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Abstrat. We are onerned with onvergene results for fully disrete �nite-element

shemes suggested in [Grün, Klingbeil, ArXiv e-prints (2012), arXiv:1210.5088℄. They

were developed for the di�use-interfae model in [Abels, Garke, Grün, M3AS, 2012,

DOI:10.1142/S0218202511500138℄ whih is to desribe two-phase �ow of immisible, in-

ompressible visous �uids. We formulate general onditions on disretization spaes and

projetion operators whih allow to prove ompatness of disrete solutions with respet

to both time and spae and whih hene permit to establish onvergene of the sheme to

a generalized solution. We identify a simple quantitative and physial riterion to deide

whether this generalized solution is in fat a weak solution. In this ase, our analysis

provides another pathway to establish existene of weak solutions to the aforementioned

model in two and in three spae dimensions. Our argument is partiularly based on

higher regularity results for disrete solutions to onvetive Cahn-Hilliard equations and

on disrete versions of Sobolev's embedding theorem.

1. Introdution

In this paper, we prove onvergene of a fully disrete �nite-element sheme for a reently

suggested di�use interfae model for two-phase �ow of inompressible, visous �uids with

di�erent mass densities. The model was introdued by Abels, Garke, and the author of

this paper in [4℄. To the best of our knowledge, it is the only model so far whih omplies

with physial priniples like onsisteny with thermodynamis and frame-indi�erene and

whih allows at the same time for a solenoidal veloity �eld. It reads as follows.

ρ̄(ϕ)∂tv +

((

ρ̄(ϕ)v +
∂ρ̄(ϕ)

∂ϕ
j

)

· ∇

)

v −∇ · (2η(ϕ)Dv) +∇p = µ∇ϕ+ k
grav

, (1.1a)

∂tϕ+ v · ∇ϕ−∇ · (M(ϕ)∇µ) = 0, (1.1b)

µ = σ(−∆ϕ + F ′(ϕ)), (1.1)

∇ · v = 0 in Ω× (0, T ). (1.1d)

As boundary onditions, no-slip onditions for v and zero normal derivatives of ϕ and of

µ on ∂Ω× (0, T ) are imposed.

Note that system (1.1) ouples a hydrodynami momentum equation with a Cahn-Hilliard

type phase-�eld equation. F is a double-well potential with minima in ±1 - representing

the pure phases ϕ ≡ ±1. The parameter σ is the surfae tension oe�ient, whih is

assumed to be σ = 1 in this paper. The term µ stands for the so alled hemial potential,

and the order parameter ϕ stands for the di�erene of the volume frations u2−u1 where

ui(x, t) := ρi(x,t)
ρ̃i

with ρ̃i the spei� (onstant) density of �uid i in a unmixed setting.
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Denoting the individual veloities by vi, i = 1, 2, we write v := u1v1+u2v2 for the volume

averaged veloity. Assuming ρ̃2 ≥ ρ̃1, the density of the total mass ρ̄(ϕ) is given by

ρ̄(ϕ) =
ρ̃2 + ρ̃1

2
+
ρ̃2 − ρ̃1

2
ϕ, (1.2)

and Dv denotes the symmetrized gradient. The term k
grav

stands for the density of

external volume fores. Finally, the �ux j is de�ned by j := −M(ϕ)∇µ where M(ϕ) is
the mobility.

System (1.1) is onsistent with thermodynamis in the sense that the total energy (i.e.

the sum of the kineti and the interfaial energy) at a time t2 > t1 is bounded by the

sum of the total energy at time t1 and the work done by external fores during the time

interval (t1, t2). More preisely,

1
2

∫

Ω

ρ̄(ϕ(t2)) |v|
2 (t2) +

1
2

∫

Ω

|∇ϕ|2 (t2) +

∫

Ω

F (ϕ(t2))

+

∫ t2

t1

∫

Ω

M(ϕ) |∇µ|2 +

∫ t2

t1

∫

Ω

2η(ϕ) |Dv|2

= 1
2

∫

Ω

ρ̄(ϕ(t1)) |v|
2 (t1) +

1
2

∫

Ω

|∇ϕ|2 (t1) +

∫

Ω

F (ϕ(t1)) +

∫ t2

t1

∫

Ω

〈kgrav,v〉.

(1.3)

The model (1.1) has already been the subjet of further mathematial investigations. In

[2℄, Abels, Depner, and Garke prove existene of weak solutions for the ase of logarith-

mi potentials, in [3℄, they onsider mobilitiesM(ϕ) whih degenerate in ϕ = ±1. In [22℄,

Klingbeil and the author of the present paper suggest a numerial sheme for (1.1) whih

is disretely onsistent with thermodynamis in the sense that in the absene of external

fores the disrete ounterpart of the total energy is dereasing in time. Various numerial

experiments underline the full pratiality of this approah � see [22℄. In the benhmark

paper [5℄ on Taylor-Flow, the method of [22℄ was suessfully validated by omparison

with physial experiments and di�erent numerial approahes.

Di�use interfae models for two-phase �ow of inompressible visous �uids began to in-

terest mathematiians some ten years ago while the basi onept of oupling momentum

equations with the Cahn-Hilliard equation had been suggested muh earlier � see the fa-

mous �Model H� of Halperin and Hohenberg [25℄. Two advantages of di�use interfae mod-

els ompared to other approahes like sharp-interfae models or volume-of-�uid-methods

are well known. First, no arti�ial additional onditions are neessary to model topology

hanges or to guarantee onservation of individual masses. Seondly, in many ases it

is possible to prove global existene of solutions and to formulate onvergent numerial

shemes.

Let us onentrate on the numerial aspets of di�use interfae models � for an overview

of analytial results, we refer the reader to [1℄, [2℄, [3℄, and the referenes therein. Many

authors ontributed already to the numeris of di�use interfae models for two-phase �ow

in the speial ase that the two �uids share the same mass density. In this ase, one

has to deal essentially with a oupling of the Navier-Stokes system with a Cahn-Hilliard

equation. To obtain a �rst impression of the numerial approahes suggested so far, we

refer to [16℄, [9℄, [26℄, [27℄, [28℄, and the referenes therein.

Conerning numerial analysis, we mention the papers by Feng [16℄ and by Kay, Styles,

and Welford [27℄. The former one fouses on P2P0-elements, assumes a double-well po-

tential F (ϕ) := (1−ϕ2)2, and establishes onvergene of disrete solutions to the Navier-

Stokes-Cahn-Hilliard system in two and three spae dimensions. The latter one studies
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P1-ISO-P2−P1-elements and obtains omparable onvergene results � assuming the same

smooth double-well potential as Feng [16℄. Note in partiular that in both papers neither

disrete nor ontinuous solutions are on�ned to the interval [−1, 1]. This is due to the

hoie of the double-well potential and due to the fat that degenerate mobilities are not

onsidered.

The ase of di�erent mass densities to be studied in this paper is oneptually muh

di�erent. Various models were proposed to extend model H also to the ase of mass

density ontrast (see [8℄ and the referenes therein). Lowengrub and Truskinovsky pro-

posed in [31℄ for the �rst time a di�use-interfae model onsistent with thermodynamis.

The gross veloity �eld is obtained by mass averaging of individual veloities. As a on-

sequene, it is not divergene free, and the pressure p enters the model as an essential

unknown. However, no energy estimates are available to ontrol p. Moreover, the pressure

enters the hemial potential and is hene strongly oupled to the phase-�eld equation.

This intriate oupling may be one reason why so far it has not been possible to formulate

numerial shemes for model [31℄.

Ding et al. [15℄ suggested to de�ne the gross veloity �eld by volume averaging. Pro-

hibiting in addition volume hanges due to mixing ("simple mixture assumption"), the

gross veloity �eld is solenoidal. To the best of our knowledge, however, all attempts

failed to establish energy inequalities and to show that the model in [15℄ is onsistent

with thermodynamis.

In [32℄, Shen and Yang propose an extension of the model [15℄ whih allows for energy

estimates. Their modeling ansatz is to add a multiple of the term ρt + div(ρv) in the

momentum equation. They justify this idea by the assertion that the ontinuity equation

ρt + div(ρv) = 0 were valid and therefore this term were zero. Nevertheless, the phase-

�eld equation ϕt + div(ϕv) − div j = 0 is also part of their model, and ρ depends in an

a�ne-linear way on ϕ.

A third strategy was pursued by Boyer [9℄, allowing also for solenoidal vetor �elds, but

apparently not for energy estimates.

The papers [9℄, [15℄, [32℄ present numerial simulations, too. Kim and Lowengrub [29℄

suggest numerial shemes for multi-phase �ow, and Aland and Voigt [6℄ present �rst

results on the omparison of di�erent di�use interfae models.

In all these papers, numerial analysis of the proposed shemes has not been performed.

As disrete ounterparts of an energy estimate seem to be a prerequisite for onvergene

results, we onentrate here on the fully disrete �nite-element sheme whih was intro-

dued by Klingbeil and the author in [22℄, formula (3.2), and whih allows for suh an

estimate.

It is the sope of this paper to prove the onvergene of disrete solutions obtained by

the sheme in [22℄ in two and in three spae dimensions. This way, a di�erent pathway to

the existene of solutions in the ontinuous setting is suggested as well. It is important

to emphasize that our approah is di�erent from the methods of [2℄ and of [3℄. Indeed,

both papers rely on the Leray-Shauder priniple and on disretizations only with respet

to time. Therefore, in this setting the oupling term (j · ∇)v in (1.1a) does not ause

suh intriaies related to ompatness in time and to the identi�ation of weak limits

as we will enounter them in the fully disrete setting. This is one reason why the nu-

merial analysis in the sequel is on�ned to the ase of a onstant mobility M(ϕ) and of

a double-well potential F with p-growth � where p an be hosen in [1,∞) for the ase

of two spae dimensions and in [1, 4) for the ase of three spae dimensions. It is worth

mentioning that the papers [16℄ and [27℄ devoted to the ase of idential mass densities

assume in three dimensions omparable and in two dimensions even striter onditions on
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the growth of F . In partiular, they do not study degenerate mobilities, neither.

Moreover, it is important to mention that due to (1.2) a mehanism is needed whih

bounds ρ̄ stritly away from zero. Sine the Cahn-Hilliard equation is fourth-order par-

aboli, omparison priniples do not hold. Therefore, bounds on ϕ rely on integral es-

timates. In the presene of external fores, however, the total energy is in general not

expeted to derease in time. Hene, regularizations of degenerate mobilities (f. [23℄) or

regularizations of singular (logarithmi) potentials would have to be hosen depending on

the applied external fores.

Another approah is to modify the ϕ-dependeny of ρ̄, whih will be pursued in this paper

� see (H4) and Remark 2.1. It is interesting to note that for instane in [15℄ and in [32℄

the issue of de�niteness of ρ̄ does not seem to be addressed at all. This may be due to the

fat that it is not expeted to beome relevant in many pratial omputations, as long

as the Atwood number

ρ̃2−ρ̃1
ρ̃1+ρ̃2

is not hosen too large, see also Remark 2.1 and Corollary 5.5.

The outline of the paper is as follows. In Setion 2, we introdue the sheme of [22℄

and we set the frame for the subsequent analysis. In partiular, Subsetion 2.2 is de-

voted to the formulation of general onditions on disrete funtion spaes and projetion

operators whih will be needed for the onvergene proof. Examples of admissible �nite

elements are P2P0-elements and Taylor-Hood elements.

In Setion 3, we prove a disrete version of the energy estimate and we establish existene

of disrete solutions. Setion 4 is the ore of the paper. We prove for disrete solu-

tions (ϕτh, µτh,vτh) that ∂
−
τ ϕτh, the bakward di�erene quotient with respet to time,

is uniformly bounded in L2(ΩT ) and that the disrete Laplaians ∆hϕτh and ∆hµτh are

uniformly bounded in L∞((0, T );L2(Ω)) and in L2(ΩT ), respetively. Combining these

results with appropriate disrete versions of Sobolev's embedding theorem (see Theo-

rem 6.4), we sueed to prove that Rh(ρτhvτh) strongly onverges to Pσ(ρv) in L2(ΩT )
where Pσ is the Helmholtz projetion and Rh is the orthogonal L2

-projetion onto the

spae Wh of disretely divergene free veloity �elds. Setion 5 is devoted to the proof of

the onvergene of appropriate subsequenes of (ϕτh, µτh,vτh) to a generalized solution

in the ontinuous setting. In partiular, Corollary 5.4 shows that the generalized solution

obtained is a weak solution to (1.1) if the phase-�eld ϕ in the ontinuous setting stays

su�iently lose to [−1, 1]. With a grain of salt, a su�ient ondition is given by the

requirement that the modulus of ϕ stays bounded by the inverse Atwood number, i.e. by

ρ̃1+ρ̃2
ρ̃2−ρ̃1

. In partiular, for given initial data there is always a regime of Atwood numbers

suh that this ondition is satis�ed on appropriate time intervals, see Corollary 5.5.

Notation. We onsider the two-phase problem on a bounded, onvex polygonal (or

polyhedral, respetively) domain Ω ⊂ R
d
in spatial dimensions d ∈ {2, 3}. By 〈·, ·〉,

we denote the Eulidean salar produt on R
d
, and (·, ·) is used for the salar produt

in L2(Ω). Sometimes, we write ΩT for the spae-time ylinder Ω × (0, T ). By W k,p(Ω),
we denote the spae of k-times weakly di�erentiable funtions with weak derivatives in

Lp(Ω). The symbol W
k,p
0 (Ω) stands for the losure of C∞

0 (Ω) in W k,p(Ω). Corresponding
spaes of vetor-valued funtions are denoted in boldfae. Moreover, we use the fun-

tion spaes W
1,2
0,div(Ω) := {v ∈ W

1,2
0 (Ω)| divv = 0}, L2

0(Ω) := {v ∈ L2(Ω)|
∫

Ω
v = 0},

Hs(Ω) := W s,2(Ω), and H1
∗ (Ω) := H1(Ω) ∩ L2

0(Ω).
For a Banah spae X and a time interval I, the symbol Lp(I;X) stands for the para-

boli spae of Lp
-integrable funtions on I with values in X. Pσ denotes the Helmholtz-

projetion from L2(Ω) onto the spae of solenoidal vetor�elds H2(Ω) whih is obtained

as the losure of the solenoidal smooth vetor �elds with ompat support (see [18℄). We
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reall that Pσ is an orthogonal projetion. We also write v ∈ Lp−(S) as a short form

meaning that v ∈ Lq(S) for all 1 ≤ q < p. The notation ‖v‖Lp−(S) stands for ‖v‖Lp−ε(S)

for an arbitrary, but �xed ε > 0. Similarly, ‖v‖Lp+(S) is a short form for ‖v‖Lp+ε(S) for a

su�iently small, but �xed ε > 0. For further notation related to the disretization, we

refer the reader to Subsetion 2.2.

2. The sheme

2.1. Disretization in spae and time. We assume Th to be a regular and admissible

triangulation of Ω with simpliial elements in the sense of [12℄. Let us suppose in addition

that the disretization is retangular in the sense, that

(T1) for eah simpliial element E ∈ Th, a vertex x0(E) exists suh that the edges

onneting x0(E) with verties xi(E) and xj(E) are perpendiular to eah other

for i, j ∈ {1, · · · , d}, i 6= j.

We will take advantage of (T1) in the proof of ompatness in time, see Theorem 4.2.

Note that (T1) does not exlude the appliability of standard strategies for loal mesh

re�nement.

Conerning disretization with respet to time, we assume that

(T2) the time interval I := [0, T ) is subdivided in intervals Ik = [tk, tk+1) with tk+1 =
tk + τk for time inrements τk > 0 and k = 0, · · · , N − 1. For simpliity, we take

τk ≡ τ for k = 0, · · · , N − 1.

2.2. Disrete funtion spaes and projetion operators. For the approximation of

both the phase-�eld ϕ and the hemial potential µ, we introdue the spae Uh of on-

tinuous, pieewise linear �nite element funtions on Th. The expression Ih stands for the

nodal interpolation operator from C0(Ω) to Uh de�ned by Ihu :=
∑dimUh

j=1 u(xj)θj , where

the funtions θj form a dual basis to the nodes xj , i.e. θi(xj) = δij , i, j = 1, . . . , dimUh.

Let us furthermore introdue the well�known lumped masses salar produt orresponding

to the integration formula

(Θ,Ψ)h :=

∫

Ω

Ih(ΘΨ).

The diagonal, positive de�nite lumped masses matrix is given by (Mh)ij = (ϕi, ϕj)h. We

reall the following well known estimates:

|(uh, vh)− (uh, vh)h| ≤ Ch1+l ‖uh‖l ‖vh‖1 for all uh, vh ∈ Uh, l = 0, 1, (2.1)

where (u, v) denotes the L2
-salar produt on Ω. In the same spirit, there exist positive

onstants c, C suh that we have for |·|h :=
√

(·, ·)h:

c |·|2h ≤ (·, ·) ≤ C |·|2h . (2.2)

We will use the Ritz projetion Ph : H1(Ω) → Uh, de�ned by

∫

Ω

〈∇Phv,∇θj〉 =

∫

Ω

〈∇v,∇θj〉, j = 1, · · · , dimUh.

We note the existene of a positive onstant C suh that

‖Phv − v‖L2(Ω) + h ‖∇(Phv − v)‖L2(Ω) ≤ Chj ‖v‖Hj(Ω) (2.3)

for j = 1, 2 and any v ∈ Hj(Ω).
For the disretization of the veloity �eld v and the pressure p, we use funtion spaes

Wh ⊂ Xh ⊂ W
1,2
0 (Ω) and Sh ⊂ L2

0(Ω) := {v ∈ L2(Ω)|
∫

Ω
v = 0} suh that the following

onditions hold.
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(S1) Wh := {vh ∈ Xh|
∫

Ω
qh div vh = 0 ∀qh ∈ Sh}.

(S2) The Babuška-Brezzi ondition is satis�ed, i.e. a positive onstant β exists suh

that

sup
vh∈Xh

(qh, divvh)

‖vh‖W1,2
0

(Ω)

≥ β ‖qh‖L2(Ω)

for all qh ∈ Sh.

(S3) The orthogonal L2
-projetion Rh : L2(Ω) → Wh is H1

-stable, i.e. a positive

onstant C exists suh that

‖∇Rhv‖L2(Ω) ≤ C ‖∇v‖
L2(Ω) (2.4)

for all v ∈ W
1,2
0 (Ω). Moreover,

lim
h→0

‖Rhv − v‖
L2(Ω) = 0 (2.5)

for all v ∈ W
1,2
0,div(Ω).

(S4) A projetion operator Qh
div : W

1,2
0,div(Ω) → Wh exists suh that

∥

∥Qh
divv− v

∥

∥

L2(Ω)
+ h

∥

∥∇(Qh
divv − v)

∥

∥

L2(Ω)
≤ Chj ‖v‖

Hj(Ω) (2.6)

for all v ∈ Hj(Ω) ∩W
1,2
0,div(Ω), j = 1, 2.

(S5) The orthogonal L2
-projetion Qh : W1,2

0 (Ω) → Xh is H1
-stable.

(S6) The orthogonal L2
-projetion Sh : L2(Ω) → Sh satis�es

lim
h→0

‖q − Shq‖L2(Ω) = 0 (2.7)

for all q ∈ L2(Ω).

Examples of �nite-element spaes Xh, Sh whih omply with (S1) �(S6) are P2P1-elements

(the so alled Taylor-Hood elements) and P2P0-elements. In both examples, Xh is given

as

Xh :=
{

w ∈ (C0
0(Ω̄)) : (w)j|K ∈ P2(K), K ∈ Th, j = 1, . . . , d

}

, d = 2, 3.

For Taylor-Hood elements, Sh := Uh ∩ L
2
0(Ω). In the ase of P2P0-elements,

Sh := {qh ∈ L2
0(Ω) : qh|K ≡ const. ∀K ∈ Th}.

Following the exposition in [16℄ and [17℄, using in partiular error estimates in [24℄, we

note that P2P0-elements satisfy the onditions (S2), (S4)�(S6). Observe that in (S4)

the orthogonal projetion Rh may be hosen for Qh
div. Conerning (S3), we refer to

Lemma 6.5 in the Appendix where we prove that (2.4) is satis�ed by both P2P0- and

Taylor-Hood elements. Moreover, we note that (S2), (S4)�(S6) hold for Taylor-Hood

elements as well, see for instane [19℄ and [27℄. In partiular, the Stokes projetion

QStokes : W
1,2
0,div(Ω) → Wh, de�ned by

∫

Ω

∇QStokesv : ∇χ =

∫

Ω

∇v : ∇χ ∀χ ∈ Wh,

is a possible hoie for Qh
div in (S4). Using �nally the best-approximation property of Rh

with respet to the L2
-norm, (2.5) follows from (2.6) for j = 1.

We onlude this subsetion by introduing some notation. Given a time inrement τ > 0
(f. (T2)), we will denote the bakward (and forward) di�erene quotients with respet

to time by ∂−τ (or ∂+τ , respetively). Given a subdivision of the time interval I := [0, T )
with intervals Ik := [tk, tk+1) as in (T2), we introdue S0,−1([0, T );X) assoiated with a

Banah spae X as the spae of funtions v : [0, T ) → X whih are onstant on eah Ik,
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k = 0, · · · , N − 1. Given a funtion v ∈ S0,−1([0, T );X), we abbreviate vk(·) := v(·, tk).
In partiular, we have

τ

N−1
∑

k=0

vk(·) =

∫ T

0

v(·, t)dt. (2.8)

In general, we denote funtions in S0,−1(I;Uh), S
0,−1(I;Wh), S

0,−1(I;Xh) by an index

τh. We often abbreviate fk(·) := fτh(·, tk).

2.3. The disrete sheme. We deompose the double-well potential F (·) =: F+(·) +
F−(·) and we make the following assumptions on the data.

(H1) F+ : R → R
+
0 is onvex and of lass C2

, the seond derivatives are onvex on R,

too, and they satisfy a growth estimate

F ′′
+(x) ≤ C(1 + |x|q̄)

with q̄ in [1, 2), if d = 3, and in [1,∞), if d = 2.
(H2) F− : R → R is onave and of lass C2

with bounded seond derivatives on R.

(H3) Let initial data Φ0 ∈ H2(Ω; [−1, 1]) and V0 ∈ W
1,2
0,div(Ω) be given suh that we

have for disrete initial data ϕ0h := IhΦ0 and v0h := RhV0 uniformly in h > 0
that

∫

Ω

|v0h|
2 ≤ C <∞

and that

∫

Ω

|∆hϕ0h|
2 +

1

2

∫

Ω

|∇ϕ0h|
2 +

∫

Ω

IhF (ϕ0h) ≤ const..

Here, the disrete Laplaian ∆hw ∈ Uh ∩H
1
∗ (Ω) is de�ned by

(∆hw,Θ)h = −

∫

Ω

〈∇w,∇Θ〉 ∀Θ ∈ Uh. (2.9)

(H4) Given mass densities 0 < ρ̃1 ≤ ρ̃2 ∈ R of the �uids involved and an arbitrary, but

�xed regularization parameter ϕ̄ ∈
(

ρ̃1
ρ̃2−ρ̃1

, 2̃ρ1
ρ̃2−ρ̃1

)

, we de�ne the regularized mass

density of the two-phase �uid by a smooth, inreasing, stritly positive funtion ρ

of the phase-�eld ϕ whih satis�es

ρ(ϕ)|(−1−ϕ̄,1+ϕ̄) =
ρ̃2 − ρ̃1

2
ϕ+

ρ̃1 + ρ̃2

2
(2.10)

ρ(ϕ)|
(−∞,−1−

2ρ̃1
ρ̃2−ρ̃1

)
≡ const. (2.11)

ρ(ϕ)|
(1+

2ρ̃1
ρ̃2−ρ̃1

,∞)
≡ const. (2.12)

Remark 2.1. In the ontinuous setting (assuming in partiular a mehanism whih on-

�nes the values of the phase-�eld funtion to the interval [−1, 1], for instane by hoosing

a degenerate mobility or a logarithmi potential F ), ρ̄ depends linearly on ϕ via (2.10)

and is therefore bounded from below by a positive onstant by de�nition. In the disrete

setting, however, it is not possible to mimi singular or degenerate behaviour � regulariza-

tion is indispensable. Hene, strit inlusions ϕ ∈ [−1, 1] for disrete solutions ϕ annot

be expeted in general. Bounds on solutions an only be obtained via integral estimates

as the phase-�eld equation is fourth-order paraboli and therefore omparison priniples

do not hold. However, the energy of the system is not neessarily dereasing in time due

to the work done by external fores. As a onsequene, bounds on ϕ always will depend

on the speial hoie of external fores. Therefore, we use the ut-o� mehanism of (H4)

to guarantee de�niteness of ρ and hene de�niteness of the density ρ|v|2 of the kineti
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energy as well.

Note in partiular that the upper bound on ϕ̄ translates to the ondition that 1 + ϕ̄ is

bounded by the inverse of the Atwood number

ρ̃2−ρ̃1
ρ̃1+ρ̃2

. Hene, the inverse Atwood number

ontrols the regime of values of ϕ for whih ρ linearly depends on ϕ.

Now, we are in the position to introdue the sheme to be analyzed in this paper. For

its derivation, we refer the reader to [22℄

1

. Note that this sheme was formulated under

the assumption that ϕ stays in the regime for whih the ρ-dependeny is linear. To stress

this fat, we use the notation

δρ

δϕ
:=

ρ̃2 − ρ̃1

2
. (2.13)

We emphasize that (H1)-(H4), (T1)-(T2), (S1)-(S6) are assumed to hold. For the ease of

presentation, we assume external fores kgrav to be zero as these fores are given quantities

whih enter the system linearly. Hene, they do not have a qualitative e�et on estimates

and results. Moreover, we assume M(ϕ) ≡ 1 and σ = 1, and for initial data, we skip the

index h.

For given funtions (ϕ0,v0) ∈ Uh × Wh and k = 0, ..., N − 1 we have to �nd funtions

(ϕk+1, µk+1,vk+1, pk+1) ∈ Uh × Uh ×Wh × Sh suh that

∫

Ω

〈

∂−τ (ρ
k+1vk+1),w

〉

− 1
2

∫

Ω

∂−τ ρ
k+1
〈

vk+1,w
〉

− 1
2

∫

Ω

ρk
〈

vk, (∇w)Tvk+1
〉

+ 1
2

∫

Ω

ρk
〈

vk, (∇vk+1)Tw
〉

+ 1
2

∫

Ω

δρ

δϕ

〈

jk+1, (∇vk+1)Tw
〉

− 1
2

∫

Ω

δρ

δϕ

〈

jk+1, (∇w)Tvk+1
〉

+

∫

Ω

2η(ϕk)Dvk+1 : Dw −

∫

Ω

pk+1 divw

= −

∫

Ω

ϕk
〈

∇µk+1,w
〉

∀w ∈ Xh, (2.14a)

∫

Ω

ψ div vk+1 = 0 ∀ψ ∈ Sh, (2.14b)

(

∂−τ ϕ
k+1, ψ

)

h
−

∫

Ω

〈

vk+1,∇ψ
〉

ϕk +

∫

Ω

〈

∇µk+1,∇ψ
〉

= 0 ∀ψ ∈ Uh, (2.14)

(

µk+1, ψ
)

h
=

∫

Ω

〈

∇ϕk+1,∇ψ
〉

+

∫

Ω

Ih

((

F ′
+(ϕ

k+1) + F ′
−(ϕ

k)
)

ψ
)

∀ψ ∈ Uh. (2.14d)

Here, we use the abbreviation ρk+1 := ρ(ϕk+1). Moreover, we de�ne jk+1 := −∇µk+1.

Remark 2.2. The sheme studied in [22℄ di�ers from (2.14) in suh a way that the last

term in (2.14a) and the seond term in (2.14) are replaed by

∫

Ω
µk+1〈∇ϕk,w〉 and by

∫

Ω
〈vk+1,∇ϕk〉ψ, respetively. Suh a substitution is possible as long as the orresponding

version of (2.14) guarantees onservation of mass for the phase-�eld � or equivalently,

if the subset in Uh of funtions with zero mean is ontained in Sh. This holds true for

Taylor-Hood elements whih were studied in [22℄, but e.g. not for P2P0-elements. Note

that the proofs presented in the present paper an easily be modi�ed to over that ase �

in partiular, the onvergene results need not to be hanged at all.

1

Corollary 5.4 may also serve as an explanation in whih way weak formulations of (1.1a) and of (1.1b)

have to be ombined in order to get the ounterpart of (2.14a) in the ontinuous setting.
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Conerning existene of disrete solutions, we have the following result.

Lemma 2.3. For given funtions (ϕk,vk) ∈ Uh ×Wh , there exists a quadruple

(ϕk+1, µk+1,vk+1, pk+1) ∈ Uh × Uh ×Wh × Sh whih solves the disrete system (2.14).

Proof. First, we prove for given (ϕk,vk) the existene of funtions (ϕk+1, µk+1,vk+1) ∈
Uh × Uh ×Wh whih solve a modi�ed version of (2.14) where (2.14a) is replaed by

∫

Ω

〈

∂−τ (ρ
k+1vk+1),w

〉

− 1
2

∫

Ω

∂−τ ρ
k+1
〈

vk+1,w
〉

− 1
2

∫

Ω

ρk
〈

vk, (∇w)Tvk+1
〉

+ 1
2

∫

Ω

ρk
〈

vk, (∇vk+1)Tw
〉

+ 1
2

∫

Ω

δρ

δϕ

〈

jk+1, (∇vk+1)Tw
〉

− 1
2

∫

Ω

δρ

δϕ

〈

jk+1, (∇w)Tvk+1
〉

+

∫

Ω

2η(ϕk)Dvk+1 : Dw = −

∫

Ω

ϕk
〈

∇µk+1,w
〉

(2.15)

for all w ∈ Wh.

For given vk
and zk := ϕk − α with α := 1

|Ω|

∫

Ω
ϕk

, we are looking for a pair (vk+1, zk+1)

in Wh × Uh suh that (vk+1, ϕk+1) satis�es the system of equations (2.15) and (2.14) -

(2.14d). Here, ϕk+1 = zk+1 + α, and the funtion µk+1
is obtained from (vk+1, ϕk+1) by

(2.14d). Denoting the nodal basis of Uh by {θ1, · · · , θdim Uh
} and taking {w1, · · · ,wdim Wh

}

to be a basis ofWh, we expand z =
∑

dim Uh

i=1 Ziθi and v =
∑

dim Wh

i=1 Viwi for given elements

z ∈ Uh and v ∈ Wh, respetively. We introdue the sti�ness and lumped mass matries

(Lh)ij :=
∫

Ω
〈∇θi,∇θj〉 and (Mh)ij :=

∫

Ω
Ih(θiθj) for i, j ∈ {1, · · · , dim Uh}, respetively.

Moreover, we use the notation

(M(ρ(z)))ij :=

∫

Ω

ρ(zk+α)+ρ(z+α)
2

〈wi,wj〉, i, j ∈ {1, · · · , dim Wh}.

for a weighted mass matrix on Wh orresponding to a funtion z ∈ Uh whih has mean-

value zero. Due to (H4), the assoiated symmetri bilinear form de�nes a norm whih is

equivalent to the L2
-norm for vetor�elds on Ω.

We have to solve the nonlinear system

(

G1(Z, V )
G2(Z, V )

)

= 0 of q = dim Uh+dim Wh equations

given by

G1(Z, V ) :=Z − Zk + τM−1
h B1(V )

+ τM−1
h Lh

(

M−1
h LhZ + F ′

+(z + α) + F ′
−(z

k + α)
) (2.16)

and

G2(Z, V ) :=M(ρ(z))(V − V k) + τ (B2(Z, V ) +B3(V ) +B4(Z)) . (2.17)

Here, we emphasize that Z and V are the oe�ient vetors for the still unknown funtions

z ∈ Uh and v ∈ Wh. Within this proof, we shall assume in general that apital letters are

used to denote oe�ient vetors of elements in Uh andWh.Moreover, with a slight misuse

of notation we write F ′
+(z + α) for the oe�ent vetor orresponding to Ih(F

′
+(z + α)).

In addition, we have introdued the following new terms.

(B1(V ))j := −

∫

Ω

zk〈v,∇θj〉 , j = 1, · · · , dim Uh,
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(B2(Z, V ))j :=− 1
2τ

∫

Ω

(

ρ(z + α)− ρ(zk + α)
)

〈v,wj〉

+ 1
2

∫

Ω

ρ(zk + α)〈vk, (∇v)Twj〉 −
1
2

∫

Ω

ρ(zk + α)〈vk, (∇wj)
Tv〉

+ 1
2

∫

Ω

δρ

δϕ
〈j, (∇v)Twj〉 −

1
2

∫

Ω

δρ

δϕ
〈j, (∇wj)

Tv〉 , j = 1, · · · , dim Wh,

where j := −
∑

dim Uh

i=1 Mi∇θi with M = M(Z) ⊂ R
dim Uh

being de�ned by

M :=M−1
h

(

LhZ +Mh

(

F ′
+(z + α) + F ′

−(z
k + α)

))

.

Moreover,

(B3(V ))j := 2

∫

Ω

η(zk + α)Dv : Dwj , j = 1, · · · , dim Wh,

and

(B4(Z))j := −

∫

Ω

dim Uh
∑

l=1

Mlθl〈∇z,wj〉 , j = 1, · · · , dim Wh.

Let us introdue a new bilinear form on R
dim Uh × R

dim Wh
by

〈〈(

Z1

V1

)

,

(

Z2

V2

)〉〉

:= ZT
1 LhZ2 +

∫

Ω

〈

dim Wh
∑

l=1

(V1)l wl,

dim Wh
∑

m=1

(V2)m wm

〉

. (2.18)

Obviously, this form is a salar produt on K⊥ ×R
dim Wh

where K⊥ ⊂ R
dim Uh

is de�ned

by K⊥ := {W ∈ R
dim Uh : (MhW )T1 = 0} with 1 := (1, · · · , 1)T . By ‖·‖new, we denote

〈〈·, ·〉〉
1
2 . It is easily veri�ed that Zk ∈ K⊥

and that G1 maps K⊥
onto itself.

Let us now argue by ontradition. To this purpose, we assume that for a positive number

R to be spei�ed later on, a root (Ẑ, V̂ )T of (G1, G2)
T
did not exist on BR(0) where BR(0)

here denotes the ball of Radius R around the origin in the ‖·‖new-norm. Then, due to

Brouwer's �xed-point theorem (see [36℄), the mapping H : BR(0) → BR(0) de�ned by

H(Z, V ) := −R
(G1(Z, V ), G2(Z, V ))

T

‖(G1(Z, V ), G2(Z, V ))‖new

would have a �xed-point (Z̄, V̄ ) ∈ K⊥ ×Wh satisfying

∥

∥(Z̄, V̄ )
∥

∥

new
= R.

Following the ideas of [21℄, we introdue Y ∈ R
dim Uh

to be the solution of

LhY := PK⊥

{

Mh

{

F ′
+(z + α) + F ′

−(z
k + α)

}}

where PK⊥ denotes the orthogonal projetion onto K⊥. Observe that
〈〈(

Z̄

V̄

)

,

(

Z̄ + Y

V̄

)〉〉

=
(

LhZ̄
)T
Z̄ +

(

Z̄ + α1− α1
)T
Mh

(

F ′
+(z̄ + α)− F ′

+(α)1
)

+
(

Z̄
)T
MhF

′
−(z

k + α) + F ′
+(α)Z̄

TMh1 +

∫

Ω

|v̄|2

≥
(

LhZ̄
)T
Z̄ +

∫

Ω

|v̄|2

− ε
2
Z̄T Z̄ − 1

2ε

(

MhF
′
−(z

k + α)
)T
MhF

′
−(z

k + α).
(2.19)
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Here, we used the monotoniity of F ′
+ as well as the fat that Mh is a diagonal matrix.

Taking into aount the equivalene of norms on �nite dimensional spaes, there exists

R1 > 0 suh that

〈〈(

Z̄

V̄

)

,

(

Z̄ + Y

V̄

)〉〉

> 0 (2.20)

provided

∥

∥(Z̄, V̄ )
∥

∥

new
≥ R1.

In a similar fashion, we show the existene of a number R2 > 0 suh that

〈〈(

G1(Z̄, V̄ )
G2(Z̄, V̄ )

)

,

(

Z̄ + Y

V̄

)〉〉

> 0 (2.21)

provided

∥

∥(Z̄, V̄ )
∥

∥

new
≥ R2. Note that (2.21) is a diret onsequene of the energy

estimate in the disrete setting � see (3.1). In fat, we have hosen 〈〈·, ·〉〉, G2, and Y in

suh a way that (2.21) is just the oe�ient version of testing the momentum equation

by vk+1
, the phase-�eld equation by µk+1, and the equation for the hemial potential by

∂τϕ
k+1. Hene,
〈〈(

Z̄

V̄

)

,

(

Z̄ + Y

V̄

)〉〉

= −
R

∥

∥

∥

∥

(

G1(Z̄, V̄ )
G2(Z̄, V̄ )

)∥

∥

∥

∥

new

〈〈(

G1(Z̄, V̄ )
G2(Z̄, V̄ )

)

,

(

Z̄ + Y

V̄

)〉〉

< 0

for R = max{R1, R2} whih is a ontradition to (2.20). Hene, a disrete solution exists.

To obtain the existene of a pressure pk+1
and that way to justify (2.14a), we proeed

as follows. Equation (2.14a) de�nes a linear funtional F : Xh → R whih vanishes on

Wh. Using Lemma 4.1 in [19℄ together with the stability ondition (S2), the existene of

a pressure pk+1 ∈ Sh is readily established. The lemma is proven. �

Remark 2.4. Note that no further assumptions, e.g. on the size of time-inrements or

on the grid size, are neessary to prove existene of disrete solutions.

3. Compatness in spae

In this setion, we show that the disrete ounterpart of the physial energy - i.e. the

sum of the kineti and the interfaial energies - ats as a disrete Lyapunov-funtional

provided no external fores are applied. We start with a loal result.

Theorem 3.1. Assume that the triple

(

ϕk+1, µk+1,vk+1, pk+1
)

solves the system (2.14)

for given

(

ϕk, µk,vk, pk
)

. Then,

1

2τ

[
∫

Ω

ρk+1
∣

∣vk+1
∣

∣

2
−

∫

Ω

ρk
∣

∣vk
∣

∣

2
+

∫

Ω

ρk
∣

∣vk+1 − vk
∣

∣

2
]

+
1

2τ

[
∫

Ω

∣

∣∇ϕk+1
∣

∣

2
−

∫

Ω

∣

∣∇ϕk
∣

∣

2
+

∫

Ω

∣

∣∇ϕk+1 −∇ϕk
∣

∣

2
]

+
1

τ

∫

Ω

Ih

(

F
(

ϕk+1
)

− F
(

ϕk
))

+

∫

Ω

∣

∣jk+1
∣

∣

2
+

∫

Ω

2η
(

ϕk
) ∣

∣Dvk+1
∣

∣

2
≤ 0. (3.1)

Proof. Choosing ψ := ∂−τ ϕ
k+1

in (2.14d) and ψ := µk+1
in (2.14), we infer - using the

onvexity of F+ and of (−F−) (see (H1) and (H2)) - that

1

2τ

[
∫

Ω

∣

∣∇ϕk+1
∣

∣

2
−

∫

Ω

∣

∣∇ϕk
∣

∣

2
+

∫

Ω

∣

∣∇ϕk+1 −∇ϕk
∣

∣

2
]

+

∫

Ω

∣

∣jk+1
∣

∣

2

+
1

τ

∫

Ω

Ih

(

F
(

ϕk+1
)

− F
(

ϕk
))

−

∫

Ω

〈

vk+1,∇µk+1
〉

ϕk ≤ 0 . (3.2)
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Testing (2.14a) by w = vk+1
and using the identity

(a1b1 − a0b0)b1 −
1

2
(a1 − a0)b

2
1 =

1

2

(

a1b
2
1 − a0b

2
0 + a0(b1 − b0)

2)
,

whih holds for ai, bi ∈ R, i = 0, 1, gives

1

2τ

[
∫

Ω

ρk+1
∣

∣vk+1
∣

∣

2
−

∫

Ω

ρk
∣

∣vk
∣

∣

2
+

∫

Ω

ρk
∣

∣vk+1 − vk
∣

∣

2
]

+

∫

Ω

2η
(

ϕk
) ∣

∣Dvk+1
∣

∣

2
= −

∫

Ω

ϕk
〈

vk,∇µk+1
〉

.

By summation, (3.1) follows. �

We immediately obtain the following global result.

Corollary 3.2. For every 1 ≤ l ≤ N we have

1

2

∫

Ω

ρl
∣

∣vl
∣

∣

2
+

1

2

∫

Ω

∣

∣∇ϕl
∣

∣

2
+

∫

Ω

Ih

(

F
(

ϕl
))

+
1

2

l−1
∑

m=0

∫

Ω

ρm
∣

∣vm+1 − vm
∣

∣

2

+
1

2

l−1
∑

m=0

∫

Ω

∣

∣∇ϕm+1 −∇ϕm
∣

∣

2
+ τ

l−1
∑

m=0

∫

Ω

∣

∣jm+1
∣

∣

2
+ τ

l−1
∑

m=0

∫

Ω

2η(ϕm)
∣

∣Dvm+1
∣

∣

2

≤
1

2

∫

Ω

ρ0
∣

∣v0
∣

∣

2
+

1

2

∫

Ω

∣

∣∇ϕ0
∣

∣

2
+

∫

Ω

Ih

(

F
(

ϕ0
))

. (3.3)

4. Compatness in time

We begin this setion with an auxiliary result.

Lemma 4.1. Let (ϕτh, µτh,vτh, pτh) be a disrete solution of (2.14) on (0, T ). Then if

d = 2 and 1 ≤ q <∞ or if d = 3 and 1 ≤ q < 4, a positive onstant C exists suh that

‖ϕτh‖Lq((0,T );C0(Ω̄)) ≤ C(1 + T )
∥

∥ϕ0
∥

∥

H1(Ω)
. (4.1)

Proof. Let us prove �rst that ∆hϕτh ∈ L2(ΩT ). Note the identity

−
(

∆hϕ
k+1, θ

)

h
=
(

µk+1 − F ′
+(ϕ

k+1)− F ′
−(ϕ

k), θ
)

h
∀θ ∈ Uh (4.2)

whih is a onsequene of (2.14d) and the de�nition (2.9) of the disrete Laplaian. Start-

ing from this identity and hoosing θ = −∆hϕ
k+1, we have

(µk+1, µk+1)h =
∥

∥∆hϕ
k+1
∥

∥

2

h
+
∥

∥F ′
+(ϕ

k+1) + F ′
−(ϕ

k)
∥

∥

2

h

− 2(∆hϕ
k+1, F ′

+(ϕ
k+1))h − 2(∆hϕ

k+1, F ′
−(ϕ

k))h.

For the third term on the right-hand side, we get

(

∆hϕ
k+1, F ′

+(ϕ
k+1)

)

h
= −

∫

Ω

〈

∇ϕk+1,∇IhF
′
+(ϕ

k+1)
〉

≤ 0 (4.3)

aording to Lemma 4.3 in [21℄, using in partiular assumption (T1) on the triangulation.

Hene,

∥

∥∆hϕ
k+1
∥

∥

2

h
≤
∥

∥µk+1
∥

∥

2

h
+

1

2

∥

∥∆hϕ
k+1
∥

∥

2

h
+
∥

∥F ′
−(ϕ

k)
∥

∥

2

h
. (4.4)

By the linear growth of F ′
−, absorption, and the energy estimate (3.3), we �nd

∥

∥∆hϕ
k+1
∥

∥

2

h
≤ 2

∥

∥µk+1
∥

∥

2

h
+
∥

∥ϕ0
∥

∥

2

H1(Ω)
.
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Hene,

‖∆hϕτh‖
2
L2((0,T );L2(Ω)) ≤ CT

∥

∥ϕ0
∥

∥

2

H1(Ω)
, (4.5)

again using (3.3). By Theorem 6.4, formula (6.4),

‖∇ϕτh‖
L2((0,T );L

2d
d−2

−
(Ω))

≤ CT
∥

∥ϕ0
∥

∥

H1(Ω)
. (4.6)

By interpolation, using the estimate

‖∇ϕτh‖L∞((0,T );L2(Ω)) ≤ C
∥

∥ϕ0
∥

∥

H1(Ω)
,

whih follows from (3.3), we �nd in spae dimension d = 3 for every 1 ≤ q < 4 an exponent
p > 3 suh that

‖∇ϕτh‖Lq((0,T );Lp(Ω)) ≤ C(1 + T )
∥

∥ϕ0
∥

∥

H1(Ω)
.

Therefore, estimate (4.1) follows using Sobolev embedding and the onservation of the

mean value of ϕτh. The argumentation in d = 2 dimensions is analogous. �

The next step is to establish both L2
-regularity of di�erene quotients in time and higher

regularity of the disrete Laplaian for the phase-�eld.

Theorem 4.2. Let (ϕτh, µτh,vτh, pτh) be a disrete solution of (2.14) on [0, T ]. Assuming

N := T
τ
, we have the following.

(1) Positive onstants C1 = C1(‖∆hϕ
0‖h , ‖ϕ

0‖H1(Ω) , ‖v0‖L2(Ω)) and C2 exist suh that

sup
k∈{1,...,N}

∥

∥∆hϕ
k
∥

∥

2

h
≤
(

∥

∥∆hϕ
0
∥

∥

2

h
+ C1

)

exp

(

C2

(

T +

∫ T+τ

τ

‖vτh‖
2
H1 ds

+
(

(T + τ)
∥

∥ϕ0
∥

∥

H1(Ω)

)2q̄
))

(4.7)

where q̄ is de�ned in (H1).

(2) A positive onstant C3 = C3(T, ‖∆hϕ
0‖h , ‖ϕ

0‖H1 , ‖v0‖L2) exists suh that

sup
k∈{1,2,...,N}

∥

∥∆hϕ
k
∥

∥

2

h
+ 1

2

∫ T

0

∥

∥∂−τ ϕτh

∥

∥

2

h
≤ C3 (4.8)

Proof. Using (2.9) to de�ne the disrete Laplaians ∆hϕ
k+1

and ∆hϕ
k
in Uh ∩ H1

∗ (Ω),
subtrating the orresponding weak formulations from eah other and dividing by τ , we

have

−
(

∂−τ ∆hϕ
k+1, θ

)

h
=

∫

Ω

〈

∇∂−τ ϕ
k+1,∇θ

〉

∀θ ∈ Uh.

Choosing θ = µk+1
and using (2.14) entails

−
(

∂−τ ∆hϕ
k+1, µk+1

)

h
+
(

∂−τ ϕ
k+1, ∂−τ ϕ

k+1
)

h
=

∫

Ω

〈

vk+1, ∂−τ ∇ϕ
k+1
〉

ϕk.

By (4.2), we expand µk+1
to obtain

(

∂−τ ∆hϕ
k+1,∆hϕ

k+1
)

h
+
∥

∥∂−τ ϕ
k+1
∥

∥

2

h

= −

∫

Ω

{〈

vk+1,∇ϕk
〉

∂−τ ϕ
k+1 + ϕk∂−τ ϕ

k+1 div vk+1
}

+
(

∂−τ ∆hϕ
k+1, F ′

+(ϕ
k+1) + F ′

−(ϕ
k)
)

h

= Rk
1 +Rk

2 (4.9)
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Disrete integration by parts with respet to time gives � after a disrete time-integration

τ
∑N−1

k=0 of (4.9) � for Rk
2

τ

N−1
∑

k=0

Rk
2 = −τ

N−2
∑

k=0

(

∂+τ
(

F ′
+(ϕ

k+1) + F ′
−(ϕ

k)
)

,∆hϕ
k+1
)

h
−
(

∆hϕ
0, F ′

+(ϕ
1) + F ′

−(ϕ
0)
)

h

+
(

∆hϕ
N , F ′

+(ϕ
N) + F ′

−(ϕ
N−1)

)

h
= Rk

21 +Rk
22 +Rk

23. (4.10)

Here, we used the well-known formula of integration by parts

N
∑

i=0

(

∂−τ v
i
)

wi = −

N−1
∑

i=0

(

∂+τ w
i
)

vi −
v−1w0

τ
+
vNwN

τ
. (4.11)

For the �rst term in Rk
23, we get by a similar argument as in (4.3)

(

∆hϕ
N , F ′

+(ϕ
N)
)

h
= −

∫

Ω

〈

∇ϕN ,∇IhF
′
+(ϕ

N)
〉

≤ 0 (4.12)

Aording to (H1), we may estimate

∣

∣

(

∆hϕ
0, F ′

+(ϕ
1)
)

h

∣

∣ ≤ C
(∥

∥∆hϕ
0
∥

∥ ,
∥

∥∇ϕ0
∥

∥

L2

)

. (4.13)

By an analogous argument for the term involving F ′
− (using (H2)), all the boundary terms

an be ontrolled by C = C(‖∆hϕ
0‖ , ‖∇ϕ0‖L2).

For Rk
21, we estimate using (H2) and (H1) (in partiular the onvexity of F ′′

+)

∣

∣Rk
21

∣

∣ ≤ τ

N−2
∑

k=0

(∥

∥F ′′
+(ϕ

k+1)
∥

∥

C0 +
∥

∥F ′′
+(ϕ

k+2)
∥

∥

C0

) ∥

∥∂+τ ϕ
k+1
∥

∥

h

∥

∥∆hϕ
k+1
∥

∥

h

+ Cτ

N−2
∑

k=0

∥

∥∂+τ ϕ
k
∥

∥

h

∥

∥∆hϕ
k+1
∥

∥

h

≤ ετ

N−1
∑

k=1

∥

∥∂−τ ϕ
k+1
∥

∥

2

h
+ Cετ

N−2
∑

k=0

(

1 +
∥

∥ϕk+1
∥

∥

2q̄

C0 +
∥

∥ϕk+2
∥

∥

2q̄

C0

)

∥

∥∆hϕ
k+1
∥

∥

2

h
.

(4.14)

Finally,

∣

∣

∣

∣

∣

τ

N−1
∑

k=0

Rk
1

∣

∣

∣

∣

∣

≤ ετ

N−1
∑

k=0

∥

∥∂−τ ϕ
k+1
∥

∥

2

h
+ Cετ

N−1
∑

k=0

∥

∥vk+1
∥

∥

2

H1(Ω)
(1 +

∥

∥∆hϕ
k
∥

∥

2

h
) (4.15)

where we have used the estimate

∥

∥∇ϕk
∥

∥

Lq(Ω)
+
∥

∥ϕk
∥

∥

C0(Ω)
≤ C(1+

∥

∥∆hϕ
k
∥

∥

h
) whih holds

for all 1 ≤ q < 2d
d−2

aording to Theorem 6.4, formula (6.4). Note that we also took

advantage of the fat that ‖·‖h and ‖·‖L2 are equivalent norms on Uh with onstants uni-

form in h, see (2.2). Colleting (4.9), (4.12)-(4.14), (4.15) and taking the aforementioned
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boundedness of the boundary terms with respet to time into aount, we get

1

2

∥

∥∆hϕ
N
∥

∥

2

h
−

1

2

∥

∥∆hϕ
0
∥

∥

2

h
+

1

2

N−1
∑

k=0

∥

∥∆hϕ
k+1 −∆hϕ

k
∥

∥

2

h

+
1

2
τ

N−1
∑

k=0

∥

∥∂−τ ϕ
k+1
∥

∥

2

h
+

∫

Ω

〈

∇ϕN ,∇IhF
′
+(ϕ

N )
〉

≤ C1

(∥

∥∆hϕ
0
∥

∥

h
,
∥

∥∇ϕ0
∥

∥

L2 , ‖v0‖L2

)

+ C2τ

N−1
∑

k=1

(

1 +
∥

∥ϕk
∥

∥

2q̄

C0 +
∥

∥ϕk+1
∥

∥

2q̄

C0

)

∥

∥∆hϕ
k
∥

∥

2

h

+ C3τ

N−1
∑

k=0

∥

∥vk+1
∥

∥

2

H1(Ω)

∥

∥∆hϕ
k
∥

∥

2

h
. (4.16)

In the next step, we apply a disrete version of Gronwall's lemma (f. e.g. [35, Lemma

4.2.3.℄):

Lemma. Let εj, ηj , j = 0, ..., m, be non-negative real numbers with η0 ≤ η1 ≤ ... ≤ ηm.

For δ > 0 and h = (h0, ..., hm−1) ∈ (R+
0 )

m
, assume the estimates

ε0 ≤ η0 and εj+1 ≤ δ

j
∑

i=0

hiεi + ηj+1 (4.17)

to hold. Then,

εj ≤ ηj exp

(

δ

j−1
∑

i=0

hi

)

, j = 0, 1, ..., m. (4.18)

From equation (4.16), we infer

∥

∥∆hϕ
j
∥

∥

2

h
≤
(

∥

∥∆hϕ
0
∥

∥

2

h
+ C1

)

· exp

(

Cτ

j−1
∑

l=0

(

1 +
∥

∥vl+1
∥

∥

2

H1(Ω)
+
∥

∥ϕl
∥

∥

2q̄

C0 +
∥

∥ϕl+1
∥

∥

2q̄

C0

)

)

≤
(

∥

∥∆hϕ
0
∥

∥

2

h
+ C1

)

· exp

(

C

(

tj +

∫ tj+τ

τ

‖vτh‖
2
H1 ds+

(

(tj + τ)
∥

∥ϕ0
∥

∥

H1

)2q̄
))

for all 1 ≤ j ≤ N . Note that we used (4.1) in the last line, too. Hene, (4.7) holds true.

Estimate (4.8) immediately follows by ombination of (4.7) and of (4.16). �

For the passage to the limit in the �fth term of (2.14a) and in order to prove strong

onvergene of vτh in L2(ΩT ), we need results on improved integrability of jτh. Note that

so far jτh and ∇vτh are only known to be square-integrable with respet to time. For the

passage to the limit τ, h → 0, we need Lp
-integrability with an exponent p > 1 for the

produt. This requires higher regularity of jτh with respet to both spae and time. With

the perspetive of a disrete analogon of ompensated ompatness, we look for estimates

of the disrete Laplaian of µτh uniformly in (τ, h). This will give higher integrability of

jτh with respet to spae, too � see Corollary 4.4.

Lemma 4.3. Let (ϕτh, µτh,vτh, pτh) be a disrete solution on [0, T ] and T > 0 be arbitrary,
but �xed. Let wτh(·, t) ∈ Uh ∩ H1

∗ (Ω) be de�ned as the negative disrete Laplaian of

µτh(·, t), i.e.

(wτh(·, t), θ)h := (∇µτh(·, t),∇θ) ∀θ ∈ Uh. (4.19)
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Then a positive onstant C = C(T, ‖∆ϕ0‖h , ‖ϕ
0‖H1 , ‖v0‖L2) exists suh that

∫ T

0

‖wτh(·, t)‖
2
L2(Ω) ≤ C̃

∫ T

0

‖wτh(·, t)‖
2
h ≤ C (4.20)

Moreover, for every 1 ≤ p < 2d
d−2

,

jτh := −∇µτh is uniformly bounded in L2((0, T );Lp(Ω)). (4.21)

Corollary 4.4. Under the assumptions of Lemma 4.3, the funtions µτh are uniformly

bounded in L2
(

(0, T ); Cβ(Ω)
)

with β < 2− d
2
.

Proof of Lemma 4.3. Choose θ = wk+1 = wτh(·, tk+1) as the test funtion in (4.19). Hene,
(

wk+1, wk+1
)

h
=
(

∇µk+1,∇wk+1
)

(2.14)

= −
(

∂−τ ϕ
k+1, wk+1

)

h
−

∫

Ω

〈

vk+1,∇ϕk
〉

wk+1 −

∫

Ω

wk+1ϕk divvk+1.

Using Theorem 6.4, Theorem 4.2, and the energy estimate (3.3), we may estimate

τ

N−1
∑

k=0

(

wk+1, wk+1
)

h
≤

1

2
τ

N−1
∑

k=0

∥

∥∂−τ ϕ
k+1
∥

∥

2

h
+

1

2
τ

N−1
∑

k=0

∥

∥wk+1
∥

∥

2

h

+ τ

N−1
∑

k=0

∥

∥vk+1
∥

∥

H1(Ω)
(1 +

∥

∥∆hϕ
k
∥

∥

h
)
∥

∥wk+1
τh

∥

∥

h
.

The last term on the right-hand side is bounded by

Cτ

N−1
∑

k=0

∥

∥vk+1
∥

∥

2

H1(Ω)
+

1

4
τ

N−1
∑

k=0

∥

∥wk+1
∥

∥

2

h

with a onstant C = C(T, ‖∆ϕ0‖h , ‖ϕ
0‖H1 , ‖v0‖L2). By absorption, (4.20) follows.

The uniform boundedness in (4.21) is a onsequene of (4.20), (4.19), and Theorem 6.4.

�

Proof of Corollary 4.4. This result follows by ombining (4.21) with the uniform bound-

edness of ϕτh in spae-time whih follows by (4.8) and Theorem 6.4. �

The following lemma provides the aforementioned higher integrability with respet to time

for jτh. It is a straightforward onsequene of Lemma 4.3, interpolation, and the uniform

boundedness of µτh in L∞((0, T );L2(Ω)), the latter of whih follows by a ombination of

(4.8) with Theorem 6.4.

Lemma 4.5. For arbitrary, but �xed T > 0, there is a onstant

C = C(T, ‖∆ϕ0‖h , ‖ϕ
0‖H1 , ‖v0‖L2) suh that

‖jτh‖L2(L6−) + ‖jτh‖L4(L2) + ‖jτh‖
L

8
3
−(L3)

≤ C. (4.22)

Let us turn to the veloity �eld and let us prove ompatness with respet to time for the

orthogonal L2
-projetion of ρτhvτh onto Wh in appropriate dual Sobolev spaes.

Lemma 4.6. Let (ϕτh, µτh,vτh, pτh) be a solution of (2.14). Then for every T > 0 and

for every 1 ≤ p < 8
7
, a positive onstant

C = C
(

T, p,
∥

∥∆ϕ0
∥

∥

h
,
∥

∥ϕ0
∥

∥

H1 ,
∥

∥v0
∥

∥

L2

)

<∞

exists suh that

∥

∥∂−τ Rh(ρτhvτh)
∥

∥

Lp
(

(0,T );(W1,2

0,div
(Ω))

′
) ≤ C . (4.23)
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Proof. We take w ∈ S0,−1
(

[0, T );W1,2
0,div(Ω)

)

arbitrarily. Reall that for T = Nτ we

identify τ
∑N−1

k=0 wk
with the integral

∫ T

0
wdt. Choosing Rhw as the test funtion in the

disrete version of the momentum equation and using L2
-orthogonality, we have

0 =

∫ T

0

∫

Ω

〈

∂−τ Rh(ρτhvτh),w
〉

−
1

2

∫ T

0

∫

Ω

∂−τ ρτh〈vτh(·, ·+ τ),Rhw〉

−
1

2

∫ T

0

∫

Ω

ρτh

〈

vτh, (∇Rhw)Tvτh(·, ·+ τ)
〉

+
1

2

∫ T

0

ρτh

〈

vτh, (∇vτh(·, ·+ τ))TRhw
〉

+
1

2

∫ T+τ

τ

∫

Ω

δρ

δϕ

〈

jτh, (∇vτh)
TRhw(·, · − τ)

〉

−
1

2

∫ T+τ

τ

∫

Ω

δρ

δϕ

〈

jτh, (∇Rhw(·, · − τ))Tvτh

〉

+

∫ T+τ

τ

∫

Ω

2η(ϕτh(·, · − τ))Dvτh : DRhw +

∫ T

0

∫

Ω

ϕτh〈∇µτh(·, ·+ τ),Rhw〉

=: L1 + . . .+ L8. (4.24)

In the sequel, we sometimes do not indiate domains of integration if they are idential

with (0, T ) or with Ω, and we estimate

|L2| ≤ C
∥

∥∂−τ ρτh
∥

∥

L2(L2)
· ‖vτh(·, ·+ τ)‖

L
10
3

(

(τ,T+τ);L
10
3 (Ω)

) · ‖Rhw‖L5(W 1,2) .

By the energy estimate (3.3) and interpolation between L∞(L2) and L2(W 1,2) (see e.g.

Proposition 3.3 in [14℄), we have vτh ∈ L
8

d (L4). Hene,

|L3| ≤ C ‖vτh‖
L

8
d (L4)

‖vτh(·, ·+ τ)‖
L

8
d ((τ,T+τ);L4(Ω))

‖∇Rhw‖
L

8
8−2d (L2)

.

To estimate L5, we use (4.22) and obtain

|L5| ≤ C ‖jτh‖
L

8
3
−((τ,T+τ);L3(Ω))

· ‖∇vτh‖L2((τ,T +τ);Ω) · ‖Rhw‖L8+(W 1,2) .

The remaining terms an be estimated in the same spirit, and we get

|L1| ≤ C · ‖Rhw‖L8+(W 1,2)

(due to (2.4))

≤ C · ‖w‖L8+(W 1,2) ,

whih gives the assertion. �

Lemma 4.7. There is a subsequene (τ, h) → 0 suh that Rh(ρτhvτh) strongly onverges

in L2(ΩT ) to a limit funtion Z.

Proof. Note that

∫ T

0

‖∇(ρτhvτh)‖
2
L2 ≤C

(

sup
t∈(0,T )

‖∆ϕτh‖
2
L2

)

·

∫ T

0

‖vτh‖
2
L6

+ C

∫ T

0

‖∇vτh‖
2
L2 ≤ const.

(4.25)

by (4.7), (6.4) and the boundedness of ρτh.

As W 1,2(Ω) →֒→֒ L2(Ω) →֒
(

W
1,2
0,div(Ω)

)′
, the assertion of the lemma follows in a standard

way by ombination of (4.25), (4.23), and Theorem 6.1. �

Let us prove now that there is a subsequene (vτh)(τ,h)ց0 suh that vτh strongly onverges

to v ∈ L2(ΩT ) with respet to the L2
-norm. In partiular, the limit funtion is ontained

in L2
(

(0, T );W1,2
0,div(Ω)

)

.



18 G. GRÜN

Lemma 4.8. Under the assumptions

vτh ∈ L2((0, T );Wh) for all h > 0, τ > 0, (4.26)

Rh(ρτhvτh) → Z strongly in L2(ΩT ), (4.27)

vτh ⇀ v weakly ∗ in L∞
(

(0, T );L2
)

∩ L2
(

(0, T );H1
)

, (4.28)

ρτh ⇀ ρ weakly ∗ in L∞
(

(0, T );H1
)

∩H1
(

(

H1
)′
)

, (4.29)

ρτh → ρ strongly in L2(ΩT ), (4.30)

the following is true for a subsequene (τ, h) → 0:

Z = Pσ(ρv), (4.31)

∫ T

0

∫

Ω

ρτh |vτh|
2 →

∫ T

0

∫

Ω

ρ |v|2 , (4.32)

div v = 0, (4.33)

vτh → v strongly in L2(ΩT ) . (4.34)

Proof. The proof will be divided into three steps.

Step 1: Let (yh)hց0 be a bounded sequene in L2
(

(0, T );W1,2
0 (Ω)

)

and assume that

Rhyh ⇀ y in L2
(

(0, T );W1,2
0 (Ω)

)

. (4.35)

Then,

divy = 0 a.e. in Ω× (0, T ). (4.36)

Proof of Step 1: Take q ∈ L2((0, T );H1(Ω)) arbitrarily. Hene,
∫∫

ΩT

q div y =

∫∫

ΩT

(q − Shq) div y +

∫∫

ΩT

Shq(divy − divRhyh)

+

∫∫

ΩT

Shq divRhyh = I(h) + II(h) + III(h) .

By (2.7), Shq → q strongly in L2(ΩT ) (using Lebesque's onvergene theorem) and there-

fore limh→0 I(h) = 0. For II(h), we observe that divRhyh ⇀ div y in L2(ΩT ) and that

Shq strongly onverges to q in L2(ΩT ). Therefore, this term vanishes in the limit, too.

Finally, III(h) is always zero due to (2.14b). Now use that L2((0, T );H1) is dense in

L2(ΩT ) and (4.36) is established. �

Step 2: We have

Z = lim
h→0

Rh(ρτhvτh) = Pσ(ρv). (4.37)

Proof of Step 2: By the identity Rhvτh = vτh and the orthogonality of the L2
-projetion

Rh, we have

∫∫

ΩT

〈ρτhvτh,vτh〉 =

∫∫

ΩT

〈Rh(ρτhvτh),vτh〉 .

By (4.27) and (4.28), we infer

lim
h→0

∫∫

ΩT

〈ρτhvτh,vτh〉 =

∫∫

ΩT

〈Z,v〉.
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Let us prove that Z = Pσ(ρv). Take Σ ∈ L2
(

(0, T );W1,2
0,div(Ω)

)

arbitrarily. We have

∫∫

ΩT

〈Rh(ρτhvτh),RhΣ〉 =

∫∫

ΩT

〈ρτhvτh,RhΣ〉 .

By estimate (2.5) and Lebesgue's theorem, we have the strong onvergene RhΣ → Σ in

L2(Ω). Sine also ρτh → ρ strongly, we have

∫∫

ΩT

〈Z,Σ〉 = lim
h→0

∫∫

ΩT

〈Rh(ρτhvτh),RhΣ〉 = lim
h→0

∫∫

ΩT

〈ρτhvτh,RhΣ〉

=

∫∫

ΩT

〈ρv,Σ〉

for all Σ ∈ L2(I;W1,2
0,div(Ω)). Therefore, Pσ(ρv) = Pσ(Z). Step 1 implies that divZ = 0

and therefore Pσ(ρv) = Z. �

Step 3: vτh → v strongly in L2(ΩT ).

Here, we translate ideas of [2℄ to the disrete setting. Introduing στh := ρ
1

2

τhvτh,

we �nd

στh ⇀ ρ
1

2v in L2(ΩT ).

At the same time

∫∫

ΩT

|στh|
2 =

∫∫

ΩT

〈ρτhvτh,vτh〉
(vτh=Rhvτh)

=

∫∫

ΩT

〈Rh(ρτhvτh),vτh〉

onverges to

∫∫

ΩT
〈Pσ(ρv),v〉. By Step 1 and assumption (4.28), v is solenoidal.

Hene,

∫∫

ΩT

〈Pσ(ρv),v〉 =

∫∫

ΩT

〈ρv,v〉 =

∫∫

ΩT

∣

∣

∣
ρ

1

2v

∣

∣

∣

2

.

Therefore, στh → ρ
1

2v strongly in L2(ΩT ). To obtain (4.34), use that ρτh is

bounded from below by a positive onstant (see (H4)). The lemma is proven.

�

5. Passage to the limit (τ, h) → 0

Let us begin this setion by stating some boundedness and onvergene results not ex-

pliitly mentioned before. By (4.7) and (6.4) in Theorem 6.4, we observe that

(ϕτh) is uniformly bounded in L∞
(

W 1,p(Ω)
)

for all p <
2d

d− 2
. (5.1)

Moreover, a subsequene (τ, h) → 0 exists suh that

(vτh) strongly to v in L2(ΩT ) , (5.2)

(Rh(ρτhvτh)) strongly to Pσ(ρv) in L
2(ΩT ) , (5.3)

(ϕτh) strongly to ϕ in L2(ΩT ) , (5.4)

(µτh) weakly to µ in L2((0, T );H1(Ω)). (5.5)

For a proof of (5.2) and (5.3), see Lemma 4.8, in partiular formula (4.37). Moreover,

(5.4) and (5.5) follow from (4.8) ombined with the energy estimate (3.3) and the om-

patness result of Simon (see Theorem 6.1).

The most ritial term for the passage to the limit in (2.14) is the �fth term in equation

(2.14a). At present, we only know jτh and ∇vτh weakly to onverge in ertain Lp
-spaes
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of spae and time to j = −∇µ or to ∇v, respetively. On a formal level, one might argue

that the divergene of jτh is ontrolled. On a rigorous level, we are only able to bound

the disrete Laplaian of µτh. But it turns out that this is already su�ient due to the

L4(L2) ∩ L2(L6−)-regularity of jτh. The following lemma allows to identify weak limits.

Lemma 5.1. There is a subsequene (τ, h) → 0 suh that ∇vτhjτh weakly onverges in

Lq((0, T );L
6

5 (Ω)), 1 ≤ q < 5
4
, to −∇v∇µ.

Proof. Combining (3.3) with (4.22) yields uniform boundedness of (∇vτhjτh)(τ,h)→0 in the

spae Lq((0, T );L
6

5 (Ω)) for any q < 5
4
. Hene, a weakly onvergent subsequene exists

with limit Z in that spae. Let us identify Z = −∇v∇µ. First, we note the existene of
a set E ⊂ (0, T ) with µ1(E) = T , suh that −∇vτh∇µτh = ∇vτhjτh weakly onverges to

Z for all t ∈ E . Next, we show that for t ∈ E

Z(·, t) = −∇v(·, t)∇µ(·, t) .

To this sope, we onsider for t ∈ E the auxiliary problems

−∆Mτh(·, t) = wτh(·, t) in Ω, (5.6a)

∂

∂ν
Mτh(·, t) = 0 on ∂Ω, (5.6b)

∫

Ω

Mτh(x, t)dx =

∫

Ω

µτh(x, t)dx, (5.6)

where wτh ∈ H1
∗ (Ω) ∩ Uh is the negative disrete Laplaian of µτh (f. (4.19)). By (6.3),

(5.6), and the mean value Poinaré inequality, we have the existene of a positive onstant

C suh that

‖(µτh −Mτh)(·, t)‖H1(Ω) ≤ Ch ‖wτh(·, t)‖L2(Ω) (5.7)

for all t ∈ E . By ellipti regularity theory, we have

‖Mτh(·, t)‖W 1,6(Ω) ≤ C ‖wτh(·, t)‖L2 (5.8)

uniformly in E and for (τ, h) → 0. From (5.7), we infer

∫

Ω

|(∇vτh∇Mτh −∇vτh∇µτh)(·, t)| ≤ ‖∇(Mτh − µτh)(·, t)‖L2 · ‖∇vτh(·, t)‖L2

h→0
→ 0

Due to the L6
-regularity of ∇Mτh, we have ∇vτh(·, t)∇Mτh(·, t) ⇀ −Z(·, t) in L

3

2
−(Ω).

Now observe the following identity for arbitrary Σ ∈ C1(Ω;R3)

∫

Ω

Z(·, t)Σ = − lim
(τ,h)→0

∫

Ω

∇Mτh(·, t)(∇vτh(·, t))
T
Σ

= lim
(τ,h)→0

{
∫

Ω

(∆Mτhvτh)(·, t)Σ+

∫

Ω

∇Mτh(·, t)(∇Σ)Tvτh(·, t)

}

=

∫

Ω

w〈v(·, t),Σ〉+

∫

Ω

∇M(∇Σ)Tv = −

∫

Ω

〈∇µ, (∇v)TΣ〉 . (5.9)

Here, we used in partiular that wτh ⇀ w in L2(ΩT ), and that µτh ⇀ µ in L2(ΩT ) and
w.l.o.g. pointwise in t ∈ E for an appropriate subsequene. In partiular,

∫

Ω

〈∇µ,∇θ〉 =

∫

Ω

wθ
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for all θ ∈ H1(Ω). Sine C1(Ω;R3) is dense in Lp(Ω) for all 1 ≤ p < ∞, we have the

identity

Z(·, t) = (−(∇v)∇µ)(·, t)

for all t ∈ E . This gives the assertion of the lemma. �

Now we are in the position to state a �rst onvergene result.

Theorem 5.2. Let Ω ⊂ R
d
, d ∈ {2, 3}, be a onvex polyhedral domain and let initial

data Φ0 and V0 be given. Let I = (0, T ). Assume that (H1)-(H4), (S1)-(S6), and (T1),

(T2) are satis�ed and that (ϕτh, µτh,vτh) is a sequene of disrete solutions to the system

(2.14). Then funtions

v ∈ L∞
(

I;L2(Ω)
)

∩ L2
(

I;W1,2
0,div(Ω)

)

,

ϕ ∈ L∞
(

I;H2(Ω)
)

∩H1
(

I;L2(Ω)
)

, ϕ(·, 0) = Φ0(·),

µ ∈ L∞
(

I;L2(Ω)
)

∩ L2
(

I;W 1,6−(Ω)
)

∩ L4
(

I;W 1,2(Ω)
)

exist whih solve the system (1.1) in the generalized sense that

−

∫ T

0

∫

Ω

〈ρv − ρ(Φ0)V0, ∂tw〉 −
1

2

∫ T

0

∫

Ω

∂tρ〈v,w〉 −
1

2

∫ T

0

∫

Ω

ρ
〈

v, (∇w)Tv
〉

+
1

2

∫ T

0

∫

Ω

ρ
〈

v, (∇v)Tw
〉

+
1

2

∫ T

0

∫

Ω

δρ

δϕ

〈

j, (∇v)Tw
〉

−
1

2

∫ T

0

∫

Ω

δρ

δϕ

〈

j, (∇w)Tv
〉

+

∫ T

0

∫

Ω

2η(ϕ)Dv : Dw =

∫ T

0

∫

Ω

µ〈∇ϕ,w〉

(5.10)

for all w ∈ C1
(

I;W1,2
0,div(Ω)

)

satisfying w(·, T ) = 0,
∫ T

0

∫

Ω

∂tϕθ +

∫ T

0

∫

Ω

〈∇ϕ,v〉θ +

∫ T

0

∫

Ω

〈∇µ,∇θ〉 = 0 (5.11)

for all θ ∈ L2(I;H1(Ω)),

µ(·, t) = −∆ϕ(·, t) + F ′(ϕ(·, t)) (5.12)

for almost all t ∈ I. Moreover, for a subsequene (τ, h) → 0 the following onvergene

results hold true:

• vτh → v strongly in L2(ΩT ),
• Rh(ρτhvτh) → Pσ(ρv) strongly in L2(ΩT ),
• ϕτh → ϕ strongly in L2(ΩT ) and in L

p
(

I;Cβ(Ω)
)

for any p <∞ and any β < 2− d
2
,

• µτh − IhF
′
+(ϕτh)− IhF

′
−(ϕτh(·, · − τ))⇀ −∆ϕ weakly∗ in the spae

L∞(I;L2(Ω)) ∩ L2(I;W 1,6−(Ω)) ∩ L4(I;W 1,2(Ω)),
• IhF

′
−(ϕτh(·, · − τ)) → F ′

−(ϕ) strongly in Lp(ΩT ) for any 1 ≤ p <∞,

• IhF
′
+(ϕτh) → F ′

+(ϕ) strongly in Lp(ΩT ) for any 1 ≤ p <∞.

Remark 5.3. 1. For the pressure, we obtain similar results as in the ase of equal mass

densities � see e.g. [16℄. Choosing an arbitrary test funtion w ∈ Xh in (2.14b), summing

up over subintervals in time and using (S2), it follows that

∫ t

0
pτh(., s)ds is uniformly

bounded in L∞(I;L2(Ω)). Hene, a weak∗-limit exists for (τ, h) → 0, whih may be used

in a very weak solution onept in the sense of distributions allowing for non-solenoidal

test funtions in the momentum equation. For details, see the equal density ase [16℄.

2. Solutions onstruted in Theorem 5.2 are generalized solutions to the system (1.1) sine

it is a priori not possible to identify

δρ

δϕ
with ρ′(ϕ). In Corollary 5.4, we will show that they
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are in fat weak solutions as soon as ϕ attains values only in the interval [−1− ϕ̄, 1 + ϕ̄]
with ϕ̄ given in (H4). In this ase, onservation of individual masses is guaranteed, too.

Therefore, the question whether solutions onstruted in Theorem 5.2 are in fat weak

solutions of (1.1) is redued to the problem of �nding optimal L∞
-bounds for the solutions

in (5.11). See Corollary 5.5 for a �rst result in that diretion.

Proof. Let us begin with a disussion of the onvergene results. The �rst two of them were

already obtained in (5.2) and (5.3). The strong onvergene of ϕτh → ϕ in Lp(I;Cβ(Ω))
for any 1 ≤ p <∞ and any 0 < β < 2− d

2
is a onsequene of (4.8) ombined with (5.1),

Simon's Theorem 6.1 and the ompatness of the embedding W 1,q(Ω) →֒→֒ Cβ(Ω). The
strong onvergene of the terms IhF

′
−(ϕτh(·, ·−τ) and IhF

′
+(ϕτh) is implied by the uniform

boundedness of ϕτh (see (5.1)) and its strong onvergene in Lp(I;Cβ(Ω)) ombined with

Lemma 6.3. Finally, note that µτh − IhF
′
+(ϕτh) − IhF

′
−(ϕτh(·, · − τ)) = −∆hϕτh . By

(4.7), a weakly onvergent subsequene of ∆hϕτh exists, and by duality its limit an

easily be identi�ed with −∆ϕ (using the weak onvergene of ∇ϕτh in L∞(I;Lp(Ω)) for
all p < 2d

d−2
). Hene, (5.12) is established as well.

It remains to prove that (5.10)-(5.11) hold true. Let us begin with (5.10). WritingN := T
τ
,

we take the sum τ
∑N−1

k=0 in the disrete equation (2.14a). Hene,

τ

N−1
∑

k=0

∫

Ω

〈

∂−τ Rh(ρ
k+1vk+1),wk+1

〉

−
τ

2

N−1
∑

k=0

∫

Ω

∂−τ ρ
k+1
〈

vk+1,wk+1
〉

−
τ

2

N−1
∑

k=0

∫

Ω

ρk
〈

vk, (∇wk+1)Tvk+1
〉

+
τ

2

N−1
∑

k=0

∫

Ω

ρk
〈

vk, (∇vk+1)Twk+1
〉

+
τ

2

N−1
∑

k=0

∫

Ω

δρ

δϕ

〈

jk+1, (∇vk+1)Twk+1
〉

−
τ

2

N−1
∑

k=0

∫

Ω

δρ

δϕ

〈

jk+1, (∇wk+1)Tvk+1
〉

+ τ

N−1
∑

k=0

∫

Ω

2η(ϕk+1)Dvk+1 : Dwk+1 = −τ

N−1
∑

k=0

∫

Ω

ϕk
〈

∇µk+1,wk+1
〉

(5.13)

for all step funtions w ∈ S0,−1(I;Wh). Using (4.11), the �rst term an be rewritten

τ

N−1
∑

k=0

∫

Ω

〈

∂−τ Rh(ρ
k+1vk+1),wk+1

〉

= −τ
N−1
∑

k=0

∫

Ω

〈

∂+τ w
k,Rh(ρ

kvk)−Rh(ρ(ϕ0h)v0h)
〉

+

∫

Ω

〈

wN ,Rh(ρ
NvN)−Rh(ρ(ϕ0h)v0h)

〉

.

(5.14)

Now hoose Σ ∈ C1([0, T ];W1,2
0,div(Ω)) ∩ C1([0, T ];H2(Ω)) with Σ(·, T ) = 0 arbitrarily,

but �xed. Take Στh|Ik := Qh
divΣ(·, tk). Realling (2.8) and using Στh(·, T ) = 0, (5.13)
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may be rewritten as

−

∫ T

0

∫

Ω

〈

Rh(ρτhvτh)−Rh(ρ(ϕ0h)v0h), ∂
+
τ Στh

〉

−
1

2

∫ T−τ

0

∫

Ω

∂−τ ρτh〈vτh(·, ·+ τ),Στh(·, ·+ τ)〉

−
1

2

∫ T−τ

0

∫

Ω

ρτh

〈

vτh, (∇Στh(·, ·+ τ))Tvτh(·, ·+ τ)
〉

+
1

2

∫ T−τ

0

∫

Ω

ρτh

〈

vτh, (∇vτh(·, ·+ τ))TΣτh(·, ·+ τ)
〉

+
1

2

∫ T

τ

∫

Ω

δρ

δϕ

〈

jτh, (∇vτh)
T
Στh

〉

−
1

2

∫ T

τ

∫

Ω

δρ

δϕ

〈

jτh, (∇Στh)
T
vτh

〉

+

∫ T

τ

∫

Ω

2η(ϕτh(·, · − τ))Dvτh : DΣτh −

∫ T

τ

∫

Ω

ϕτh(·, · − τ)〈∇µτh,Στh〉 = 0 (5.15)

By (S4), formula (2.6), we infer the strong onvergene of Στh to Σ in L2(I;H1(Ω)) as
well as the strong onvergene of ∂+τ Στh to ∂tΣ in L2(I;H1(Ω)). From (5.3), it follows

that Rh(ρτhvτh) strongly onverges to Pσ(ρv) in L2(ΩT ). In partiular, Rh(ρ(ϕ0h)v0h)
strongly onverges to Pσ(ρ(Φ0)V0) in L2(Ω) by arguments similar to those used in the

proof of Lemma 4.8.

As the Helmholtz projetion Pσ is orthogonal, we may identify the limit of the �rst term

in (5.15) with the �rst term in (5.10). To disuss the seond and third term in (5.15),

we employ the weak onvergene of ∂−τ ρτh towards ∂tρ, whih is a diret onsequene of

the L2(ΩT )-boundedness of ∂
−
τ ϕτh as well as of the results on strong onvergene for vτh,

∇Στh and Στh (see (5.2), (4.8), and (2.6)).

A similar reasoning also applies to the fourth, sixth and seventh term, this time taking ad-

vantage of the uniform boundedness (3.3), (4.22). For the �fth term, we use that ∇vτhjτh

weakly onverges to −∇v∇µ in Lq((0, T );L
6

5 (Ω)) for all 1 ≤ q < 5
4
, see Lemma 5.1. To-

gether with the strong onvergene of Στh, also this limit is readily identi�ed. To disuss

the last term, we observe that µτh weakly onverges in L2(I;W 1,6−(Ω)) ∩ L4(I;W 1,2(Ω))
to µ. Together with the strong onvergene of ϕτh in Lp(I;Cβ(Ω)) for any 1 ≤ p < ∞,

we �nd that this term onverges to −
∫ T

0

∫

Ω
ϕ〈∇µ,w〉. Integration by parts, using the

solenoidality of w, gives the result. Let us disuss (5.11). Similarly as in (5.10), we

take the sum τ
∑N−1

k=0 in the disrete equation (2.14). Replaing τ
∑N−1

k=0 by

∫ T

0
dt and

hoosing ψ ∈ C0([0, T ];H2(Ω)) arbitrarily, but �xed, we have for ψτh de�ned by the Ritz

projetion ψτh|Ik := Phψ(·, tk) that

∫ T

0

(

∂−τ ϕτh, ψτh

)

h
−

∫ T

0

〈vτh(·, ·+ τ),∇ψτh〉ϕτh

+

∫ T

0

〈∇µτh(·, ·+ τ),∇ψτh〉 = 0 . (5.16)

Combining (2.1) and (4.8) with the fat that Phψ(·, ·) onverges to ψ in H1(Ω) for h→ 0
(see (2.3)), we �nd that the �rst term in (5.16) onverges to the �rst term in (5.11) as

(τ, h) tends to (0, 0). The remaining terms may be disussed in a standard way, using

(5.2), (4.22), (5.1) as well as the approximation properties of Ph. By a density argument

and integration by parts in the seond term, (5.11) follows. This proves the theorem. �
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Corollary 5.4. Consider the solution (ϕ, µ,v) obtained in Theorem 5.2 and assume that

in a time-interval [0, T̄ ] the phase-�eld ϕ(·, t) attains only values in (−1 − ϕ̄, 1 + ϕ̄) with
the parameter ϕ̄ as in (H4). Then, (ϕ, µ,v) solves the system (1.1) on (0, T̄ ) in the sense

that

−

∫ T̄

0

∫

Ω

〈ρ̄v− ρ̄(Φ0)V0, ∂tw〉 −

∫ T̄

0

∫

Ω

∂tρ̄〈v,w〉+

∫ T̄

0

∫

Ω

ρ̄
〈

v, (∇v)Tw
〉

+

∫ T̄

0

∫

Ω

∂ρ̄

∂ϕ

〈

j, (∇v)Tw
〉

+

∫ T̄

0

∫

Ω

2η(ϕ)Dv : Dw =

∫ T̄

0

∫

Ω

µ〈∇ϕ,w〉

(5.17)

for all w ∈ C1
(

(0, T̄ );W1,2
0,div(Ω)

)

satisfying w
(

·, T̄
)

= 0,

∫ T̄

0

∫

Ω

∂tϕθ +

∫ T̄

0

∫

Ω

〈∇ϕ,v〉θ +

∫ T̄

0

∫

Ω

〈∇µ,∇θ〉 = 0 (5.18)

for all θ ∈ L2
(

(0, T̄ );H1(Ω)
)

,

µ(·, t) = −∆ϕ(·, t) + F ′(ϕ(·, t)) (5.19)

for almost all t ∈ (0, T̄ ). In partiular, (5.17) is a weak formulation of (1.1a).

Proof. Observe that (5.11) implies for ϕ ∈ (−1 − ϕ̄, 1 + ϕ̄) the identity

−
1

2

∫ T̄

0

∫

Ω

∂tρ〈v,w〉 =

−

∫ T̄

0

∫

Ω

∂tρ〈v,w〉+
1

2

∫ T̄

0

∫

Ω

ρ
〈

v, (∇w)Tv
〉

+
1

2

∫ T̄

0

∫

Ω

ρ
〈

v, (∇v)Tw
〉

+
1

2

∫ T̄

0

∫

Ω

δρ

δϕ

〈

j, (∇v)Tw
〉

+
1

2

∫ T̄

0

∫

Ω

δρ

δϕ

〈

j, (∇w)Tv
〉

.

(5.20)

Inserting (5.20) in (5.10) and using that ρ̄ ≡ ρ on (−1− ϕ̄, 1 + ϕ̄) gives the result. �

We are already in the position to formulate a riterion whih guarantees that the assump-

tion of Corollary 5.4 is satis�ed. With a grain of salt, the ondition ϕ̄ < 2ρ̃1
ρ̃2−ρ̃1

, see (H4),

translates to the ondition that the modulus of ϕ is bounded by the inverse Atwood num-

ber. The Atwood number

ρ̃2−ρ̃1
ρ̃1+ρ̃2

itself is a measure for the density ontrast. Obviously, it

attains values lose to zero for a small density ontrast and values lose to one for a large

density ontrast. Hene, ombining a ontinuous ounterpart of the estimate (4.7) with

Corollary 5.4, we have the following result.

Corollary 5.5. For given initial data Φ0,V0, there is a number α ∈ (0, 1) suh that for

all Atwood numbers

ρ̃2−ρ̃1
ρ̃1+ρ̃2

< α there exists a positive time T̂ suh that the generalized

solution (5.10) � (5.12) is a weak solution to (1.1).

Let us onlude the paper with some remarks related to pratial omputations. For given

grid parameters τ and h, given external fores kgrav, and a given tolerane ε > 0, it is
always possible to �nd a regularization of a logarithmi potential whih guarantees that

disrete solutions ϕτh orresponding to τ, h are on�ned to the interval (−1 − ε, 1 + ε) �
for a related reasoning in the ase of the thin-�lm equation with singular potentials, see

[21℄, Setion 5. It remains an open problem, however, whether there is a regularization

depending on h suh that the limit proess h→ 0 an be performed.

Finally, numerial experiments: This sheme has been implemented in two and in three
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spae dimensions � see [22℄ and [30℄. Numerial experiments � ranging from Rayleigh-

Taylor instabilities to rising drop experiments and omparisons with other modeling ap-

proahes (see [22℄) � show the full pratiality of this approah. In partiular, in har-

ateristi 2D simulations, an experimental order of onvergene of EOC = 1.9 has been

obtained.

6. Appendix

In the appendix, we ollet a number of results frequently used in the paper. We begin

with statements on relative ompatness.

Theorem 6.1 (Simon [33, page 84℄). Let X ⊂ B ⊂ Y be Banah spaes with ompat

embedding X →֒ B and 1 ≤ p ≤ ∞. If F ⊂ Lp(I;X) is bounded and

‖f(·, ·+ h)− f(·, ·)‖Lp(0,T−h;Y ) → 0

uniformly for f ∈ F as h→ 0, then F is relatively ompat in Lp(I;B).

Theorem 6.2 (Fréhet-Kolmogorov [7℄). Let Ω ⊂ R
n
be a bounded domain. For 1 ≤ p <

∞, a set A ⊂ Lp(Ω) is relatively ompat if and only if

i) supf∈A ‖f‖Lp ≤ C <∞
ii) supf∈A ‖f(·+ h)− f‖Lp → 0 for |h| → 0.

We also need the following straight forward onsequene of Theorem 6.2.

Lemma 6.3. Given a sequene (τn, hn)n∈N → 0, assume ρτn,hn
to onverge strongly in

the spae L2(0, T ;L2(Ω)) to ρ. Then the sequene

(

ρτn,hn
(·, ·+ τn) · χ[0,T−τn)

)

n∈N
strongly

onverges to ρ in the spae L2((0, T );L2(Ω)).

For the reader`s onveniene, we reformulate regularity results for the disrete Laplaian

assoiated with the lumped masses salar produt whih were part of the proof of Theo-

rem 6.1 in [21℄. Note in partiular that (6.4) is a disrete version of Sobolev's embeddding

theorem.

Theorem 6.4. Let Ω be a onvex, polyhedral domain in R
d
, d ∈ {2, 3}. Related to fh ∈

Uh ∩H
1
∗ (Ω), onsider

i) φ ∈ H1
∗ (Ω) whih solves the variational equation

∫

Ω

〈∇φ,∇ψ〉 =

∫

Ω

fhψ (6.1)

for all ψ ∈ H1(Ω),
ii) Φh ∈ Uh ∩H

1
∗ (Ω) whih solves the disrete variational equation

∫

Ω

〈∇Φh,∇Ψh〉 = (fh,Ψh)h (6.2)

for all Ψh ∈ Uh.

Then,

i) there is a positive onstant C suh that

‖∇Φh −∇φ‖L2(Ω) ≤ C · h‖fh‖L2(Ω), (6.3)

ii) for any 1 ≤ p < 2d
d−2

, there is a positive onstant C(p) suh that

‖∇Φh‖Lp(Ω) ≤ C(p)‖fh‖L2(Ω). (6.4)

Our last result guarantees H1
-stability of the L2

-projetionRh onto the spae of disretely

divergene free vetor �elds.
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Lemma 6.5. Let Th be a quasi-uniform triangulation of the polyhedral domain Ω and let

the triple (Xh,Wh, Sh) denote the funtion spaes orresponding to P2P0-elements or to

Taylor-Hood elements. Then, there is a onstant C, suh that

‖∇Rhv‖L2(Ω) ≤ C ‖∇v‖
L2(Ω) (6.5)

for all v ∈ W
1,2
0 (Ω).

Proof. Our argument is based on the expliit formulae for the orthogonal L2
-projetion

from Xh onto Wh to be found in Setion A.5.3 of [20℄. For the ease of presentation,

we onsider here only the ase d = 3, the ase d = 2 being analogous. Writing Nv for

the degrees of freedom of eah omponent of the veloity �eld, we have for an arbitrary

element of Xh

uh =
Nv
∑

i=1





ui
vi
wi



φh
i

with real oe�ients ui, vi, wi and �nite-element basis funtions φh
i ∈ H1

0 (Ω). Similarly,

we write Np for the degrees of freedom of the pressure and have

λh =

Np
∑

k=1

λkψ
h
k ∈ U0

h

for a generi element in the spae of pressure funtions.

Following the presentation in [20℄ (whih is restrited to the two-dimensional ase), we

introdue matries

Mh ∈ R
Nv×Nv , Mh

ij :=

∫

Ω

φh
i (x)φ

h
j (x)

and Ch
x , C

h
y , C

h
z ∈ R

Nv×Np
de�ned by

(Ch
x )ik := −

∫

Ω

ψh
k

∂

∂x
φh
i ,

(Ch
y )ik := −

∫

Ω

ψh
k

∂

∂y
φh
i ,

(Ch
z )ik := −

∫

Ω

ψh
k

∂

∂z
φh
i ,

i, j = 1, · · · , Nv, k = 1, · · · , Np.

Given an element

ũh :=

Nv
∑

i=1





ũi
ṽi
w̃i



φh
i ∈ Xh,

the orthogonal projetion

Rhũh =:

Nv
∑

i=1





u

v

w



φh
i ∈ Wh

is obtained by solving the linear system





u

v

w



 =





I − (Mh)−1Ch
xA

−1

h
(Ch

x )
T −(Mh)−1Ch

xA
−1

h
(Ch

y )
T −(Mh)−1Ch

xA
−1

h
(Ch

z )
T

−(Mh)−1Ch
yA

−1

h
(Ch

x )
T I − (Mh)−1Ch

yA
−1

h
(Ch

y )
T −(Mh)−1Ch

yA
−1

h
(Ch

z )
T

−(Mh)−1Ch
z A

−1

h
(Ch

x )
T −(Mh)−1Ch

z A
−1

h
(Ch

y )
T I − (Mh)−1Ch

z A
−1

h
(Ch

z )
T









ũ

ṽ

w̃





(6.6)

where

Ah := (Ch
x )

T (Mh)−1Ch
x + (Ch

y )
T (Mh)−1Ch

y + (Ch
z )

T (Mh)−1Ch
z .
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Conerning well-posedness of this system, we refer to [34℄ and [20℄.

In order to prove H1
-stability of Rh, we have to disuss two issues. First, we show that

the matrix in (6.6) sales as h0 in the ase of a quasi-uniform triangulation Th. Indeed, M
h

sales like h3 and the matries Ch
x , C

h
y , C

h
z sale like h2 � using the fat that the volume

of elements T ∈ Th sale in three spatial dimensions like h3. Hene, Ah sales like h and

the matries of the generi type (Mh)−1Ch
xA

−1
h (Ch

x)
T
sale like h0 = 1. As a onsequene,

H1
-stability follows for the restrition of Rh on Xh.

To show also H1
-stability of Rh : W1,2

0 (Ω) → Wh, we note that

Rh = Rh ◦ Qh (6.7)

on W
1,2
0 (Ω) where Qh : W1,2

0 (Ω) → Xh is the orthogonal L2
-projetion whih is well-

known to be H1
-stable, see [10℄, [11℄, and [13℄ . For a proof of (6.7), we refer to Setion

A.5.6 in [20℄. This proves the seond assertion of the lemma. �
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