ON CONVERGENT SCHEMES FOR DIFFUSE INTERFACE MODELS
FOR TWO-PHASE FLOW OF INCOMPRESSIBLE FLUIDS WITH
GENERAL MASS DENSITIES

G. GRUN

ABSTRACT. We are concerned with convergence results for fully discrete finite-element
schemes suggested in [Griin, Klingbeil, ArXiv e-prints (2012), arXiv:1210.5088]. They
were developed for the diffuse-interface model in [Abels, Garcke, Griin, M3AS, 2012,
DOI:10.1142/S0218202511500138] which is to describe two-phase flow of immiscible, in-
compressible viscous fluids. We formulate general conditions on discretization spaces and
projection operators which allow to prove compactness of discrete solutions with respect
to both time and space and which hence permit to establish convergence of the scheme to
a generalized solution. We identify a simple quantitative and physical criterion to decide
whether this generalized solution is in fact a weak solution. In this case, our analysis
provides another pathway to establish existence of weak solutions to the aforementioned
model in two and in three space dimensions. Our argument is particularly based on
higher regularity results for discrete solutions to convective Cahn-Hilliard equations and
on discrete versions of Sobolev’s embedding theorem.

1. INTRODUCTION

In this paper, we prove convergence of a fully discrete finite-element scheme for a recently
suggested diffuse interface model for two-phase flow of incompressible, viscous fluids with
different mass densities. The model was introduced by Abels, Garcke, and the author of
this paper in [4]. To the best of our knowledge, it is the only model so far which complies
with physical principles like consistency with thermodynamics and frame-indifference and
which allows at the same time for a solenoidal velocity field. It reads as follows.

ploron + ( (e + 255) -9 v = V- 2u(AIDY) + Tp = 1T + K, (L)
Op+v-Vo—-V-(M()Vu) =0, (1.1b)

p=o(-Ap+F'(p)), (1.1¢)

V.v=0 inQx(0,T). (1.1d)

As boundary conditions, no-slip conditions for v and zero normal derivatives of ¢ and of
won 9 x (0,T) are imposed.

Note that system (ILT]) couples a hydrodynamic momentum equation with a Cahn-Hilliard
type phase-field equation. F'is a double-well potential with minima in +1 - representing
the pure phases ¢ = +1. The parameter o is the surface tension coefficient, which is
assumed to be 0 = 1 in this paper. The term p stands for the so called chemical potential,
and the order parameter ¢ stands for the difference of the volume fractions uy —u; where
wi(z,t) == % with p; the specific (constant) density of fluid 7 in a unmixed setting.

Date: June 30, 2013.

2010 Mathematics Subject Classification. 35Q35,65M60,76D05,76T10.

Key words and phrases. Two-phase flow, Cahn-Hilliard equation, diffuse interface model, convergence
of finite-element schemes.



2 G. GRUN

Denoting the individual velocities by v;, i = 1,2, we write v := w1V +usVvs for the volume
averaged velocity. Assuming py > py, the dens1ty of the total mass p(¢p) is given by

(o) = P2 ;r pL_ P2 ; P1 o (1.2)
and Dv denotes the symmetrized gradient. The term kg, stands for the density of
external volume forces. Finally, the flux j is defined by j := —M(p)Vu where M(yp) is
the mobility.

System (LT)) is consistent with thermodynamics in the sense that the total energy (i.e.
the sum of the kinetic and the interfacial energy) at a time t5 > t; is bounded by the
sum of the total energy at time ¢; and the work done by external forces during the time

interval (¢;,t5). More precisely,

L Bo(ts)) VI ( Vel® (t2) + | Flp(ts)
J RIALCLY
//M |W|+/ | 210DV
= [ateten e+ [ 96w+ [ Fewn+ [ [ o)
(1.3

The model (L)) has already been the subject of further mathematical investigations. In
[2], Abels, Depner, and Garcke prove existence of weak solutions for the case of logarith-
mic potentials, in [3], they consider mobilities M () which degenerate in ¢ = +1. In [22],
Klingbeil and the author of the present paper suggest a numerical scheme for (I.I)) which
is discretely consistent with thermodynamics in the sense that in the absence of external
forces the discrete counterpart of the total energy is decreasing in time. Various numerical
experiments underline the full practicality of this approach — see [22]. In the benchmark
paper [5] on Taylor-Flow, the method of [22] was successfully validated by comparison
with physical experiments and different numerical approaches.

Diffuse interface models for two-phase flow of incompressible viscous fluids began to in-
terest mathematicians some ten years ago while the basic concept of coupling momentum
equations with the Cahn-Hilliard equation had been suggested much earlier — see the fa-
mous “Model H” of Halperin and Hohenberg [25]. Two advantages of diffuse interface mod-
els compared to other approaches like sharp-interface models or volume-of-fluid-methods
are well known. First, no artificial additional conditions are necessary to model topology
changes or to guarantee conservation of individual masses. Secondly, in many cases it
is possible to prove global existence of solutions and to formulate convergent numerical
schemes.

Let us concentrate on the numerical aspects of diffuse interface models — for an overview
of analytical results, we refer the reader to [I], [2], [3], and the references therein. Many
authors contributed already to the numerics of diffuse interface models for two-phase flow
in the special case that the two fluids share the same mass density. In this case, one
has to deal essentially with a coupling of the Navier-Stokes system with a Cahn-Hilliard
equation. To obtain a first impression of the numerical approaches suggested so far, we
refer to [16], [9], [26], [27], [28], and the references therein.

Concerning numerical analysis, we mention the papers by Feng [16] and by Kay, Styles,
and Welford [27]. The former one focuses on P, FPy-elements, assumes a double-well po-
tential F'(¢) := (1 — ¢?)?, and establishes convergence of discrete solutions to the Navier-
Stokes-Cahn-Hilliard system in two and three space dimensions. The latter one studies
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P,-1SO-P, — P;-elements and obtains comparable convergence results — assuming the same
smooth double-well potential as Feng [16]. Note in particular that in both papers neither
discrete nor continuous solutions are confined to the interval [—1,1]. This is due to the
choice of the double-well potential and due to the fact that degenerate mobilities are not
considered.

The case of different mass densities to be studied in this paper is conceptually much
different. Various models were proposed to extend model H also to the case of mass
density contrast (see [8] and the references therein). Lowengrub and Truskinovsky pro-
posed in [3T] for the first time a diffuse-interface model consistent with thermodynamics.
The gross velocity field is obtained by mass averaging of individual velocities. As a con-
sequence, it is not divergence free, and the pressure p enters the model as an essential
unknown. However, no energy estimates are available to control p. Moreover, the pressure
enters the chemical potential and is hence strongly coupled to the phase-field equation.
This intricate coupling may be one reason why so far it has not been possible to formulate
numerical schemes for model [31].

Ding et al. [I5] suggested to define the gross velocity field by volume averaging. Pro-
hibiting in addition volume changes due to mixing ("simple mixture assumption"), the
gross velocity field is solenoidal. To the best of our knowledge, however, all attempts
failed to establish energy inequalities and to show that the model in [15] is consistent
with thermodynamics.

In [32], Shen and Yang propose an extension of the model [15] which allows for energy
estimates. Their modeling ansatz is to add a multiple of the term p; + div(pv) in the
momentum equation. They justify this idea by the assertion that the continuity equation
pr + div(pv) = 0 were valid and therefore this term were zero. Nevertheless, the phase-
field equation ¢; + div(pv) — divj = 0 is also part of their model, and p depends in an
affine-linear way on ¢.

A third strategy was pursued by Boyer [9], allowing also for solenoidal vector fields, but
apparently not for energy estimates.

The papers [9], [15], [32] present numerical simulations, too. Kim and Lowengrub [29]
suggest numerical schemes for multi-phase flow, and Aland and Voigt [6] present first
results on the comparison of different diffuse interface models.

In all these papers, numerical analysis of the proposed schemes has not been performed.
As discrete counterparts of an energy estimate seem to be a prerequisite for convergence
results, we concentrate here on the fully discrete finite-element scheme which was intro-
duced by Klingbeil and the author in [22], formula (3.2), and which allows for such an
estimate.

It is the scope of this paper to prove the convergence of discrete solutions obtained by
the scheme in [22] in two and in three space dimensions. This way, a different pathway to
the existence of solutions in the continuous setting is suggested as well. It is important
to emphasize that our approach is different from the methods of [2] and of [3]. Indeed,
both papers rely on the Leray-Schauder principle and on discretizations only with respect
to time. Therefore, in this setting the coupling term (j - V)v in (ILTa) does not cause
such intricacies related to compactness in time and to the identification of weak limits
as we will encounter them in the fully discrete setting. This is one reason why the nu-
merical analysis in the sequel is confined to the case of a constant mobility M (¢) and of
a double-well potential F' with p-growth — where p can be chosen in [1,00) for the case
of two space dimensions and in [1,4) for the case of three space dimensions. It is worth
mentioning that the papers [I6] and [27] devoted to the case of identical mass densities
assume in three dimensions comparable and in two dimensions even stricter conditions on
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the growth of I'. In particular, they do not study degenerate mobilities, neither.
Moreover, it is important to mention that due to (L2)) a mechanism is needed which
bounds p strictly away from zero. Since the Cahn-Hilliard equation is fourth-order par-
abolic, comparison principles do not hold. Therefore, bounds on ¢ rely on integral es-
timates. In the presence of external forces, however, the total energy is in general not
expected to decrease in time. Hence, regularizations of degenerate mobilities (cf. [23]) or
regularizations of singular (logarithmic) potentials would have to be chosen depending on
the applied external forces.

Another approach is to modify the p-dependency of p, which will be pursued in this paper
— see and Remark 21Tl Tt is interesting to note that for instance in [15] and in [32]
the issue of definiteness of p does not seem to be addressed at all. This may be due to the
fact that it is not expected to become relevant in many practical computations, as long
as the Atwood number % is not chosen too large, see also Remark[2.T]and Corollary b.5
The outline of the paper is as follows. In Section 2] we introduce the scheme of [22]
and we set the frame for the subsequent analysis. In particular, Subsection is de-
voted to the formulation of general conditions on discrete function spaces and projection
operators which will be needed for the convergence proof. Examples of admissible finite
elements are P, Py-elements and Taylor-Hood elements.

In Section [3, we prove a discrete version of the energy estimate and we establish existence
of discrete solutions. Section M is the core of the paper. We prove for discrete solu-
tions (@, frn, Vo) that 07 @, the backward difference quotient with respect to time,
is uniformly bounded in L?(€7) and that the discrete Laplacians Ay, and Ay, are
uniformly bounded in L>=((0,7T); L*(Q)) and in L*(Qr), respectively. Combining these
results with appropriate discrete versions of Sobolev’s embedding theorem (see Theo-
rem [6.4]), we succeed to prove that Ry (p-4V.4) strongly converges to P,(pv) in L*(Qr)
where P, is the Helmholtz projection and R, is the orthogonal L2-projection onto the
space Wy, of discretely divergence free velocity fields. Section [l is devoted to the proof of
the convergence of appropriate subsequences of (@4, firh, Vo) t0 a generalized solution
in the continuous setting. In particular, Corollary [5.4] shows that the generalized solution
obtained is a weak solution to (L.I) if the phase-field ¢ in the continuous setting stays
sufficiently close to [—1,1]. With a grain of salt, a sufficient condition is given by the
requirement that the modulus of ¢ stays bounded by the inverse Atwood number, i.e. by
L1tp2 Tp particular, for given initial data there is always a regime of Atwood numbers

p2—p1
such that this condition is satisfied on appropriate time intervals, see Corollary

Notation. We consider the two-phase problem on a bounded, convex polygonal (or
polyhedral, respectively) domain Q@ C R? in spatial dimensions d € {2,3}. By (-,),
we denote the Euclidean scalar product on R?, and (-,-) is used for the scalar product
in L?(£2). Sometimes, we write Q7 for the space-time cylinder Q x (0,7). By W*?(Q),
we denote the space of k-times weakly differentiable functions with weak derivatives in
LP(Q). The symbol W?(Q) stands for the closure of C5°(€) in W#?(Q). Corresponding
spaces of vector-valued functions are denoted in boldface. Moreover, we use the func-
tion spaces W(l)fnv(Q) = {v € Wg*(Q)|divv = 0}, L(Q) := {v € L} Q)| [,v = 0},
H*(Q) :== W*2(Q), and H}(Q) := H'(Q) N L3().

For a Banach space X and a time interval I, the symbol LP(I; X) stands for the para-
bolic space of LP-integrable functions on I with values in X. P, denotes the Helmholtz-
projection from L?(Q2) onto the space of solenoidal vectorfields Hy () which is obtained
as the closure of the solenoidal smooth vector fields with compact support (see [18]). We
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recall that P, is an orthogonal projection. We also write v € LP~(S) as a short form
meaning that v € LI(S) for all 1 < ¢ < p. The notation |[v|[;,- g stands for [Jv]| -,
for an arbitrary, but fixed ¢ > 0. Similarly, |[v][;,+ g is a short form for [[v[| (g, for a
sufficiently small, but fixed ¢ > 0. For further notation related to the discretization, we
refer the reader to Subsection 2.2]

2. THE SCHEME

2.1. Discretization in space and time. We assume 7, to be a regular and admissible
triangulation of Q with simplicial elements in the sense of [12]. Let us suppose in addition
that the discretization is rectangular in the sense, that

(T1) for each simplicial element E € Ty, a vertex zo(E) exists such that the edges
connecting xo(E) with vertices z;(E) and z;(£) are perpendicular to each other
fori,je{1,---,d},i# 7.

We will take advantage of (T1) in the proof of compactness in time, see Theorem
Note that (T1) does not exclude the applicability of standard strategies for local mesh
refinement.

Concerning discretization with respect to time, we assume that

(T2) the time interval I := [0,7") is subdivided in intervals I}, = [t, tx41) With 3 =
ty + 7. for time increments 7, > 0 and £k = 0,--- , N — 1. For simplicity, we take
w=r1fork=0,---,N—1.

2.2. Discrete function spaces and projection operators. For the approximation of
both the phase-field ¢ and the chemical potential p, we introduce the space Uj of con-
tinuous, piecewise linear finite element functions on 7. The expression Z; stands for the
nodal interpolation operator from C°(Q2) to U}, defined by Zu := Z?EUh u(z;)0;, where
the functions 6, form a dual basis to the nodes z;, i.e. 6;(x;) = 6;;, 4,5 = 1,...,dim U,.
Let us furthermore introduce the well-known lumped masses scalar product corresponding
to the integration formula

©,), = /th@xp).

The diagonal, positive definite lumped masses matrix is given by (M},);; = (@i, ¢j)n. We
recall the following well known estimates:

| (up, vn) — (up, o), | < OB g, Nlonll, for all up, v, € Uy, 1=0,1, (2.1)
where (u,v) denotes the L%-scalar product on . In the same spirit, there exist positive
constants ¢, C such that we have for |-|, = /(:,-),:

2 2
cllh <) <O (2.2)

We will use the Ritz projection Py, : H'(Q2) — Uy, defined by

/(VPh’U, VHJ) = /<VU, Vﬁj), j = 1, cee ,dlm Uh.
Q Q
We note the existence of a positive constant C' such that
|Prv — UHL?(Q) + h|[V(Pyo — U)HL?(Q) < O ”UHHJ'(Q) (2.3)

for 7 = 1,2 and any v € H’().

For the discretization of the velocity field v and the pressure p, we use function spaces
W), C X, € Wy*(Q) and S), C L2(Q) := {v € L*(Q)| [,v = 0} such that the following
conditions hold.
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(S].) Wh = {Vh S Xh| fQ aqn div Vp = 0 ‘v’qh S Sh}
(S2) The Babuska-Brezzi condition is satisfied, i.e. a positive constant 3 exists such
that

qh,divvh
sup (ar, div vn) > Bllanll 20
vreXp th”Wé’Q(Q)

for all ¢, € 5),.
(S3) The orthogonal L%-projection Ry : L*(Q) — W, is Hl-stable, i.e. a positive
constant C exists such that

IVRiV2i0) < ClIVYILz () (2:4)
for all v .€ W*(Q). Moreover,

}Lii% Rnv — V||L2(Q) =0 (2.5)

for all v € W% (Q).
(S4) A projection operator Q. : Wéfhv(ﬂ) — W), exists such that

HQgiVV - VHLQ Q + h “V<levv - V)HL2 Q S Ch'] ”VHHJ(Q) (26)
Q) (©)

for all v € H/(Q) N W3, (), j = 1,2.
(S5) The orthogonal L*projection Qj : W?(Q) — X, is H'-stable.
(S6) The orthogonal L?-projection Sy : L?(2) — S), satisfies

}Lig(l] lg — ShQHL2(Q) =0 (2.7)

for all ¢ € L*(Q).
Examples of finite-element spaces X}, S, which comply with |[(S1)|-(S6)|are P, P;-elements
(the so called Taylor-Hood elements) and P, Py-elements. In both examples, X}, is given
as

X, = {w € (CY()) : (W), | € Po(K), K € Tj = 1,. ..,d}, d=2,3.
For Taylor-Hood elements, S;, := U, N L2(2). In the case of P, P,-elements,
S = 1{qn € L) : qu|x = const. VK € Tp}.

Following the exposition in [16] and [I7], using in particular error estimates in [24], we
note that P,Py-elements satisfy the conditions |(S2), [(S4)H(S6)l Observe that in
the orthogonal projection R; may be chosen for Q& . Concerning we refer to
Lemma in the Appendix where we prove that (2:4) is satisfied by both P,Py- and
Taylor-Hood elements. Moreover, we note that [(S2)] [[S4)H(S6)| hold for Taylor-Hood
elements as well, see for instance [I9] and [27]. In particular, the Stokes projection
QStokes : Wéﬁw(Q) — Wh, defined by

/ VQsreny | Vx = / VviVY  ¥yeW.
Q (9]

is a possible choice for Q™ in Using finally the best-approximation property of Ry
with respect to the L*-norm, (23] follows from (28] for j = 1.

We conclude this subsection by introducing some notation. Given a time increment 7 > 0
(cf. [(T2)), we will denote the backward (and forward) difference quotients with respect
to time by 0= (or 97, respectively). Given a subdivision of the time interval I := [0,7T)

with intervals Iy := [tg, tx11) as in [(T2)] we introduce S®~1([0,T); X) associated with a
Banach space X as the space of functions v : [0,7) — X which are constant on each Iy,
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k=0,---,N —1. Given a function v € S%71([0,T); X), we abbreviate v*(-) := v(-, tx).
In particular, we have

T

T vk(-):/ v(-, t)dt. (2.8)
k=0 0

In general, we denote functions in S®~1(I;Uy,), S~ 1(I; W), S®1(I;X,) by an index

7h. We often abbreviate f*(-) := f(-, t).

2.3. The discrete scheme. We decompose the double-well potential F(-) =: F.(:) +
F_(-) and we make the following assumptions on the data.

(H1) F, : R — R{ is convex and of class C?, the second derivatives are convex on R,
too, and they satisfy a growth estimate
F!(z) < C(1+ |a|")

with ¢ in [1,2), if d = 3, and in [1,00), if d = 2.
(H2) F_: R — R is concave and of class C? with bounded second derivatives on R.
(H3) Let initial data ®y € H?*(Q;[~1,1]) and Vo € W2 (Q) be given such that we
have for discrete initial data ¢g, := Z, P and vy = R1 Vo uniformly in h > 0
that

/ Ivon|? < C < 00
Q
and that

1
/ | Anspon|” + 5/ Veoon|” + / TnF(pon) < const..
Q Q Q
Here, the discrete Laplacian Ajw € U, N HL(Q) is defined by

(Apw, ©), = — / (Vw,VO) VO € U, (2.9)

Q
(H4) Given mass densities 0 < p1 < py € R of the fluids involved and an arbitrary, but

fixed regularization parameter ¢ € (/32’1—1/31, %), we define the regularized mass
density of the two-phase fluid by a smooth, increasing, strictly positive function p
of the phase-field ¢ which satisfies

p2 — p1 p1+ P2

PO)-1-p1tg) = =59 + = (2.10)
PO (o1 2m1 y = const. (2.11)
’ p2—P1
p((p)|(1Jr 25,y = const. (2.12)
p2—p1’

Remark 2.1. In the continuous setting (assuming in particular a mechanism which con-
fines the values of the phase-field function to the interval [—1,1], for instance by choosing
a degenerate mobility or a logarithmic potential F'), p depends linearly on ¢ via (2.10)
and is therefore bounded from below by a positive constant by definition. In the discrete
setting, however, it is not possible to mimic singular or degenerate behaviour — requlariza-
tion is indispensable. Hence, strict inclusions ¢ € [—1,1] for discrete solutions ¢ cannot
be expected in general. Bounds on solutions can only be obtained via integral estimates
as the phase-field equation is fourth-order parabolic and therefore comparison principles
do not hold. However, the energy of the system is not necessarily decreasing in time due
to the work done by external forces. As a consequence, bounds on ¢ always will depend
on the special choice of external forces. Therefore, we use the cut-off mechanism of

to guarantee definiteness of p and hence definiteness of the density p|v|* of the kinetic
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energy as well.

Note in particular that the upper bound on ¢ translates to the condition that 1 + ¢ is
bounded by the inverse of the Atwood number ’?2;—’?1. Hence, the inverse Atwood number
controls the regime of values of ¢ for which p linearly depends on .

Now, we are in the position to introduce the scheme to be analyzed in this paper. For
its derivation, we refer the reader to IJEI]E Note that this scheme was formulated under
the assumption that ¢ stays in the regime for which the p-dependency is linear. To stress
this fact, we use the notation

o P

5 B (2.13)
4
We empbhasize that [[HD)H(H4)], [[TDH(T2)| [[STH(S6)| are assumed to hold. For the ease of

presentation, we assume external forces kg, ., to be zero as these forces are given quantities
which enter the system linearly. Hence, they do not have a qualitative effect on estimates
and results. Moreover, we assume M () = 1 and o = 1, and for initial data, we skip the
index h.

For given functions (¢° v%) € U, x Wy, and k = 0,..., N — 1 we have to find functions
(SOkHaMkHaVkH,pkH) e U, x Uy, x W}, x S}, such that

/<8?(p"““vk“),vv>—%/8?p’“+1<vk“,w>
Q Q
—%/pk<vk,(Vw)Tvk“>+%/pk<vk,(Vvk“)Tw>
Q Q
op . op .
+%/{;@<Jk+l’(vvk+l)TW>_%/Q%<Jk+1’<vw)Tvk+l>
+/277(<,0k)ka+1 :DW—/pkJrl divw
Q Q
I—/w’“(W’““,W vYw € X, (2.14a)
Q
/@Z)div vl =0 Vi €Sy, (2.14b)
Q
(07" ), — /Q (VFTL V)t + /Q (ViH L V) =0 Ve € Uy, (2.14c)

(u’”l,w)h:/Q<V<p’““,vw>+/QIh((F;(go’““)+FL(<p’“))w) Vi€ Uy, (2.14d)

Here, we use the abbreviation p**! := p(¢**!). Moreover, we define j**! := — V1,

Remark 2.2. The scheme studied in [22| differs from (2I4) in such a way that the last
term in (ZI4a) and the second term in (ZI4d) are replaced by [, p" (V¥ w) and by
fQ (VFHL VRV, respectively. Such a substitution is possible as long as the corresponding
version of ([214d) guarantees conservation of mass for the phase-field — or equivalently,
if the subset in Uy of functions with zero mean is contained in Sy. This holds true for
Taylor-Hood elements which were studied in |22, but e.g. not for PyPy-elements. Note
that the proofs presented in the present paper can easily be modified to cover that case —
in particular, the convergence results need not to be changed at all.

!Corollary 4l may also serve as an explanation in which way weak formulations of (ILTal) and of (IIh)
have to be combined in order to get the counterpart of (2.I4a)) in the continuous setting.
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Concerning existence of discrete solutions, we have the following result.

Lemma 2.3. For given functions (¢*, vF) € U, x W), , there exists a quadruple
(QFHL Pkttt vRHL ph Yy € Uy x Uy, x Wy, xSy, which solves the discrete system (2.14).

Proof. First, we prove for given (p*,v¥) the existence of functions (p**1, p*+t vi+l) ¢
U x U, x W}, which solve a modified version of (2.14) where (2.14al) is replaced by

/(8 BHLGRED) ) /8—pk+1<vk+1 w)
_ %/pk<vk,(vw)Tv’““>+§/pk<vk,(VV’“+l)TW>
+1 /Q §—£<j’f“,<vV’f“>Tw>—% /Q P (Tw) A
+/Q2n(so’“)D vl Dw = — /990’“<Vﬂk+1>W> (2.15)

for all w € Wy,
For given v¥ and 2% := ¢* — a with a : = L [, %, we are looking for a pair (vFT!, 25+

in W}, x U, such that ( kL oRF1) satisfies the system of equations (Z.I5) and (Z.I4d) -
[14d). Here, "™ = 2#™1 4 o, and the function u’““ is obtained from (v**1 o*+1) by
(2.14d)). Denoting the nodal basis of Uy, by {01, - , Oaim v, } and taking {Wi,- ,Wdaimw, }
to be a basis of W}, we expand z = Z?HT Un 7.0, and v = Z?ﬂl Wn \w; for given elements
z € U, and v € W, respectively. We introduce the stiffness and lumped mass matrices

(Ln)ij = [o(V0;,VO;) and (My,)s; := [, Tn(0:0;) for i,j € {1,---,dim U,}, respectively.
Moreover, we use the notation

Zk (6% ZTx - . .
(M(p(2))),; ::/Q%m,wﬁ, i,je{l,---, dim W,}.

for a weighted mass matrix on Wy, corresponding to a function z € U, which has mean-
value zero. Due to|(H4)| the associated symmetric bilinear form defines a norm which is
equivalent to the L?-norm for vectorfields on €.

We have to solve the nonlinear system (g;gg: “;g) = 0 of ¢ = dim U,+dim W}, equations
given by
G\(Z,V):=Z - ZF" + M, ' B, (V) (216)
+ 7MLy (M LhZ + F(z + a) + FL (2 + )
and
Go(Z,V) := M(p(2))(V = VF) + 7 (Ba(Z,V) + B3(V) + Bu(Z)) . (2.17)

Here, we emphasize that Z and V' are the coefficient vectors for the still unknown functions
z € Uy and v € Wj,. Within this proof, we shall assume in general that capital letters are
used to denote coefficient vectors of elements in U;, and W,. Moreover, with a slight misuse
of notation we write F’ (2 + «) for the coefficent vector corresponding to I, (F'(z + «)).
In addition, we have introduced the following new terms.

(By(V), = — / Fv,V8),  j=1,.-- dim Uy,



op ,. dp . . :
o [ S ) < [ SLG T = L din W
where j := — > U9, V6, with 0 = M(Z) € RI™ Ur being defined by

M := M, " (LnZ + My, (F} (2 + o) + F' (" + a))) .

Moreover,
(B3(V)); == 2/ n(z* +a)Dv : Dw;, j=1,--- dim W,
Q

and
dim Up

(Bi(2)), = / > MO(Vzwy),  j=1,-,dim W),
Q

=1

Let us introduce a new bilinear form on RY™ Ur x RIm Wr by

<< (‘Z/ll) ’ (12/22) >> =2/ LnZz + /Q <dimZWh (Vl)levdimZWh (V2)., Wm> . (2.18)

=1 m=1

Obviously, this form is a scalar product on K+ x RY™ Wr where K+ C RY™ Ur ig defined
by K+ = {W € RImUn . (M,W)T1 = 0} with 1 := (1,---,1)". By ||[|,,...» We denote
((- >>% It is easily verified that Z¥ € K+ and that G| maps K= onto itself.

Let us now argue by contradiction. To this purpose, we assume that for a positive number
R to be specified later on, a root (Z, V)7 of (Gy, G5)T did not exist on Bg(0) where Bg(0)
here denotes the ball of Radius R around the origin in the ||| . -norm. Then, due to

new

Brouwer’s fixed-point theorem (see [36]), the mapping H : Br(0) — Bgr(0) defined by

(Gl(Z7 V)aGQ(Za V))T
(G1(Z, V), Ga(Z, V))

H(Z,V):=—-R

||new

would have a fixed-point (Z,V) € K+ o = I
Following the ideas of [21], we introduce Y € R4m Ur o be the solution of

LyY =P {My {F.(z + o) + F.(z" + @) }}

where Py . denotes the orthogonal projection onto K*. Observe that

<<<‘Z/) ’ (Z JX;Y) >> - (LhZ)TZ+ (Z+al - aIL)TMh (Fi(z+a)— Fi(a)1)

+( ) MhF’(z +oz)+F'( )ZTMh]l+/|‘7|2

L) / Q

5 (MyF' (2 —|—a) My F' (2" + a).

l\DI(T)

(2.19)
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Here, we used the monotonicity of F as well as the fact that M, is a diagonal matrix.
Taking into account the equivalence of norms on finite dimensional spaces, there exists

R; > 0 such that B B
Z Z+Y
W)= 2
provided H(Z, I_/)Hnew > R;.
In a similar fashion, we show the existence of a number Ry > 0 such that

((@Z)-(757))) = 2

provided ||(Z, V)Hnew > R,. Note that (Z2I]) is a direct consequence of the energy
estimate in the discrete setting — see (B.I). In fact, we have chosen ((-,-)), G2, and Y in
such a way that (22I)) is just the coefficient version of testing the momentum equation

by vF*1, the phase-field equation by p**!, and the equation for the chemical potential by
O, 0", Hence,

() €30~ (@) (o)

G2(Z,V)

new

for R = max{Ry, Ry} which is a contradiction to (Z20). Hence, a discrete solution exists.
To obtain the existence of a pressure p**! and that way to justify (2.I4al), we proceed
as follows. Equation (2I4a)) defines a linear functional F : X; — R which vanishes on
W,,. Using Lemma 4.1 in [19] together with the stability condition the existence of
a pressure p**1 € G, is readily established. The lemma is proven. O

Remark 2.4. Note that no further assumptions, e.q. on the size of time-increments or
on the grid size, are necessary to prove existence of discrete solutions.

3. COMPACTNESS IN SPACE

In this section, we show that the discrete counterpart of the physical energy - i.e. the
sum of the kinetic and the interfacial energies - acts as a discrete Lyapunov-functional
provided no external forces are applied. We start with a local result.

Theorem 3.1. Assume that the triple (™!, pF+t vETL pEH) solves the system (Z14)
for given ((pk,,uk,vk,pk). Then,

%[/kaﬂ ‘Vk+1‘2_/pk}vk‘2+/pk}vk+l_vk}2:|
+2i[ [Vt /}w’f\2+/\wk+1—vgp’ff]
Q Q
%/ Zn (F (") —F(gok))—l—/ ‘jk+1‘2+/2'r;(<pk) }kaﬂfgo. (3.1)
Q Q
Y =0

Proof. Choosing ¢ := 07" in (214d) and v := p**! in [ZI4d), we infer - using the
convexity of F'y and of (—F_) (see |(H1) and |(H2)) - that

S e

+7—/th(F(90k+1) F /<Vk+1 Vuk+1><,0 <0. (32)
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Testing (214a)) by w = v**! and using the identity
1 1
(Clel — aob())bl — §<CL1 — CLo)b% = §(a1b% — aobg + a()(bl — b0>2),

which holds for a;,b; € R, 1 =0, 1, gives

QL [/ P ‘Vk—i—l‘Q _ / o }Vk‘Q + / o }Vk—f—l _ Vkﬂ
T lJa Q Q
+/2n(90’“) [DvFH|? = —/sok<vk,Vu’““>.
Q Q
By summation, (3.1)) follows. O

We immediately obtain the following global result.
Corollary 3.2. For every 1 <1 < N we have

3 [AWE 5 [1967+ [ 5 Z/m\vm“ v

1 - m m m m m
+§mZ:O/Q‘V<p H_ vy ‘24—7'2:/9}3 +1}2+TZ/27)(Q0 )‘Dv “}2
1
< 5/ PP 4 / VO +/th(p(¢0)). (3.3)
4. COMPACTNESS IN TIME
We begin this section with an auxiliary result.

Lemma 4.1. Let (@rn, firh, Vion, Prn) be a discrete solution of (ZI4) on (0,T). Then if
d=2and1 <g<oocorifd=3and1 < q <4, a positive constant C exists such that

lornll ao,ryco@y < CA+ D[] g (4.1)
Proof. Let us prove first that Ayp,;, € L2 (QT) Note the identity
— (An™10), = (W = FL(M) = FL(¢"),0), Y0 e U, (4.2)

which is a consequence of (2.14d)) and the definition (2.9) of the discrete Laplacian. Start-
ing from this identity and choosing § = —A,**!, we have

2 2
(P 15, = || Ane™ | + (|FL (@) + FL (M),
— 2(An " FL(@ ) = 2(200" T F(08)h

For the third term on the right-hand side, we get
(Ampkﬂ, F:L(Wkﬂ))h _ _/ <V<pk+1, VIhF:L<(pk+1)> <0 (4.3)
Q
according to Lemma 4.3 in |21, using in particular assumption (T1) on the triangulation.

Hence,

1
e < Q5 A s+ P2 M) (44)

I

By the linear growth of F’, absorption, and the energy estimate (8.3)), we find

2y < 2 [+ 1
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Hence,
2 2
| Aneenllzeorycay < CT %10y (4.5)
again using (3.3). By Theorem [6.4] formula (6.4)),
0
||V¢Th||L2((O7T)7L%*(Q)) S CT ng HHl(Q) : (46)

By interpolation, using the estimate
0
IVerll oo 0,7):22(0)) < € I HHl(Q)’

which follows from (3.3]), we find in space dimension d = 3 for every 1 < ¢ < 4 an exponent
p > 3 such that

||V§0Th||Lq((o,T);Lp(Q)) <C(1+T) H‘POHHl(Q) .
Therefore, estimate (@) follows using Sobolev embedding and the conservation of the
mean value of .. The argumentation in d = 2 dimensions is analogous. 0

The next step is to establish both L?-regularity of difference quotients in time and higher
regularity of the discrete Laplacian for the phase-field.

Theorem 4.2. Let (@, forn, Von, Drn) be a discrete solution of 2I4) on [0,T]. Assuming
N = %, we have the following.

(1) Positive constants Cy = Ci([| A [l 19°] 1y » 1Voll 12()) and Cs exist such that

T+t
sup }HAh(pkHi < (HAhSOOHz + Cl) exp (Cg <T+/ ||VTh||§{1 ds

ked{l,....N (4‘7)
0 2
+ <(T+ 7) [l¢ HH1(9)>
where q is defined in|(H1)
(2) A positive constant Cs = C3(T, || Ang®ll, s 1% 1, 1VOl12) exists such that
T
2 2
S A R e (48)
ke{1,2,...,N} 0

Proof. Using ([2.9) to define the discrete Laplacians A"t and App* in U, N HY(Q),
subtracting the corresponding weak formulations from each other and dividing by 7, we
have

4¢Awﬂumz/wawﬂv@ V0 € Uy
Choosing # = i+ and using (ZT10) ental
(07 Anh i) 4 (00 M, 0k, = /Q (V1 -V Yk
By (£2), we expand p**! to obtain
(07 D™, AntH) o+ [0 1
__ /Q (V1 Vg )ar gF1 4 koo divvi ) 4 (97 A, FL(M) + FL (),

=Ri+ Ry (4.9)



14 G. GRUN

Dlscrete integration by parts with respect to time gives — after a discrete time-integration

30 of @J) - for R

Ty Ry=-7 (") + FL()), Ant™) = (Ane®, L) + FL(&")),,

-1
k=0 k:O

l\J

(AhSONa F:L<<PN) + FL(SONil))h = Rgl + R§2 + R];s- (4.10)

Here, we used the well-known formula of integration by parts

=
L
L
o
=
=z

Z(@T_vi)wi (0Fw")v’ L r LY (4.11)

1=0 %

I
o

For the first term in R%,, we get by a similar argument as in (Z3))
(Anp™, FL(eN)), = _/ (VN VI, F, (™)) <0 (4.12)
Q

According to |(H1)|, we may estimate

‘(Ahgo 7F/ 1))h‘ < C(

). (4.13)

By an analogous argument for the term involving F” (using|(H2))), all the boundary terms
can be controlled by C' = C(||An°||, [V |l;2)-
For R}, we estimate using [(H2)| and [(H1)| (in particular the convexity of F?)

N-2
<o (P o + 1P o) 1076, a1,
k=0
-2
RV NI 1)

< 572 Ha k+1“h +C.T Z (1 + HSOHIH + H k+2” ) HAhgoqulHZ.

Finally,
N-1 N-1 ) N-1 ) 9
PR < er Y ot Cr YOIV ey (A ) (@19)
k=0 k=0 k=0

where we have used the estimate HVgpkHLq(Q) + HSOkHCO(Q) <C(1+ HAh‘pth) which holds

for all 1 < ¢ < 2% according to Theorem 6.4, formula (64). Note that we also took
advantage of the fact that ||-||, and [|-||,. are equivalent norms on U, with constants uni-

form in h, see (2.2). Collecting (£.9), ([AI12)-(4I14), (4I3) and taking the aforementioned
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boundedness of the boundary terms with respect to time into account, we get
IANQ 1A02 lN_lAkJrlAkQ
5 140"l = 5 1201+ 5 D 1Ane™" = Augtl,

k=0

1 N-1 - )
#yr e [ (N VI )
N-1

< (1802, 1962 Ivoll 2) + Cor 3 (14 [l0* [0 + o120 ) [l
k=1
N—1

+ C5m Y IV e A0t - (4.16)
k=0

In the next step, we apply a discrete version of Gronwall’s lemma (cf. e.g. [35] Lemma
4.2.3.]):

Lemma. Let €;,n;,7 = 0,...,m, be non-negative real numbers with ny < n; < ... < Ny
For § >0 and h = (ho, ..., hm—1) € (R§)™, assume the estimates

j
go<mn and e, < 52 higi +njt1 (4.17)
i=0

to hold. Then,

-1

<.

g; < mjexp (5 hi>, j=0,1,....,m. (4.18)

Il
o

From equation (£I6]), we infer
j—1 B B
I8 < (A + 1) -exp (072 (14 IV oy + I + Hsolﬂuéi))
0

=

< (HAWOHi + 01) Cexp (C (tj + /th+T [Vonl |31 ds 4 ((t; +7) H‘POHHJ?Q))

for all 1 < j < N. Note that we used (I in the last line, too. Hence, (4.7) holds true.
Estimate (4.8) immediately follows by combination of (A7) and of (Z.I6)). O

For the passage to the limit in the fifth term of (ZI4a) and in order to prove strong
convergence of v, in L?(Q27), we need results on improved integrability of j,,. Note that
so far j,, and Vv, are only known to be square-integrable with respect to time. For the
passage to the limit 7,h — 0, we need LP-integrability with an exponent p > 1 for the
product. This requires higher regularity of j,, with respect to both space and time. With
the perspective of a discrete analogon of compensated compactness, we look for estimates
of the discrete Laplacian of pi,; uniformly in (7, k). This will give higher integrability of
j-n with respect to space, too — see Corollary

Lemma 4.3. Let (@rp, firh, Voh, Drn) be a discrete solution on [0, T] and T > 0 be arbitrary,
but fized. Let w(-,t) € U, N HYQ) be defined as the negative discrete Laplacian of

uTh(~,t), i.e.
(W (1), 0), == (Viin (-, 1), VO) Vo € U, (4.19)
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Then a positive constant C' = C(T, |AL°], , | g1, V0]l 2) exists such that

T T
AHmﬂﬁWﬁméCAIWmRMESC (4.20)

Moreover, for every 1 <p < 2L,
jrn = =V iz is uniformly bounded in L*((0,T); LF(Q)). (4.21)

Corollary 4.4. Under the assumptions of Lemma[[.3, the functions ., are uniformly
bounded in L*((0,T);CP()) with f <2 — 4.

Proof of Lemma[[.3. Choose 0 = w** = w,; (-, tx11) as the test function in (£I9). Hence,

(warl’ wk+1)h _ (V,uqul’ Vwk+1)
@14 —(8;90k+17wk+1)h _ / <Vk+1’v(pk>wk+1 _/ Bk Qiy yh+
Q Q

Using Theorem [6.4], Theorem 2] and the energy estimate (3.3), we may estimate

N-1
) (et < TZH@* U+ TZHwk“Hh
k=0
N-1
73 IV ey (U A0 ], [l -
k=0

The last term on the right—hand side is bounded by

Cr Z V5 ey + 37 Z (i

with a constant C' = C(T, ||A<p s 1% g s ||V0||L2). By absorption, (£.20) follows.
The uniform boundedness in ([£2)) is a consequence of (£20), (£19), and Theorem

0
Proof of Corollary[{.4] This result follows by combining (4.21)) with the uniform bound-
edness of ., in space-time which follows by (4.8)) and Theorem [6.4] O

The following lemma provides the aforementioned higher integrability with respect to time
for j,5. It is a straightforward consequence of Lemma [4.3], interpolation, and the uniform
boundedness of g, in L>=((0,T); L?(2)), the latter of which follows by a combination of
(£8) with Theorem

Lemma 4.5. For arbitrary, but fized T > 0, there is a constant
C = C<T7 HASOOHh 9 HSOOHHl y HVOHLQ) SUCh that

I3l zaqgony + lenll agay + lienll - o) < C- (4.22)

Let us turn to the velocity field and let us prove compactness with respect to time for the
orthogonal L2-projection of p,,v,, onto W, in appropriate dual Sobolev spaces.

Lemma 4.6. Let ((pTh,,uTh,vTh,pTh) be a solution of [2I4)). Then for every T > 0 and
for every 1 <p < & =, a positive constant

C=C(T,p.||A, .

Pl 1Vl 2) < o0

exists such that

kawammmﬂ(mMW>§C' (4.23)
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Proof. We take w € S%~1([0,7); Wy dlv(Q)) arbitrarily. Recall that for T = N7 we

identify 7 Ziv:—; w* with the integral fo wdt. Choosing R,w as the test function in the
discrete version of the momentum equation and using L?-orthogonality, we have

T 1 T
O:/ /<8TRh(/?ThVTh),W>— 5/ /anTh<VTh<','+T),RhW>
0 Ja 0o Jao

1 [t . 1 /7 .

- = /Jrh Vo, (VRyW) v (-, - + 7')> + 5 pTh<VTh7 (Vvon(s, -+ 1)) RhW>
TJrT 5 TJrT 5

/ / p JTh7 vah) RhW - = / / p JTh, VRhW< T))TVTh>

T+T
+ / / 2n(orn(sy - — 7))Dvyy : DRyw +/ / Crn{Vprn (e, +7), Rpw)
T Q 0 Q

In the sequel, we sometimes do not indicate domains of integration if they are identical
with (0,7") or with €, and we estimate

|L2| <C Ha;pThHL2(L2) ’ ”V7—h<'7 -t T)H ’ H’R’hW”L5(W172) :

L% (e ¥ (@)

By the energy estimate (3.3) and interpolation between L°°(L?) and L*(W'?) (see e.g.
Proposition 3.3 in [14]), we have v,, € La(L*). Hence,

|Ls| < C ||V7-h|| § 4y Von (-, -+ T)||L%((T7T+T);L4(Q)) ||VRhW||L8_82d(L2).
To estimate Ls, we use (£22) and obtain
|L5| S C HjThHLgi((T7T+T);L3(Q HVVThHLQ( 7, T+7);Q ”RhWHL8+ w2y -

The remaining terms can be estimated in the same spirit, and we get

(due to (24))
L <C- ||RhW||L8+(WL2) < C- ||W||L8+(W172) ’

which gives the assertion. O

Lemma 4.7. There is a subsequence (1,h) — 0 such that Rp(pnV.n) strongly converges
in L*(Q7) to a limit function Z.

Proof. Note that

T T
| I¥ vl sc(sup HAsoThuiQ)- | vt
0 te(0,T) 0

(4.25)
T
+ C/ IV V|7, < const.

0

by (@), (64) and the boundedness of p,.
As WH2(Q) —— L*(Q) — (Wéfhv(ﬂ))/, the assertion of the lemma follows in a standard
way by combination of (£.23)), (£23), and Theorem O

Let us prove now that there is a subsequence (VTh)(T hNO such that v, strongly converges

to v € L*(Qr) with respect to the L2-norm. In particular, the limit function is contained
in L2((0,7); Wy'3, ().
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Lemma 4.8. Under the assumptions
v € L*((0,T); W) forallh > 0,7 >0, (4.26)
Ri(prnven) = Z strongly in L*(Qr), (4.27)
Vo = v weakly x in L=((0,T); L*) N L*((0,T); H'), (4.28)
prn — p  weaklyx in L®((0,T); H') ﬂHl((Hl)l>, (4.29)
pri — p strongly in L*(Qr), (4.30)

the following is true for a subsequence (T,h) — 0:

Z = P, (4.31)

/ | otval = / / oIV (4.32)
divv =0, (4.33)

Ven — v strongly in L*(Qr) . (4.34)

Proof. The proof will be divided into three steps.
Step 1: Let (ya), o be a bounded sequence in L2((0,7); WéQ(Q)) and assume that

Ruyn —y  in L*((0,T); Wg?(Q)). (4.35)
Then,
divy =0  ae. in Qx (0,7). (4.36)
Proof of Step 1: Take ¢ € L*((0,T); H'(Q2)) arbitrarily. Hence,

// gdivy = // (¢ — Spq)divy +/ Spq(divy — div Ryys)
Qr Qr Qp

+ / SnadivRyyn = I(h) + I1(h) + ITI(h).
Qr

By 1), Snq — q strongly in L?*(Q2r) (using Lebesque’s convergence theorem) and there-
fore lim;, o I(h) = 0. For II(h), we observe that div Ry, — divy in L*(Qr) and that
Snq strongly converges to g in L?(Qr). Therefore, this term vanishes in the limit, too.
Finally, I71(h) is always zero due to (2I4D). Now use that L*((0,7); H') is dense in
L?(Qr) and (A38)) is established. O

Step 2: We have
Z = lim Ry (prnven) = Py(pv). (4.37)
h—0

Proof of Step 2: By the identity R,v,, = v, and the orthogonality of the L?-projection

Ry, we have
// <p7'hv7'h7 VTh> - / <Rh(p7'hv7'h)7 V7h> .
QT QT

By (£27) and (£28)), we infer

tin [ o) = /[ A
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Let us prove that Z = P,(pv). Take ¥ € LZ((O T); W dlv(Q)) arbitrarily. We have

/ Rh pTthh Rh / / prthh,Rh )
QT QT

By estimate (2.5]) and Lebesgue’s theorem, we have the strong convergence R,% — ¥ in
L?(€2). Since also p,; — p strongly, we have

// (Z,%) = hm// (Ri(praVen), RpX) = hm // (PraVrn, RiX)
Qrp
e
Qrp

for all & € L*(I; Wy 5,(Q)). Therefore, P,(pv) = P,(Z). Step 1 implies that divZ = 0
and therefore P,(pv) = Z. O
Step 3: v,, — v strongly in L*(Qr).

1
Here, we translate ideas of [2] to the discrete setting. Introducing o, 1= p2, Vp,

we find
Orp — p%v in L*(Qp).

At the same time

Vrh=RnrVrh)
[ 1o =[] tpavanva) R, v
QT QT QT

converges to [[, (Py(pv),v). By Step 1 and assumption (&.28), v is solenoidal.

T i [ = [

Therefore, o,, — p2v strongly in L3(Qz). To obtain ([@34), use that p,, is
bounded from below by a positive constant (see [(H4)). The lemma is proven.

O

5. PASSAGE TO THE LIMIT (7,h) — 0

Let us begin this section by stating some boundedness and convergence results not ex-
plicitly mentioned before. By (47) and (6.4]) in Theorem [6.4] we observe that

(¢71) is uniformly bounded in L (W'?(€2)) for all p < % (5.1)
Moreover, a subsequence (7,h) — 0 exists such that
(V1) strongly to v in L*(Q7), (5.2)
(Ru(prnvzn)) strongly to Py(pv) in L*(Qr), (5.3)
(¢-1) strongly to ¢ in L*(Qr), (5.4)
(1rn) weakly to puin L*((0,T); H' (). (5.5)

For a proof of (5.2) and (5.3]), see Lemma [£.8] in particular formula (£37). Moreover,
(54) and (B.5) follow from (A8) combined with the energy estimate (3.3) and the com-
pactness result of Simon (see Theorem [6.1]).

The most critical term for the passage to the limit in (2.I4]) is the fifth term in equation
(2.I14a). At present, we only know j,;, and Vv, weakly to converge in certain LP-spaces
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of space and time to j = —Vu or to Vv, respectively. On a formal level, one might argue
that the divergence of j,, is controlled. On a rigorous level, we are only able to bound
the discrete Laplacian of p,,. But it turns out that this is already sufficient due to the
LA(L?) N L?(L%)-regularity of j,,. The following lemma allows to identify weak limits.

Lemma 5.1. There is a subsequence (17,h) — 0 such that Vv, ,j.;, weakly converges in
L9((0,T); L3 (), 1 < g < 3, to —VvV.

Proof. Combining (3.3 with (£.22)) yields uniform boundedness of (Vv 4jr1)(n)—0 in the

space L((0,T); L5(Q)) for any ¢ < 2. Hence, a weakly convergent subsequence exists
with limit Z in that space. Let us identify Z = —VvVpu. First, we note the existence of
aset & C (0,T) with u1(€) =T, such that —=Vv, Vi, = Vvjn weakly converges to

Z for all t € £. Next, we show that for ¢t € £

To this scope, we consider for t € £ the auxiliary problems

—AM (1) = wopn(-, 1) in €, (5.6a)
0
5/\47;1(-, t)=0 on 0%, (5.6b)

/QMTh(x,t)dx:/QMTh(x,t)dx, (5.6¢)

where w,, € H}(Q) N U, is the negative discrete Laplacian of .y, (cf. (£19)). By (6.3),
(5:6d)), and the mean value Poincaré inequality, we have the existence of a positive constant
C such that

[(trn = Men) (5 Dl ) < Chllwen( D1l 20 (5.7)
for all t € £. By elliptic regularity theory, we have
[Men( Dllwre) < Cllwen( Dl 2 (5.8)

uniformly in £ and for (7, h) — 0. From (5.7), we infer
/ |(VVThVMTh - VVThvluTh)('at” S ||V(MTh - Mrh)(', t)HLQ : ||VVTh('7t)||L2 hj)o 0
Q

Due to the LS-regularity of VM., we have Vv (-, ) VM (-,8) — —Z(-,t) in L2~(9).
Now observe the following identity for arbitrary X € C*(2; R?)

/Z(-,t)E: ~dim [ VMol )(Vvan( 1)

(r,h)=0 Jq

= lim {/Q(AMmVrh)('at)E+/QVMTh(',t)(VE)TVTh('at)}

(m,h)—0
:/Qw(v(-,t),2>+/QVM(VE) v:—/gwﬂ, (VTS (5.9)

Here, we used in particular that w,;, — w in L?*(Qr), and that u.;, — u in L*(Q7) and
w.l.o.g. pointwise in ¢t € £ for an appropriate subsequence. In particular,

/Q (Vp, V) = /Q wh
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for all 0 € H'(Q). Since C'(2;R3) is dense in LP(Q) for all 1 < p < oo, we have the
identity

Z(-,t) = (=(Vv)Vu)(-, 1)
for all t € £. This gives the assertion of the lemma. O

Now we are in the position to state a first convergence result.

Theorem 5.2. Let Q C RY, d € {2,3}, be a convex polyhedral domain and let initial
data ®g and Vo be given. Let I = (0,T). Assume that |(H1){(H4), |(S1)H(S6), and|(T1),
are satisfied and that (.p, trh, Vo) @8 a sequence of discrete solutions to the system

(2.14)). Then functions
v e L™ (I, L*(Q) N L*(I; Wy, (),
p e Lx(I; H*(Q) N H' (I, LX), (- 0) = @),
p€ L®(I; L2(Q) N L*(L; WH(Q)) N L*(1; Wh(2))

exist which solve the system (1)) in the generalized sense that

//pv— (®0) Vo, Ohw ——/ /@pvw // vw)'v)
+§/0 /va,(vV)Tw +§/0/—j,( ——// J (Vw)! >
//2n )Dv : Dw = // (Vp,w

for all w € Cl( W(l] iw(Q)) satisfying w(-,T) =

//&(p@—l—/ / (Vo,v 9+/ / (Vu, Vo) =0 (5.11)

for all 0 € L*(I; H(

(5. 10)

u(,t) = =Ap(- 1) + F'(p(, 1)) (5.12)
for almost all t € I. Moreover, for a subsequence (1,h) — 0 the following convergence
results hold true:

o v, — v strongly in L*(Qr),
Ri(prnVen) — By(pv) strongly in L*(Q7),
©rn — @ strongly in L*(Qr) and in LP (I; Cﬁ(Q)) for anyp < oo and any 5 < 2—%,
Pt — I (rn) — InE" (@rn(c, - — 7)) = —Ap weaklyx in the space
L>(I; LQ(Q)) N LA(I;WH=(Q)) N LA(T; WH2(Q)),
o I F' (orn(+,- — 7)) = F' () strongly in LP(Qr) for any 1 < p < oo,
o I, F' (¢rn) — F' (p) strongly in LP(Qr) for any 1 < p < oc.

Remark 5.3. 1. For the pressure, we obtain similar results as in the case of equal mass
densities — see e.g. [16]. Choosing an arbitrary test function w € X}, in (2.14D)), summing
up over subintervals in time and using it follows that fOtpTh(.,s)ds 15 uniformly
bounded in L>(I; L*(Q)). Hence, a weakx-limit exists for (7,h) — 0, which may be used
i a very weak solution concept in the sense of distributions allowing for non-solenoidal
test functions in the momentum equation. For details, see the equal density case [16].

2. Solutions constructed in Theorem[5.2 are generalized solutions to the system (LI since
it is a priori not possible to identify g—g with p'(p). In Corollary[5.4), we will show that they
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are in fact weak solutions as soon as ¢ attains values only in the interval [—1 — @, 1+ @]
with ¢ given in . In this case, conservation of individual masses is quaranteed, too.
Therefore, the questwn whether solutions constructed in Theorem [2.2 are in fact weak
solutions of (ILT)) is reduced to the problem of finding optimal L -bounds for the solutions
in (BI0). See Corollary[53 for a first result in that direction.

Proof. Let us begin with a discussion of the convergence results. The first two of them were
already obtained in (5.2) and (5.3). The strong convergence of ., — @ in LP(I; C?(Q))
forany ]l <p<ooandany 0 < <2 — g is a consequence of (L8) combined with (5.1),
Simon’s Theorem [6.1] and the compactness of the embedding W14(Q) <~ C#(Q). The
strong convergence of the terms Z, F' (¢4 (-, -—7) and Z, "} (-4) is implied by the uniform
boundedness of ¢, (see (G.1)) and its strong convergence in LP(I; C?(Q)) combined with
Lemma 631 Finally, note that pi., — ZyF" (0rn) — I (@7n(-,- — 7)) = —Apprn . By
(@), a weakly convergent subsequence of App.p exists, and by duality its limit can
easily be identiﬁed with —Ay (using the weak convergence of V., in L>°(I; LP(Q2)) for
all p < 24). Hence, (5.12) is established as well.

It remains to prove that (5.10)-(5.11) hold true. Let us begin with (5.10). Writing N :=
we take the sum 7 Ziv;ol in the discrete equation (2.I4a)). Hence,

\]

Nz:/ “ R (pF v k+1> /apk+1<vk+1 k+1>
k=0
%Nz/ k<v (Vwh) Ty k+1>+ Z/ k<v vEHHT k+1>
T 5;0 k+1 k+1 T wht1 / k+1 E4+1\T  k+1
2H/ ST ) - z S (Tt TR
N-1
+TZ/9277(<,01“+1)DV’“+1:Dwk+1:—TZ/ngk<V,uk+1,wk+l> (5.13)
k=0 k=0

2

+

for all step functions w € S%~(I; W,). Using (4£I1)), the first term can be rewritten

N-1
TZ/<6;Rh(pk+1vk+l),wk+l>
k=0 /€

-7 i /Q (0w, Ru(p*v") — Rh(p(QpOh)VOh»J“/Q (WY, Rp(p"v™) = Ru(p(0on)von))-
- (5.14)

Now choose X € C*([0,T]; W5, (22)) N CY([0,T]; HA(Q)) with (-, T) = 0 arbitrarily,
but fixed. Take X.|;, := Q&% 3(-,#). Recalling [2.8) and using X,,(-,T) = 0, (513)
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may be rewritten as

_/OT/QU%(/)Tthh) — Ru(p(pon)Von), 0 o)

_1/“/apmvm< 7). S+ 7))

Vo (VSn(e 7)) Von 7))

[ fod

/ /ﬂrh Vo, (Vv (s, +7))T27h(.7.+7)>
op

dp

5 [ LG~ 5 [ ]2 (V2 )
+/TT/927)(<PTh(~ 7))Dv,p DEm—/ /goTh UV prn, Brn) =0 (5.15)

By , formula (2.6]), we infer the strong convergence of 3., to ¥ in L?(I; H*(Q)) as
well as the strong convergence of 973, to 9,3 in L2(I; H(2)). From (5.3), it follows
that Ry, (p,;nv,1) strongly converges to P,(pv) in L?(Q7). In particular, Ry,(p(¢on)von)
strongly converges to P,(p(®y)Vy) in L?(Q) by arguments similar to those used in the
proof of Lemma

As the Helmholtz projection P, is orthogonal, we may identify the limit of the first term
in (5.I5) with the first term in (5.I0). To discuss the second and third term in (B.13)),
we employ the weak convergence of 0~ p,;, towards 0,p, which is a direct consequence of
the L?(Qr)-boundedness of 97, as well as of the results on strong convergence for v,
V3, and 3, (see (B.2), ([AF), and (20)).

A similar reasoning also applies to the fourth, sixth and seventh term, this time taking ad-
vantage of the uniform boundedness (8.3]), (£22). For the fifth term we use that Vv pj-p
weakly converges to —VvVy in LI((0,T); L5 (Q)) for all 1 < ¢ < 2, see LemmaB5.1l To-
gether with the strong convergence of 35, also this limit is readlly 1dent1ﬁed. To discuss
the last term, we observe that p, weakly converges in L?(I; W= (Q)) N LA(I; W12(Q))
to p. Together with the strong convergence of ¢, in LP(I; C#(Q)) for any 1 < p < oo,

1
2
1
T3

we find that this term converges to —fOT fQ ©(Vu, w). Integration by parts, using the
solenoidality of w, gives the result. Let us discuss (B.IT)). Similarly as in (5I0), we
take the sum 73 0 in the discrete equation (ZIZd). Replacing 73~ ' by fOT dt and
choosing v € C°([0, T]; H*(Q)) arbitrarily, but fixed, we have for 1., defined by the Ritz
projection @/}Th|lk = Ppi(+, tx) that

T T
/ (a;(pTh’ wTh)h - / <V7h('7 -+ 7—)7 vd@'h)@ﬂ'h
0 0

+ /0 (Vitn(ey-+7), Vi) = 0. (5.16)

Combining (2.1)) and (48) with the fact that Pp2(-, ) converges to ¢ in H*(Q) for h — 0
(see ([23)), we find that the first term in (5.16]) converges to the first term in (5.I1)) as
(1,h) tends to (0,0). The remaining terms may be discussed in a standard way, using
(2), (E22), (5T) as well as the approximation properties of Pj,. By a density argument
and integration by parts in the second term, (5.I1]) follows. This proves the theorem. O
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Corollary 5.4. Consider the solution (@, ju,v) obtained in Theorem[5.2 and assume that
in a time-interval [0, T] the phase-field ¢(-,t) attains only values in (—1 — @, 1+ @) with
the parameter ¢ as in[(H{). Then, (¢, u,v) solves the system (1) on (0,T) in the sense

L [ [ faonr | [l
T (e | oo e | froom

for all w € C* ((O,T); Wéfhv(ﬂ)) satisfying W( ) 0,

/OT/QatsoM/OT/Q<w,v>e+/0T/Q<w,ve> — 0 (5.18)

for all 0 € L*((0,T); H()),

p(t) = =Ap(- 1) + F'(p(-,1)) (5.19)
for almost all t € (0,T). In particular, (517) is a weak formulation of (LIal).
Proof. Observe that (5.I1]) implies for ¢ € (—1 — @, 1 + @) the identity

—%/OT/Qatpw,w:
_/T/atmv,WHz/T/pv,(w Vot [ [ ol mvr)
//&OJ’VV //590J’VWT>
(5.20)

Inserting (5:20) in (5.10) and using that p = p on (—1 — @, 1 + @) gives the result. O

(5.17)

We are already in the position to formulate a criterion which guarantees that the assump—
tion of Corollary B.4] is satisfied. With a grain of salt, the condition ¢ < 2’“ , see

translates to the condition that the modulus of ¢ is bounded by the i 1nverse Atwood num-
ber. The Atwood number ZQ +Z; itself is a measure for the density contrast. Obviously, it
attains values close to zero for a small density contrast and values close to one for a large
density contrast. Hence, combining a continuous counterpart of the estimate (A7) with

Corollary B.4], we have the following result.

Corollary 5.5. For given initial data ®y, Vo, there is a number o € (0, 1) such that for
all Atwood numbers ’32 p; < « there ezists a positive time T such that the generalized

solution (B.10) - (IBJEI) is a weak solution to (IL.I)).

Let us conclude the paper with some remarks related to practical computations. For given
grid parameters 7 and h, given external forces kg4, and a given tolerance ¢ > 0, it is
always possible to find a regularization of a logarithmic potential which guarantees that
discrete solutions ., corresponding to 7, h are confined to the interval (-1 —e,1+¢) —
for a related reasoning in the case of the thin-film equation with singular potentials, see
[21], Section 5. It remains an open problem, however, whether there is a regularization
depending on A such that the limit process h — 0 can be performed.

Finally, numerical experiments: This scheme has been implemented in two and in three
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space dimensions — see [22] and [30]. Numerical experiments — ranging from Rayleigh-
Taylor instabilities to rising drop experiments and comparisons with other modeling ap-
proaches (see [22]) — show the full practicality of this approach. In particular, in char-
acteristic 2D simulations, an experimental order of convergence of FOC = 1.9 has been
obtained.

6. APPENDIX

In the appendix, we collect a number of results frequently used in the paper. We begin
with statements on relative compactness.

Theorem 6.1 (Simon [33, page 84|). Let X C B C Y be Banach spaces with compact
embedding X — B and 1 <p < oo. If FF C LP(I; X) is bounded and

[fCo+h) = FC N or—ny) = 0
uniformly for f € F as h — 0, then F' is relatively compact in LP(I; B).

Theorem 6.2 (Fréchet-Kolmogorov [7]). Let Q C R™ be a bounded domain. For 1 <p <
00, a set A C LP(Q) is relatively compact if and only if

i) supgeq || fl7, < C < o0

il) supgeq [If(- + 1) = fll, = 0 for |h] = 0.
We also need the following straight forward consequence of Theorem [6.21
Lemma 6.3. Given a sequence (Tn,hn)neN — 0, assume p,, p, to converge strongly in
the space L*(0,T; L*(2)) to p. Then the sequence (pr, n, (- -+ Tn) - Xjor—m)) eny SETONGLY
converges to p in the space L*((0,T); L*()).
For the reader‘s convenience, we reformulate regularity results for the discrete Laplacian
associated with the lumped masses scalar product which were part of the proof of Theo-

rem 6.1 in [2I]. Note in particular that (6.4)) is a discrete version of Sobolev’s embeddding
theorem.

Theorem 6.4. Let Q be a convex, polyhedral domain in RY, d € {2,3}. Related to f), €
U, N HX(Q), consider

i) ¢ € HL(Q) which solves the variational equation
[ wo.v0) = [ fuw (6.1)
0 0

for all v € HY(Q),
ii) @, € U, N HY(Q) which solves the discrete variational equation

[ v vw) = (v, (6.2
Q
for all W, € U,.
Then,
i) there is a positive constant C' such that
VO, — Vo r2) < C - bl fullr2(), (6.3)
ii) forany 1 <p< d2—_‘12, there is a positive constant C(p) such that
IVOulr@) < C)II fallr2()- (6.4)

Our last result guarantees H!-stability of the L?-projection R onto the space of discretely
divergence free vector fields.
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Lemma 6.5. Let T, be a quasi-uniform triangulation of the polyhedral domain Q and let
the triple (X5, Wy, Sy) denote the function spaces corresponding to Py Py-elements or to
Taylor-Hood elements. Then, there is a constant C', such that

||VRhV||L2(Q) <C ||VV||L2(Q) (6.5)
for all v € W*(Q).

Proof. Our argument is based on the explicit formulae for the orthogonal L?-projection
from X; onto W, to be found in Section A.5.3 of [20]. For the ease of presentation,
we consider here only the case d = 3, the case d = 2 being analogous. Writing N, for
the degrees of freedom of each component of the velocity field, we have for an arbitrary
element of X,

Ny U

_ h

u, = U; ¢i
i=1 \w;

with real coefficients u;, v;,w; and finite-element basis functions ¢! € H}(f2). Similarly,
we write IV, for the degrees of freedom of the pressure and have

NP
A = Z My € Uy
k=1

for a generic element in the space of pressure functions.
Following the presentation in [20] (which is restricted to the two-dimensional case), we
introduce matrices

Mh c RN’UXN'U’ Mz]; = /Q(b?('r)(b?(x)

and C!', Cl, O € RN*Ne defined by
0
CMyp = — [ b gh
( x)k A¢ka$ 1)
0
Chi = h_—_ph
( y)k L¢kay R

0
(Cz)lk /kaaz R

Zajzla 7Nv7k:17“' 7Np'
Given an element

the orthogonal projection

is obtained by solving the linear system
u I—(m~topaten™  —(amTroragton” o —(MTrorAt e\ fa
(v) = ( —(MM~teka et - (mhyTiek A T —(hyTiek A ()T ) (u> (6.6)
—(MmTroraAtenT  —TretATi e 1 (mh)Trok AT (o)

w w

where

Ay = (CIYT(MP) I+ (O (M) 1Ol 4 (CHYT ()1
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Concerning well-posedness of this system, we refer to [34] and [20].

In order to prove H!-stability of Ry, we have to discuss two issues. First, we show that
the matrix in (6.6]) scales as h° in the case of a quasi-uniform triangulation 7. Indeed, M"
scales like h* and the matrices C, C', C7 scale like h* — using the fact that the volume
of elements T € Ty, scale in three spatial dimensions like h3. Hence, A, scales like h and
the matrices of the generic type (M")"1CPA; 1 (CM)T scale like h® = 1. As a consequence,
H'-stability follows for the restriction of R on Xj.

To show also H'-stability of R, : W5(2) — W), we note that

Rh = Rh o} Qh (67)

on W?(Q) where Q, : Wy*(Q) — X, is the orthogonal L?-projection which is well-
known to be H'-stable, see [10], [I1], and [13] . For a proof of (6.7]), we refer to Section
A.5.6 in [20]. This proves the second assertion of the lemma. O
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