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Abstra
t. We are 
on
erned with 
onvergen
e results for fully dis
rete �nite-element

s
hemes suggested in [Grün, Klingbeil, ArXiv e-prints (2012), arXiv:1210.5088℄. They

were developed for the di�use-interfa
e model in [Abels, Gar
ke, Grün, M3AS, 2012,

DOI:10.1142/S0218202511500138℄ whi
h is to des
ribe two-phase �ow of immis
ible, in-


ompressible vis
ous �uids. We formulate general 
onditions on dis
retization spa
es and

proje
tion operators whi
h allow to prove 
ompa
tness of dis
rete solutions with respe
t

to both time and spa
e and whi
h hen
e permit to establish 
onvergen
e of the s
heme to

a generalized solution. We identify a simple quantitative and physi
al 
riterion to de
ide

whether this generalized solution is in fa
t a weak solution. In this 
ase, our analysis

provides another pathway to establish existen
e of weak solutions to the aforementioned

model in two and in three spa
e dimensions. Our argument is parti
ularly based on

higher regularity results for dis
rete solutions to 
onve
tive Cahn-Hilliard equations and

on dis
rete versions of Sobolev's embedding theorem.

1. Introdu
tion

In this paper, we prove 
onvergen
e of a fully dis
rete �nite-element s
heme for a re
ently

suggested di�use interfa
e model for two-phase �ow of in
ompressible, vis
ous �uids with

di�erent mass densities. The model was introdu
ed by Abels, Gar
ke, and the author of

this paper in [4℄. To the best of our knowledge, it is the only model so far whi
h 
omplies

with physi
al prin
iples like 
onsisten
y with thermodynami
s and frame-indi�eren
e and

whi
h allows at the same time for a solenoidal velo
ity �eld. It reads as follows.

ρ̄(ϕ)∂tv +

((

ρ̄(ϕ)v +
∂ρ̄(ϕ)

∂ϕ
j

)

· ∇

)

v −∇ · (2η(ϕ)Dv) +∇p = µ∇ϕ+ k
grav

, (1.1a)

∂tϕ+ v · ∇ϕ−∇ · (M(ϕ)∇µ) = 0, (1.1b)

µ = σ(−∆ϕ + F ′(ϕ)), (1.1
)

∇ · v = 0 in Ω× (0, T ). (1.1d)

As boundary 
onditions, no-slip 
onditions for v and zero normal derivatives of ϕ and of

µ on ∂Ω× (0, T ) are imposed.

Note that system (1.1) 
ouples a hydrodynami
 momentum equation with a Cahn-Hilliard

type phase-�eld equation. F is a double-well potential with minima in ±1 - representing

the pure phases ϕ ≡ ±1. The parameter σ is the surfa
e tension 
oe�
ient, whi
h is

assumed to be σ = 1 in this paper. The term µ stands for the so 
alled 
hemi
al potential,

and the order parameter ϕ stands for the di�eren
e of the volume fra
tions u2−u1 where

ui(x, t) := ρi(x,t)
ρ̃i

with ρ̃i the spe
i�
 (
onstant) density of �uid i in a unmixed setting.
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2 G. GRÜN

Denoting the individual velo
ities by vi, i = 1, 2, we write v := u1v1+u2v2 for the volume

averaged velo
ity. Assuming ρ̃2 ≥ ρ̃1, the density of the total mass ρ̄(ϕ) is given by

ρ̄(ϕ) =
ρ̃2 + ρ̃1

2
+
ρ̃2 − ρ̃1

2
ϕ, (1.2)

and Dv denotes the symmetrized gradient. The term k
grav

stands for the density of

external volume for
es. Finally, the �ux j is de�ned by j := −M(ϕ)∇µ where M(ϕ) is
the mobility.

System (1.1) is 
onsistent with thermodynami
s in the sense that the total energy (i.e.

the sum of the kineti
 and the interfa
ial energy) at a time t2 > t1 is bounded by the

sum of the total energy at time t1 and the work done by external for
es during the time

interval (t1, t2). More pre
isely,

1
2

∫

Ω

ρ̄(ϕ(t2)) |v|
2 (t2) +

1
2

∫

Ω

|∇ϕ|2 (t2) +

∫

Ω

F (ϕ(t2))

+

∫ t2

t1

∫

Ω

M(ϕ) |∇µ|2 +

∫ t2

t1

∫

Ω

2η(ϕ) |Dv|2

= 1
2

∫

Ω

ρ̄(ϕ(t1)) |v|
2 (t1) +

1
2

∫

Ω

|∇ϕ|2 (t1) +

∫

Ω

F (ϕ(t1)) +

∫ t2

t1

∫

Ω

〈kgrav,v〉.

(1.3)

The model (1.1) has already been the subje
t of further mathemati
al investigations. In

[2℄, Abels, Depner, and Gar
ke prove existen
e of weak solutions for the 
ase of logarith-

mi
 potentials, in [3℄, they 
onsider mobilitiesM(ϕ) whi
h degenerate in ϕ = ±1. In [22℄,

Klingbeil and the author of the present paper suggest a numeri
al s
heme for (1.1) whi
h

is dis
retely 
onsistent with thermodynami
s in the sense that in the absen
e of external

for
es the dis
rete 
ounterpart of the total energy is de
reasing in time. Various numeri
al

experiments underline the full pra
ti
ality of this approa
h � see [22℄. In the ben
hmark

paper [5℄ on Taylor-Flow, the method of [22℄ was su

essfully validated by 
omparison

with physi
al experiments and di�erent numeri
al approa
hes.

Di�use interfa
e models for two-phase �ow of in
ompressible vis
ous �uids began to in-

terest mathemati
ians some ten years ago while the basi
 
on
ept of 
oupling momentum

equations with the Cahn-Hilliard equation had been suggested mu
h earlier � see the fa-

mous �Model H� of Halperin and Hohenberg [25℄. Two advantages of di�use interfa
e mod-

els 
ompared to other approa
hes like sharp-interfa
e models or volume-of-�uid-methods

are well known. First, no arti�
ial additional 
onditions are ne
essary to model topology


hanges or to guarantee 
onservation of individual masses. Se
ondly, in many 
ases it

is possible to prove global existen
e of solutions and to formulate 
onvergent numeri
al

s
hemes.

Let us 
on
entrate on the numeri
al aspe
ts of di�use interfa
e models � for an overview

of analyti
al results, we refer the reader to [1℄, [2℄, [3℄, and the referen
es therein. Many

authors 
ontributed already to the numeri
s of di�use interfa
e models for two-phase �ow

in the spe
ial 
ase that the two �uids share the same mass density. In this 
ase, one

has to deal essentially with a 
oupling of the Navier-Stokes system with a Cahn-Hilliard

equation. To obtain a �rst impression of the numeri
al approa
hes suggested so far, we

refer to [16℄, [9℄, [26℄, [27℄, [28℄, and the referen
es therein.

Con
erning numeri
al analysis, we mention the papers by Feng [16℄ and by Kay, Styles,

and Welford [27℄. The former one fo
uses on P2P0-elements, assumes a double-well po-

tential F (ϕ) := (1−ϕ2)2, and establishes 
onvergen
e of dis
rete solutions to the Navier-

Stokes-Cahn-Hilliard system in two and three spa
e dimensions. The latter one studies
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P1-ISO-P2−P1-elements and obtains 
omparable 
onvergen
e results � assuming the same

smooth double-well potential as Feng [16℄. Note in parti
ular that in both papers neither

dis
rete nor 
ontinuous solutions are 
on�ned to the interval [−1, 1]. This is due to the


hoi
e of the double-well potential and due to the fa
t that degenerate mobilities are not


onsidered.

The 
ase of di�erent mass densities to be studied in this paper is 
on
eptually mu
h

di�erent. Various models were proposed to extend model H also to the 
ase of mass

density 
ontrast (see [8℄ and the referen
es therein). Lowengrub and Truskinovsky pro-

posed in [31℄ for the �rst time a di�use-interfa
e model 
onsistent with thermodynami
s.

The gross velo
ity �eld is obtained by mass averaging of individual velo
ities. As a 
on-

sequen
e, it is not divergen
e free, and the pressure p enters the model as an essential

unknown. However, no energy estimates are available to 
ontrol p. Moreover, the pressure

enters the 
hemi
al potential and is hen
e strongly 
oupled to the phase-�eld equation.

This intri
ate 
oupling may be one reason why so far it has not been possible to formulate

numeri
al s
hemes for model [31℄.

Ding et al. [15℄ suggested to de�ne the gross velo
ity �eld by volume averaging. Pro-

hibiting in addition volume 
hanges due to mixing ("simple mixture assumption"), the

gross velo
ity �eld is solenoidal. To the best of our knowledge, however, all attempts

failed to establish energy inequalities and to show that the model in [15℄ is 
onsistent

with thermodynami
s.

In [32℄, Shen and Yang propose an extension of the model [15℄ whi
h allows for energy

estimates. Their modeling ansatz is to add a multiple of the term ρt + div(ρv) in the

momentum equation. They justify this idea by the assertion that the 
ontinuity equation

ρt + div(ρv) = 0 were valid and therefore this term were zero. Nevertheless, the phase-

�eld equation ϕt + div(ϕv) − div j = 0 is also part of their model, and ρ depends in an

a�ne-linear way on ϕ.

A third strategy was pursued by Boyer [9℄, allowing also for solenoidal ve
tor �elds, but

apparently not for energy estimates.

The papers [9℄, [15℄, [32℄ present numeri
al simulations, too. Kim and Lowengrub [29℄

suggest numeri
al s
hemes for multi-phase �ow, and Aland and Voigt [6℄ present �rst

results on the 
omparison of di�erent di�use interfa
e models.

In all these papers, numeri
al analysis of the proposed s
hemes has not been performed.

As dis
rete 
ounterparts of an energy estimate seem to be a prerequisite for 
onvergen
e

results, we 
on
entrate here on the fully dis
rete �nite-element s
heme whi
h was intro-

du
ed by Klingbeil and the author in [22℄, formula (3.2), and whi
h allows for su
h an

estimate.

It is the s
ope of this paper to prove the 
onvergen
e of dis
rete solutions obtained by

the s
heme in [22℄ in two and in three spa
e dimensions. This way, a di�erent pathway to

the existen
e of solutions in the 
ontinuous setting is suggested as well. It is important

to emphasize that our approa
h is di�erent from the methods of [2℄ and of [3℄. Indeed,

both papers rely on the Leray-S
hauder prin
iple and on dis
retizations only with respe
t

to time. Therefore, in this setting the 
oupling term (j · ∇)v in (1.1a) does not 
ause

su
h intri
a
ies related to 
ompa
tness in time and to the identi�
ation of weak limits

as we will en
ounter them in the fully dis
rete setting. This is one reason why the nu-

meri
al analysis in the sequel is 
on�ned to the 
ase of a 
onstant mobility M(ϕ) and of

a double-well potential F with p-growth � where p 
an be 
hosen in [1,∞) for the 
ase

of two spa
e dimensions and in [1, 4) for the 
ase of three spa
e dimensions. It is worth

mentioning that the papers [16℄ and [27℄ devoted to the 
ase of identi
al mass densities

assume in three dimensions 
omparable and in two dimensions even stri
ter 
onditions on
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the growth of F . In parti
ular, they do not study degenerate mobilities, neither.

Moreover, it is important to mention that due to (1.2) a me
hanism is needed whi
h

bounds ρ̄ stri
tly away from zero. Sin
e the Cahn-Hilliard equation is fourth-order par-

aboli
, 
omparison prin
iples do not hold. Therefore, bounds on ϕ rely on integral es-

timates. In the presen
e of external for
es, however, the total energy is in general not

expe
ted to de
rease in time. Hen
e, regularizations of degenerate mobilities (
f. [23℄) or

regularizations of singular (logarithmi
) potentials would have to be 
hosen depending on

the applied external for
es.

Another approa
h is to modify the ϕ-dependen
y of ρ̄, whi
h will be pursued in this paper

� see (H4) and Remark 2.1. It is interesting to note that for instan
e in [15℄ and in [32℄

the issue of de�niteness of ρ̄ does not seem to be addressed at all. This may be due to the

fa
t that it is not expe
ted to be
ome relevant in many pra
ti
al 
omputations, as long

as the Atwood number

ρ̃2−ρ̃1
ρ̃1+ρ̃2

is not 
hosen too large, see also Remark 2.1 and Corollary 5.5.

The outline of the paper is as follows. In Se
tion 2, we introdu
e the s
heme of [22℄

and we set the frame for the subsequent analysis. In parti
ular, Subse
tion 2.2 is de-

voted to the formulation of general 
onditions on dis
rete fun
tion spa
es and proje
tion

operators whi
h will be needed for the 
onvergen
e proof. Examples of admissible �nite

elements are P2P0-elements and Taylor-Hood elements.

In Se
tion 3, we prove a dis
rete version of the energy estimate and we establish existen
e

of dis
rete solutions. Se
tion 4 is the 
ore of the paper. We prove for dis
rete solu-

tions (ϕτh, µτh,vτh) that ∂
−
τ ϕτh, the ba
kward di�eren
e quotient with respe
t to time,

is uniformly bounded in L2(ΩT ) and that the dis
rete Lapla
ians ∆hϕτh and ∆hµτh are

uniformly bounded in L∞((0, T );L2(Ω)) and in L2(ΩT ), respe
tively. Combining these

results with appropriate dis
rete versions of Sobolev's embedding theorem (see Theo-

rem 6.4), we su

eed to prove that Rh(ρτhvτh) strongly 
onverges to Pσ(ρv) in L2(ΩT )
where Pσ is the Helmholtz proje
tion and Rh is the orthogonal L2

-proje
tion onto the

spa
e Wh of dis
retely divergen
e free velo
ity �elds. Se
tion 5 is devoted to the proof of

the 
onvergen
e of appropriate subsequen
es of (ϕτh, µτh,vτh) to a generalized solution

in the 
ontinuous setting. In parti
ular, Corollary 5.4 shows that the generalized solution

obtained is a weak solution to (1.1) if the phase-�eld ϕ in the 
ontinuous setting stays

su�
iently 
lose to [−1, 1]. With a grain of salt, a su�
ient 
ondition is given by the

requirement that the modulus of ϕ stays bounded by the inverse Atwood number, i.e. by

ρ̃1+ρ̃2
ρ̃2−ρ̃1

. In parti
ular, for given initial data there is always a regime of Atwood numbers

su
h that this 
ondition is satis�ed on appropriate time intervals, see Corollary 5.5.

Notation. We 
onsider the two-phase problem on a bounded, 
onvex polygonal (or

polyhedral, respe
tively) domain Ω ⊂ R
d
in spatial dimensions d ∈ {2, 3}. By 〈·, ·〉,

we denote the Eu
lidean s
alar produ
t on R
d
, and (·, ·) is used for the s
alar produ
t

in L2(Ω). Sometimes, we write ΩT for the spa
e-time 
ylinder Ω × (0, T ). By W k,p(Ω),
we denote the spa
e of k-times weakly di�erentiable fun
tions with weak derivatives in

Lp(Ω). The symbol W
k,p
0 (Ω) stands for the 
losure of C∞

0 (Ω) in W k,p(Ω). Corresponding
spa
es of ve
tor-valued fun
tions are denoted in boldfa
e. Moreover, we use the fun
-

tion spa
es W
1,2
0,div(Ω) := {v ∈ W

1,2
0 (Ω)| divv = 0}, L2

0(Ω) := {v ∈ L2(Ω)|
∫

Ω
v = 0},

Hs(Ω) := W s,2(Ω), and H1
∗ (Ω) := H1(Ω) ∩ L2

0(Ω).
For a Bana
h spa
e X and a time interval I, the symbol Lp(I;X) stands for the para-

boli
 spa
e of Lp
-integrable fun
tions on I with values in X. Pσ denotes the Helmholtz-

proje
tion from L2(Ω) onto the spa
e of solenoidal ve
tor�elds H2(Ω) whi
h is obtained

as the 
losure of the solenoidal smooth ve
tor �elds with 
ompa
t support (see [18℄). We



CONVERGENT SCHEMES FOR TWO-PHASE FLOW WITH GENERAL MASS DENSITIES 5

re
all that Pσ is an orthogonal proje
tion. We also write v ∈ Lp−(S) as a short form

meaning that v ∈ Lq(S) for all 1 ≤ q < p. The notation ‖v‖Lp−(S) stands for ‖v‖Lp−ε(S)

for an arbitrary, but �xed ε > 0. Similarly, ‖v‖Lp+(S) is a short form for ‖v‖Lp+ε(S) for a

su�
iently small, but �xed ε > 0. For further notation related to the dis
retization, we

refer the reader to Subse
tion 2.2.

2. The s
heme

2.1. Dis
retization in spa
e and time. We assume Th to be a regular and admissible

triangulation of Ω with simpli
ial elements in the sense of [12℄. Let us suppose in addition

that the dis
retization is re
tangular in the sense, that

(T1) for ea
h simpli
ial element E ∈ Th, a vertex x0(E) exists su
h that the edges


onne
ting x0(E) with verti
es xi(E) and xj(E) are perpendi
ular to ea
h other

for i, j ∈ {1, · · · , d}, i 6= j.

We will take advantage of (T1) in the proof of 
ompa
tness in time, see Theorem 4.2.

Note that (T1) does not ex
lude the appli
ability of standard strategies for lo
al mesh

re�nement.

Con
erning dis
retization with respe
t to time, we assume that

(T2) the time interval I := [0, T ) is subdivided in intervals Ik = [tk, tk+1) with tk+1 =
tk + τk for time in
rements τk > 0 and k = 0, · · · , N − 1. For simpli
ity, we take

τk ≡ τ for k = 0, · · · , N − 1.

2.2. Dis
rete fun
tion spa
es and proje
tion operators. For the approximation of

both the phase-�eld ϕ and the 
hemi
al potential µ, we introdu
e the spa
e Uh of 
on-

tinuous, pie
ewise linear �nite element fun
tions on Th. The expression Ih stands for the

nodal interpolation operator from C0(Ω) to Uh de�ned by Ihu :=
∑dimUh

j=1 u(xj)θj , where

the fun
tions θj form a dual basis to the nodes xj , i.e. θi(xj) = δij , i, j = 1, . . . , dimUh.

Let us furthermore introdu
e the well�known lumped masses s
alar produ
t 
orresponding

to the integration formula

(Θ,Ψ)h :=

∫

Ω

Ih(ΘΨ).

The diagonal, positive de�nite lumped masses matrix is given by (Mh)ij = (ϕi, ϕj)h. We

re
all the following well known estimates:

|(uh, vh)− (uh, vh)h| ≤ Ch1+l ‖uh‖l ‖vh‖1 for all uh, vh ∈ Uh, l = 0, 1, (2.1)

where (u, v) denotes the L2
-s
alar produ
t on Ω. In the same spirit, there exist positive


onstants c, C su
h that we have for |·|h :=
√

(·, ·)h:

c |·|2h ≤ (·, ·) ≤ C |·|2h . (2.2)

We will use the Ritz proje
tion Ph : H1(Ω) → Uh, de�ned by

∫

Ω

〈∇Phv,∇θj〉 =

∫

Ω

〈∇v,∇θj〉, j = 1, · · · , dimUh.

We note the existen
e of a positive 
onstant C su
h that

‖Phv − v‖L2(Ω) + h ‖∇(Phv − v)‖L2(Ω) ≤ Chj ‖v‖Hj(Ω) (2.3)

for j = 1, 2 and any v ∈ Hj(Ω).
For the dis
retization of the velo
ity �eld v and the pressure p, we use fun
tion spa
es

Wh ⊂ Xh ⊂ W
1,2
0 (Ω) and Sh ⊂ L2

0(Ω) := {v ∈ L2(Ω)|
∫

Ω
v = 0} su
h that the following


onditions hold.
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(S1) Wh := {vh ∈ Xh|
∫

Ω
qh div vh = 0 ∀qh ∈ Sh}.

(S2) The Babuška-Brezzi 
ondition is satis�ed, i.e. a positive 
onstant β exists su
h

that

sup
vh∈Xh

(qh, divvh)

‖vh‖W1,2
0

(Ω)

≥ β ‖qh‖L2(Ω)

for all qh ∈ Sh.

(S3) The orthogonal L2
-proje
tion Rh : L2(Ω) → Wh is H1

-stable, i.e. a positive


onstant C exists su
h that

‖∇Rhv‖L2(Ω) ≤ C ‖∇v‖
L2(Ω) (2.4)

for all v ∈ W
1,2
0 (Ω). Moreover,

lim
h→0

‖Rhv − v‖
L2(Ω) = 0 (2.5)

for all v ∈ W
1,2
0,div(Ω).

(S4) A proje
tion operator Qh
div : W

1,2
0,div(Ω) → Wh exists su
h that

∥

∥Qh
divv− v

∥

∥

L2(Ω)
+ h

∥

∥∇(Qh
divv − v)

∥

∥

L2(Ω)
≤ Chj ‖v‖

Hj(Ω) (2.6)

for all v ∈ Hj(Ω) ∩W
1,2
0,div(Ω), j = 1, 2.

(S5) The orthogonal L2
-proje
tion Qh : W1,2

0 (Ω) → Xh is H1
-stable.

(S6) The orthogonal L2
-proje
tion Sh : L2(Ω) → Sh satis�es

lim
h→0

‖q − Shq‖L2(Ω) = 0 (2.7)

for all q ∈ L2(Ω).

Examples of �nite-element spa
es Xh, Sh whi
h 
omply with (S1) �(S6) are P2P1-elements

(the so 
alled Taylor-Hood elements) and P2P0-elements. In both examples, Xh is given

as

Xh :=
{

w ∈ (C0
0(Ω̄)) : (w)j|K ∈ P2(K), K ∈ Th, j = 1, . . . , d

}

, d = 2, 3.

For Taylor-Hood elements, Sh := Uh ∩ L
2
0(Ω). In the 
ase of P2P0-elements,

Sh := {qh ∈ L2
0(Ω) : qh|K ≡ const. ∀K ∈ Th}.

Following the exposition in [16℄ and [17℄, using in parti
ular error estimates in [24℄, we

note that P2P0-elements satisfy the 
onditions (S2), (S4)�(S6). Observe that in (S4)

the orthogonal proje
tion Rh may be 
hosen for Qh
div. Con
erning (S3), we refer to

Lemma 6.5 in the Appendix where we prove that (2.4) is satis�ed by both P2P0- and

Taylor-Hood elements. Moreover, we note that (S2), (S4)�(S6) hold for Taylor-Hood

elements as well, see for instan
e [19℄ and [27℄. In parti
ular, the Stokes proje
tion

QStokes : W
1,2
0,div(Ω) → Wh, de�ned by

∫

Ω

∇QStokesv : ∇χ =

∫

Ω

∇v : ∇χ ∀χ ∈ Wh,

is a possible 
hoi
e for Qh
div in (S4). Using �nally the best-approximation property of Rh

with respe
t to the L2
-norm, (2.5) follows from (2.6) for j = 1.

We 
on
lude this subse
tion by introdu
ing some notation. Given a time in
rement τ > 0
(
f. (T2)), we will denote the ba
kward (and forward) di�eren
e quotients with respe
t

to time by ∂−τ (or ∂+τ , respe
tively). Given a subdivision of the time interval I := [0, T )
with intervals Ik := [tk, tk+1) as in (T2), we introdu
e S0,−1([0, T );X) asso
iated with a

Bana
h spa
e X as the spa
e of fun
tions v : [0, T ) → X whi
h are 
onstant on ea
h Ik,
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k = 0, · · · , N − 1. Given a fun
tion v ∈ S0,−1([0, T );X), we abbreviate vk(·) := v(·, tk).
In parti
ular, we have

τ

N−1
∑

k=0

vk(·) =

∫ T

0

v(·, t)dt. (2.8)

In general, we denote fun
tions in S0,−1(I;Uh), S
0,−1(I;Wh), S

0,−1(I;Xh) by an index

τh. We often abbreviate fk(·) := fτh(·, tk).

2.3. The dis
rete s
heme. We de
ompose the double-well potential F (·) =: F+(·) +
F−(·) and we make the following assumptions on the data.

(H1) F+ : R → R
+
0 is 
onvex and of 
lass C2

, the se
ond derivatives are 
onvex on R,

too, and they satisfy a growth estimate

F ′′
+(x) ≤ C(1 + |x|q̄)

with q̄ in [1, 2), if d = 3, and in [1,∞), if d = 2.
(H2) F− : R → R is 
on
ave and of 
lass C2

with bounded se
ond derivatives on R.

(H3) Let initial data Φ0 ∈ H2(Ω; [−1, 1]) and V0 ∈ W
1,2
0,div(Ω) be given su
h that we

have for dis
rete initial data ϕ0h := IhΦ0 and v0h := RhV0 uniformly in h > 0
that

∫

Ω

|v0h|
2 ≤ C <∞

and that

∫

Ω

|∆hϕ0h|
2 +

1

2

∫

Ω

|∇ϕ0h|
2 +

∫

Ω

IhF (ϕ0h) ≤ const..

Here, the dis
rete Lapla
ian ∆hw ∈ Uh ∩H
1
∗ (Ω) is de�ned by

(∆hw,Θ)h = −

∫

Ω

〈∇w,∇Θ〉 ∀Θ ∈ Uh. (2.9)

(H4) Given mass densities 0 < ρ̃1 ≤ ρ̃2 ∈ R of the �uids involved and an arbitrary, but

�xed regularization parameter ϕ̄ ∈
(

ρ̃1
ρ̃2−ρ̃1

, 2̃ρ1
ρ̃2−ρ̃1

)

, we de�ne the regularized mass

density of the two-phase �uid by a smooth, in
reasing, stri
tly positive fun
tion ρ

of the phase-�eld ϕ whi
h satis�es

ρ(ϕ)|(−1−ϕ̄,1+ϕ̄) =
ρ̃2 − ρ̃1

2
ϕ+

ρ̃1 + ρ̃2

2
(2.10)

ρ(ϕ)|
(−∞,−1−

2ρ̃1
ρ̃2−ρ̃1

)
≡ const. (2.11)

ρ(ϕ)|
(1+

2ρ̃1
ρ̃2−ρ̃1

,∞)
≡ const. (2.12)

Remark 2.1. In the 
ontinuous setting (assuming in parti
ular a me
hanism whi
h 
on-

�nes the values of the phase-�eld fun
tion to the interval [−1, 1], for instan
e by 
hoosing

a degenerate mobility or a logarithmi
 potential F ), ρ̄ depends linearly on ϕ via (2.10)

and is therefore bounded from below by a positive 
onstant by de�nition. In the dis
rete

setting, however, it is not possible to mimi
 singular or degenerate behaviour � regulariza-

tion is indispensable. Hen
e, stri
t in
lusions ϕ ∈ [−1, 1] for dis
rete solutions ϕ 
annot

be expe
ted in general. Bounds on solutions 
an only be obtained via integral estimates

as the phase-�eld equation is fourth-order paraboli
 and therefore 
omparison prin
iples

do not hold. However, the energy of the system is not ne
essarily de
reasing in time due

to the work done by external for
es. As a 
onsequen
e, bounds on ϕ always will depend

on the spe
ial 
hoi
e of external for
es. Therefore, we use the 
ut-o� me
hanism of (H4)

to guarantee de�niteness of ρ and hen
e de�niteness of the density ρ|v|2 of the kineti
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energy as well.

Note in parti
ular that the upper bound on ϕ̄ translates to the 
ondition that 1 + ϕ̄ is

bounded by the inverse of the Atwood number

ρ̃2−ρ̃1
ρ̃1+ρ̃2

. Hen
e, the inverse Atwood number


ontrols the regime of values of ϕ for whi
h ρ linearly depends on ϕ.

Now, we are in the position to introdu
e the s
heme to be analyzed in this paper. For

its derivation, we refer the reader to [22℄

1

. Note that this s
heme was formulated under

the assumption that ϕ stays in the regime for whi
h the ρ-dependen
y is linear. To stress

this fa
t, we use the notation

δρ

δϕ
:=

ρ̃2 − ρ̃1

2
. (2.13)

We emphasize that (H1)-(H4), (T1)-(T2), (S1)-(S6) are assumed to hold. For the ease of

presentation, we assume external for
es kgrav to be zero as these for
es are given quantities

whi
h enter the system linearly. Hen
e, they do not have a qualitative e�e
t on estimates

and results. Moreover, we assume M(ϕ) ≡ 1 and σ = 1, and for initial data, we skip the

index h.

For given fun
tions (ϕ0,v0) ∈ Uh × Wh and k = 0, ..., N − 1 we have to �nd fun
tions

(ϕk+1, µk+1,vk+1, pk+1) ∈ Uh × Uh ×Wh × Sh su
h that

∫

Ω

〈

∂−τ (ρ
k+1vk+1),w

〉

− 1
2

∫

Ω

∂−τ ρ
k+1
〈

vk+1,w
〉

− 1
2

∫

Ω

ρk
〈

vk, (∇w)Tvk+1
〉

+ 1
2

∫

Ω

ρk
〈

vk, (∇vk+1)Tw
〉

+ 1
2

∫

Ω

δρ

δϕ

〈

jk+1, (∇vk+1)Tw
〉

− 1
2

∫

Ω

δρ

δϕ

〈

jk+1, (∇w)Tvk+1
〉

+

∫

Ω

2η(ϕk)Dvk+1 : Dw −

∫

Ω

pk+1 divw

= −

∫

Ω

ϕk
〈

∇µk+1,w
〉

∀w ∈ Xh, (2.14a)

∫

Ω

ψ div vk+1 = 0 ∀ψ ∈ Sh, (2.14b)

(

∂−τ ϕ
k+1, ψ

)

h
−

∫

Ω

〈

vk+1,∇ψ
〉

ϕk +

∫

Ω

〈

∇µk+1,∇ψ
〉

= 0 ∀ψ ∈ Uh, (2.14
)

(

µk+1, ψ
)

h
=

∫

Ω

〈

∇ϕk+1,∇ψ
〉

+

∫

Ω

Ih

((

F ′
+(ϕ

k+1) + F ′
−(ϕ

k)
)

ψ
)

∀ψ ∈ Uh. (2.14d)

Here, we use the abbreviation ρk+1 := ρ(ϕk+1). Moreover, we de�ne jk+1 := −∇µk+1.

Remark 2.2. The s
heme studied in [22℄ di�ers from (2.14) in su
h a way that the last

term in (2.14a) and the se
ond term in (2.14
) are repla
ed by

∫

Ω
µk+1〈∇ϕk,w〉 and by

∫

Ω
〈vk+1,∇ϕk〉ψ, respe
tively. Su
h a substitution is possible as long as the 
orresponding

version of (2.14
) guarantees 
onservation of mass for the phase-�eld � or equivalently,

if the subset in Uh of fun
tions with zero mean is 
ontained in Sh. This holds true for

Taylor-Hood elements whi
h were studied in [22℄, but e.g. not for P2P0-elements. Note

that the proofs presented in the present paper 
an easily be modi�ed to 
over that 
ase �

in parti
ular, the 
onvergen
e results need not to be 
hanged at all.

1

Corollary 5.4 may also serve as an explanation in whi
h way weak formulations of (1.1a) and of (1.1b)

have to be 
ombined in order to get the 
ounterpart of (2.14a) in the 
ontinuous setting.



CONVERGENT SCHEMES FOR TWO-PHASE FLOW WITH GENERAL MASS DENSITIES 9

Con
erning existen
e of dis
rete solutions, we have the following result.

Lemma 2.3. For given fun
tions (ϕk,vk) ∈ Uh ×Wh , there exists a quadruple

(ϕk+1, µk+1,vk+1, pk+1) ∈ Uh × Uh ×Wh × Sh whi
h solves the dis
rete system (2.14).

Proof. First, we prove for given (ϕk,vk) the existen
e of fun
tions (ϕk+1, µk+1,vk+1) ∈
Uh × Uh ×Wh whi
h solve a modi�ed version of (2.14) where (2.14a) is repla
ed by

∫

Ω

〈

∂−τ (ρ
k+1vk+1),w

〉

− 1
2

∫

Ω

∂−τ ρ
k+1
〈

vk+1,w
〉

− 1
2

∫

Ω

ρk
〈

vk, (∇w)Tvk+1
〉

+ 1
2

∫

Ω

ρk
〈

vk, (∇vk+1)Tw
〉

+ 1
2

∫

Ω

δρ

δϕ

〈

jk+1, (∇vk+1)Tw
〉

− 1
2

∫

Ω

δρ

δϕ

〈

jk+1, (∇w)Tvk+1
〉

+

∫

Ω

2η(ϕk)Dvk+1 : Dw = −

∫

Ω

ϕk
〈

∇µk+1,w
〉

(2.15)

for all w ∈ Wh.

For given vk
and zk := ϕk − α with α := 1

|Ω|

∫

Ω
ϕk

, we are looking for a pair (vk+1, zk+1)

in Wh × Uh su
h that (vk+1, ϕk+1) satis�es the system of equations (2.15) and (2.14
) -

(2.14d). Here, ϕk+1 = zk+1 + α, and the fun
tion µk+1
is obtained from (vk+1, ϕk+1) by

(2.14d). Denoting the nodal basis of Uh by {θ1, · · · , θdim Uh
} and taking {w1, · · · ,wdim Wh

}

to be a basis ofWh, we expand z =
∑

dim Uh

i=1 Ziθi and v =
∑

dim Wh

i=1 Viwi for given elements

z ∈ Uh and v ∈ Wh, respe
tively. We introdu
e the sti�ness and lumped mass matri
es

(Lh)ij :=
∫

Ω
〈∇θi,∇θj〉 and (Mh)ij :=

∫

Ω
Ih(θiθj) for i, j ∈ {1, · · · , dim Uh}, respe
tively.

Moreover, we use the notation

(M(ρ(z)))ij :=

∫

Ω

ρ(zk+α)+ρ(z+α)
2

〈wi,wj〉, i, j ∈ {1, · · · , dim Wh}.

for a weighted mass matrix on Wh 
orresponding to a fun
tion z ∈ Uh whi
h has mean-

value zero. Due to (H4), the asso
iated symmetri
 bilinear form de�nes a norm whi
h is

equivalent to the L2
-norm for ve
tor�elds on Ω.

We have to solve the nonlinear system

(

G1(Z, V )
G2(Z, V )

)

= 0 of q = dim Uh+dim Wh equations

given by

G1(Z, V ) :=Z − Zk + τM−1
h B1(V )

+ τM−1
h Lh

(

M−1
h LhZ + F ′

+(z + α) + F ′
−(z

k + α)
) (2.16)

and

G2(Z, V ) :=M(ρ(z))(V − V k) + τ (B2(Z, V ) +B3(V ) +B4(Z)) . (2.17)

Here, we emphasize that Z and V are the 
oe�
ient ve
tors for the still unknown fun
tions

z ∈ Uh and v ∈ Wh. Within this proof, we shall assume in general that 
apital letters are

used to denote 
oe�
ient ve
tors of elements in Uh andWh.Moreover, with a slight misuse

of notation we write F ′
+(z + α) for the 
oe�
ent ve
tor 
orresponding to Ih(F

′
+(z + α)).

In addition, we have introdu
ed the following new terms.

(B1(V ))j := −

∫

Ω

zk〈v,∇θj〉 , j = 1, · · · , dim Uh,
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(B2(Z, V ))j :=− 1
2τ

∫

Ω

(

ρ(z + α)− ρ(zk + α)
)

〈v,wj〉

+ 1
2

∫

Ω

ρ(zk + α)〈vk, (∇v)Twj〉 −
1
2

∫

Ω

ρ(zk + α)〈vk, (∇wj)
Tv〉

+ 1
2

∫

Ω

δρ

δϕ
〈j, (∇v)Twj〉 −

1
2

∫

Ω

δρ

δϕ
〈j, (∇wj)

Tv〉 , j = 1, · · · , dim Wh,

where j := −
∑

dim Uh

i=1 Mi∇θi with M = M(Z) ⊂ R
dim Uh

being de�ned by

M :=M−1
h

(

LhZ +Mh

(

F ′
+(z + α) + F ′

−(z
k + α)

))

.

Moreover,

(B3(V ))j := 2

∫

Ω

η(zk + α)Dv : Dwj , j = 1, · · · , dim Wh,

and

(B4(Z))j := −

∫

Ω

dim Uh
∑

l=1

Mlθl〈∇z,wj〉 , j = 1, · · · , dim Wh.

Let us introdu
e a new bilinear form on R
dim Uh × R

dim Wh
by

〈〈(

Z1

V1

)

,

(

Z2

V2

)〉〉

:= ZT
1 LhZ2 +

∫

Ω

〈

dim Wh
∑

l=1

(V1)l wl,

dim Wh
∑

m=1

(V2)m wm

〉

. (2.18)

Obviously, this form is a s
alar produ
t on K⊥ ×R
dim Wh

where K⊥ ⊂ R
dim Uh

is de�ned

by K⊥ := {W ∈ R
dim Uh : (MhW )T1 = 0} with 1 := (1, · · · , 1)T . By ‖·‖new, we denote

〈〈·, ·〉〉
1
2 . It is easily veri�ed that Zk ∈ K⊥

and that G1 maps K⊥
onto itself.

Let us now argue by 
ontradi
tion. To this purpose, we assume that for a positive number

R to be spe
i�ed later on, a root (Ẑ, V̂ )T of (G1, G2)
T
did not exist on BR(0) where BR(0)

here denotes the ball of Radius R around the origin in the ‖·‖new-norm. Then, due to

Brouwer's �xed-point theorem (see [36℄), the mapping H : BR(0) → BR(0) de�ned by

H(Z, V ) := −R
(G1(Z, V ), G2(Z, V ))

T

‖(G1(Z, V ), G2(Z, V ))‖new

would have a �xed-point (Z̄, V̄ ) ∈ K⊥ ×Wh satisfying

∥

∥(Z̄, V̄ )
∥

∥

new
= R.

Following the ideas of [21℄, we introdu
e Y ∈ R
dim Uh

to be the solution of

LhY := PK⊥

{

Mh

{

F ′
+(z + α) + F ′

−(z
k + α)

}}

where PK⊥ denotes the orthogonal proje
tion onto K⊥. Observe that
〈〈(

Z̄

V̄

)

,

(

Z̄ + Y

V̄

)〉〉

=
(

LhZ̄
)T
Z̄ +

(

Z̄ + α1− α1
)T
Mh

(

F ′
+(z̄ + α)− F ′

+(α)1
)

+
(

Z̄
)T
MhF

′
−(z

k + α) + F ′
+(α)Z̄

TMh1 +

∫

Ω

|v̄|2

≥
(

LhZ̄
)T
Z̄ +

∫

Ω

|v̄|2

− ε
2
Z̄T Z̄ − 1

2ε

(

MhF
′
−(z

k + α)
)T
MhF

′
−(z

k + α).
(2.19)
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Here, we used the monotoni
ity of F ′
+ as well as the fa
t that Mh is a diagonal matrix.

Taking into a

ount the equivalen
e of norms on �nite dimensional spa
es, there exists

R1 > 0 su
h that

〈〈(

Z̄

V̄

)

,

(

Z̄ + Y

V̄

)〉〉

> 0 (2.20)

provided

∥

∥(Z̄, V̄ )
∥

∥

new
≥ R1.

In a similar fashion, we show the existen
e of a number R2 > 0 su
h that

〈〈(

G1(Z̄, V̄ )
G2(Z̄, V̄ )

)

,

(

Z̄ + Y

V̄

)〉〉

> 0 (2.21)

provided

∥

∥(Z̄, V̄ )
∥

∥

new
≥ R2. Note that (2.21) is a dire
t 
onsequen
e of the energy

estimate in the dis
rete setting � see (3.1). In fa
t, we have 
hosen 〈〈·, ·〉〉, G2, and Y in

su
h a way that (2.21) is just the 
oe�
ient version of testing the momentum equation

by vk+1
, the phase-�eld equation by µk+1, and the equation for the 
hemi
al potential by

∂τϕ
k+1. Hen
e,
〈〈(

Z̄

V̄

)

,

(

Z̄ + Y

V̄

)〉〉

= −
R

∥

∥

∥

∥

(

G1(Z̄, V̄ )
G2(Z̄, V̄ )

)∥

∥

∥

∥

new

〈〈(

G1(Z̄, V̄ )
G2(Z̄, V̄ )

)

,

(

Z̄ + Y

V̄

)〉〉

< 0

for R = max{R1, R2} whi
h is a 
ontradi
tion to (2.20). Hen
e, a dis
rete solution exists.

To obtain the existen
e of a pressure pk+1
and that way to justify (2.14a), we pro
eed

as follows. Equation (2.14a) de�nes a linear fun
tional F : Xh → R whi
h vanishes on

Wh. Using Lemma 4.1 in [19℄ together with the stability 
ondition (S2), the existen
e of

a pressure pk+1 ∈ Sh is readily established. The lemma is proven. �

Remark 2.4. Note that no further assumptions, e.g. on the size of time-in
rements or

on the grid size, are ne
essary to prove existen
e of dis
rete solutions.

3. Compa
tness in spa
e

In this se
tion, we show that the dis
rete 
ounterpart of the physi
al energy - i.e. the

sum of the kineti
 and the interfa
ial energies - a
ts as a dis
rete Lyapunov-fun
tional

provided no external for
es are applied. We start with a lo
al result.

Theorem 3.1. Assume that the triple

(

ϕk+1, µk+1,vk+1, pk+1
)

solves the system (2.14)

for given

(

ϕk, µk,vk, pk
)

. Then,

1

2τ

[
∫

Ω

ρk+1
∣

∣vk+1
∣

∣

2
−

∫

Ω

ρk
∣

∣vk
∣

∣

2
+

∫

Ω

ρk
∣

∣vk+1 − vk
∣

∣

2
]

+
1

2τ

[
∫

Ω

∣

∣∇ϕk+1
∣

∣

2
−

∫

Ω

∣

∣∇ϕk
∣

∣

2
+

∫

Ω

∣

∣∇ϕk+1 −∇ϕk
∣

∣

2
]

+
1

τ

∫

Ω

Ih

(

F
(

ϕk+1
)

− F
(

ϕk
))

+

∫

Ω

∣

∣jk+1
∣

∣

2
+

∫

Ω

2η
(

ϕk
) ∣

∣Dvk+1
∣

∣

2
≤ 0. (3.1)

Proof. Choosing ψ := ∂−τ ϕ
k+1

in (2.14d) and ψ := µk+1
in (2.14
), we infer - using the


onvexity of F+ and of (−F−) (see (H1) and (H2)) - that

1

2τ

[
∫

Ω

∣

∣∇ϕk+1
∣

∣

2
−

∫

Ω

∣

∣∇ϕk
∣

∣

2
+

∫

Ω

∣

∣∇ϕk+1 −∇ϕk
∣

∣

2
]

+

∫

Ω

∣

∣jk+1
∣

∣

2

+
1

τ

∫

Ω

Ih

(

F
(

ϕk+1
)

− F
(

ϕk
))

−

∫

Ω

〈

vk+1,∇µk+1
〉

ϕk ≤ 0 . (3.2)
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Testing (2.14a) by w = vk+1
and using the identity

(a1b1 − a0b0)b1 −
1

2
(a1 − a0)b

2
1 =

1

2

(

a1b
2
1 − a0b

2
0 + a0(b1 − b0)

2)
,

whi
h holds for ai, bi ∈ R, i = 0, 1, gives

1

2τ

[
∫

Ω

ρk+1
∣

∣vk+1
∣

∣

2
−

∫

Ω

ρk
∣

∣vk
∣

∣

2
+

∫

Ω

ρk
∣

∣vk+1 − vk
∣

∣

2
]

+

∫

Ω

2η
(

ϕk
) ∣

∣Dvk+1
∣

∣

2
= −

∫

Ω

ϕk
〈

vk,∇µk+1
〉

.

By summation, (3.1) follows. �

We immediately obtain the following global result.

Corollary 3.2. For every 1 ≤ l ≤ N we have

1

2

∫

Ω

ρl
∣

∣vl
∣

∣

2
+

1

2

∫

Ω

∣

∣∇ϕl
∣

∣

2
+

∫

Ω

Ih

(

F
(

ϕl
))

+
1

2

l−1
∑

m=0

∫

Ω

ρm
∣

∣vm+1 − vm
∣

∣

2

+
1

2

l−1
∑

m=0

∫

Ω

∣

∣∇ϕm+1 −∇ϕm
∣

∣

2
+ τ

l−1
∑

m=0

∫

Ω

∣

∣jm+1
∣

∣

2
+ τ

l−1
∑

m=0

∫

Ω

2η(ϕm)
∣

∣Dvm+1
∣

∣

2

≤
1

2

∫

Ω

ρ0
∣

∣v0
∣

∣

2
+

1

2

∫

Ω

∣

∣∇ϕ0
∣

∣

2
+

∫

Ω

Ih

(

F
(

ϕ0
))

. (3.3)

4. Compa
tness in time

We begin this se
tion with an auxiliary result.

Lemma 4.1. Let (ϕτh, µτh,vτh, pτh) be a dis
rete solution of (2.14) on (0, T ). Then if

d = 2 and 1 ≤ q <∞ or if d = 3 and 1 ≤ q < 4, a positive 
onstant C exists su
h that

‖ϕτh‖Lq((0,T );C0(Ω̄)) ≤ C(1 + T )
∥

∥ϕ0
∥

∥

H1(Ω)
. (4.1)

Proof. Let us prove �rst that ∆hϕτh ∈ L2(ΩT ). Note the identity

−
(

∆hϕ
k+1, θ

)

h
=
(

µk+1 − F ′
+(ϕ

k+1)− F ′
−(ϕ

k), θ
)

h
∀θ ∈ Uh (4.2)

whi
h is a 
onsequen
e of (2.14d) and the de�nition (2.9) of the dis
rete Lapla
ian. Start-

ing from this identity and 
hoosing θ = −∆hϕ
k+1, we have

(µk+1, µk+1)h =
∥

∥∆hϕ
k+1
∥

∥

2

h
+
∥

∥F ′
+(ϕ

k+1) + F ′
−(ϕ

k)
∥

∥

2

h

− 2(∆hϕ
k+1, F ′

+(ϕ
k+1))h − 2(∆hϕ

k+1, F ′
−(ϕ

k))h.

For the third term on the right-hand side, we get

(

∆hϕ
k+1, F ′

+(ϕ
k+1)

)

h
= −

∫

Ω

〈

∇ϕk+1,∇IhF
′
+(ϕ

k+1)
〉

≤ 0 (4.3)

a

ording to Lemma 4.3 in [21℄, using in parti
ular assumption (T1) on the triangulation.

Hen
e,

∥

∥∆hϕ
k+1
∥

∥

2

h
≤
∥

∥µk+1
∥

∥

2

h
+

1

2

∥

∥∆hϕ
k+1
∥

∥

2

h
+
∥

∥F ′
−(ϕ

k)
∥

∥

2

h
. (4.4)

By the linear growth of F ′
−, absorption, and the energy estimate (3.3), we �nd

∥

∥∆hϕ
k+1
∥

∥

2

h
≤ 2

∥

∥µk+1
∥

∥

2

h
+
∥

∥ϕ0
∥

∥

2

H1(Ω)
.
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Hen
e,

‖∆hϕτh‖
2
L2((0,T );L2(Ω)) ≤ CT

∥

∥ϕ0
∥

∥

2

H1(Ω)
, (4.5)

again using (3.3). By Theorem 6.4, formula (6.4),

‖∇ϕτh‖
L2((0,T );L

2d
d−2

−
(Ω))

≤ CT
∥

∥ϕ0
∥

∥

H1(Ω)
. (4.6)

By interpolation, using the estimate

‖∇ϕτh‖L∞((0,T );L2(Ω)) ≤ C
∥

∥ϕ0
∥

∥

H1(Ω)
,

whi
h follows from (3.3), we �nd in spa
e dimension d = 3 for every 1 ≤ q < 4 an exponent
p > 3 su
h that

‖∇ϕτh‖Lq((0,T );Lp(Ω)) ≤ C(1 + T )
∥

∥ϕ0
∥

∥

H1(Ω)
.

Therefore, estimate (4.1) follows using Sobolev embedding and the 
onservation of the

mean value of ϕτh. The argumentation in d = 2 dimensions is analogous. �

The next step is to establish both L2
-regularity of di�eren
e quotients in time and higher

regularity of the dis
rete Lapla
ian for the phase-�eld.

Theorem 4.2. Let (ϕτh, µτh,vτh, pτh) be a dis
rete solution of (2.14) on [0, T ]. Assuming

N := T
τ
, we have the following.

(1) Positive 
onstants C1 = C1(‖∆hϕ
0‖h , ‖ϕ

0‖H1(Ω) , ‖v0‖L2(Ω)) and C2 exist su
h that

sup
k∈{1,...,N}

∥

∥∆hϕ
k
∥

∥

2

h
≤
(

∥

∥∆hϕ
0
∥

∥

2

h
+ C1

)

exp

(

C2

(

T +

∫ T+τ

τ

‖vτh‖
2
H1 ds

+
(

(T + τ)
∥

∥ϕ0
∥

∥

H1(Ω)

)2q̄
))

(4.7)

where q̄ is de�ned in (H1).

(2) A positive 
onstant C3 = C3(T, ‖∆hϕ
0‖h , ‖ϕ

0‖H1 , ‖v0‖L2) exists su
h that

sup
k∈{1,2,...,N}

∥

∥∆hϕ
k
∥

∥

2

h
+ 1

2

∫ T

0

∥

∥∂−τ ϕτh

∥

∥

2

h
≤ C3 (4.8)

Proof. Using (2.9) to de�ne the dis
rete Lapla
ians ∆hϕ
k+1

and ∆hϕ
k
in Uh ∩ H1

∗ (Ω),
subtra
ting the 
orresponding weak formulations from ea
h other and dividing by τ , we

have

−
(

∂−τ ∆hϕ
k+1, θ

)

h
=

∫

Ω

〈

∇∂−τ ϕ
k+1,∇θ

〉

∀θ ∈ Uh.

Choosing θ = µk+1
and using (2.14
) entails

−
(

∂−τ ∆hϕ
k+1, µk+1

)

h
+
(

∂−τ ϕ
k+1, ∂−τ ϕ

k+1
)

h
=

∫

Ω

〈

vk+1, ∂−τ ∇ϕ
k+1
〉

ϕk.

By (4.2), we expand µk+1
to obtain

(

∂−τ ∆hϕ
k+1,∆hϕ

k+1
)

h
+
∥

∥∂−τ ϕ
k+1
∥

∥

2

h

= −

∫

Ω

{〈

vk+1,∇ϕk
〉

∂−τ ϕ
k+1 + ϕk∂−τ ϕ

k+1 div vk+1
}

+
(

∂−τ ∆hϕ
k+1, F ′

+(ϕ
k+1) + F ′

−(ϕ
k)
)

h

= Rk
1 +Rk

2 (4.9)
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Dis
rete integration by parts with respe
t to time gives � after a dis
rete time-integration

τ
∑N−1

k=0 of (4.9) � for Rk
2

τ

N−1
∑

k=0

Rk
2 = −τ

N−2
∑

k=0

(

∂+τ
(

F ′
+(ϕ

k+1) + F ′
−(ϕ

k)
)

,∆hϕ
k+1
)

h
−
(

∆hϕ
0, F ′

+(ϕ
1) + F ′

−(ϕ
0)
)

h

+
(

∆hϕ
N , F ′

+(ϕ
N) + F ′

−(ϕ
N−1)

)

h
= Rk

21 +Rk
22 +Rk

23. (4.10)

Here, we used the well-known formula of integration by parts

N
∑

i=0

(

∂−τ v
i
)

wi = −

N−1
∑

i=0

(

∂+τ w
i
)

vi −
v−1w0

τ
+
vNwN

τ
. (4.11)

For the �rst term in Rk
23, we get by a similar argument as in (4.3)

(

∆hϕ
N , F ′

+(ϕ
N)
)

h
= −

∫

Ω

〈

∇ϕN ,∇IhF
′
+(ϕ

N)
〉

≤ 0 (4.12)

A

ording to (H1), we may estimate

∣

∣

(

∆hϕ
0, F ′

+(ϕ
1)
)

h

∣

∣ ≤ C
(∥

∥∆hϕ
0
∥

∥ ,
∥

∥∇ϕ0
∥

∥

L2

)

. (4.13)

By an analogous argument for the term involving F ′
− (using (H2)), all the boundary terms


an be 
ontrolled by C = C(‖∆hϕ
0‖ , ‖∇ϕ0‖L2).

For Rk
21, we estimate using (H2) and (H1) (in parti
ular the 
onvexity of F ′′

+)

∣

∣Rk
21

∣

∣ ≤ τ

N−2
∑

k=0

(∥

∥F ′′
+(ϕ

k+1)
∥

∥

C0 +
∥

∥F ′′
+(ϕ

k+2)
∥

∥

C0

) ∥

∥∂+τ ϕ
k+1
∥

∥

h

∥

∥∆hϕ
k+1
∥

∥

h

+ Cτ

N−2
∑

k=0

∥

∥∂+τ ϕ
k
∥

∥

h

∥

∥∆hϕ
k+1
∥

∥

h

≤ ετ

N−1
∑

k=1

∥

∥∂−τ ϕ
k+1
∥

∥

2

h
+ Cετ

N−2
∑

k=0

(

1 +
∥

∥ϕk+1
∥

∥

2q̄

C0 +
∥

∥ϕk+2
∥

∥

2q̄

C0

)

∥

∥∆hϕ
k+1
∥

∥

2

h
.

(4.14)

Finally,

∣

∣

∣

∣

∣

τ

N−1
∑

k=0

Rk
1

∣

∣

∣

∣

∣

≤ ετ

N−1
∑

k=0

∥

∥∂−τ ϕ
k+1
∥

∥

2

h
+ Cετ

N−1
∑

k=0

∥

∥vk+1
∥

∥

2

H1(Ω)
(1 +

∥

∥∆hϕ
k
∥

∥

2

h
) (4.15)

where we have used the estimate

∥

∥∇ϕk
∥

∥

Lq(Ω)
+
∥

∥ϕk
∥

∥

C0(Ω)
≤ C(1+

∥

∥∆hϕ
k
∥

∥

h
) whi
h holds

for all 1 ≤ q < 2d
d−2

a

ording to Theorem 6.4, formula (6.4). Note that we also took

advantage of the fa
t that ‖·‖h and ‖·‖L2 are equivalent norms on Uh with 
onstants uni-

form in h, see (2.2). Colle
ting (4.9), (4.12)-(4.14), (4.15) and taking the aforementioned
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boundedness of the boundary terms with respe
t to time into a

ount, we get

1

2

∥

∥∆hϕ
N
∥

∥

2

h
−

1

2

∥

∥∆hϕ
0
∥

∥

2

h
+

1

2

N−1
∑

k=0

∥

∥∆hϕ
k+1 −∆hϕ

k
∥

∥

2

h

+
1

2
τ

N−1
∑

k=0

∥

∥∂−τ ϕ
k+1
∥

∥

2

h
+

∫

Ω

〈

∇ϕN ,∇IhF
′
+(ϕ

N )
〉

≤ C1

(∥

∥∆hϕ
0
∥

∥

h
,
∥

∥∇ϕ0
∥

∥

L2 , ‖v0‖L2

)

+ C2τ

N−1
∑

k=1

(

1 +
∥

∥ϕk
∥

∥

2q̄

C0 +
∥

∥ϕk+1
∥

∥

2q̄

C0

)

∥

∥∆hϕ
k
∥

∥

2

h

+ C3τ

N−1
∑

k=0

∥

∥vk+1
∥

∥

2

H1(Ω)

∥

∥∆hϕ
k
∥

∥

2

h
. (4.16)

In the next step, we apply a dis
rete version of Gronwall's lemma (
f. e.g. [35, Lemma

4.2.3.℄):

Lemma. Let εj, ηj , j = 0, ..., m, be non-negative real numbers with η0 ≤ η1 ≤ ... ≤ ηm.

For δ > 0 and h = (h0, ..., hm−1) ∈ (R+
0 )

m
, assume the estimates

ε0 ≤ η0 and εj+1 ≤ δ

j
∑

i=0

hiεi + ηj+1 (4.17)

to hold. Then,

εj ≤ ηj exp

(

δ

j−1
∑

i=0

hi

)

, j = 0, 1, ..., m. (4.18)

From equation (4.16), we infer

∥

∥∆hϕ
j
∥

∥

2

h
≤
(

∥

∥∆hϕ
0
∥

∥

2

h
+ C1

)

· exp

(

Cτ

j−1
∑

l=0

(

1 +
∥

∥vl+1
∥

∥

2

H1(Ω)
+
∥

∥ϕl
∥

∥

2q̄

C0 +
∥

∥ϕl+1
∥

∥

2q̄

C0

)

)

≤
(

∥

∥∆hϕ
0
∥

∥

2

h
+ C1

)

· exp

(

C

(

tj +

∫ tj+τ

τ

‖vτh‖
2
H1 ds+

(

(tj + τ)
∥

∥ϕ0
∥

∥

H1

)2q̄
))

for all 1 ≤ j ≤ N . Note that we used (4.1) in the last line, too. Hen
e, (4.7) holds true.

Estimate (4.8) immediately follows by 
ombination of (4.7) and of (4.16). �

For the passage to the limit in the �fth term of (2.14a) and in order to prove strong


onvergen
e of vτh in L2(ΩT ), we need results on improved integrability of jτh. Note that

so far jτh and ∇vτh are only known to be square-integrable with respe
t to time. For the

passage to the limit τ, h → 0, we need Lp
-integrability with an exponent p > 1 for the

produ
t. This requires higher regularity of jτh with respe
t to both spa
e and time. With

the perspe
tive of a dis
rete analogon of 
ompensated 
ompa
tness, we look for estimates

of the dis
rete Lapla
ian of µτh uniformly in (τ, h). This will give higher integrability of

jτh with respe
t to spa
e, too � see Corollary 4.4.

Lemma 4.3. Let (ϕτh, µτh,vτh, pτh) be a dis
rete solution on [0, T ] and T > 0 be arbitrary,
but �xed. Let wτh(·, t) ∈ Uh ∩ H1

∗ (Ω) be de�ned as the negative dis
rete Lapla
ian of

µτh(·, t), i.e.

(wτh(·, t), θ)h := (∇µτh(·, t),∇θ) ∀θ ∈ Uh. (4.19)
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Then a positive 
onstant C = C(T, ‖∆ϕ0‖h , ‖ϕ
0‖H1 , ‖v0‖L2) exists su
h that

∫ T

0

‖wτh(·, t)‖
2
L2(Ω) ≤ C̃

∫ T

0

‖wτh(·, t)‖
2
h ≤ C (4.20)

Moreover, for every 1 ≤ p < 2d
d−2

,

jτh := −∇µτh is uniformly bounded in L2((0, T );Lp(Ω)). (4.21)

Corollary 4.4. Under the assumptions of Lemma 4.3, the fun
tions µτh are uniformly

bounded in L2
(

(0, T ); Cβ(Ω)
)

with β < 2− d
2
.

Proof of Lemma 4.3. Choose θ = wk+1 = wτh(·, tk+1) as the test fun
tion in (4.19). Hen
e,
(

wk+1, wk+1
)

h
=
(

∇µk+1,∇wk+1
)

(2.14
)

= −
(

∂−τ ϕ
k+1, wk+1

)

h
−

∫

Ω

〈

vk+1,∇ϕk
〉

wk+1 −

∫

Ω

wk+1ϕk divvk+1.

Using Theorem 6.4, Theorem 4.2, and the energy estimate (3.3), we may estimate

τ

N−1
∑

k=0

(

wk+1, wk+1
)

h
≤

1

2
τ

N−1
∑

k=0

∥

∥∂−τ ϕ
k+1
∥

∥

2

h
+

1

2
τ

N−1
∑

k=0

∥

∥wk+1
∥

∥

2

h

+ τ

N−1
∑

k=0

∥

∥vk+1
∥

∥

H1(Ω)
(1 +

∥

∥∆hϕ
k
∥

∥

h
)
∥

∥wk+1
τh

∥

∥

h
.

The last term on the right-hand side is bounded by

Cτ

N−1
∑

k=0

∥

∥vk+1
∥

∥

2

H1(Ω)
+

1

4
τ

N−1
∑

k=0

∥

∥wk+1
∥

∥

2

h

with a 
onstant C = C(T, ‖∆ϕ0‖h , ‖ϕ
0‖H1 , ‖v0‖L2). By absorption, (4.20) follows.

The uniform boundedness in (4.21) is a 
onsequen
e of (4.20), (4.19), and Theorem 6.4.

�

Proof of Corollary 4.4. This result follows by 
ombining (4.21) with the uniform bound-

edness of ϕτh in spa
e-time whi
h follows by (4.8) and Theorem 6.4. �

The following lemma provides the aforementioned higher integrability with respe
t to time

for jτh. It is a straightforward 
onsequen
e of Lemma 4.3, interpolation, and the uniform

boundedness of µτh in L∞((0, T );L2(Ω)), the latter of whi
h follows by a 
ombination of

(4.8) with Theorem 6.4.

Lemma 4.5. For arbitrary, but �xed T > 0, there is a 
onstant

C = C(T, ‖∆ϕ0‖h , ‖ϕ
0‖H1 , ‖v0‖L2) su
h that

‖jτh‖L2(L6−) + ‖jτh‖L4(L2) + ‖jτh‖
L

8
3
−(L3)

≤ C. (4.22)

Let us turn to the velo
ity �eld and let us prove 
ompa
tness with respe
t to time for the

orthogonal L2
-proje
tion of ρτhvτh onto Wh in appropriate dual Sobolev spa
es.

Lemma 4.6. Let (ϕτh, µτh,vτh, pτh) be a solution of (2.14). Then for every T > 0 and

for every 1 ≤ p < 8
7
, a positive 
onstant

C = C
(

T, p,
∥

∥∆ϕ0
∥

∥

h
,
∥

∥ϕ0
∥

∥

H1 ,
∥

∥v0
∥

∥

L2

)

<∞

exists su
h that

∥

∥∂−τ Rh(ρτhvτh)
∥

∥

Lp
(

(0,T );(W1,2

0,div
(Ω))

′
) ≤ C . (4.23)
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Proof. We take w ∈ S0,−1
(

[0, T );W1,2
0,div(Ω)

)

arbitrarily. Re
all that for T = Nτ we

identify τ
∑N−1

k=0 wk
with the integral

∫ T

0
wdt. Choosing Rhw as the test fun
tion in the

dis
rete version of the momentum equation and using L2
-orthogonality, we have

0 =

∫ T

0

∫

Ω

〈

∂−τ Rh(ρτhvτh),w
〉

−
1

2

∫ T

0

∫

Ω

∂−τ ρτh〈vτh(·, ·+ τ),Rhw〉

−
1

2

∫ T

0

∫

Ω

ρτh

〈

vτh, (∇Rhw)Tvτh(·, ·+ τ)
〉

+
1

2

∫ T

0

ρτh

〈

vτh, (∇vτh(·, ·+ τ))TRhw
〉

+
1

2

∫ T+τ

τ

∫

Ω

δρ

δϕ

〈

jτh, (∇vτh)
TRhw(·, · − τ)

〉

−
1

2

∫ T+τ

τ

∫

Ω

δρ

δϕ

〈

jτh, (∇Rhw(·, · − τ))Tvτh

〉

+

∫ T+τ

τ

∫

Ω

2η(ϕτh(·, · − τ))Dvτh : DRhw +

∫ T

0

∫

Ω

ϕτh〈∇µτh(·, ·+ τ),Rhw〉

=: L1 + . . .+ L8. (4.24)

In the sequel, we sometimes do not indi
ate domains of integration if they are identi
al

with (0, T ) or with Ω, and we estimate

|L2| ≤ C
∥

∥∂−τ ρτh
∥

∥

L2(L2)
· ‖vτh(·, ·+ τ)‖

L
10
3

(

(τ,T+τ);L
10
3 (Ω)

) · ‖Rhw‖L5(W 1,2) .

By the energy estimate (3.3) and interpolation between L∞(L2) and L2(W 1,2) (see e.g.

Proposition 3.3 in [14℄), we have vτh ∈ L
8

d (L4). Hen
e,

|L3| ≤ C ‖vτh‖
L

8
d (L4)

‖vτh(·, ·+ τ)‖
L

8
d ((τ,T+τ);L4(Ω))

‖∇Rhw‖
L

8
8−2d (L2)

.

To estimate L5, we use (4.22) and obtain

|L5| ≤ C ‖jτh‖
L

8
3
−((τ,T+τ);L3(Ω))

· ‖∇vτh‖L2((τ,T +τ);Ω) · ‖Rhw‖L8+(W 1,2) .

The remaining terms 
an be estimated in the same spirit, and we get

|L1| ≤ C · ‖Rhw‖L8+(W 1,2)

(due to (2.4))

≤ C · ‖w‖L8+(W 1,2) ,

whi
h gives the assertion. �

Lemma 4.7. There is a subsequen
e (τ, h) → 0 su
h that Rh(ρτhvτh) strongly 
onverges

in L2(ΩT ) to a limit fun
tion Z.

Proof. Note that

∫ T

0

‖∇(ρτhvτh)‖
2
L2 ≤C

(

sup
t∈(0,T )

‖∆ϕτh‖
2
L2

)

·

∫ T

0

‖vτh‖
2
L6

+ C

∫ T

0

‖∇vτh‖
2
L2 ≤ const.

(4.25)

by (4.7), (6.4) and the boundedness of ρτh.

As W 1,2(Ω) →֒→֒ L2(Ω) →֒
(

W
1,2
0,div(Ω)

)′
, the assertion of the lemma follows in a standard

way by 
ombination of (4.25), (4.23), and Theorem 6.1. �

Let us prove now that there is a subsequen
e (vτh)(τ,h)ց0 su
h that vτh strongly 
onverges

to v ∈ L2(ΩT ) with respe
t to the L2
-norm. In parti
ular, the limit fun
tion is 
ontained

in L2
(

(0, T );W1,2
0,div(Ω)

)

.
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Lemma 4.8. Under the assumptions

vτh ∈ L2((0, T );Wh) for all h > 0, τ > 0, (4.26)

Rh(ρτhvτh) → Z strongly in L2(ΩT ), (4.27)

vτh ⇀ v weakly ∗ in L∞
(

(0, T );L2
)

∩ L2
(

(0, T );H1
)

, (4.28)

ρτh ⇀ ρ weakly ∗ in L∞
(

(0, T );H1
)

∩H1
(

(

H1
)′
)

, (4.29)

ρτh → ρ strongly in L2(ΩT ), (4.30)

the following is true for a subsequen
e (τ, h) → 0:

Z = Pσ(ρv), (4.31)

∫ T

0

∫

Ω

ρτh |vτh|
2 →

∫ T

0

∫

Ω

ρ |v|2 , (4.32)

div v = 0, (4.33)

vτh → v strongly in L2(ΩT ) . (4.34)

Proof. The proof will be divided into three steps.

Step 1: Let (yh)hց0 be a bounded sequen
e in L2
(

(0, T );W1,2
0 (Ω)

)

and assume that

Rhyh ⇀ y in L2
(

(0, T );W1,2
0 (Ω)

)

. (4.35)

Then,

divy = 0 a.e. in Ω× (0, T ). (4.36)

Proof of Step 1: Take q ∈ L2((0, T );H1(Ω)) arbitrarily. Hen
e,
∫∫

ΩT

q div y =

∫∫

ΩT

(q − Shq) div y +

∫∫

ΩT

Shq(divy − divRhyh)

+

∫∫

ΩT

Shq divRhyh = I(h) + II(h) + III(h) .

By (2.7), Shq → q strongly in L2(ΩT ) (using Lebesque's 
onvergen
e theorem) and there-

fore limh→0 I(h) = 0. For II(h), we observe that divRhyh ⇀ div y in L2(ΩT ) and that

Shq strongly 
onverges to q in L2(ΩT ). Therefore, this term vanishes in the limit, too.

Finally, III(h) is always zero due to (2.14b). Now use that L2((0, T );H1) is dense in

L2(ΩT ) and (4.36) is established. �

Step 2: We have

Z = lim
h→0

Rh(ρτhvτh) = Pσ(ρv). (4.37)

Proof of Step 2: By the identity Rhvτh = vτh and the orthogonality of the L2
-proje
tion

Rh, we have

∫∫

ΩT

〈ρτhvτh,vτh〉 =

∫∫

ΩT

〈Rh(ρτhvτh),vτh〉 .

By (4.27) and (4.28), we infer

lim
h→0

∫∫

ΩT

〈ρτhvτh,vτh〉 =

∫∫

ΩT

〈Z,v〉.



CONVERGENT SCHEMES FOR TWO-PHASE FLOW WITH GENERAL MASS DENSITIES 19

Let us prove that Z = Pσ(ρv). Take Σ ∈ L2
(

(0, T );W1,2
0,div(Ω)

)

arbitrarily. We have

∫∫

ΩT

〈Rh(ρτhvτh),RhΣ〉 =

∫∫

ΩT

〈ρτhvτh,RhΣ〉 .

By estimate (2.5) and Lebesgue's theorem, we have the strong 
onvergen
e RhΣ → Σ in

L2(Ω). Sin
e also ρτh → ρ strongly, we have

∫∫

ΩT

〈Z,Σ〉 = lim
h→0

∫∫

ΩT

〈Rh(ρτhvτh),RhΣ〉 = lim
h→0

∫∫

ΩT

〈ρτhvτh,RhΣ〉

=

∫∫

ΩT

〈ρv,Σ〉

for all Σ ∈ L2(I;W1,2
0,div(Ω)). Therefore, Pσ(ρv) = Pσ(Z). Step 1 implies that divZ = 0

and therefore Pσ(ρv) = Z. �

Step 3: vτh → v strongly in L2(ΩT ).

Here, we translate ideas of [2℄ to the dis
rete setting. Introdu
ing στh := ρ
1

2

τhvτh,

we �nd

στh ⇀ ρ
1

2v in L2(ΩT ).

At the same time

∫∫

ΩT

|στh|
2 =

∫∫

ΩT

〈ρτhvτh,vτh〉
(vτh=Rhvτh)

=

∫∫

ΩT

〈Rh(ρτhvτh),vτh〉


onverges to

∫∫

ΩT
〈Pσ(ρv),v〉. By Step 1 and assumption (4.28), v is solenoidal.

Hen
e,

∫∫

ΩT

〈Pσ(ρv),v〉 =

∫∫

ΩT

〈ρv,v〉 =

∫∫

ΩT

∣

∣

∣
ρ

1

2v

∣

∣

∣

2

.

Therefore, στh → ρ
1

2v strongly in L2(ΩT ). To obtain (4.34), use that ρτh is

bounded from below by a positive 
onstant (see (H4)). The lemma is proven.

�

5. Passage to the limit (τ, h) → 0

Let us begin this se
tion by stating some boundedness and 
onvergen
e results not ex-

pli
itly mentioned before. By (4.7) and (6.4) in Theorem 6.4, we observe that

(ϕτh) is uniformly bounded in L∞
(

W 1,p(Ω)
)

for all p <
2d

d− 2
. (5.1)

Moreover, a subsequen
e (τ, h) → 0 exists su
h that

(vτh) strongly to v in L2(ΩT ) , (5.2)

(Rh(ρτhvτh)) strongly to Pσ(ρv) in L
2(ΩT ) , (5.3)

(ϕτh) strongly to ϕ in L2(ΩT ) , (5.4)

(µτh) weakly to µ in L2((0, T );H1(Ω)). (5.5)

For a proof of (5.2) and (5.3), see Lemma 4.8, in parti
ular formula (4.37). Moreover,

(5.4) and (5.5) follow from (4.8) 
ombined with the energy estimate (3.3) and the 
om-

pa
tness result of Simon (see Theorem 6.1).

The most 
riti
al term for the passage to the limit in (2.14) is the �fth term in equation

(2.14a). At present, we only know jτh and ∇vτh weakly to 
onverge in 
ertain Lp
-spa
es
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of spa
e and time to j = −∇µ or to ∇v, respe
tively. On a formal level, one might argue

that the divergen
e of jτh is 
ontrolled. On a rigorous level, we are only able to bound

the dis
rete Lapla
ian of µτh. But it turns out that this is already su�
ient due to the

L4(L2) ∩ L2(L6−)-regularity of jτh. The following lemma allows to identify weak limits.

Lemma 5.1. There is a subsequen
e (τ, h) → 0 su
h that ∇vτhjτh weakly 
onverges in

Lq((0, T );L
6

5 (Ω)), 1 ≤ q < 5
4
, to −∇v∇µ.

Proof. Combining (3.3) with (4.22) yields uniform boundedness of (∇vτhjτh)(τ,h)→0 in the

spa
e Lq((0, T );L
6

5 (Ω)) for any q < 5
4
. Hen
e, a weakly 
onvergent subsequen
e exists

with limit Z in that spa
e. Let us identify Z = −∇v∇µ. First, we note the existen
e of
a set E ⊂ (0, T ) with µ1(E) = T , su
h that −∇vτh∇µτh = ∇vτhjτh weakly 
onverges to

Z for all t ∈ E . Next, we show that for t ∈ E

Z(·, t) = −∇v(·, t)∇µ(·, t) .

To this s
ope, we 
onsider for t ∈ E the auxiliary problems

−∆Mτh(·, t) = wτh(·, t) in Ω, (5.6a)

∂

∂ν
Mτh(·, t) = 0 on ∂Ω, (5.6b)

∫

Ω

Mτh(x, t)dx =

∫

Ω

µτh(x, t)dx, (5.6
)

where wτh ∈ H1
∗ (Ω) ∩ Uh is the negative dis
rete Lapla
ian of µτh (
f. (4.19)). By (6.3),

(5.6
), and the mean value Poin
aré inequality, we have the existen
e of a positive 
onstant

C su
h that

‖(µτh −Mτh)(·, t)‖H1(Ω) ≤ Ch ‖wτh(·, t)‖L2(Ω) (5.7)

for all t ∈ E . By ellipti
 regularity theory, we have

‖Mτh(·, t)‖W 1,6(Ω) ≤ C ‖wτh(·, t)‖L2 (5.8)

uniformly in E and for (τ, h) → 0. From (5.7), we infer

∫

Ω

|(∇vτh∇Mτh −∇vτh∇µτh)(·, t)| ≤ ‖∇(Mτh − µτh)(·, t)‖L2 · ‖∇vτh(·, t)‖L2

h→0
→ 0

Due to the L6
-regularity of ∇Mτh, we have ∇vτh(·, t)∇Mτh(·, t) ⇀ −Z(·, t) in L

3

2
−(Ω).

Now observe the following identity for arbitrary Σ ∈ C1(Ω;R3)

∫

Ω

Z(·, t)Σ = − lim
(τ,h)→0

∫

Ω

∇Mτh(·, t)(∇vτh(·, t))
T
Σ

= lim
(τ,h)→0

{
∫

Ω

(∆Mτhvτh)(·, t)Σ+

∫

Ω

∇Mτh(·, t)(∇Σ)Tvτh(·, t)

}

=

∫

Ω

w〈v(·, t),Σ〉+

∫

Ω

∇M(∇Σ)Tv = −

∫

Ω

〈∇µ, (∇v)TΣ〉 . (5.9)

Here, we used in parti
ular that wτh ⇀ w in L2(ΩT ), and that µτh ⇀ µ in L2(ΩT ) and
w.l.o.g. pointwise in t ∈ E for an appropriate subsequen
e. In parti
ular,

∫

Ω

〈∇µ,∇θ〉 =

∫

Ω

wθ
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for all θ ∈ H1(Ω). Sin
e C1(Ω;R3) is dense in Lp(Ω) for all 1 ≤ p < ∞, we have the

identity

Z(·, t) = (−(∇v)∇µ)(·, t)

for all t ∈ E . This gives the assertion of the lemma. �

Now we are in the position to state a �rst 
onvergen
e result.

Theorem 5.2. Let Ω ⊂ R
d
, d ∈ {2, 3}, be a 
onvex polyhedral domain and let initial

data Φ0 and V0 be given. Let I = (0, T ). Assume that (H1)-(H4), (S1)-(S6), and (T1),

(T2) are satis�ed and that (ϕτh, µτh,vτh) is a sequen
e of dis
rete solutions to the system

(2.14). Then fun
tions

v ∈ L∞
(

I;L2(Ω)
)

∩ L2
(

I;W1,2
0,div(Ω)

)

,

ϕ ∈ L∞
(

I;H2(Ω)
)

∩H1
(

I;L2(Ω)
)

, ϕ(·, 0) = Φ0(·),

µ ∈ L∞
(

I;L2(Ω)
)

∩ L2
(

I;W 1,6−(Ω)
)

∩ L4
(

I;W 1,2(Ω)
)

exist whi
h solve the system (1.1) in the generalized sense that

−

∫ T

0

∫

Ω

〈ρv − ρ(Φ0)V0, ∂tw〉 −
1

2

∫ T

0

∫

Ω

∂tρ〈v,w〉 −
1

2

∫ T

0

∫

Ω

ρ
〈

v, (∇w)Tv
〉

+
1

2

∫ T

0

∫

Ω

ρ
〈

v, (∇v)Tw
〉

+
1

2

∫ T

0

∫

Ω

δρ

δϕ

〈

j, (∇v)Tw
〉

−
1

2

∫ T

0

∫

Ω

δρ

δϕ

〈

j, (∇w)Tv
〉

+

∫ T

0

∫

Ω

2η(ϕ)Dv : Dw =

∫ T

0

∫

Ω

µ〈∇ϕ,w〉

(5.10)

for all w ∈ C1
(

I;W1,2
0,div(Ω)

)

satisfying w(·, T ) = 0,
∫ T

0

∫

Ω

∂tϕθ +

∫ T

0

∫

Ω

〈∇ϕ,v〉θ +

∫ T

0

∫

Ω

〈∇µ,∇θ〉 = 0 (5.11)

for all θ ∈ L2(I;H1(Ω)),

µ(·, t) = −∆ϕ(·, t) + F ′(ϕ(·, t)) (5.12)

for almost all t ∈ I. Moreover, for a subsequen
e (τ, h) → 0 the following 
onvergen
e

results hold true:

• vτh → v strongly in L2(ΩT ),
• Rh(ρτhvτh) → Pσ(ρv) strongly in L2(ΩT ),
• ϕτh → ϕ strongly in L2(ΩT ) and in L

p
(

I;Cβ(Ω)
)

for any p <∞ and any β < 2− d
2
,

• µτh − IhF
′
+(ϕτh)− IhF

′
−(ϕτh(·, · − τ))⇀ −∆ϕ weakly∗ in the spa
e

L∞(I;L2(Ω)) ∩ L2(I;W 1,6−(Ω)) ∩ L4(I;W 1,2(Ω)),
• IhF

′
−(ϕτh(·, · − τ)) → F ′

−(ϕ) strongly in Lp(ΩT ) for any 1 ≤ p <∞,

• IhF
′
+(ϕτh) → F ′

+(ϕ) strongly in Lp(ΩT ) for any 1 ≤ p <∞.

Remark 5.3. 1. For the pressure, we obtain similar results as in the 
ase of equal mass

densities � see e.g. [16℄. Choosing an arbitrary test fun
tion w ∈ Xh in (2.14b), summing

up over subintervals in time and using (S2), it follows that

∫ t

0
pτh(., s)ds is uniformly

bounded in L∞(I;L2(Ω)). Hen
e, a weak∗-limit exists for (τ, h) → 0, whi
h may be used

in a very weak solution 
on
ept in the sense of distributions allowing for non-solenoidal

test fun
tions in the momentum equation. For details, see the equal density 
ase [16℄.

2. Solutions 
onstru
ted in Theorem 5.2 are generalized solutions to the system (1.1) sin
e

it is a priori not possible to identify

δρ

δϕ
with ρ′(ϕ). In Corollary 5.4, we will show that they
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are in fa
t weak solutions as soon as ϕ attains values only in the interval [−1− ϕ̄, 1 + ϕ̄]
with ϕ̄ given in (H4). In this 
ase, 
onservation of individual masses is guaranteed, too.

Therefore, the question whether solutions 
onstru
ted in Theorem 5.2 are in fa
t weak

solutions of (1.1) is redu
ed to the problem of �nding optimal L∞
-bounds for the solutions

in (5.11). See Corollary 5.5 for a �rst result in that dire
tion.

Proof. Let us begin with a dis
ussion of the 
onvergen
e results. The �rst two of them were

already obtained in (5.2) and (5.3). The strong 
onvergen
e of ϕτh → ϕ in Lp(I;Cβ(Ω))
for any 1 ≤ p <∞ and any 0 < β < 2− d

2
is a 
onsequen
e of (4.8) 
ombined with (5.1),

Simon's Theorem 6.1 and the 
ompa
tness of the embedding W 1,q(Ω) →֒→֒ Cβ(Ω). The
strong 
onvergen
e of the terms IhF

′
−(ϕτh(·, ·−τ) and IhF

′
+(ϕτh) is implied by the uniform

boundedness of ϕτh (see (5.1)) and its strong 
onvergen
e in Lp(I;Cβ(Ω)) 
ombined with

Lemma 6.3. Finally, note that µτh − IhF
′
+(ϕτh) − IhF

′
−(ϕτh(·, · − τ)) = −∆hϕτh . By

(4.7), a weakly 
onvergent subsequen
e of ∆hϕτh exists, and by duality its limit 
an

easily be identi�ed with −∆ϕ (using the weak 
onvergen
e of ∇ϕτh in L∞(I;Lp(Ω)) for
all p < 2d

d−2
). Hen
e, (5.12) is established as well.

It remains to prove that (5.10)-(5.11) hold true. Let us begin with (5.10). WritingN := T
τ
,

we take the sum τ
∑N−1

k=0 in the dis
rete equation (2.14a). Hen
e,

τ

N−1
∑

k=0

∫

Ω

〈

∂−τ Rh(ρ
k+1vk+1),wk+1

〉

−
τ

2

N−1
∑

k=0

∫

Ω

∂−τ ρ
k+1
〈

vk+1,wk+1
〉

−
τ

2

N−1
∑

k=0

∫

Ω

ρk
〈

vk, (∇wk+1)Tvk+1
〉

+
τ

2

N−1
∑

k=0

∫

Ω

ρk
〈

vk, (∇vk+1)Twk+1
〉

+
τ

2

N−1
∑

k=0

∫

Ω

δρ

δϕ

〈

jk+1, (∇vk+1)Twk+1
〉

−
τ

2

N−1
∑

k=0

∫

Ω

δρ

δϕ

〈

jk+1, (∇wk+1)Tvk+1
〉

+ τ

N−1
∑

k=0

∫

Ω

2η(ϕk+1)Dvk+1 : Dwk+1 = −τ

N−1
∑

k=0

∫

Ω

ϕk
〈

∇µk+1,wk+1
〉

(5.13)

for all step fun
tions w ∈ S0,−1(I;Wh). Using (4.11), the �rst term 
an be rewritten

τ

N−1
∑

k=0

∫

Ω

〈

∂−τ Rh(ρ
k+1vk+1),wk+1

〉

= −τ
N−1
∑

k=0

∫

Ω

〈

∂+τ w
k,Rh(ρ

kvk)−Rh(ρ(ϕ0h)v0h)
〉

+

∫

Ω

〈

wN ,Rh(ρ
NvN)−Rh(ρ(ϕ0h)v0h)

〉

.

(5.14)

Now 
hoose Σ ∈ C1([0, T ];W1,2
0,div(Ω)) ∩ C1([0, T ];H2(Ω)) with Σ(·, T ) = 0 arbitrarily,

but �xed. Take Στh|Ik := Qh
divΣ(·, tk). Re
alling (2.8) and using Στh(·, T ) = 0, (5.13)
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may be rewritten as

−

∫ T

0

∫

Ω

〈

Rh(ρτhvτh)−Rh(ρ(ϕ0h)v0h), ∂
+
τ Στh

〉

−
1

2

∫ T−τ

0

∫

Ω

∂−τ ρτh〈vτh(·, ·+ τ),Στh(·, ·+ τ)〉

−
1

2

∫ T−τ

0

∫

Ω

ρτh

〈

vτh, (∇Στh(·, ·+ τ))Tvτh(·, ·+ τ)
〉

+
1

2

∫ T−τ

0

∫

Ω

ρτh

〈

vτh, (∇vτh(·, ·+ τ))TΣτh(·, ·+ τ)
〉

+
1

2

∫ T

τ

∫

Ω

δρ

δϕ

〈

jτh, (∇vτh)
T
Στh

〉

−
1

2

∫ T

τ

∫

Ω

δρ

δϕ

〈

jτh, (∇Στh)
T
vτh

〉

+

∫ T

τ

∫

Ω

2η(ϕτh(·, · − τ))Dvτh : DΣτh −

∫ T

τ

∫

Ω

ϕτh(·, · − τ)〈∇µτh,Στh〉 = 0 (5.15)

By (S4), formula (2.6), we infer the strong 
onvergen
e of Στh to Σ in L2(I;H1(Ω)) as
well as the strong 
onvergen
e of ∂+τ Στh to ∂tΣ in L2(I;H1(Ω)). From (5.3), it follows

that Rh(ρτhvτh) strongly 
onverges to Pσ(ρv) in L2(ΩT ). In parti
ular, Rh(ρ(ϕ0h)v0h)
strongly 
onverges to Pσ(ρ(Φ0)V0) in L2(Ω) by arguments similar to those used in the

proof of Lemma 4.8.

As the Helmholtz proje
tion Pσ is orthogonal, we may identify the limit of the �rst term

in (5.15) with the �rst term in (5.10). To dis
uss the se
ond and third term in (5.15),

we employ the weak 
onvergen
e of ∂−τ ρτh towards ∂tρ, whi
h is a dire
t 
onsequen
e of

the L2(ΩT )-boundedness of ∂
−
τ ϕτh as well as of the results on strong 
onvergen
e for vτh,

∇Στh and Στh (see (5.2), (4.8), and (2.6)).

A similar reasoning also applies to the fourth, sixth and seventh term, this time taking ad-

vantage of the uniform boundedness (3.3), (4.22). For the �fth term, we use that ∇vτhjτh

weakly 
onverges to −∇v∇µ in Lq((0, T );L
6

5 (Ω)) for all 1 ≤ q < 5
4
, see Lemma 5.1. To-

gether with the strong 
onvergen
e of Στh, also this limit is readily identi�ed. To dis
uss

the last term, we observe that µτh weakly 
onverges in L2(I;W 1,6−(Ω)) ∩ L4(I;W 1,2(Ω))
to µ. Together with the strong 
onvergen
e of ϕτh in Lp(I;Cβ(Ω)) for any 1 ≤ p < ∞,

we �nd that this term 
onverges to −
∫ T

0

∫

Ω
ϕ〈∇µ,w〉. Integration by parts, using the

solenoidality of w, gives the result. Let us dis
uss (5.11). Similarly as in (5.10), we

take the sum τ
∑N−1

k=0 in the dis
rete equation (2.14
). Repla
ing τ
∑N−1

k=0 by

∫ T

0
dt and


hoosing ψ ∈ C0([0, T ];H2(Ω)) arbitrarily, but �xed, we have for ψτh de�ned by the Ritz

proje
tion ψτh|Ik := Phψ(·, tk) that

∫ T

0

(

∂−τ ϕτh, ψτh

)

h
−

∫ T

0

〈vτh(·, ·+ τ),∇ψτh〉ϕτh

+

∫ T

0

〈∇µτh(·, ·+ τ),∇ψτh〉 = 0 . (5.16)

Combining (2.1) and (4.8) with the fa
t that Phψ(·, ·) 
onverges to ψ in H1(Ω) for h→ 0
(see (2.3)), we �nd that the �rst term in (5.16) 
onverges to the �rst term in (5.11) as

(τ, h) tends to (0, 0). The remaining terms may be dis
ussed in a standard way, using

(5.2), (4.22), (5.1) as well as the approximation properties of Ph. By a density argument

and integration by parts in the se
ond term, (5.11) follows. This proves the theorem. �
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Corollary 5.4. Consider the solution (ϕ, µ,v) obtained in Theorem 5.2 and assume that

in a time-interval [0, T̄ ] the phase-�eld ϕ(·, t) attains only values in (−1 − ϕ̄, 1 + ϕ̄) with
the parameter ϕ̄ as in (H4). Then, (ϕ, µ,v) solves the system (1.1) on (0, T̄ ) in the sense

that

−

∫ T̄

0

∫

Ω

〈ρ̄v− ρ̄(Φ0)V0, ∂tw〉 −

∫ T̄

0

∫

Ω

∂tρ̄〈v,w〉+

∫ T̄

0

∫

Ω

ρ̄
〈

v, (∇v)Tw
〉

+

∫ T̄

0

∫

Ω

∂ρ̄

∂ϕ

〈

j, (∇v)Tw
〉

+

∫ T̄

0

∫

Ω

2η(ϕ)Dv : Dw =

∫ T̄

0

∫

Ω

µ〈∇ϕ,w〉

(5.17)

for all w ∈ C1
(

(0, T̄ );W1,2
0,div(Ω)

)

satisfying w
(

·, T̄
)

= 0,

∫ T̄

0

∫

Ω

∂tϕθ +

∫ T̄

0

∫

Ω

〈∇ϕ,v〉θ +

∫ T̄

0

∫

Ω

〈∇µ,∇θ〉 = 0 (5.18)

for all θ ∈ L2
(

(0, T̄ );H1(Ω)
)

,

µ(·, t) = −∆ϕ(·, t) + F ′(ϕ(·, t)) (5.19)

for almost all t ∈ (0, T̄ ). In parti
ular, (5.17) is a weak formulation of (1.1a).

Proof. Observe that (5.11) implies for ϕ ∈ (−1 − ϕ̄, 1 + ϕ̄) the identity

−
1

2

∫ T̄

0

∫

Ω

∂tρ〈v,w〉 =

−

∫ T̄

0

∫

Ω

∂tρ〈v,w〉+
1

2

∫ T̄

0

∫

Ω

ρ
〈

v, (∇w)Tv
〉

+
1

2

∫ T̄

0

∫

Ω

ρ
〈

v, (∇v)Tw
〉

+
1

2

∫ T̄

0

∫

Ω

δρ

δϕ

〈

j, (∇v)Tw
〉

+
1

2

∫ T̄

0

∫

Ω

δρ

δϕ

〈

j, (∇w)Tv
〉

.

(5.20)

Inserting (5.20) in (5.10) and using that ρ̄ ≡ ρ on (−1− ϕ̄, 1 + ϕ̄) gives the result. �

We are already in the position to formulate a 
riterion whi
h guarantees that the assump-

tion of Corollary 5.4 is satis�ed. With a grain of salt, the 
ondition ϕ̄ < 2ρ̃1
ρ̃2−ρ̃1

, see (H4),

translates to the 
ondition that the modulus of ϕ is bounded by the inverse Atwood num-

ber. The Atwood number

ρ̃2−ρ̃1
ρ̃1+ρ̃2

itself is a measure for the density 
ontrast. Obviously, it

attains values 
lose to zero for a small density 
ontrast and values 
lose to one for a large

density 
ontrast. Hen
e, 
ombining a 
ontinuous 
ounterpart of the estimate (4.7) with

Corollary 5.4, we have the following result.

Corollary 5.5. For given initial data Φ0,V0, there is a number α ∈ (0, 1) su
h that for

all Atwood numbers

ρ̃2−ρ̃1
ρ̃1+ρ̃2

< α there exists a positive time T̂ su
h that the generalized

solution (5.10) � (5.12) is a weak solution to (1.1).

Let us 
on
lude the paper with some remarks related to pra
ti
al 
omputations. For given

grid parameters τ and h, given external for
es kgrav, and a given toleran
e ε > 0, it is
always possible to �nd a regularization of a logarithmi
 potential whi
h guarantees that

dis
rete solutions ϕτh 
orresponding to τ, h are 
on�ned to the interval (−1 − ε, 1 + ε) �
for a related reasoning in the 
ase of the thin-�lm equation with singular potentials, see

[21℄, Se
tion 5. It remains an open problem, however, whether there is a regularization

depending on h su
h that the limit pro
ess h→ 0 
an be performed.

Finally, numeri
al experiments: This s
heme has been implemented in two and in three
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spa
e dimensions � see [22℄ and [30℄. Numeri
al experiments � ranging from Rayleigh-

Taylor instabilities to rising drop experiments and 
omparisons with other modeling ap-

proa
hes (see [22℄) � show the full pra
ti
ality of this approa
h. In parti
ular, in 
har-

a
teristi
 2D simulations, an experimental order of 
onvergen
e of EOC = 1.9 has been

obtained.

6. Appendix

In the appendix, we 
olle
t a number of results frequently used in the paper. We begin

with statements on relative 
ompa
tness.

Theorem 6.1 (Simon [33, page 84℄). Let X ⊂ B ⊂ Y be Bana
h spa
es with 
ompa
t

embedding X →֒ B and 1 ≤ p ≤ ∞. If F ⊂ Lp(I;X) is bounded and

‖f(·, ·+ h)− f(·, ·)‖Lp(0,T−h;Y ) → 0

uniformly for f ∈ F as h→ 0, then F is relatively 
ompa
t in Lp(I;B).

Theorem 6.2 (Fré
het-Kolmogorov [7℄). Let Ω ⊂ R
n
be a bounded domain. For 1 ≤ p <

∞, a set A ⊂ Lp(Ω) is relatively 
ompa
t if and only if

i) supf∈A ‖f‖Lp ≤ C <∞
ii) supf∈A ‖f(·+ h)− f‖Lp → 0 for |h| → 0.

We also need the following straight forward 
onsequen
e of Theorem 6.2.

Lemma 6.3. Given a sequen
e (τn, hn)n∈N → 0, assume ρτn,hn
to 
onverge strongly in

the spa
e L2(0, T ;L2(Ω)) to ρ. Then the sequen
e

(

ρτn,hn
(·, ·+ τn) · χ[0,T−τn)

)

n∈N
strongly


onverges to ρ in the spa
e L2((0, T );L2(Ω)).

For the reader`s 
onvenien
e, we reformulate regularity results for the dis
rete Lapla
ian

asso
iated with the lumped masses s
alar produ
t whi
h were part of the proof of Theo-

rem 6.1 in [21℄. Note in parti
ular that (6.4) is a dis
rete version of Sobolev's embeddding

theorem.

Theorem 6.4. Let Ω be a 
onvex, polyhedral domain in R
d
, d ∈ {2, 3}. Related to fh ∈

Uh ∩H
1
∗ (Ω), 
onsider

i) φ ∈ H1
∗ (Ω) whi
h solves the variational equation

∫

Ω

〈∇φ,∇ψ〉 =

∫

Ω

fhψ (6.1)

for all ψ ∈ H1(Ω),
ii) Φh ∈ Uh ∩H

1
∗ (Ω) whi
h solves the dis
rete variational equation

∫

Ω

〈∇Φh,∇Ψh〉 = (fh,Ψh)h (6.2)

for all Ψh ∈ Uh.

Then,

i) there is a positive 
onstant C su
h that

‖∇Φh −∇φ‖L2(Ω) ≤ C · h‖fh‖L2(Ω), (6.3)

ii) for any 1 ≤ p < 2d
d−2

, there is a positive 
onstant C(p) su
h that

‖∇Φh‖Lp(Ω) ≤ C(p)‖fh‖L2(Ω). (6.4)

Our last result guarantees H1
-stability of the L2

-proje
tionRh onto the spa
e of dis
retely

divergen
e free ve
tor �elds.
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Lemma 6.5. Let Th be a quasi-uniform triangulation of the polyhedral domain Ω and let

the triple (Xh,Wh, Sh) denote the fun
tion spa
es 
orresponding to P2P0-elements or to

Taylor-Hood elements. Then, there is a 
onstant C, su
h that

‖∇Rhv‖L2(Ω) ≤ C ‖∇v‖
L2(Ω) (6.5)

for all v ∈ W
1,2
0 (Ω).

Proof. Our argument is based on the expli
it formulae for the orthogonal L2
-proje
tion

from Xh onto Wh to be found in Se
tion A.5.3 of [20℄. For the ease of presentation,

we 
onsider here only the 
ase d = 3, the 
ase d = 2 being analogous. Writing Nv for

the degrees of freedom of ea
h 
omponent of the velo
ity �eld, we have for an arbitrary

element of Xh

uh =
Nv
∑

i=1





ui
vi
wi



φh
i

with real 
oe�
ients ui, vi, wi and �nite-element basis fun
tions φh
i ∈ H1

0 (Ω). Similarly,

we write Np for the degrees of freedom of the pressure and have

λh =

Np
∑

k=1

λkψ
h
k ∈ U0

h

for a generi
 element in the spa
e of pressure fun
tions.

Following the presentation in [20℄ (whi
h is restri
ted to the two-dimensional 
ase), we

introdu
e matri
es

Mh ∈ R
Nv×Nv , Mh

ij :=

∫

Ω

φh
i (x)φ

h
j (x)

and Ch
x , C

h
y , C

h
z ∈ R

Nv×Np
de�ned by

(Ch
x )ik := −

∫

Ω

ψh
k

∂

∂x
φh
i ,

(Ch
y )ik := −

∫

Ω

ψh
k

∂

∂y
φh
i ,

(Ch
z )ik := −

∫

Ω

ψh
k

∂

∂z
φh
i ,

i, j = 1, · · · , Nv, k = 1, · · · , Np.

Given an element

ũh :=

Nv
∑

i=1





ũi
ṽi
w̃i



φh
i ∈ Xh,

the orthogonal proje
tion

Rhũh =:

Nv
∑

i=1





u

v

w



φh
i ∈ Wh

is obtained by solving the linear system





u

v

w



 =





I − (Mh)−1Ch
xA

−1

h
(Ch

x )
T −(Mh)−1Ch

xA
−1

h
(Ch

y )
T −(Mh)−1Ch

xA
−1

h
(Ch

z )
T

−(Mh)−1Ch
yA

−1

h
(Ch

x )
T I − (Mh)−1Ch

yA
−1

h
(Ch

y )
T −(Mh)−1Ch

yA
−1

h
(Ch

z )
T

−(Mh)−1Ch
z A

−1

h
(Ch

x )
T −(Mh)−1Ch

z A
−1

h
(Ch

y )
T I − (Mh)−1Ch

z A
−1

h
(Ch

z )
T









ũ

ṽ

w̃





(6.6)

where

Ah := (Ch
x )

T (Mh)−1Ch
x + (Ch

y )
T (Mh)−1Ch

y + (Ch
z )

T (Mh)−1Ch
z .
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Con
erning well-posedness of this system, we refer to [34℄ and [20℄.

In order to prove H1
-stability of Rh, we have to dis
uss two issues. First, we show that

the matrix in (6.6) s
ales as h0 in the 
ase of a quasi-uniform triangulation Th. Indeed, M
h

s
ales like h3 and the matri
es Ch
x , C

h
y , C

h
z s
ale like h2 � using the fa
t that the volume

of elements T ∈ Th s
ale in three spatial dimensions like h3. Hen
e, Ah s
ales like h and

the matri
es of the generi
 type (Mh)−1Ch
xA

−1
h (Ch

x)
T
s
ale like h0 = 1. As a 
onsequen
e,

H1
-stability follows for the restri
tion of Rh on Xh.

To show also H1
-stability of Rh : W1,2

0 (Ω) → Wh, we note that

Rh = Rh ◦ Qh (6.7)

on W
1,2
0 (Ω) where Qh : W1,2

0 (Ω) → Xh is the orthogonal L2
-proje
tion whi
h is well-

known to be H1
-stable, see [10℄, [11℄, and [13℄ . For a proof of (6.7), we refer to Se
tion

A.5.6 in [20℄. This proves the se
ond assertion of the lemma. �
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