layer thickness. In particular, for a

Carreau fluid a prediction of boundary-layer thickness based on a result for

a Newtonian fluid is shown to provide a reasonably accurate estimate even

in strongly non-Newtonian regimes.

Our results for the boundary-layer thickness also illustrate the more gen-

eral point that a question such as ‘does shear thinning increase or decrease

boundary-layer thickness?’ may make sense only in the context of a partic-

ular rheological model rather than generically. In particular, results for a

power-law fluid may be misleading because in this model, different degrees

of shear thinning and thickening are represented by changing n, and with it

the dimension of the consistency µn and of any quantities that depend on µn;

this contrasts with more realistic models such as the Carreau fluid in which

17



different degrees of shear thinning or thickening are represented by altering

the magnitudes, but not the dimensions, of µ0 and µ∞.
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Figure 1: Boundary layers for a Newtonian fluid (solid lines) and for Carreau fluids with

n = 0.5 and λ∗ = 10 together with µ∗

∞
= 0.1 (shear-thinning; heavy dashed lines) or

µ∗

∞
= 10 (shear-thickening; light dashed lines): (a) velocity profile f(η); (b) shear rate

(vorticity) ω∗ = f ′(η); (c) shear stress τ∗ = µ∗(f ′(η))f ′(η). The horizontal lines η = −ηd

in each plot represent the displacement thickness for the Newtonian case (ηd ≈ 0.443;

solid lines), the shear-thinning Carreau fluid (ηd ≈ 0.236; heavy dashed lines) and the

shear-thickening Carreau fluid (ηd ≈ 0.850; light dashed lines).
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Figure 2: A Carreau fluid with n = 0.5: (a) the displacement thickness coefficient ηd, with

contours at intervals of 0.05 from 0.25 to 0.8; (b) the nondimensionalisation-independent

quantity 16F/π, with contours at intervals of 0.05 from 0.85 to 1.2.
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Figure 3: A shear-thinning power-law fluid: (a) the displacement thickness coefficient ηd;

(b) the nondimensionalisation-independent quantity F .
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