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Frames, or lattices consisting of mass points connected by rigid bonds or central force springs, are important
model constructs that have applications in such diverse fields as structural engineering, architecture, and ma-
terials science. The difference between the number of bonds and the number of degrees of freedom of these
lattices determines the number of their zero-frequency “floppy modes”. When these are balanced, the system is
on the verge of mechanical instability and is termed isostatic. It has recently been shown that certain extended
isostatic lattices exhibit floppy modes localized at their boundary. These boundary modes are insensitive to local
perturbations, and appear to have a topological origin, reminiscent of the protected electronic boundary modes
that occur in the quantum Hall effect and in topological insulators. In this paper we establish the connection be-
tween the topological mechanical modes and the topological band theory of electronic systems, and we predict
the existence of new topological bulk mechanical phases with distinct boundary modes. We introduce model
systems in one and two dimensions that exemplify this phenomenon.

Isostatic lattices provide a useful reference point for un-
derstanding the properties of a wide range of systems
on the verge of mechanical instability, including network
glasses1,2, randomly diluted lattices near the rigidity perco-
lation threshold3,4, randomly packed particles near their jam-
ming threshold5–10, and biopolymer networks11–14. There are
many periodic lattices, including the square and kagome lat-
tices in d = 2 dimensions and the cubic and pyrochlore
lattices in d = 3, that are locally isostatic with coordina-
tion number z = 2d for every site under periodic bound-
ary conditions. These lattices, which are the subject of this
paper, have a surprisingly rich range of elastic responses
and phonon structures15–19 that exhibit different behaviors as
bending forces or additional bonds are added.

The analysis of such systems dates to an 1864 paper by
James Clerk Maxwell20 that argued that a lattice with Ns
mass points and Nb bonds has N0 = dNs − Nb zero modes.
Maxwell’s count is incomplete, though, because N0 can ex-
ceed dNs − Nb if there are Nss states of self-stress, where
springs can be under tension or compression with no net
forces on the masses. This occurs, for example, when masses
are connected by straight lines of bonds under periodic bound-
ary conditions. A more general Maxwell relation21,

ν ≡ N0 −Nss = dNs −Nb, (1)

is valid for infinitesimal distortions.
In a locally isostatic system with periodic boundary condi-

tions, N0 = Nss. The square and kagome lattices have one
state of self-stress per straight line of bonds and associated
zero modes along lines in momentum space. Cutting a section
of N sites from these lattices removes states of self-stress and
O(
√
N) bonds and necessarily leads to O(

√
N) zero modes,

which are essentially identical to the bulk zero modes. Re-
cently Sun et al.22 studied a twisted kagome lattice in which
states of self-stress are removed by rotating adjacent site shar-
ing triangles in opposite directions. This simple modification
gaps the bulk phonon spectrum (except for q = 0) and local-
izes the required zero modes in the cut lattice to its surfaces.

These boundary zero modes are robust and insensitive to
local perturbations. Boundary modes also occur in electronic
systems, such as the quantum Hall effect23,24 and topologi-
cal insulators25–30. In this paper we establish the connection

between these two phenomena. Our analysis allows us to pre-
dict the existence of new topologically distinct bulk mechani-
cal phases and to characterize the protected modes that occur
on their boundary. We introduce a 1D model that illustrates
this phenomenon in its simplest form and maps directly to
the Su-Schrieffer-Heeger (SSH) model31. We then prove an
index theorem that generalizes equation (1) and relates the lo-
cal count of zero modes on the boundary to the topological
structure of the bulk. We introduce a deformed version of the
kagome lattice model that exhibits distinct topological phases.
The predictions of an index theorem are verified explicitly by
solving for the boundary modes in this model. Finally, we
show that some of the distinctive features of the topological
phases can be understood within a continuum elastic theory.

Mechanical Modes and Topological Band Theory

A mechanical system of masses M connected by springs
K is characterized by its equilibrium matrix21 Q, which re-
lates forces Fi = QimTm to spring tensions Tm. i labels the
d components on the Ns sites and m labels the Nb bonds.
Equivalently, em = QTmiui relates bond extensions em to site
displacements ui. The squared normal mode frequencies ω2

n

are eigenvalues of the dynamical matrixD = QQT , where we
set K/M to unity. The nullspace of QT describes the N0 =
dim ker QT floppy modes. The nullspace of Q describes the
Nss = dim ker Q states of self-stress. The global counts of
these two kinds of zero modes are related by the rank-nullity
theorem21, which may be expressed as an index theorem32.
The index of Q, defined as ν = dim ker QT − dim ker Q,
is equal to the difference between the number of rows and
columns of Q, and is given by equation (1).

At first sight, the mechanical problem and the quantum
electronic problem appear different. Newton’s laws are
second-order equations in time, while the Schrodinger equa-
tion is first order. The eigenvalues of D are positive defi-
nite, while an elecronic Hamiltonian has positive and negative
eigenvalues for the conduction and valence bands. To uncover
the connection between the two problems we draw our inspi-
ration from Dirac, who famously took the “square root” of the
Klein Gordon equation33. To take the square root of the dy-
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namical matrix, note that D = QQT has a supersymmetric
partner34,35 D̃ = QTQ with the same non-zero eigenvalues.
Combining D and D̃ gives a matrix that is a perfect square,

H =

(
0 Q
QT 0

)
; H2 =

(
QQT 0

0 QTQ

)
. (2)

The spectrum of H is identical to that of D, except for the
zero modes. Unlike D, the zero modes of H include both
the zero modes of QT and Q, which are eigenstates of τz =
diag(1dNs

,−1Nb
) distinguished by their eigenvalue, ±1.

Viewed as a Hamiltonian, H can be analyzed in the
framework of topological band theory29. It has an intrin-
sic “particle-hole” symmetry, {H, τz} = 0, that guarantees
eigenstates come in ±E pairs. Since Qim is real, H = H∗
has “time-reversal” symmetry. These define symmetry class
BDI36. In one-dimension, gapped Hamiltonians in this class
are characterized by an integer topological invariant n ∈ Z
that is a property of the Bloch Hamiltonian H(k) (or equiva-
lentlyQ(k)) defined in the Brillouin zone (BZ). If bulk modes
are all gapped, then Q(k) ∈ GLn is classified by an element
of the homotopy group π1(GLn) = Z, given by the winding
number of the phase of detQ(k) around the BZ. A conse-
quence is that a domain wall across which n changes is asso-
ciated with topologically protected zero modes31,37,38. Below,
we present an index theorem that unifies this bulk-boundary
correspondence with equation (1) and shows how it can be
applied to d-dimensional lattices, which form the analog of
weak topological insulators28.

Topological edge modes have been previously predicted
in 2D photonic39,40 and phononic41 systems. These differ
from the present theory because they occur in systems with
bandgaps at finite frequency and broken time-reversal sym-
metry (symmetry class A). Localized end modes were found
in a time-reversal invariant 1D model (class AI)42. However,
the presence of those finite frequency modes is not topologi-
cally guaranteed.

One-Dimensional Model

Before discussing the index theorem we introduce a sim-
ple 1D model that illustrates the topological modes in their
simplest setting. Consider a 1D system of springs connect-
ing masses constrained to rotate at a radius R about fixed
pivot points. In Fig. 1a the spring lengths are set so that
the equilibrium configuration is 〈θi〉 = 0. Fig. 1b shows a
configuration with shorter springs with 〈θi〉 = θ̄. Expand-
ing in deviations δθi about θ̄, the extension of spring m is
δ`m = QTmiδθi, with QTmi = q1(θ̄)δm,i + q2(θ̄)δm,i+1 and
q1(2) = r cos θ̄(r sin θ̄ ± 1)/

√
4r2 cos2 θ̄ + 1. The normal

mode dispersion is ω(k) = |Q(k)|, whereQ(k) = q1 +q2e
ik.

When θ̄ = 0, q1 = −q2, and there are gapless bulk modes
near k = 0. For a finite system with N sites and N − 1
springs there is a single extended zero mode, as required by
equation (1). For θ̄ 6= 0 the bulk spectrum has a gap. In this
case, the zero mode required by equation (1) is localized at
one end or the other, depending on the sign of θ̄. The θ̄ > 0

δθ1 δθ3

δθ2 δθ4

θ

a b

c d

e

f

fm

fm
fm

ss

θ = + θc

θ = - θc

θ = - θc

θ = + θc

l1
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l3

FIG. 1: A one dimensional isostatic model system. For θ̄ = 0 a
the vibrational spectrum is gapless, while for θ̄ > 0 b there is a gap.
c and d depict the SSH models corresponding to a and b. e shows a
domain wall between θ̄ = +θc and−θc in which the floppy mode at
the interface is apparent. f shows the domain wall between θ̄ = −θc
and +θc, with floppy modes at the ends and a state of self-stress at
the interface.

and θ̄ < 0 phases are topologically distinct in the sense that it
is impossible to tune between the two phases without passing
through a transition where the gap vanishes. The topological
distinction is captured by the winding number of the phase of
Q(k), which is 1 (0) for |q1| < (>)|q2|.

Viewed as a quantum Hamiltonian, equation (2) for this
model is identical to the SSH model31, as indicated in
Fig. 1(c,d). The sites and the bonds correspond, respectively,
to the A and B sublattices of the SSH model. For θ̄ = 0
the bonds in the SSH model are the same (Fig. 1c), while
for θ̄ 6= 0 they are dimerized (Fig. 1d). The two topolog-
ical phases correspond to the two dimerization patterns for
polyacetalene. As is well known for the SSH model31,37, an
interface between the two dimerizations binds a zero mode.
This is most easily seen for θ̄ = ±θc where the springs are
colinear with the bars, so that q1 or q2 = 0. Fig. 1e shows a
domain wall between +θc and −θc, in which the center two
sites share a localized floppy mode. Fig. 1f shows an interface
between −θc and +θc with a state of self-stress localized to
the middle three bonds, in addition to floppy modes localized
at either end. As long as there is a bulk gap, the zero modes
cannot disappear when θ̄ deviates from ±θc. The zero modes
remain exponentially localized, with a localization length that
diverges when θ̄ → 0.

Index Theorem

There appear to be two distinct origins for zero modes. In
equation (1) they arise because of a mismatch between the
number of sites and bonds, while at a domain wall they arise
in a location where there is no local mismatch. To unify them,
we generalize the index theorem so that it determines the zero-
mode count νS in a subsystem S of a larger system. This is
well defined provided the boundary of S is deep in a gapped
phase where zero modes are absent. We will show there are
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two contributions,

νS = νSL + νST , (3)

where νSL is a local count of sites and bonds in S and νST is a
topological count, which depends on the topological structure
of the gapped phases on the boundary of S.

To prove equation (3) and to derive formulas for νST and νSL ,
we adapt a local version of the index theorem originally intro-
duced by Callias43–46 to allow for the possibility of non-zero
νSL . The details of the proof are given in the supplementary
material. Here we will focus on the results. Consider a d-
dimensional system described by a Hamiltonian Hαβ , where
α labels a site or a bond centered on rα. The count of zero
modes in S may be written

νS = lim
ε→0

Tr

[
τzρS(r̂)

iε

H+ iε

]
, (4)

where r̂αβ = δαβrα. The region S is defined by the support
function ρS(r) = 1 for r ∈ S and 0 otherwise. It is useful
to consider ρS(r) to vary smoothly between 1 and 0 on the
boundary ∂S. Expanding the trace in terms of eigenstates of
H shows that only zero modes with support in S contribute.

In the supplementary material we show that equation (4)
can be rewritten as equation (3) with

νSL = Tr
[
ρS(r̂)τz

]
(5)

and

νST =

∫
∂S

dd−1S

Vcell
RT · n̂, (6)

where the integral is over the boundary of S with inward
pointing normal n̂. RT =

∑
i niai is a Bravais lattice vector

characterizing the periodic crystal in the boundary region that
can be written in terms of primitive vectors ai and integers

ni =
1

2πi

∮
Ci

dk · Tr[Q(k)−1∇kQ(k)]. (7)

Here Ci is a cycle of the BZ connecting k and k + bi, where
bi is a primitive reciprocal vector satisfying ai · bj = 2πδij .
ni are winding numbers of the phase of detQ(k) around the
cycles of the BZ, where Q(k) is the equilibrium matrix in a
Bloch basis.

To apply equations (6) and (7), it is important that the wind-
ing number be independent of path. This is the case if there is
a gap in the spectrum. We will also apply this when the gap
vanishes for acoustic modes at k = 0. This is okay because
the acoustic mode is not topological in the sense that it can
be gapped by a weak translation symmetry breaking pertur-
bation. This means the winding number is independent of k
even near k = 0. It is possible, however, that there can be
topologically protected gapless points. These would be point
zeros around which the phase of detQ(k) advances by 2π.
These lead to topologically protected bulk modes that form
the analog of a “Dirac semimetal” in electronic systems like
graphene. These singularities could be of interest, but they do
not occur in the model we study below.

A second caveat for equation (7) is that, in general, the
winding number is not gauge invariant and depends on how
the sites and bonds are assigned to unit cells. In the supple-
mentary material we show that for an isostatic lattice with
uniform coordination it is possible to adopt a “standard unit
cell” with basis vectors di(m) for the ns sites (dns bonds) per
cell that satisfy r0 = d

∑
i di −

∑
m dm = 0. Q(k) is de-

fined using Bloch basis states |k, a = i,m〉 ∝
∑

R exp ik ·
(R + da)|R + da〉, where R is a Bravais lattice vector. In
this gauge, RT is uniquely defined and the zero-mode count
is given by equations (3) and (5)-(7).

To determine the number of zero modes per unit cell on
an edge indexed by a reciprocal lattice vector G, consider a
cylinder with axis perpendicular to G and define the region S
to be the points nearest to one end of the cylinder (See Sup-
plementary Fig. 1). νST is determined by evaluating equation
(6) on ∂S deep in the bulk of the cylinder. It follows that

ν̃T ≡ νST /Ncell = G ·RT /2π. (8)

The local count, νSL , depends on the details of the termination
at the surface and can be determined by evaluating the macro-
scopic “surface charge” that arises when charges +d (−1) are
placed on the sites (bonds) in a manner analogous to the “peb-
ble game”4. This can be found by defining a bulk unit cell
with basis vectors d̃a that accommodate the surface with no
leftover sites or bonds (see Fig. 4a below). Note that this unit
cell depends on the surface termination and, in general, will
be different from the “standard” unit cell used for νST . The lo-
cal count is then the surface polarization charge given by the
dipole moment per unit cell. We find

ν̃L ≡ νSL/Ncell = G ·RL/2π, (9)

where

RL = d
∑
sites i

d̃i −
∑

bonds m

d̃m. (10)

RL is similar to r0 defined above (which is assumed to be
zero), but it is in general a different Bravais lattice vector. The
total zero mode count on the surface then follows from equa-
tions (3), (8), and (9).

Deformed Kagome Lattice Model

We now illustrate the topological boundary modes of a two-
dimensional lattice with the connectivity of the kagome lat-
tice, but with deformed positions. The deformed kagome lat-
tice is specified by its Bravais lattice and basis vectors for
the three atoms per unit cell. For simplicity, we fix the Bra-
vais lattice to be hexagonal with primitive vectors ap+1 =
(cos 2πp/3, sin 2πp/3). We parameterize the basis vectors
as d1 = a1/2 + s2, d2 = a2/2 − s1 and d3 = a3/2.
Defining s3 = −s1 − s2, sp describe the displacement of
dp−1 relative to the midpoint of the line along ap that con-
nects its neighbors at dp+1 ± ap∓1 (with p defined mod 3),
as indicated in Fig. 2a. sp are specified by 6 parameters
with 2 constraints. A symmetrical representation is to take
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FIG. 2: Deformed kagome lattice model. a shows our convention
for labeling the states. b is a ternary plot of the phase diagram for
fixed x1 + x2 + x3 > 0. The phases are labled by R, which is
zero in the central phase and a nearest neighbor lattice vector in the
other phases. c, d and e show representative structures for R = 0 (c)
and R 6= 0 (e) and the transition between them (d). The insets are
density plots of the smallest mode frequency as a function of k in the
BZ. In c the gap vanishes only at k = 0, while in d it vanishes on the
line kx = 0. In e the gap vanishes only at k = 0, but has a quadratic
dependence in some directions for small k.

sp = xp(ap−1 − ap+1) + ypap and to use independent vari-
ables (x1, x2, x3; z) with z = y1 + y2 + y3. The constraints
then determine yp = z/3 + xp−1 − xp+1. xp describes the
buckling of the line of bonds along ap, so that when xp = 0
the line of bonds is straight. z describes the asymmetry in
the sizes of the two triangles. (0, 0, 0; 0) is the undistorted
kagome lattice, while (x, x, x; 0) is the twisted kagome lat-
tice, studied in22, with twist angle θ = tan−1(2

√
3x).

It is straightforward to solve for the bulk normal modes of
the periodic lattice. When any of the xp are zero the gap van-
ishes on the line k · ap = 0 in the BZ. This line of zero modes
is a special property of this model that follows from the pres-
ence of straight lines of bonds along ap. When xp = 0 the sys-
tem is at a critical point separating topologically distinct bulk
phases. The phase diagram features the eight octants specified
by the signs of x1,2,3. (+ + +) and (− − −) describe states
topologically equivalent to the twisted kagome lattice. The re-
maining 6 octants are states that are topologically distinct, but
are related to each other by C6 rotations. We find

RT =

3∑
p=1

apsgnxp/2 (11)

is independent of z. Fig. 2b shows a ternary plot of the phase
diagram as a function of x1, x2, x3 for z = 0 and a fixed value
of x1 +x2 +x3. Fig. 2c,d,e show representative structures for
the RT = 0 phase (Fig. 2c), the RT 6= 0 phase (Fig. 2e),
and the transition between them (Fig. 2d). The insets show
density plots of the lowest frequency mode, which highlight
the gapless point due to the acoustic mode in Fig. 2c and the
gapless line in Fig. 2d. In Fig. 2e, the gap vanishes only at
the origin, but the cross arises because acoustic modes vary
quadratically rather than linearly with k along its axes. This

RT=0 RT=0RT=

0

0.1

0.2

0-π π

-0.1

-0.2

a b

x

kx

ω

FIG. 3: Zero modes at a domain wall. a shows a lattice with peri-
odic boundary conditions and a domain wall between (.1, .1, .1, 0)
and (−.1, .1, .1, 0), and indicates the zero mode eigenvectors at
kx = π for the floppy mode (arrows) and the state of self-stress (red
(+) and green (-) thickened bonds). b shows the vibrational mode
dispersion as a function of kx.

behavior will be discussed in the next section.
We next examine the boundary modes of the deformed

kagome lattice. Fig. 3 shows a system with periodic boundary
conditions in both directions that has domain walls separating
(.1, .1, .1; 0) from (−.1, .1, .1; 0). Since there are no broken
bonds, the local count is νLS = 0. On the two domain walls,
equation (8) predicts ν̃T = +1(−1) for the left (right) do-
main wall. Fig. 2c shows the spectrum of H (which has both
positive and negative eigenvalues) as a function of the mo-
mentum kx parallel to the domain wall. The zero modes of
H include both the floppy modes and the states of self-stress.
In the vicinity of kx = 0 the zero modes on the two domain
walls couple and split because their penetration depth diverges
as kx → 0. The eigenvectors for the zero modes at kx = π are
indicated in Fig. 3a by the arrows and the thickened bonds.

Fig. 4a shows a segment of a (−.05, .05, .05; 0) lattice with
three different different edges. For each edge, a unit cell that
accommodates the edge is shown, along with the correspond-
ing RL, from which ν̃L is determined. In the interior, a “stan-
dard” unit cell, with r0 = 0 is shown. Figs. 4b, c, d show the
spectrum for a strip with one edge given by the correspond-
ing edge in Fig. 4a with free boundary conditions. The other
edge of the strip is terminated with clamped boundary condi-
tions, so that the floppy modes are due solely to the free edge.
The number of zero modes per unit cell agrees with equations
(8) and (9) for each surface given RL, RT . The zero modes
acquire a finite frequency when the penetration length of the
zero mode approaches the strip width, which leads to Gaus-
sian “bumps” near k = 0, which will be discussed in the next
section. In Fig. 4d, one of the three zero modes can be iden-
tified as a localized “rattler”, which remains localized on the
surface sites, even for k → 0.

Continuum Elasticity Theory

Unlike electronic spectra, phonon spectra have acoustic
modes whose frequencies vanish as k → 0. These exci-
tations along with macroscopic elastic distortions and long-
wavelength surface Rayleigh waves are described by a contin-
uum elastic energy quadratic in the elastic strain tensor uij .
The elastic energies of our model isostatic lattices fall into
distinct classes depending on the topological class of the lat-
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k||
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ω ω

ω

FIG. 4: Zero modes at the edge. a shows a (−.05, .05, .05, 0) lat-
tice indicating three edges. b, c and d show the vibrational mode
spectrum computed for a strip with one edge as shown in a and the
other edge with a clamped boundary condtion. The zero mode count
on each surface is compared with equations (3,8,9).

tice even though they do not directly encode topological struc-
ture. For simplicity we focus on (x1, x2, x2; 0) states, where
x2 > 0 is fixed and x1 is allowed to vary. The elastic energy
density f can be written

f =
K

2
[(uxx − a1uyy)2 + 2a4u

2
xy − 2a5(uxx − a1uyy)uxy].

(12)
We find that a1,5 ∝ x1 for small x1, while a4 > 0 is con-
stant. Thus, the RT = 0 and RT 6= 0 sectors are distin-
guished by the signs of a1,5. f = 0 for shape distortions with
uxx = a1uyy and uxy = 0. When a1 > 0, the distortion
has a negative Poisson ratio47, expanding or contracting in or-
thogonal directions (a feature shared by the twisted kagome
lattice22); when a1 < 0, the distortion has the more usual
positive Poisson ratio. Finally when a1 = 0, uniaxial com-
pressions along y costs no energy.

Expanding detQT for small k provides useful information
about the bulk- and surface-mode structure. To order k3,

detQT = A[k2x + a1k
2
y + ic(k3x − 3kxk

2
y)] +O(k4), (13)

where A, c > 0 for small x1. a1 is the same as in equation
(12). Long-wavelength zero modes are solutions of detQT =
0. The quadratic term, which corresponds to the elastic the-
ory, equation (12), reveals an important difference between
the bulk acoustic modes of RT = 0 and RT 6= 0. In the for-
mer case, a1 > 0, detQT = 0 only at k = 0. For a1 < 0,
though, to order k2, detQT = 0 for kx = ±

√
|a1|ky , so

the elastic theory predicts lines of gapless bulk modes. The
degeneracy is lifted by the k3 term, leading to a k2 dispersion
along those lines, which can be seen by the cross in the density
map of Fig. 2e.

detQT (k → 0) vanishes for complex wavenumbers asso-
ciated with zero-frequency Rayleigh surface waves. Writing
k = k⊥n̂ + k||ẑ × n̂ for a surface whose outward normal n̂
makes an angle θ with x̂, there is an ω = 0 Rayleigh wave
with penetration depth |Im k⊥|−1 if Im k⊥ < 0. To order k2||
there are two solutions,

k±⊥ =
sin θ ± i√a1 cos θ

cos θ ∓ i√a1 sin θ
k|| +

i(3 + a1)d

2(cos θ ± i√a1 sin θ)3
k2||.

(14)
When a1 > 0, the linear term is always finite and nonzero,
and Im k±⊥ have opposite signs, indicating that there can be
acoustic surface zero modes on all surfaces. These are the
classical Rayleigh waves predicted by the elastic theory, with
penetration depth O(k−1|| ). When a1 < 0, the linear term in
k|| is real and Im k±⊥ ∝ k2||. The number of long wavelength
surface zero modes depends on the angle of the surface. When
|θ| < θc = cot−1

√
|a1|, Im k±⊥ are both positive, and there

are no acoustic surface zero modes. The opposite surface, |θ−
π| < θc, has two acoustic surface modes. For θc < θ <
π − θc Im k±⊥ have opposite sign, so there is one mode. This
is consistent with the mode structure in Fig. 4: The O(k−2|| )

penetration depth explains the Gaussian profile of the k → 0
bumps in the zero modes, which are due to the finite strip
width. In (b) a θ = 0 surface has no zero modes. (c) shows
a θ = π/2 > θc surface with one long-wavelength surface
zero mode. (d) shows the spectrum with π − θ = π/6 <
θc with two bumps indicating two deeply penetrating long-
wavelength zero modes in addition to one non-acoustic mode
localized at that surface.

Conclusions

We have developed a general theory of topological phases
of isostatic lattices, which explains the boundary zero modes
and connects to the topological band theory of electronic sys-
tems. This points to several directions for future studies. It
will be interesting to study 3D lattice models, as well as lat-
tices that support point singularities in detQ(k) analogous
to Dirac semimetals. Finally, it will be interesting to explore
connections with theories of frustrated magnetism48.
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SUPPLEMENTARY ONLINE MATERIALS

Proof of Index Theorem

In this appendix we provide details of the proof of the index
theorem discussed in the text. Our starting point is equation
(4), which describes the zero-mode count in a region S of a
larger system. Using the fact that {H, τz} = [ρS(r̂), τz] = 0
it is straightforward to check that equations (3-5) imply that

νST =
1

2
lim
ε→0

Tr

[
τz

1

H+ iε
[ρS(r̂),H]

]
. (15)

Since [ρS ,H] = 0 for ρS = 1, and H has a finite range a,
νST comes only from the boundary of region S where ρS(r)
varies. If we assume that the boundary region is gapped and
that ρ(r) varies slowly on the scale L � a, then we safely
take ε to zero and expand to leading order in a/L. Since
[ρS(r̂),H]αβ = Hαβ(ρS(rα) − ρS(rβ)) ∼ Hαβ(rα − rβ) ·
∇ρ(rβ), we may write

νST =
1

2
Tr
[
τz∇ρ(r̂) · H−1[r̂,H]

]
. (16)

We next suppose that in the boundary region the lattice is
periodic, so that the trace may be evaluated in a basis of plane
waves:

|k, a〉 =
1√
N

∑
R

exp ik · (R + da)|R + da〉, (17)

where R is a Bravais lattice vector in a system with periodic
boundary conditions and N unit cells. da are basis vectors
for the dns + nb sites and bonds per unit cell. The phases
are chosen such that the position operator is r̂ ∼ i∇k. In
this basis, the Bloch Hamiltonian H(k) is a dns + nb square
matrix with off diagonal blocks Q(k) and Q†(k), where

Qab(k) = 〈k, a|Q|k, b〉. (18)

νST then has the form

νST =

∫
∂S

dd−1SPT · n̂ (19)

where the integral is over the boundary of S with inward nor-
mal n̂, and

PT =

∫
BZ

ddk

(2π)d
Im Tr[Q−1∇kQ]. (20)

It is useful, to write

ImTr[Q−1∇kQ] = ∇kIm log detQ. (21)

It is then straightforward to show that

detQ(k + G) = detQ(k) exp[−iG · r0], (22)

where

r0 = d
∑
sites i

di −
∑

bonds m

dm. (23)

∂S
Acell

dcell

n̂ G

S

ρS(r) = 0 ρS(r) = 1

S
∂S ∂S

n̂ n̂

RT RT

G

ρS(r) = 1ρS(r) = 0 ρS(r) = 0a

b

Vcell

1 2

FIG. 1: Evaluating the zero mode count. a Cylindrical geometry
for evaluating the zero mode count for a domain wall between R1

T

and R2
T , indicated by the dashed line. b Cylindrical geometry for

evaluating the zero mode count for a surface indexed by reciprocal
lattice vector G. The region S covers half the cylinder. The boundary
∂S is deep in the interior. b also shows our notation for the surface
unit cell.

For a general lattice, r0 is non zero. However, if the coordi-
nation number of site i is zi then r0 =

∑
i(d− zi/2)di + R,

where R is a Bravais lattice vector. Thus, for an isostatic lat-
tice with uniform coordination z = 2d, r0 is a Bravais lattice
vector, and it is always possible to shift dm by lattice vectors
to make r0 = 0. In the text of the paper, we assumed r0 = 0.
Here we will keep it general, and show that while r0 affects
νST , its effect is canceled by a compensating term in νSL .

For the general case, let us write detQ(k) =
q0(k) exp[−ik · r0], where q0(k) = q0(k + G) is periodic
in the BZ. Equation (20) then involves two pieces:

PT =
1

Vcell
[−r0 + RT ] . (24)

Here RT is a Bravias lattice vector describing the winding
numbers of the phase of q0(k) around the cycles of the BZ. It
may be written RT =

∑
i niai with

ni =
1

2πi

∫
Ci

dk · ∇k log q0(k) (25)

where as in the text, we assume that for a given cycle Ci of
the BZ the winding number is path indpendent.

Application to zero modes at a domain wall

To determine the zero mode count at a domain wall be-
tween topological states R1

T and R2
T , we consider a cylin-

der perpendicular to the domain wall (or a similar construc-
tion for d dimensions). We expect the zero mode count to
be proportional to the “area” A (or length in 2D) of the
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domain wall. We will, therefore, be interested in the zero
mode count per unit cell, νS/Ncell, where Ncell = A/Acell,
and Acell = Vcell/dcell is the projected area of the surface
unit cell, which can be expressed in terms of the volume of
the bulk unit cell Vcell and the distance dcell between Bragg
planes. Referring to Supplementary Fig. 1a, we use equa-
tion (24) to evaluate equation (19) away from the domain wall
to give νT = (A/Vcell)(R

1
T − R2

T ) · n̂, where n̂ is the unit
vector pointing to the right. The zero mode count per unit
cell can be expressed in terms of the reciprocal lattice vector
G = 2πn̂/dcell that indexes the domain wall as

νST /Ncell = G · (R1
T −R2

T )/2π. (26)

Application to zero modes at the edge

We next determine the number of zero modes localized on
a surface (or edge in 2d) indexed by a reciprocal lattice vec-
tor G. Consider a cylinder with axis perpendicular to G and
define the region S to be the points nearest to one end of the
cylinder, as shown in Supplementary Fig. 1b. A similar con-
struction can be used to count the zero modes on a surface in
d dimensions.
νST is determined by evaluating equation (6) deep in the bulk

of the cylinder where the lattice is periodic. From equation
(20) we may write

νST /Ncell = G · (RT − r0)/2π. (27)

The local count, νSL , depends on the details of the termina-
tion at the surface and is given by the macroscopic “surface
charge” that arises when positive charges +d are placed on
the sites and negative charges −1 are placed on the bonds. As
discussed in the text, it can be determined by evaluating the
dipole moment of a unit cell with site and bond vectors d̃a
that is defined so that the surface can be accomodated with no
left over sites or bonds. This unit cell is in general different
from the unit cell used to compute νST , and its dipole moment
is in general not quantized. However, since the difference is
due to a redefinition of which bond is associated with which
unit cell, the dipole moment differs from r0 by a Bravais lat-
tice vector,

RL = d
∑
sites i

d̃i −
∑

bonds m

d̃m − r0. (28)

It follows that the local count may be written

νSL/Ncell = G · (RL + r0)/2π. (29)

The total zero mode count on the edge is then

νS/Ncell = G · (RL + RT )/2π. (30)

It can be seen that the dependence on r0, which depends on
the arbitrary unit cell used to define νST cancels.
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