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Abstract. This paper is concerned with methods for computing
certified bounds for the isolated eigenvalues of self-adjoint oper-
ators. We examine in close detail the connections between an
extension of the Temple-Lehmann-Goerisch method developed a
few years ago by Zimmermann and Mertins, and a general frame-
work considered by Davies and Plum. We propose employing the
former as a highly effective tool for the pollution-free numerical
estimation of the eigenfrequencies and field phasors of the reso-
nant cavity problem on a bounded region filled with a generally
anisotropic medium, by means of finite elements.
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1. Introduction

The goal of this paper is two-folded. On the one hand, we examine
in close detail the equivalence between an extension of the Temple-
Lehmann-Goerisch method [21] developed a few years ago by Zimmer-
mann and Mertins [25], and a pollution-free eigenvalue bound calcula-
tion method considered by Davies and Plum [18]. On the other hand,
we show that the former can be effectively applied for finite element
computations in the context of the resonant cavity problem.

Let Ω ⊂ R3 be a domain which is bounded, open and simply con-
nected. Let ∂Ω, the boundary of Ω, be sufficiently regular (see Sec-
tion 5) and denote by n its outer normal vector. The numerical es-
timation of the angular frequencies ω ∈ R and electromagnetic field
phasors (E,H) 6= 0 of the Maxwell eigenvalue problem,

(1)


curlE = iωµH in Ω

curlH = −iωεE in Ω

E × n = 0 on ∂Ω,

is known to be extremely challenging for general data. Here and else-
where the electric permittivity and the magnetic permeability, ε and µ
respectively, are positive and such that

(2) ε,
1

ε
, µ,

1

µ
∈ L∞(Ω).

The physical phenomenon of electromagnetic oscillations in a res-
onator is described via equation (1), restricted to the solenoidal sub-
space which is characterized by the Gauss law:

(3) div(εE) = 0 = div(µH).

The orthogonal complement of this subspace in a suitable inner prod-
uct (see [7] and references therein) is the gradient space, which has
infinite dimension and it lies in the kernel of the self-adjoint opera-
tor M associated to (1). In turns, this means that (1)-(3) and the
unrestricted problem (1), have the same non-zero spectrum and the
same corresponding eigenspace. In this paper we propose computing
the non-zero angular frequencies and field phasors of the resonator, by
means of the latter.

The operatorM does not have a compact resolvent and it is strongly
indefinite. The self-adjoint operator associated to (1)-(3) has a compact
resolvent but it is still strongly indefinite. By considering the square of
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M on the solenoidal subspace, one obtains a positive definite eigenvalue
problem (involving the bi-curl, for example, if the medium is isotropic)
which can in principle be discretized via the Galerkin method. One
serious drawback of this idea for practical computations is the fact
that the standard finite element spaces are not solenoidal. Usually,
spurious modes associated to the infinite-dimensional kernel appear
and give rise to spectral pollution. This has been well documented and
it is known to be a manifested problem whenever the underlying mesh
is unstructured, [2] and references therein.

In order to overcome the difficulties involved in the finite element
treatment of (1), various ingenious methods have been considered in
the past. One possible approach [10], is to enhance the divergence of
the electric field in a fractional order negative Sobolev norm. Another
possibility [12], is to combine nodal elements with a least squares for-
mulation of (1)-(3) re-written in weak form. Moreover, the latter ansatz
can also be incorporated into (1) by means of a Lagrange multiplier
and then one can use continuous finite element spaces of a Taylor-Hood
type, [13]. Perhaps the most effective among these methods, [9, 8], con-
sists in re-writing the spectral problem associated to M2 in a mixed
form and then employ edge finite elements. This approach turns out to
be linked to deep results on the rigourous treatment of finite elements
and it is at the core of elegant geometrical ideas, [2].

Unfortunately, and to the best of our knowledge, all these computa-
tional techniques exhibit two main limitations.

a) They are not certified. To be precise, computed eigenvalues
are not necessarily guaranteed one-sided bounds of the exact
eigenvalues in general, despite of the possible convergence of the
method.

b) Detecting the multiplicity of an eigenvalue or the presence of a
spectral cluster is extremely difficult.

Below we propose an alternative approach for computing the eigenval-
ues of (1) which addresses these limitations. The strategy is completely
general in character and it is based on the method developed by Zim-
mermann and Mertins in [25]. The procedure is robust in the sense
that any standard class of finite elements, including the ones based
on nodal degrees of freedom, can be implemented to perform compu-
tations which are certified up to machine precision. In recent years,
this method has been successfully used in the context of the radially
reduced magnetohydrodynamics operator [25, 11], the calculation of



4 G.R. BARRENECHEA, L. BOULTON, AND N. BOUSSAID

complementary bounds for the Helmholtz equation [5] and the calcu-
lation of sloshing frequencies in the left definite case [4].

The method of Zimmermann and Mertins is closely linked to another
pollution-free technique for eigenvalue computation which is based on
a notion of approximated spectral distance. This other method was
formulated by Davies in [16, 17] and was later developed by Davies
and Plum in [18], but it is yet to be tested properly on models of
dimension other than one. Below we develop further the arguments
presented in [18, Section 6], in order to determine the precise nature of
the equivalence between these two techniques.

In Section 2 we extend various canonical results from [18]. No-
tably, we include multiplicity counting (Proposition 1 and also the Ap-
pendix A) and a description of how eigenfunctions are approximated
(Proposition 3). The method of Zimmermann and Mertins, on the
other hand, is introduced in Section 3. We derive the latter in a self-
contained manner independently from the work [25]. See Theorem 6
and Corollary 7.

Section 4 addresses the questions of convergence and upper bounds
for residuals in both methods. The main statements in this respect are
Theorem 10, Corollary 11 and Theorem 12, where we determine general
convergence estimates with explicit residuals for a finite group of con-
tiguous eigenvalues. The results of Section 3 and Theorem 12 are then
employed in Section 5, in order to establish concrete approximation
rates for the pollution-free numerical solution of (1) by means of the
Zimmermann-Mertins method on nodal finite elements. Theorem 14
collects the main contribution in this respect. We show that the rate
of convergence found is optimal for this class of trial spaces. Note that
we have chosen the most widely available class of finite elements here,
with the purpose of illustrating our findings in a concrete accessible
manner. However the technique described in sections 2 and 3 is com-
pletely general in character. It can, for instance, be also implemented
on other classes of basis functions for problem (1).

The final part of the paper is devoted to concrete computational ap-
plications. A certified numerical strategy is specified in the Procedure 1
of Section 6. According to Lemma 16, this strategy is convergent in a
suitable regime for the finite element approximation of the solutions of
(1). Section 7, on the other hand, contains various benchmark numer-
ical experiments. A companion Comsol Multiphysics v4.3a Livelink
code, which was employed to produce some of the results presented in
Section 7, is included in the Appendix B.
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2. Approximated local counting functions

This section is devoted to notions of approximated spectral distance
and approximated local counting function for self-adjoint operators.
We follow closely the framework established in [16, 17, 18]. These no-
tions and their properties will lead in the next section to the formulation
of a method for eigenvalue computation which has been examined in
[25] and subsequent works [5, 4]. Various results in all these references
can be recovered from the unified approach presented below.

Let A : D(A) −→ H be a self-adjoint operator acting on a Hilbert
space H. Decompose the spectrum of A in the usual fashion, as the
union of discrete and essential spectrum, σ(A) = σdisc(A) ∪ σess(A).
Let J be any Borel subset of R. The spectral projector associated to
A is denoted by 1J(A) =

∫
J

dEλ. Hence Tr1J(A) = dim1J(A)H. We
write EJ(A) = ⊕λ∈J ker(A − λ) with the convention Eλ(A) = E{λ}(A).
Generally EJ(A) ⊆ 1J(A)H, however there is no reason for these two
subspaces to be equal.

Let t ∈ R. Let qt : D(A)×D(A) −→ C be the closed bilinear form

(4) qt(u,w) = 〈(A− t)u, (A− t)w〉 ∀u,w ∈ D(A).

For any u ∈ D(A) we will constantly make use of the following t-
dependant semi-norm, which is a norm if t is not an eigenvalue,

(5) |u|t = qt(u, u)1/2 = ‖(A− t)u‖.
By virtue of the min-max principle, qt characterizes the spectrum which
lies near the origin of the positive operator (A− t)2. In turn, this gives
rise to a notion of local counting function at t for the spectrum of A.

Let

dj(t) = inf
dimV=j
V⊂D(A)

sup
u∈V

|u|t
‖u‖

so that 0 ≤ dj(t) ≤ dk(t) for j < k. Then d1(t) is the Hausdorff
distance from t to σ(A),

(6) d1(t) = min{λ ∈ σ(A) : |λ− t|} = inf
u∈D(A)

|u|t
‖u‖

.

Similarly dj(t) are the distances from t to the jth nearest point in σ(A)
counting multiplicity in a generalized sense. That is, stopping when the
essential spectrum is reached. Moreover

dj(t) = dj−1(t) ⇐⇒


either dim E[t−dj−1(t),t+dj−1(t)](A) > j − 1

or t+ dj−1(t) ∈ σess(A)

or t− dj−1(t) ∈ σess(A).
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Without further mention, below we will always count spectral points
of A relative to t, regarding multiplicities in this generalized sense.

We now show how to extract certified information about σ(A) in the
vicinity of t from the action of A onto finite-dimensional trial subspaces
L ⊂ D(A), see [16, Section 3]. For j ≤ n = dimL, let

(7) F j
L(t) = min

dimV=j
V⊂L

max
u∈V

|u|t
‖u‖

.

Then 0 ≤ F 1
L(t) ≤ . . . ≤ F n

L (t) and F j
L(t) ≥ dj(t) for all j = 1, 2, . . . , n.

Since [t − dj(t), t + dj(t)] ⊆ [t − F j
L(t), t + F j

L(t)], there are at least j

spectral points of A in the segment
[
t − F j

L(t), t + F j
L(t)

]
including,

possibly, the essential spectrum. That is

(8) Tr1[t−F jL(t),t+F jL(t)](A) ≥ j ∀j = 1, . . . , n.

Hence F j
L(t) is an approximated local counting function for σ(A).

As a consequence of the triangle inequality, F j
L is a Lipschitz contin-

uous function such that

(9) |F j
L(t)− F j

L(s)| ≤ |t− s| ∀s, t ∈ R and j = 1, . . . , n.

Moreover, F j
L(t) is the jth smallest eigenvalue µ of the non-negative

weak problem:
(10)
find (µ, u) ∈ [0,∞)×L\{0} such that qt(u, v) = µ2〈u, v〉 ∀v ∈ L.
Hence

(11) F j
L(t) = max

dimV=j−1
V⊂L

min
u∈L	V

|u|t
‖u‖

= max
dimV=j−1

V⊂H

min
u∈L	V

|u|t
‖u‖

.

We now show how to detect the spectrum of A to the left/right of t
by means of F j

L in an optimal setting. This turns out to be a crucial
ingredient in the formulation of the strategy proposed in [16, 17, 18].
The following notation simplifies various statements below. Let

n−j (t) = sup{s < t : Tr1(s,t](A) ≥ j} and

n+
j (t) = inf{s > t : Tr1[t,s)(A) ≥ j}.

Then n∓j (t) is the jth point in σ(A) to the left(−)/right(+) of t count-

ing multiplicities. Here t ∈ σ(A) is allowed and neither t nor n∓1 (t)
have to be isolated from the rest of σ(A). Note that n−j (t) = −∞ for

Tr1(−∞,t](A) < j and n+
j (t) = +∞ for Tr1[t,+∞)(A) < j. Without

further mention, all statements below regarding bounds on n∓j (t) will
be void (hence redundant) in either of these two cases.



MAXWELL EIGENVALUE ENCLOSURES 7

Proposition 1. Let t− < t < t+. Then

(12)
F j
L(t−) ≤ t− t− ⇒ t− − F j

L(t−) ≤ n−j (t)

F j
L(t+) ≤ t+ − t ⇒ t+ + F j

L(t+) ≥ n+
j (t).

Moreover, let t−1 < t−2 < t < t+2 < t+1 . Then
(13)
F j
L(t−i ) ≤ t− t−i for i = 1, 2 ⇒ t−1 − F

j
L(t−1 ) ≤ t−2 − F

j
L(t−2 ) ≤ n−j (t)

F j
L(t+i ) ≤ t+i − t for i = 1, 2 ⇒ t+1 + F j

L(t+1 ) ≥ t+2 + F j
L(t+2 ) ≥ n+

j (t).

Proof. We firstly show (12). Suppose that t ≥ F j
L(t−) + t−. Then

Tr1[t−−F jL(t−),t](A) ≥ j.

Since n−j (t) ≤ . . . ≤ n−1 (t) are the only spectral points in the segment

[n−j (t), t], then necessarily

n−j (t) ∈ [t− − F j
L(t−), t].

The bottom of (12) is shown in a similar fashion.
The second statement follows by observing that the maps t 7→ t ±

F j
L(t) are monotonically increasing as a consequence of (9). �

The structure of the trial subspace L determines the existence of
t± satisfying the hypothesis in (12). If we expect to detect σ(A) at
both sides of t, a necessary requirement on L should certainly be the
condition

(14) min
u∈L

〈Au, u〉
〈u, u〉

< t < max
u∈L

〈Au, u〉
〈u, u〉

.

By virtue of lemmas 4 and 5 below, for j = 1, the left hand side
inequality of (14) implies the existence of t− and the right hand side
inequality implies the existence of t+, respectively.

Remark 1. From Proposition 1 it follows that optimal lower bounds for
n−j (t) are achieved by finding t̂−j ≤ t, the closer point to t, such that

F j
L(t̂−j ) = t− t̂−j . Indeed, (13) gives, t−−F j

L(t−) ≤ t̂−j −F
j
L(t̂−j ) ≤ n−j (t)

for any other t− as in (12). Similarly, optimal upper bounds for n+
j (t)

are found by analogous means. This observation will play a crucial role
in Section 3.

We now determine further geometrical properties of F 1
L and its con-

nection to the spectral distance. Let the Hausdorff distances from t ∈ R
to σ(A) \ (−∞, t] and σ(A) \ [t,∞), respectively, be given by

(15)
δ+(t) = inf{µ− t : µ ∈ σ(A), µ > t} and

δ−(t) = inf{t− µ : µ ∈ σ(A), µ < t}.



8 G.R. BARRENECHEA, L. BOULTON, AND N. BOUSSAID

In general, t − n−1 (t) ≤ δ−(t) and n+
1 (t) − t ≤ δ+(t). In fact, we

know that |n±1 (t) − t| = δ±(t) for t 6∈ σ(A). However, these relations
can be strict whenever t ∈ σ(A). Indeed, n+

1 (t) − t = δ+(t) iff there
exists a decreasing sequence t+n ∈ σ(A) such that t+n ↓ t, whereas
t−n−1 (t) = δ−(t) iff there exists an increasing sequence t−n ∈ σ(A) such
that t−n ↑ t.

An emphasis in distinguishing |n±1 (t) − t| from δ±(t) seems unnec-
essary at this stage. However, this distinction in the notation will be
justified later on. Without further mention below we write δ±(t) = ±∞
to indicate that either of the sets on the right side of (15) is empty.

Let λ ∈ σ(A) be an isolated point. If there exists a non-vanishing
u ∈ L ∩ Eλ(A), then

|u|s
‖u‖

= |λ− s| = d1(s) ∀s ∈
[
λ− δ−(λ)

2
, λ+

δ+(λ)

2

]
.

According to the convergence analysis carried out in Section 4, the
smaller the angle between L and the spectral subspace Eλ(A), the closer

the F 1
L(t) is to d1(t) for t ∈

(
λ − δ−(λ)

2
, λ + δ+(λ)

2

)
. The special case of

this angle being zero is described by the following lemma.

Lemma 2. For λ ∈ σ(A) isolated from the rest of the spectrum, the
following statements are equivalent.

a) There exists a minimizer u ∈ L of the right side of (7) for j = 1,

such that |u|t = d1(t) for a single t ∈
(
λ− δ−(λ)

2
, λ+ δ+(λ)

2

)
,

b) F 1
L(t) = d1(t) for a single t ∈

(
λ− δ−(λ)

2
, λ+ δ+(λ)

2

)
,

c) F 1
L(s) = d1(s) for all s ∈ [λ− δ−(λ)

2
, λ+ δ+(λ)

2
],

d) L ∩ Eλ(A) 6= {0}.

Proof. Since L is finite-dimensional, a) and b) are equivalent by the
definitions of d1(t), F 1

L(t) and qt. From the paragraph above the state-
ment of the lemma it is clear that d) ⇒ c) ⇒ b). Since |u|t/‖u‖ is the
square root of the Rayleigh quotient associated to the operator (A−t)2,
the fact that λ is isolated combined with the Rayleigh-Ritz principle,
gives the implication a)⇒d). �

As there can be a mixing of eigenspaces, it is not possible to replace

b) in this lemma by an analogous statement including t = λ± δ±(λ)
2

. If

λ′ = λ+δ+(λ) is an eigenvalue, for example, then F 1
L
(
λ+λ′

2

)
= d1

(
λ+λ′

2

)
ensures that L contains elements of Eλ(A)⊕ Eλ′(A). However it is not
guaranteed to be orthogonal to either of these two subspaces. See the
Appendix A for similar results in the case j > 1.
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We conclude this section by examining extensions of the implications
b)⇒ d) of Lemma 2 into a more general context. In combination with
the results of Section 3, the next proposition shows how to obtain
certified information about spectral subspaces. Some of its practical
implications will be discussed later on.

Here and below {utj}nj=1 ⊂ L will denote an orthonormal family of

eigenfunctions associated to the eigenvalues µ = F j
L(t) of the weak

problem (10). In a suitable asymptotic regime for L, the angle be-
tween these eigenfunctions and the spectral subspaces of |A− t| in the
vicinity of the origin is controlled by a residual which is as small as

O
(√

F j
L(t)− dj(t)

)
for F j

L(t)− dj(t)→ 0.

Assumption 1. Unless otherwise specified, from now on we will always
fix the parameter m ≤ n = dimL and suppose that

(16) [t− dm(t), t+ dm(t)] ∩ σ(A) ⊆ σdisc(A).

Set

δj(t) = dist
[
t, σ(A) \ {t± dk(t)}jk=1

]
.

By virtue of (16), δj(t) > dj(t) for all j ≤ m.

Remark 2. If t =
n−j (t)+n+j (t)

2
for a given j, the vectors φtj introduced in

Proposition 3 and invoked subsequently, might not be eigenvectors of
A despite of the fact that |A − t|φtj = dj(t)φ

t
j. However, in any other

circumstance φtj are eigenvectors of A.

Proposition 3. Let t ∈ R and j ∈ {1, . . . ,m}. Assume that the
difference F j

L(t) − dj(t) is small enough so that 0 < εj < 1 holds true
for the residuals constructed inductively as follows,

ε1 =

√
F 1
L(t)2 − d1(t)2

δ1(t)2 − d1(t)2

εj =

√√√√F j
L(t)2 − dj(t)2

δj(t)2 − dj(t)2
+

j−1∑
k=1

ε2
k

1− ε2
k

(
1 +

dj(t)2 − dk(t)2

δj(t)2 − dj(t)2

)
.

Then, there exists an orthonormal basis {φtj}mj=1 of E[t−dm(t),t+dm(t)](A)
such that φtj ∈ E{t−dj(t),t+dj(t)}(A),

‖utj − 〈utj, φtj〉φtj‖ ≤ εj and(17)

|utj − 〈utj, φtj〉φtj|t ≤
√
F j
L(t)2 − dj(t)2 + dj(t)2ε2

j .(18)
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Proof. As it is clear from the context, in this proof we suppress the
index t on top of any vector. We write ΠS to denote the orthogonal
projection onto the subspace S with respect to the inner product 〈·, ·〉.

Let us first consider the case j = 1. Let S1 = E{t−d1(t),t+d1(t)}(A), and
decompose u1 = ΠS1u1 + u⊥1 where u⊥1 ⊥ S1. Since A is self-adjoint,

(19) F 1
L(t)2 = ‖(A− t)u1‖2 = d1(t)2‖ΠS1u1‖2 + ‖(A− t)u⊥1 ‖2.

Hence

F 1
L(t)2 ≥ d1(t)2(1− ‖u⊥1 ‖2) + δ1(t)2‖u⊥1 ‖2.

Since δ1(t) > d1(t), clearing from this identity ‖u⊥1 ‖2 yields ‖u⊥1 ‖≤ε1.
Hence ‖ΠS1u1‖2 ≥ 1− ε2

1 > 0. Let

φ1 =
1

‖ΠS1u1‖
ΠS1u1

so that ‖ΠS1u1‖ = |〈u1, φ1〉|. Then (17) holds immediately and (18) is
achieved by clearing ‖(A− t)u⊥1 ‖2 from (19).

We define the needed basis, and show (17) and (18), for j up to m
inductively as follows. Set

φj =
1

‖ΠSjuj‖
ΠSjuj

where Sj = E{t−dj(t),t+dj(t)}(A) 	 Span{φl}j−1
1 and ΠSjuj 6= 0, all this

for 1 ≤ j ≤ k − 1. Assume that (17) and (18) hold true for j up to
k − 1. Define Sk = E{t−dk(t),t+dk(t)}(A) 	 Span{φl}k−1

1 . We first show
that ΠSkuk 6= 0, and so we can define

(20) φk =
1

‖ΠSkuk‖
ΠSkuk

ensuring φk ⊥ Span{φl}k−1
l=1 . After that we verify the validity of (17)

and (18) for j = k.
Decompose

uk = ΠSkuk +
1∑

l=k−1

〈uk, φl〉φl + u⊥k
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where u⊥k ⊥ Span{φl}k−1
l=1 ⊕ Sk. Then

FL
k(t)2 = dk(t)

2‖ΠSkuk‖2 +
1∑

l=k−1

dl(t)
2|〈uk, φl〉|2 + ‖(A− t)u⊥k ‖2

≥ dk(t)
2‖ΠSkuk‖2 +

1∑
l=k−1

dl(t)
2|〈uk, φl〉|2 + δk(t)

2‖u⊥k ‖2

= dk(t)
2(1− ‖u⊥k ‖2) +

1∑
l=k−1

(dl(t)
2 − dk(t)

2)|〈uk, φl〉|2 + δk(t)
2‖u⊥k ‖2.

The conclusion (17) up to k − 1, implies |〈ul, φl〉|2 ≥ 1 − ε2
l for index

l = 1, . . . , k − 1. Since 〈uk, ul〉 = 0 for l 6= k,

|〈ul, φl〉||〈uk, φl〉| = |〈uk, ul − 〈ul, φl〉φl〉|.

Then, the Cauchy-Schwarz inequality alongside with (17) yield

(21) |〈uk, φl〉|2 ≤
ε2
l

1− ε2
l

.

Hence, since dl(t) ≤ dk(t),

F k
L(t)2 ≥ dk(t)

2 +
1∑

l=k−1

(dl(t)
2 − dk(t)

2)
ε2
l

1− ε2
l

+ (δk(t)
2 − dk(t)

2)‖u⊥k ‖2.

Clearing ‖u⊥k ‖2 from this inequality and combining with the validity of
(21) and (17) up to k − 1, yields ΠSkuk 6= 0.

Let φk be as in (20). Then (17) is guaranteed for j = k. On the
other hand, (17) up to j = k, (21) and the identity

F k
L(t)2 = dk(t)

2|〈uk, φk〉|2 + ‖(A− t)(uk − 〈uk, φk〉φk)‖2,

yield (18) up to j = k. �

The main result of this section is Proposition 1, which is central to
the hierarchical method for finding eigenvalue inclusions examined a
few years ago in [16, 17]. For fixed L this method leads to bounds for
eigenvalues which are far sharper than those obtained from the obvious
idea of estimating local minima of F 1

L(t). It was later shown [18] that
this hierarchical method is equivalent to the method considered in [25],
which extends to the indefinite case the classical Temple-Lehmann-
Goerisch inequality. From an abstract perspective, Proposition 1 pro-
vides an intuitive insight on the mechanism for determining comple-
mentary bounds for eigenvalues (in the left definite case, for example).
Even though the method proposed in [16, 17, 18] is yet to be explored
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more systematically in the practical setting, in most circumstances the
technique described in [25] appears to be easier to implement.

3. The method of Zimmermann and Mertins

Let t ∈ R and L ⊂ D(A) be a specified trial subspace as above.
Recall that qt is given by (4). Let lt : D(A) × D(A) −→ C be the
(generally not closed) bilinear form associated to (A− t),

lt(u,w) = 〈(A− t)u,w〉 ∀u,w ∈ D(A).

Our next purpose is to characterize the optimal parameters t± in Propo-
sition 1 as described in Remark 1 by means of the following weak eigen-
value problem,

(ZLt )
find u ∈ L \ {0} and τ ∈ R such that

τqt(u, v) = lt(u, v) ∀v ∈ L.

This problem is central to the method of eigenvalue bounds calculation
examined in [25] and it will be at the core of the numerical strategy
presented in Section 6.

Let

τ−1 (t) ≤ . . . ≤ τ−n−(t) < 0 and 0 < τ+
n+(t) ≤ . . . ≤ τ+

1 (t),

be the negative and positive eigenvalues of (ZLt ) respectively. Here and
below n∓(t) is the number of these negative and positive eigenvalues,
which are both locally constant in t. Below we will denote eigenfunc-
tions associated with τ∓j (t) by u∓j (t).

The hypotheses (14) ensure the existence of τ∓1 (t). A more concrete
connection with the framework of Section 2 is made precise in the
following lemma. Its proof is straightforward, hence omitted.

Lemma 4. In the following lists, the conditions stated are equivalent.
a−) F 1

L(s) > t − s for all
s < t

b−) 〈Au,u〉〈u,u〉 > t for all u ∈ L
c−) all the eigenvalues of

(ZLt ) are positive,

a+) F 1
L(s) < s − t for all
s > t

b+) 〈Au,u〉〈u,u〉 < t for all u ∈ L
c+) all the eigenvalues of

(ZLt ) are negative.

Remark 3. Let L = Span{bj}nj=1. The matrix [qt(bj, bk)]
n
jk=1 is singular

if and only if Et(A) ∩ L 6= {0}. On the other hand, the kernel of
(ZLt ) might be non-empty. If n0(t) is the dimension of this kernel and
n∞(t) = dim(Et(A) ∩ L), then n = n∞(t) + n0(t) + n−(t) + n+(t).
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Assumption 2. Note that n∞(t) ≥ 1 if and only if F j
L(t) = 0 for

j = 1, . . . , n∞(t). In this case the conclusions of Lemma 5 and Theo-
rem 6 below become void. In order to write our statements in a more
transparent fashion, without further mention from now on we will sup-
pose that

(22) L ∩ Et(A) = {0}.
By virtue of the next three results, finding the eigenvalues of (ZLt ) is

equivalent to finding s = t̂±j ∈ R such that

(23) t− s = ∓F j
L(s),

and in this case t̂±j = t + 1
2τ±j (t)

. It then follows from Remark 1 that

(ZLt ) encodes information about the optimal bounds for the spectrum
around t, achievable by (13) in Proposition 1.

We begin with the case j = 1, see [18, Theorem 11].

Lemma 5. Let t ∈ R.

(−) The smallest eigenvalue τ = τ−1 (t) of (ZLt ) is negative if and
only if there exists s < t such that F 1

L(s) = t − s. In this case
s = t+ 1

2τ−1 (t)
and

F 1
L(s) = − 1

2τ−1 (t)
=
|u−1 (t)|s
‖u−1 (t)‖

for u = u−1 (t) ∈ L the corresponding eigenvector.
(+) The largest eigenvalue τ = τ+

1 (t) of (ZLt ) is positive if and only if
there exists s > t such that F 1

L(s) = s−t. In this case s = t+ 1
2τ+1 (t)

and

F 1
L(s) =

1

2τ+
1 (t)

=
|u+

1 (t)|s
‖u+

1 (t)‖
for u = u+

1 (t) ∈ L the corresponding eigenvector.

Proof. We only show (−), as the proof of (+) is similar. For all u ∈ L
and s ∈ R,

qs(u, u)− F 1
L(s)2〈u, u〉

= qt(u, u) + 2(t− s)lt(u, u) +
(
(t− s)2 − F 1

L(s)2
)
〈u, u〉.

Suppose that F 1
L(s) = t− s. Then

qs(u, u)− F 1
L(s)2〈u, u〉 = qt(u, u) + 2F 1

L(s)lt(u, u).

As the left side of this expression is non-negative,

lt(u, u)

qt(u, u)
≥ − 1

2F 1
L(s)



14 G.R. BARRENECHEA, L. BOULTON, AND N. BOUSSAID

for all u ∈ L\{0} and the equality holds for some u ∈ L. Hence − 1
2F 1
L(s)

is the smallest eigenvalue of (ZLt ), and thus necessarily equal to τ−1 (t).
In this case s − F 1

L(s) = t − 2F 1
L(s) = t + 1

τ−1 (t)
. Here the vector u for

which equality is achieved is exactly u = u−1 (t).
Conversely, let τ−1 (t) and u−1 (t) be as stated. Then

τ−1 (t) ≤ lt(u, u)

qt(u, u)

for all u ∈ L with equality for u = u−1 (t). Re-arranging this expression
yields

qt(u, u)− 1

τ−1 (t)
lt(u, u) ≥ 0

for all u ∈ L with equality for u = u−1 (t). The substitution t = s− 1
2τ−1 (t)

then yields

qt(u, u)− 1

(2τ−1 (t))2
〈u, u〉 ≥ 0

for all u ∈ L. The equality holds for u = u−1 (t). This expression further
re-arranges as

|u|2s
‖u‖2

≥ 1

(2τ−1 (t))2
.

Hence F 1
L(s)2 = 1

(2τ−1 (t))2
, as needed. �

An extension to j 6= 1 is now found by induction.

Theorem 6. Let t ∈ R and 1 ≤ j ≤ n be fixed.

(−) The number of negative eigenvalues n−(t) in (ZLt ) is greater than
or equal to j if and only if

〈Au, u〉
〈u, u〉

< t for some u ∈ L 	 Span{u−1 (t), . . . , u−j−1(t)}.

Assuming this holds true, then τ = τ−j (t) and u = u−j (t) are

solutions of (ZLt ) if and only if

F j
L

(
t+

1

2τ−j (t)

)
= − 1

2τ−j (t)
=

∣∣u−j (t)
∣∣
t+ 1

2τ−
j

(t)

‖u−j (t)‖
.

(+) The number of positive eigenvalues n+(t) in (ZLt ) is greater than
or equal to j if and only if

〈Au, u〉
〈u, u〉

> t for some u ∈ L 	 Span{u+
1 (t), . . . , u+

j−1(t)}.
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Assuming this holds true, then τ = τ+
j (t) and u = u+

j (t) are

solutions of (ZLt ) if and only if

F j
L

(
t+

1

2τ+
j (t)

)
=

1

2τ+
j (t)

=

∣∣u+
j (t)

∣∣
t+ 1

2τ+
j

(t)

‖u+
j (t)‖

.

Proof. For j = 1 the statements are Lemma 5 taking into consid-
eration (14). For j > 1, due to the symmetry of the eigenprob-
lem (ZLt ), it is enough to apply again Lemma 5 by fixing L̃ = L 	
Span{u∓1 (t), . . . , u∓j−1(t)} as trial spaces. Note that the eigenvalues of

(ZL̃t ) are those of (ZLt ) except for τ∓1 (t), . . . , τ∓j−1(t). �

A neat procedure for finding certified spectral bounds for A, as de-
scribed in [25], can now be deduced from Theorem 6. By virtue of
Proposition 1 and Remark 1, this procedure turns out to be optimal in
the context of the approximated counting functions discussed in Sec-
tion 2, see [18, Section 6]. We summarize the core statement as follows.

Corollary 7. For all t ∈ R and j ∈ {1, . . . , n±(t)},

(24) t+
1

τ−j (t)
≤ n−j (t) and n+

j (t) ≤ t+
1

τ+
j (t)

.

In recent years, numerical techniques based on this statement have
been designed to successfully compute eigenvalues for the radially re-
duced magnetohydrodynamics operator [25, 11], the Helmholtz equa-
tion [5] and the calculation of sloshing frequencies in the left definite
case [4]. We will determine one such a numerical scheme for the case
of the Maxwell operator in sections 5 and 6.

Remark 4. Since ± 1
τ±j (t)

≥ ±(n±j (t)− t) in the above,

t̂−j = t+
1

2τ−j (t)
≤
t+ n−j (t)

2
≤

n+
j (t) + n−j (t)

2

≤
n+
j (t) + t

2
≤ t+

1

2τ+
j (t)

= t̂+j .

Hence t̂±j is not further from n±j (t) than it is to n∓j (t). Moreover

t̂±j =
n+
j (t) + n−j (t)

2
renders t ∈ σ(A) and

1

τ±j (t)
= n±j (t)− t.
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This geometrical property for the solution of (23) will be relevant
below, when examining the convergence properties of the estimates
(24).

4. Convergence and error estimates

Our first goal in this section will be to show that, if L captures an
eigenspace of A within a certain order of precision O(ε) as specified
below, then the bounds consequence of Proposition 1 are

a) at least within O(ε) from the true spectral data for any t ∈ R,
b) within O(ε2) for t 6∈ σ(A).

This will be the content of theorems 9 and 10, and Corollary 11. We
will then show that, in turns, the estimates (24) have always resid-
ual of size O(ε2) for any t ∈ R. See Theorem 12. In the spectral
approximation literature this property is known as optimal order of
convergence/exactness, see [14, Chapter 6] or [24].

Recall Remark 2, and the assumptions 1 and 2. Below {φtj}mj=1 de-
notes an orthonormal set of eigenvectors of E[t−dm(t),t+dm(t)](A) which is
ordered so that

|A− t|φtj = dj(t)φ
t
j for j = 1, . . . ,m.

Whenever 0 < εj < 1 is small, as specified below, the trial subspace
L ⊂ D(A) will be assumed to be close to Span{φtj}mj=1 in the sense that
there exist wtj ∈ L such that

‖wtj − φtj‖ ≤ εj and(A0)

|wtj − φtj|t ≤ εj.(A1)

We have split this condition into two, in order to highlight the fact that
some times only (A1) is required. Unless otherwise specified, the index
j runs from 1 to m.

From (16) it follows that the family {φsj}mj=1 ⊂ E[t−dm(t),t+dm(t)](A)
and the family {wsj}mj=1 ⊂ L above can always be chosen piecewise
constant for s in a neighbourhood of t. Moreover, they can be chosen
so that jumps only occur at s ∈ σ(A).

Assumption 3. Without further mention all t-dependant vectors be-
low will be assumed to be locally constant in t with jumps only at the
spectrum of A.

A set {wtj}mj=1 subject to (A0)-(A1) is not generally orthonormal.
However, according to the next lemma, it can always be substituted by
an orthonormal set, provided εj is small enough.
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Lemma 8. There exists a constant C > 0 independent of L ensuring
the following. If {wtj}mj=1 ⊂ L is such that (A0)-(A1) hold for all εj
such that

ε =

√√√√ m∑
j=1

ε2
j <

1√
m
,

then there is a set {vtj}mj=1 ⊂ L orthonormal in the inner product 〈·, ·〉
such that

|vtj − φtj|t + ‖vtj − φtj‖ < Cε.

Proof. As it is clear from the context, in this proof we suppress the
index t on top of any vector. The desired conclusion is achieved by
applying the Gram-Schmidt procedure. Let G = [〈wk, wl〉]mkl=1 ∈ Cm×m

be the Gram matrix associated to {wj}. Set

vj =
m∑
k=1

(G−1/2)kj wk.

Then

‖G− I‖ ≤

√√√√ m∑
kl=1

|〈wk, wl〉 − 〈φk, φl〉|2

≤

√√√√2
m∑
kl=1

‖wk − φk‖2(‖wl‖+ ‖φl‖)2

≤
√

2(2 + ε)ε.

Since

‖vj − wj‖2 =

∥∥∥∥∥
m∑
k=1

(G−1/2 − I)kj wk

∥∥∥∥∥
2

=
m∑
kl=1

(G−1/2 − I)kj(G−1/2 − I)lj〈wk, wl〉

=
m∑
k=1

(G−1/2 − I)kj

(
m∑
l=1

Gkl(G−1/2 − I)lj

)

=
m∑
k=1

(G−1/2 − I)kj(G
1/2 −G)jk

=
(
(I −G1/2)2

)
jj
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then

‖vj − wj‖ ≤ ‖I −G1/2‖.
As G1/2 is a positive-definite matrix, for every v ∈ Cm we have

‖(G1/2 + I)v‖2 = ‖G1/2v‖2 + 2〈G1/2v, v〉+ ‖v‖2 ≥ ‖v‖2.

Then det(I +G1/2) 6= 0 and ‖(I +G1/2)−1‖ ≤ 1. Hence
(25)
‖vj−wj‖ ≤ ‖(I−G)(I+G1/2)−1‖ ≤ ‖I−G‖ ‖(I+G1/2)−1‖ ≤ (2+ε)ε .

Now, identify v = (v1, . . . , vm) ∈ Cm with v =
∑m

k=1 vkφk. As

‖G1/2v‖ =

∥∥∥∥∥
m∑
j=1

〈v, φj〉wj

∥∥∥∥∥ ≥ ‖v‖ −
∥∥∥∥∥

m∑
j=1

〈v, φj〉(wj − φj)

∥∥∥∥∥ ≥ (1− ε)‖v‖

then

‖G−1/2‖ ≤ 1

1− ε
.

Hence

|vj − wj|t ≤
m∑
k=1

|(G−1/2 − I)jk||wk|t

≤
m∑
k=1

|(G−1/2 − I)jk|(εk + dk(t))

≤
m∑
kl=1

|(G−1/2)kl||(G1/2 − I)lj|(εk + dk(t))

≤
√
m(ε+ dm(t))(2 + ε)

1− ε
ε.(26)

The desired conclusion follows from (25) and (26). �

The next theorem addresses the claim a) made at the beginning of
this section. According to Lemma 8, in order to examine the asymp-
totic behaviour of F j

L(t) as εj → 0 under the constraints (A0)-(A1), we
can assume without loss of generality that the trial vectors wtj form an
orthonormal set in the inner product 〈·, ·〉.

Theorem 9. Let {wtj}mj=1 ⊂ L be a family of vectors which is orthonor-
mal in the inner product 〈·, ·〉 and satisfies (A1). Then

F j
L(t)− dj(t) ≤

(
j∑

k=1

ε2
k

)1/2

∀j = 1, . . . ,m.
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Proof. From the min-max principle we obtain

F j
L(t) ≤ max∑

|ck|2=1

∣∣∣∣∣
j∑

k=1

ckwk

∣∣∣∣∣
t

≤ max∑
|ck|2=1

∣∣∣∣∣
j∑

k=1

ck(wk − φk)

∣∣∣∣∣
t

+ max∑
|ck|2=1

∣∣∣∣∣
j∑

k=1

ckφk

∣∣∣∣∣
t

= max∑
|ck|2=1

∣∣∣∣∣
j∑

k=1

ck(wk − φk)

∣∣∣∣∣
t

+ dj(t).

This gives

F j
L(t)− dj(t) ≤ max∑

|ck|2=1

j∑
k=1

|ck||wk − φk|t

≤ max∑
|ck|2=1

(
j∑

k=1

|ck|2
)1/2( j∑

k=1

|wk − φk|2t

)1/2

≤

(
j∑

k=1

ε2
k

)1/2

as needed. �

In terms of order of approximation, Theorem 9 will be superseded by
Theorem 10 for t 6∈ σ(A). However, if t ∈ σ(A), the trial space L can
be chosen so that F 1

L(t)− d1(t) is linear in ε1. Indeed, fixing any non-
zero u ∈ D(A) and L = Span{u}, yields F 1

L(t) − d1(t) = F 1
L(t) = ε1.

This shows that Theorem 9 is optimal, upon the presumption that t is
arbitrary.

The next theorem addresses the claim b) made at the beginning of
this section. Its proof is reminiscent of that of [23, Theorem 6.1].

Theorem 10. Let t 6∈ σ(A). Suppose that the εj in (A1) are such that

(27)
m∑
j=1

ε2
j <

d1(t)2

6
.

Then,

(28) F j
L(t)− dj(t) ≤ 3

dj(t)

d1(t)2

j∑
k=1

ε2
k ∀j = 1, . . . ,m.

Proof. Since t 6∈ σ(A), then (D(A), qt(·, ·)) is a Hilbert space. Let
PL : D(A) −→ L be the orthogonal projection onto L with respect to
the inner product qt(·, ·), so that

qt(u− PLu, v) = 0 ∀v ∈ L.
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Then |u|2t = |PLu|2t+|u−PLu|2t for all u ∈ D(A) and |u−PLu|t ≤ |u−v|t
for all v ∈ L. Hence

(29) |φk − PLφk|t ≤ εk ∀k = 1, . . . ,m.

Let Ej = Span
{
φk}jk=1. Define

Fj = {φ ∈ Ej : ‖φ‖ = 1
}

and

µjL(t) = max
φ∈Fj

∣∣2 Re〈φ, φ− PLφ〉 − ‖φ− PLφ‖2
∣∣ .

Here µjL depends on t, as PL does. We first show that, under hy-

pothesis (27), µjL(t) < 1
2
. Indeed, given φ ∈ Fj we decompose it as

φ =
∑j

k=1 ckφk. Then

|〈φ, φ− PLφ〉| =

∣∣∣∣∣
j∑

k=1

ck〈φk, φ− PLφ〉

∣∣∣∣∣ =

∣∣∣∣∣
j∑

k=1

ck
dk(t)2

qt(φk, φ− PLφ)

∣∣∣∣∣
=

∣∣∣∣∣qt
(

j∑
k=1

ck
dk(t)2

φk, φ− PLφ

)∣∣∣∣∣
=

∣∣∣∣∣qt
(

j∑
k=1

ck
dk(t)2

(φk − PLφk), φ− PLφ

)∣∣∣∣∣
≤

∣∣∣∣∣
j∑

k=1

ck
dk(t)2

(φk − PLφk)

∣∣∣∣∣
t

∣∣∣∣∣
j∑

k=1

ck(φk − PLφk)

∣∣∣∣∣
t

.(30)

For each multiplying term in the latter expression, the triangle and
Cauchy-Schwarz’s inequalities yield (take αk = ck or αk = ck

dk(t)2
)∣∣∣∣∣

j∑
k=1

αk(φk − PLφk)

∣∣∣∣∣
t

≤
j∑

k=1

|αk| |φk − PLφk|t

≤

(
j∑

k=1

|αk|2
)1/2( j∑

k=1

|φk − PLφk|2t

)1/2

.(31)

Then

(32)

|2 Re〈φ, φ− PLφ〉| ≤ 2

(
j∑

k=1

|ck|2

dk(t)4

)1/2( j∑
k=1

|ck|2
)1/2 j∑

k=1

ε2
k

≤ 2

d1(t)2

j∑
k=1

ε2
k

for all φ ∈ Fj.
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The other term in the expression for µjL(t) has an upper bound found
as follows. According to the min-max principle

(33) ‖φ− PLφ‖2 ≤ 1

d1(t)2
qt(φ− PLφ, φ− PLφ).

Therefore, by repeating analogous steps as in (30) and (31), we get

‖φ− PLφ‖2 ≤ 1

d1(t)2

j∑
k=1

ckqt(φk − PLφk, φ− PLφ)

= qt

(
j∑

k=1

ck
d1(t)2

(φk − PLφk), φ− PLφ

)

= qt

(
j∑

k=1

ck
d1(t)2

(φk − PLφk),
j∑
l=1

cl(φl − PLφl)

)

≤ 1

d1(t)2

j∑
k=1

ε2
k .(34)

Hence, from (32) and (34),

(35) µjL(t) ≤ 3

d1(t)2

j∑
k=1

ε2
k <

1

2

as a consequence of (27).
Next, observe that dim(PLEj) = j. Indeed PLψ = 0 for ‖ψ‖ = 1

would imply

µjL(t) ≥
∣∣2 Re〈ψ, ψ − PLψ〉 − ‖ψ − PLψ‖2

∣∣ = ‖ψ‖2 = 1,

which would contradict the fact that µjL(t) < 1. Then,

F j
L(t)2 ≤ max

u∈PLEj

|u|2t
‖u‖2

= max
φ∈Ej

|PLφ|2t
‖PLφ‖2

= max
φ∈Fj

|PLφ|2t
‖PLφ‖2

.

As

‖PLφ‖2 = ‖φ‖2 − 2 Re〈φ, φ− PLφ〉+ ‖φ− PLφ‖2 ≥ 1− µjL(t),

we get
(36)

F j
L(t)2 ≤ max

φ∈Fj

|φ|2t
1− µjL(t)

= max∑
|ck|2=1

∑j
k=1 |ck|2dk(t)2

1− µjL(t)
=

dj(t)
2

1− µjL(t)
.
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Finally, (36) and (35) yield

F j
L(t)2 − dj(t)

2 ≤ µjL(t)

1− µjL(t)
dj(t)

2

≤ 2µjL(t)dj(t)
2

≤ 2
3

d1(t)2
dj(t)

2

j∑
k=1

ε2
k.(37)

The proof is completed by observing that F j
L(t) + dj(t) ≥ 2dj(t). �

As the next corollary shows, a quadratic order of decrease for the
difference F j

L(t) − dj(t) is prevented for t ∈ σ(A) in the context of
theorems 9 and 10, only for j up to dim Et(A).

Corollary 11. Let t ∈ σdisc(A), ` = 1 + dim Et(A) and k ∈ {`, . . . ,m}.
Let

αk(t) =
1

4
min {|dl(t)− dl−1(t)| : dl(t) 6= dl−1(t), l = `, ..., k} > 0.

There exists ε > 0 independent of k ensuring the following. If (A1)

holds true for
√∑m

j=1 ε
2
j < ε, then

F k
L(t)− dk(t) ≤ 3

dk(t)

αk(t)2

k∑
j=1

ε2
j .

Proof. Without loss of generality we assume that t + dk(t) ∈ σ(A).
Otherwise t − dk(t) ∈ σ(A) and the proof is analogous to the one
presented below.

Let t̃ = t+αk(t). Then t̃ 6∈ σ(A) and t+ dk(t) = t̃+ dk(t̃). Since the
map s 7→ s + F j

L(s) is non-decreasing as a consequence of Proposition
1, Theorem 10 applied at t̃ yields

F k
L(t)− dk(t) = t+ F k

L(t)− (t+ dk(t)) ≤ t̃+ F k
L(t̃)− (t̃+ dk(t̃))

= F k
L(t̃)− dk(t̃) ≤ 3

dk(t̃)

d1(t̃)2

k∑
j=1

ε2
k ≤ 3

dk(t)

αk(t)2

k∑
j=1

ε2
j

as needed. �

For the final part of this section, we formulate a precise statements
on the convergence of the method of Zimmermann and Mertins. The-
orem 12 below improves upon two crucial aspects of a similar result
established in [11, Lemma 2]. It allows j > 1 and it allows t ∈ σ(A).
These two improvements are essential in order to obtain sharp bounds
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for those eigenvalues of the Maxwell operator which are either degen-
erate or form a tight cluster.

Remark 5. The constants ε̃t and C±t below do have a dependance on t
that may be determined explicitly from Theorem 10, Corollary 11 and
the proof of Theorem 12. Despite of the fact that they can deteriorate
as t approaches the isolated eigenvalues of A and they can have jumps
precisely at these points, they may be chosen locally independent of
t in compacts outside the spectrum. This has an impact on practical
implementations of the computational method to be described in Sec-
tion 6 which we do not fully understand at present. Our numerical tests
in Section 7 indicate that the best results are achieved by choosing t
relatively far form the spectral point being approximated.

Set

ν−j (t) = sup{s < t : Tr1(s,t)(A) ≥ j}
ν+
j (t) = inf{s > t : Tr1(t,s)(A) ≥ j}.

Note that these are the spectral points of A which are strictly to the left
and strictly to the right of t respectively. The inequality ν±j (t) 6= n±j (t)

only occurs when t is an eigenvalue. In view of (15), δ±(t) = |t−ν±1 (t)|.

Theorem 12. Let J ⊂ R be a bounded open segment such that the
intersection J ∩ σ(A) ⊆ σdisc(A). Let {φk}m̃k=1 be a family of eigenvec-
tors of A such that Span{φk}m̃k=1 = EJ(A). For fixed t ∈ J , there exist
constants ε̃t > 0 and C±t > 0 independent of the trial space L, ensuring
the following. If there are {wj}m̃j=1 ⊂ L such that

(38)

(
m̃∑
j=1

‖wj − φj‖2 + |wj − φj|2t

)1/2

≤ ε < ε̃t,

then ∣∣∣∣∣ν±j (t)−

(
t+

1

τ±j (t)

)∣∣∣∣∣ ≤ C±t ε
2

for all j ≤ n±(t) such that ν±j (t) ∈ J .

Proof. We focus on the case of the plus sign, as the one with the minus
sign is completely analogous. The hypotheses ensure that the number
of indices j ≤ n±(t) such that ν±j (t) ∈ J never exceeds m̃. Therefore
this condition in the conclusion of the theorem is consistent.

Let

m(t) = max{m ∈ N : [t− dm(t), t+ dm(t)] ⊂ J}.
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Recall the Assumption 1 and the Remark 3. The hypothesis on L
guarantees that (A0)-(A1) hold true for m = m(t) andm(t)∑

j=1

ε2
j

1/2

< ε.

By combining Lemma 8, Theorem 9 and the fact that we can pick

{wtj}
m(t)
j=1 ⊆ {wk}m̃k=1, there exists ε̃t > 0 small enough, such that (38)

yields

(39) F j
L(s)− dj(s) ≤

ν+
1 (t)− t

2
∀j = 1, . . . , m̃ and s ∈ J.

Let j be such that ν±j (t) ∈ J . Since t+ α− ν+
1 (t) ≤ ν+

j (t)− (α + t)

for all 0 ≤ α ≤ ν+j (t)+ν+1 (t)

2
− t, then

dj(s) = ν+
j (t)− s ∀s ∈

[
t+ ν+

j (t)

2
,
ν+

1 (t) + ν+
j (t)

2

]
.

Let

g(α) = α− F j
L(t+ α).

Then g is an increasing function of α and g(0) = −F j
L(t) < 0. For the

strict inequality in the latter, recall Assumption 2. Moreover, according
to (39)

g

(
ν+
j (t) + ν+

1 (t)

2
− t

)

= ν+
1 (t)− t+

ν+
j (t)− ν+

1 (t)

2
− F j

L

(
ν+
j (t) + ν+

1 (t)

2

)

= ν+
1 (t)− t+ dj

(
ν+
j (t) + ν+

1 (t)

2

)
− F j

L

(
ν+
j (t) + ν+

1 (t)

2

)

≥ ν+
1 (t)− t− ν+

1 (t)− t
2

> 0 .

Hence, the Mean Value Theorem ensures the existence of

α̃ ∈

(
0,
ν+

1 (t) + ν+
j (t)

2
− t

)
such that α̃ = F j

L(t + α̃). According to Theorem 6 (+), α̃ is unique
and α̃ = 1

2τ+j (t)
.
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The proof is now completed as follows. By virtue of Remark 4,

t̂+j (t) = t+
1

2τ+
j (t)

∈

(
t+ ν+

j (t)

2
,
ν+

1 (t) + ν+
j (t)

2

)
and F j

L(t̂+j (t)) =
1

2τ+
j (t)

.

Then, Theorem 10 or Corollary 11, as appropriate, ensure the existence
of C+

t > 0 yielding

ν+
j (t)−

(
t+

1

τ+
j (t)

)
= F j

L(t̂+j )− dj(t̂
+
j ) ≤ C+

t

j∑
k=1

ε2
k < ε2 ,

as needed. �

We conclude this section with a result on convergence of eigenfunc-
tions.

Corollary 13. Let J ⊂ R be a bounded open segment such that J ∩
σ(A) ⊆ σdisc(A). Let {φk}m̃k=1 be a family of eigenvectors of A such
that Span{φk}m̃k=1 = EJ(A). For fixed t ∈ J , there exist constants
ε̃t > 0 and C±t > 0 independent of the trial space L, ensuring the
following. If there are {wj}m̃j=1 ⊂ L guaranteeing the validity of (38),

for all j ≤ n±(t) such that ν±j (t) ∈ J we can find ψε±j ∈ E{ν−j (t),ν+j (t)}(A)

satisfying

|u±j (t)− ψε±j |t + ‖u±j (t)− ψε±j ‖ ≤ C±t ε.

Proof. Fix t ∈ J . By virtue of Theorem 6, u±j (t) = u
t̂±j
j in the notation

for eigenvectors employed in Proposition 3. The claimed conclusion is
a consequence of the latter combined with Theorem 10 or Corollary 11,
as appropriate. �

5. The finite element method for the Maxwell
eigenvalue problem

Recall that Ω is an open, bounded, simply connected domain of R3.
Below D(Ω) denotes the infinitely differentiable test functions with
compact support in Ω. The inner product of L2(Ω) is 〈·, ·〉Ω and its
norm ‖ · ‖0,Ω. The Sobolev space of order m is Hm(Ω) and its norm
is ‖ · ‖m,Ω. We do not distinguish in the notation between products
and norms of scalar functions or vector fields with components in these
linear spaces.
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We define rigorously the domain of the operator M associated to
the eigenvalue problem (1) by following closely the ideas of the work
[7]. Let

H(curl; Ω) =
{
u ∈ [L2(Ω)]3 : curlu ∈ [L2(Ω)]3

}
equipped with the norm

(40) ‖u‖2
curl,Ω = ‖u‖2

0,Ω + ‖ curlu‖2
0,Ω.

Let Rmax denote the operator defined by the expression “curl” acting
on the domain D(Rmax) = H(curl; Ω), the maximal domain. Let

Rmin = R∗max = Rmax � [D(Ω)]3.

The domain of Rmin is

D(Rmin) = H0(curl; Ω)

= {u ∈ H(curl; Ω) : 〈curlu,v〉Ω = 〈u, curlv〉Ω ∀v ∈ H(curl; Ω)}.
By virtue of Green’s identity for the rotational (see e.g. [20, Theo-
rem I.2.11]), if Ω is Lipschitz in the sense of [1, Notation 2.1], then
u ∈ H0(curl; Ω) if and only if u ∈ H(curl; Ω) and u× n = 0 on ∂Ω.

Let

M1 =

(
0 iRmax

−iRmin 0

)
on the domain

(41) D(M1) = D(Rmin)×D(Rmax) ⊂ [L2(Ω)]6.

As Rmax and Rmin are mutually adjoints,M1 : D(M1) −→ [L2(Ω)]6 is
a self-adjoint operator, [7, Lemma 1.2]. Now, write the system (1) as(

ε−1/2 0
0 µ−1/2

)(
0 i curl

−i curl 0

)(
ε−1/2 0

0 µ−1/2

)(
Ẽ

H̃

)
= ω

(
Ẽ

H̃

)
with unknowns (Ẽ, H̃) = (ε1/2E, µ1/2H). Let

P = diag[ε1/2I3×3, µ
1/2I3×3]

be the self-adjoint operator acting on [L2(Ω)]6 given by the permittivity
and permeability. The constraint (2) ensures that P is bounded and
invertible with

P−1 = diag[ε−1/2I3×3, µ
−1/2I3×3].

Define M = P−1M1P−1 on the dense domain D(M) = P (D(M1)).
Then M is a self-adjoint operator and its eigenvalues correspond ex-
actly with the angular frequencies in (1). Every (Ẽ, H̃)t 6= 0 eigen-
function of M will produce a corresponding field phasor

(E,H)t = P−1(Ẽ, H̃)t 6= 0
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satisfying (1) and vice-versa.

Assumption 4. Here and everywhere below we assume that the non-
zero spectrum of M1 is purely discrete and it does not accumulate at
ω = 0. This hypothesis can be verified whenever Ω is a polyhedron
with Lipschitz boundary for example, see [22, Corollary 3.49] and [7,
Lemma 1.3]. A more systematic analysis of the properties of M on
more general regions Ω will be carried out elsewhere [3].

Suppose that Ω is a polyhedron. We may consider applying the
framework of Section 3 for A =M as follows. Fix {Th}h>0 a family of
shape-regular triangulations of Ω [19], where the elements K ∈ Th are
simplexes with diameter hK such that h = maxK∈Th hK . For r ≥ 1, let

Vr
h = {vh ∈ [C0(Ω)]3 : vh|K ∈ [Pr(K)]3 ∀K ∈ Th}

Vr
h,0 = {vh ∈ Vr

h : vh × n = 0 on ∂Ω}.

Then

(42) Lh = Vr
h,0 ×Vr

h ⊂ D(M1)

and

(43) L̃h = PLh ⊂ D(M)

are finite element spaces of isotropic and anisotropic media, respec-
tively. Recall that P is bounded and invertible as a consequence of
(2).

By virtue of [22, Theorem 3.26] and the fact that H0(curl; Ω) is
the closure in the curl norm of C∞0 (Ω), the family Lh is dense in
D(M1). That is, for any (F ,G)t ∈ D(M1) there exists a sequence
{(F h,Gh)

t}h>0 such that (F h,Gh)
t ∈ Lh and

(44) lim
h→0

(
‖F − F h‖curl,Ω + ‖G−Gh‖curl,Ω

)
= 0 .

In turns, this implies that for all (F̃ , G̃)t = P(F ,G)t ∈ D(M), there

exists a family {(F̃ h, G̃h)
t}h>0 ⊂ L̃h such that

(45) lim
h→0

(∥∥∥∥M(
F̃ − F̃ h

G̃− G̃h

)∥∥∥∥
0,Ω

+

∥∥∥∥( F̃ − F̃ h

G̃− G̃h

)∥∥∥∥
0,Ω

)
= 0 .

Let Ih denote the Lagrange interpolator on Lh, [19]. Under the
condition of regularity (F ,G)t ∈ Hr+1(Ω)6,

(46)
‖F − Ih(F )‖curl,Ω + ‖G− Ih(G)‖curl,Ω

≤ Crh
r (‖F ‖r+1,Ω + ‖G‖r+1,Ω)
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for a suitable constant Cr > 0. Hence, there also exists a constant
C̃r(ε, µ) > 0, such that

(47)

∥∥∥∥M(
F̃ − Ih(F̃ )

G̃− Ih(G̃)

)∥∥∥∥
0,Ω

+

∥∥∥∥( F̃ − F̃ h

G̃− G̃h

)∥∥∥∥
0,Ω

≤ C̃r(ε, µ)hr.

As a consequence of Theorem 12 and Corollary 13, the estimates
(45) and (47) lead to precise convergence and error estimates for the
method of Section 3 in the case A = M and L = L̃h. We summarize
the corresponding statements in next two theorems.

Theorem 14. Let J ⊂ R be a bounded open segment such that 0 6∈ J .
Let t ∈ J . Let τ+

j,h(t) and τ−j,h(t) be the corresponding positive and

negative eigenvalues of (ZLt ) for L = L̃h. Then, for every j such that
ν±j (t) ∈ J ,

lim
h→0

∣∣∣∣∣
(
t+

1

τ±j,h(t)

)
− ν±j (t)

∣∣∣∣∣ = 0.

Moreover, if in addition P−1EJ(M) ⊆ Hr+1(Ω)6, then there exist con-
stants C±t > 0 such that

(48)

∣∣∣∣∣
(
t+

1

τ±j,h(t)

)
− ν±j (t)

∣∣∣∣∣ ≤ C±t h
2r

for h sufficiently small and j such that ν±j (t) ∈ J .

For (F̃ , G̃)t ∈ D(M) and a subspace E ⊆ D(M), let

distM[(F̃ , G̃), E ]= inf
(X,Y )t∈E

[∥∥∥∥M(
F̃ −X

G̃− Y

)∥∥∥∥
0,Ω

+

∥∥∥∥( F̃ −X

G̃− Y

)∥∥∥∥
0,Ω

]
.

Theorem 15. Assume the same hypotheses as in Theorem 14. Let

(Ẽ
±
j,h(t), H̃

±
j,h(t))

t ∈ L̃h
be the corresponding normalized eigenvectors of the eigenvalue problem

(ZL̃ht ). Then, for every j such that ν±j (t) ∈ J ,

lim
h→0

distM[(Ẽ
±
j,h(t), H̃

±
j,h(t)), E{ν−j (t),ν+j (t)}(M)] = 0.

Moreover, if in addition P−1EJ(M) ⊆ Hr+1(Ω)6, then there exist con-
stants C±t > 0 such that

distM[(Ẽ
±
j,h(t), H̃

±
j,h(t)), E{ν−j (t),ν+j (t)}(M)] ≤ C±t h

r

for h sufficiently small and j such that ν±j (t) ∈ J .
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Theorems 14 and 15 have various consequences for the numerical
calculation of the eigenfrequencies associated to the resonant cavity
problem which are worth highlighting. Note that convergence and ab-
sence of spectral pollution are guaranteed, despite of the fact that Lh
are spaces of nodal finite elements with no particular mesh structure.
These convergence properties are constrained to extremely mild as-
sumptions on the coefficients ε and µ. Moreover, the order of approxi-
mation achieved is optimal in the context of the finite elements chosen.

Our analysis above relies on the regularity of the eigenspaces associ-
ated to the interval J only. This opens the possibility of approximating
eigenvalues associated to regular eigenfunctions with high accuracy, if
a priori information about their location is at hand. Refer to the nu-
merical results below for concrete examples on this matter.

The discussion above was restricted finite elements of Lagrange type
with the sole purpose of illustrating a concrete implementation. Analo-
gous approximation results hold true for other choices of trial subspaces
(made out of standard finite elements or otherwise) as long as they form
a dense family in D(M). A control on the order of convergence will
be achieved in a similar fashion, as long as interpolation estimates are
available.

6. A certified numerical strategy

We now describe a certified numerical scheme for computing the
eigenvalues of M which is based on Corollary 7. In an asymptotic
regime, as specified below, this scheme provides small intervals which
are guaranteed to contain spectral points. Its convergence will be de-
duced from Theorem 14.

Let t > 0. Let L = L̃h as in (42)-(43) satisfy (14). Bounds for the
eigenvalues ofM in a vicinity of t, can be found from (24). The inverse

residuals τ∓j (t) in (24) can be computed by solving (ZL̃ht ) as follows. Let

{b1, . . . , bn(h)} be a basis of Lh. Let Bt, Kt ∈ Cn(h)×n(h) be determined
by

[Bt]jk =
〈
(P−1M1 − tP)bj, (P−1M1 − tP)bk

〉
and

[Kt]jk =
〈
(P−1M1 − tP)bj,Pbk

〉
.

Then τ∓j (t) = η−1
∓ where η∓ is the negative(−)/positive(+) eigenvalue

of the pencil Bt − ηKt which is in the jth place among those closer to
0.

Denote by 0 < tup < tlow the corresponding position t set for com-
puting upper and lower bounds by means of τ−j (tlow) and τ+

j (tup), re-

spectively. SinceM is strongly indefinite and L̃h are dense in the graph
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norm of D(M) for suitable sub-families of mesh, we can always assume
that the trial spaces are chosen such that

(49) min
u∈L̃h

〈Mu, u〉
〈u, u〉

< tup and tlow < max
u∈L̃h

〈Mu, u〉
〈u, u〉

.

Recall the condition (14).
The following procedure aims at computing intervals of enclosure for

the eigenvalues ofM which lie in the segment (tup, tlow) for a prescribed
tolerance set by the parameter δ > 0. According to Lemma 16 below,
these intervals will be certified in the regime δ → 0.

Procedure 1.

Input.
– Initial tup > 0.
– Initial tlow > tup such that tlow − tup is fairly large.

– A sub-family F of finite element spaces L̃h as in (42)-(43),
dense in the graph norm of D(M) as h→ 0.

– A tolerance δ > 0 fairly small compared with tlow − tup.
Output.

– A prediction m̃(δ) ∈ N of Tr1(tup,tlow)(M).
– Predictions ω±j (δ) of the endpoints of enclosures for the eigen-

values in σ(M)∩(tup, tlow), such that 0 < ω+
j (δ)−ω−j (δ) < δ

for j = 1, . . . , m̃(δ).
Steps.

a) Set initial L = L̃h ∈ F .
b) While

ω+
j,h − ω

−
j,h ≥ δ or ω−j,h > ω+

j,h for some j = 1, . . . , m̃,

do c) - e).
c) Compute

ω+
j,h = tup +

1

τ+
j (tup)

for j = 1, . . . , m̃up

where m̃up is such that all ω+
j,h < tlow and

tup +
1

τ+
m̃up+1(tup)

≥ tlow.

d) Compute

ω−m̃low−k+1,h = tlow +
1

τ−k (tlow)
for k = 1, . . . , m̃low
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where m̃low is such that all ω−m̃low−k+1,h > tup and

tlow +
1

τ−m̃low+1(tlow)
≤ tup.

e) If m̃low 6= m̃up, decrease h, set new L = L̃h ∈ F and go back
to c). Otherwise set m̃ = m̃low = m̃up, decrease h, set new

L = L̃h ∈ F and continue from b).
f) Exit with m̃(δ) = m̃ and ω±j (δ) = ω±j,h for j = 1, . . . , m̃.

Let
(tup, tlow) ∩ σ(M) = {ωk+1, . . . , ωk+m}

where
m = Tr1(tup,tlow)(M) and k ≥ 0.

Observe that, a priori, an interval (ω−j , ω
+
j ) obtained as the output

of Procedure 1 is not guaranteed to have a non-empty intersection
with the spectrum of M or in fact include precisely the eigenvalue
ωk+j. However, as it is established by the following lemma, the latter
is certainly true for δ small enough.

Lemma 16. There exist t0 > 0 and δ0 > 0, ensuring all the next items
for all tlow ≥ t0 and δ < δ0.

a) The conditional loop in Procedure 1 always exits in the regime
h→ 0.

b) m(δ) = m.
c) ω−j (δ) ≤ ωk+j ≤ ω+

j (δ) for all j = 1, . . . , n.

Proof. Since ν+
j (tup) = ωk+j = ν−n−j+1(tlow) for all j = 1, . . . , n, Theo-

rem 14 alongside with the assumption on F , confirms the existence of
ω±j,h in Procedure 1-c) and d), for all j = 1, . . . , n whenever h is small
enough. Moreover

ω+
j,h ↓ ωk+j and ω−j,h ↑ ωk+j as h→ 0.

This ensures the validity of the lemma. �

If the eigenfunctions of M lie in Hr+1(Ω)6, where r is the degree of
the polynomials in (42), then

ω+
j,h − ω

−
j,h = O(h2r).

This means that the exit rate of the conditional loop in Procedure 1 is
also O(h2r) as h→ 0.

A close examination of the constants involved in the proof of Theo-
rem 14, indicates that they are of order |t− ν±1 (t)|−1. See Theorem 10
and Corollary 11. Table 1 and other various numerical experiments
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not included in Section 7, strongly suggest that the accuracy improves
significantly, as tup ↓ ν−1 (tup) and tlow ↑ ν+

1 (tlow).

7. Benchmark examples

We now illustrate the practical applicability of the ideas discussed
above by means of several examples. Two canonical references for
benchmarks on the Maxwell eigenvalue problem are [15] and [9]. We
validate some of the numerical bounds shown below against these bench-
marks. All the experiments presented are performed for ε = µ = 1 and
some of them consider the so-called two-dimensional Maxwell problem.

If the domain Ω has a cylindrical symmetry, say Ω = Ω̃ × (0, π) for
Ω̃ ⊂ R2 open and sufficiently regular, then (1) decouples. Indeed, by
separation of variables, a non-zero ω is an eigenvalue ofM1 if and only
if either ω2 = λ2 or ω2 = ν2 + ρ2, where λ2 is a Dirichlet eigenvalue
of the Laplacian in Ω̃, ν2 is a non-zero Neumann eigenvalue of the
Laplacian in Ω̃ and ρ ∈ N. In turns the Neumann problem can be
re-written as

(50)


curlE = iµH in Ω̃

curlH = −iωE in Ω̃

E · t = 0 on ∂Ω̃ ,

for non-zero (E, H)t ∈ L2(Ω̃)3 and ν = ω ∈ R, where

E =

(
E1

E2

)
, curlE = ∂xE2 − ∂yE1, curlH =

(
∂yH
−∂xH

)
and t is the unit tangent to ∂Ω̃. This two-dimensional Maxwell problem
suffers from all the complications concerning spectral pollution, as its
three-dimensional counterpart.

We denote by M̃ the self-adjoint operator associated to (50). This
operator can be employed for numerical tests which can then be vali-
dated against numerical calculations for the original Neumann Lapla-
cian via the Galerkin method, [15]. Indeed, note that the latter is a
semi-definite operator with a compact resolvent, so it does not exhibit
spectral pollution.

The ideas developed in Section 5 for the operatorM have analogues
for M̃. In the lower-dimensional examples presented below, we have
chosen the finite element spaces on a corresponding triangulation Th of
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Figure 1. Semi-log graph associated to Ωsqr. Vertical
axis: ω+

k − ω
−
k . Horizontal axis: eigenvalue index k (not

counting multiplicity). Here we use elements of order
r = 1, 3, 5 on unstructured uniform meshes rendering
roughly the same number of degrees of freedom.

Ω̃ as

Vr,k
h = {vh ∈ [C0(Ω̃)]k : vh|K ∈ [Pr(K)]k ∀K ∈ Th} (k = 1, 2)

Vr,2
h,0 = {vh ∈ Vr,2

h : vh × n = 0 on ∂Ω̃} and

Lh = Vr,2
h,0 ×Vr,1

h .

This ensures that Lh ⊂ D(M̃).

7.1. Convex domains. The eigenfunctions of (1) or (50) are regular
in the interior of a convex domain. This leads to an improvement in
accuracy as a consequence of (48). In this, the best possible case sce-
nario, the Zimmermann-Mertins method for the resonant cavity prob-
lem achieves an optimal order of convergence in the context of the finite
element method.
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Enclosures on a square. Let Ω̃ = Ωsqr = (0, π)2 ⊂ R2. The eigenvalues

of M̃ are ω = ±
√
l2 +m2 for l,m ∈ N ∪ {0}. In order to estimate ω±k

numerically, we have picked

tup =
1

4
ωk−1 +

3

4
ωk and tlow =

3

4
ωk +

1

4
ωk+1

to machine precision. Here and below we substitute from the notation
in previous sections the index j for eigenvalues by an index k, in order
to highlight the fact that we do not always count multiplicities.

In our first experiment we have computed the width of the enclosure,
ω+
k − ω

−
k , for k = 1, . . . , 100 and r = 1, 3, 5. We have chosen h = h(r)

such that the subspaces Lh have roughly the same dimension ≈ 61K.
Figure 1 shows the outcomes of this experiment. We have excluded
enclosures with size above 10−1. As it is natural to expect, for a fixed
subspace Lh, the accuracy deteriorates as the eigenvalue counting num-
ber j increases: high energy eigenfunctions have more oscillations so
their approximation is more challenging. The accuracy increases with
the polynomial order. The first 100 eigenvalues are approximated fairly
accurately (note that ω100 =

√
261) with polynomial order r = 5.

Convergence on a cube. We now consider Ω = Ωcbe = (0, π)3 ⊂ R3.
The non-zero eigenvalues are now ω = ±

√
l2 +m2 + n2. The corre-

sponding eigenfunctions are

E(x, y, z) =

α1 cos(lx) sin(my) sin(nz)
α2 sin(lx) cos(my) sin(nz)
α3 sin(lx) sin(my) cos(nz)

 ∀

α1

α2

α3

 ·
 l
m
n

 = 0.

Here {l,m, n} ⊂ N ∪ {0} and not two indices are allowed to vanish
simultaneously. The vector α determines the multiplicity of the eigen-
value for a given triplet (l,m, n). That is, for example, ω =

√
2 (the

first positive eigenvalue) has multiplicity 3 corresponding to indices
{(1, 1, 0), (0, 1, 1), (1, 0, 1)} each one of them contributing to one of the
dimensions of the eigenspace. However, ω =

√
3 (the second positive

eigenvalue) corresponding to index {(1, 1, 1)} has multiplicity 2 deter-
mined by α on a plane.

In Figure 2 we have depicted the decrease in the enclosure width for
the computation of the eigenvalue ω2 =

√
3 for Lagrange elements of

order r = 1, 2, 3. We have chosen a sequence of unstructured tetra-
hedral mesh. The computed values for the slopes of the straight lines
indicate that the enclosures obey the estimate

(51) |ω±j − ωj| ≤ ch2r.
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Figure 2. Log-log graph associated to Ωcbe and ω2 =√
3. Vertical axis: enclosure width. Horizontal axis:

maximum element size h. Here we have chosen Lagrange
elements of order r = 1, 2, 3 on a sequence of unstruc-
tured meshes.

Therefore the conclusion (48) of Theorem 14 will be sharp. Note that in
the picture, we have considered both the exact residual and the length
of the enclosure.

The slashed cube. We now assume that

Ω = Ωsla = (0, π)3 \ T ⊂ R3.

Here T is the closed tetrahedron with vertices given by

(0, 0, 0), (π/2, 0, 0), (0, π/2, 0) and (0, 0, π/2).

This domain does not have symmetries allowing a reduction into two-
dimensions. However, as Ωsla is fairly close to Ωcbe, we should expect
that the structure of the spectrum in the two cases is reminiscent of
one another.

In our first experiment on this region, we compute benchmark eigen-
value enclosures for (1). The table to the right of Figure 3 shows the
outcomes of implementing the Procedure 1. We have run an algorithm
based on this procedure for three fixed choices of tup and tlow (third
and fourth columns) with δ = 10−2. We have picked the family of
mesh so that no more than five iterations were required to achieve the
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t

k (ωk)
+
− tup (l) tlow (l)

1 1.412236
000 0.5 (1) 1.6 (3)

2 1.430672
560 0.5 (2) 1.6 (2)

3 1.430673
577 0.5 (3) 1.6 (1)

4 1.755308
043 1.5 (1) 2.1 (2)

5 1.755329
063 1.5 (2) 2.1 (1)

6 2.22200
053 1.8 (1) 2.6 (5)

7 2.237667
434 1.8 (2) 2.6 (4)

8 2.237684
459 1.8 (3) 2.6 (3)

9 2.239533
387 1.8 (4) 2.6 (2)

10 2.270778
558 1.8 (5) 2.6 (1)

Figure 3. Benchmark spectral approximation for Ωsla.
In the table we compute interval of enclosure for the first
10 eigenvalues of (1). In order to obtain this calcula-
tion we have employed Procedure 1. The trial spaces are
made of Lagrange elements of order r = 3. The final
mesh is the one shown on the right side. Total number
of DOF=117102.

needed accuracy. The parameter l in this table counts the number of
eigenvalues to the right of tup or to the left of tlow, respectively.

In this experiment we have chosen trial spaces made out of Lagrange
elements of order r = 3. All the final eigenvalue enclosures have a
length of at most 2 × 10−3. The mesh used in the last iteration is
depicted on the left of Figure 3.

From the table it seems clear that there is a cluster of eigenvalues
at the bottom of the positive spectrum near

√
2. The latter is the

first positive eigenvalue of Ωcbe which is of multiplicity 3. It appears
that this eigenvalue splits into a single eigenvalue at the bottom of the
spectrum and a seemingly double eigenvalue slightly above it. Another
cluster occurs at ω4 and ω5 with strong indication that this is a double
eigenvalue. This pair is near

√
3, the second eigenvalue of Ωcbe which

is indeed double. The next eigenvalues for the cube are 2 and
√

5 with
total multiplicity 5. It is natural to conjecture that ωj for j = 5, . . . , 10
are perturbations of these eigenvalues, but the data shown in the table
is inconclusive.

For our next experiment on this region, we have estimated numeri-
cally the electromagnetic fields corresponding to index up to 6 from the
table in Figure 3. The purpose of the experiment is to set benchmarks
for the eigenfunctions on Ωsla and simultaneously illustrate Theorem 15.
In Figure 4 we depict the density of electric and magnetic fields, |E|
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Figure 4. The first six eigenfunctions on Ωsla for the
first six positive eigenvalues. Densities |E| (top) and
|H| (bottom). Corresponding arrow fields E (red) and
H (blue) on ∂Ωsla.
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and |H| both normalized to having maximum equal to 1. We also show
arrows pointing towards the direction of these fields on ∂Ωsla.

The mesh employed for these calculations is the one shown in Fig-
ure 3. According to Theorem 15 and the data presented in the table,
the shown eigenfunctions should be close to the exact eigenfunctions
in the curl norm. We remark that for both experiments on Ωsla a rea-
sonable accuracy has been achieved even for the fairly coarse mesh
depicted in Figure 3.

7.2. Non-convex domains. The numerical approximation of the
eigenfrequencies and electromagnetic fields in the resonant cavity is
known to be challenging when the domain is not convex. The main
reason for this is the fact that the electromagnetic field might have a
singularity and a low degree of regularity at re-entrant corners. See for
example the discussion after [22, Lemma 3.56] and references therein.

In some of the examples of this section we consider a mesh adapted
to the geometry of Ω. However, we do not pursue any specialized
mesh refinement strategy. We show below that, even in the case where
there is poor approximation due to low regularity of the eigenspace,
the Procedure 1 provides a stable approxiation to the eigenvalues of
(1).

The L-shaped domain. The region Ω̃ = ΩL = (0, π)2 \ [0, π/2]2 is a
classical benchmark domain both for the Maxwell and the Helmholtz
problems, and it has been extensively examined in the past. Numerical
computations for the eigenvalues of M were reported in [9, Table 5]
via an implementation based on a mixed formulation of (50) and the
help of edge finite elements. See also [15]. We now show how to achieve
accurate enclosures for these eigenvalues with the help of nodal finite
elements.

For this next set of experiments we consider unstructured triangu-
lations of the domain, refined around the re-entrant corner. The poly-
nomial order is set to r = 3. Figures 5 - 7 summarize our findings.

We produced the table in Figures 5 by implementing Procedure 1
in the same fashion as for the case of Ωsla discussed previously. For
comparison in the second column of this table we have included the
benchmark eigenvalue estimations found in [9] and [15]. Note that
some of the computed eigenvalues associated to the mixed formulation
are lower bounds of the true eigenvalues, and some, like the 9th, are
upper bounds. This confirms that the latter approach is in general
un-hierarchical as previously suggested in the literature.
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j ωj from [9] (ωj)
+
− tup (l) tlow (l)

(from [15])
1 0.768192684 0.773334991

694 0.1 (1) 2.1 (4)
(0.773334985176)

2 1.196779010 1.1967827557026
761 0.1 (2) 2.1 (3)

(1.19678275574)
3 1.999784988 2.00000000064

1.99999999933 1.5 (1) 2.5 (4)
(2.00000000000)

4 1.999784988 2.00000000067
1.99999999936 1.5 (2) 2.5 (3)

(2.00000000000)
5 2.148306309 2.14848368365

199 3.1 (5) 1.5 (3)
(2.14848368266)

6 2.252760528 2.25729896
776 1.5 (4) 3.1 (4)

7 2.828075317 2.8284271354
186 1.5 (5) 3.7 (4)

8 2.938491109 2.94671343
112 1.5 (6) 3.7 (3)

9 3.075901493 3.0758929738
571 1.5 (7) 3.7 (2)

10 3.390427701 3.3980724
676 1.5 (8) 3.7 (1)

Figure 5. Enclosures for the first 10 positive eigenval-
ues ofM on the region ΩL. The next eigenvalue is above
3.7. Here Procedure 1 has been implemented on La-
grange elements of order 3. The final mesh shown on
the right has a number of DOF=56055. The mesh has
a maximum element size h = 0.1 and has been refined
at (π/2, π/2). For comparison on the second column we
include the eigenvalue estimations found in [9] and [15].

From the third column of the table, it is clear that the accuracy de-
pends on the regularity of the corresponding eigenspaces. The eigen-
functions associated to ω = 2 and ω =

√
8 are found by gluing together

corresponding eigenfunctions of (1) on squares of side π/2. These eigen-
functions are smooth in the interior of ΩL, while those associated to ω1

and ω2 are singular at the re-entrant corner. The electric field compo-
nent of the former is known to be outside H1(ΩL)2 while that of the
latter is in H1(ΩL)2. This explains the significant gain in accuracy in
the calculation of ω2 with respect to the one of ω1.

Figure 6 depicts in log-log scale residuals versus maximum element
size. We have considered here Lagrange elements of order r = 3 and
r = 5. The hierarchy of mesh (not shown) was chosen unstructured,
but with an uniform distribution of nodes. Since the eigenfunctions
associated to ω1 and ω2 have a limited regularity, then there is no
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Figure 6. Compared order of approximation for differ-
ent eigenvalues in the region ΩL. The log-log plot shows
residual versus maximum element size h for the calcula-
tion of enclosures for ωk where k = 1, 2, 3 and L is gen-
erated by Lagrange elements of order r = 3 and r = 5.
Note that (E, H) 6∈ Hs(ΩL)3 for k = 1 and s = 1, and
for k = 2 and s = 1.5. On the other hand, for k = 3 we
have (E, H) smooth, as the eigenfunction is also solution
of (1) on a square of side π/2.

noticeable improvement of convergence order as r increases. As the
third eigenfunction is smooth, it does obey the estimate (51).

Benchmark approximated eigenfunctions are depicted in Figure 7.
The mesh employed to produce these graphs is the one shown on the
right of Figure 5. As some of the electric fields have a singularity at
(π/2, π/2) we have normalized each individual plot to a range in the
interval [0, 1].

The Fichera domain. In this next experiment we approximate numer-
ically the eigenpairs of (1) associated to the region

Ω = ΩF = (0, π)3 \ [0, π/2]3 ⊂ R3.

Some of the eigenvalues can be obtained by domain decomposition
and the corresponding eigenfunctions are regular. For example, eigen-
functions on the cube of side π/2 can be assembled in the obvious
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Figure 7. Eigenfunctions on ΩL associated to the first
eight positive eigenvalues. Densities |E| (top) and |H|
(bottom). Corresponding arrow fields E. We have nor-
malized each individual density to have as maximum the
value 1.
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k (ωk)
+
−

1 1.146
25

2 1.5441
16

3 1.5441
18

4 2.082
64

5 2.082
78

6 2.082
78

7 2.235
13

8 2.235
14

9 2.3267
58

10 2.3323
09

11 2.3324
10

12 2.40
36

13 2.60
59

14 2.60
59

15 2.6056
09

Figure 8. Spectral enclosures for the spectrum lying on
the interval (0, 2

√
2) for the Fichera domain ΩF. Here we

have fixed tup = 0.2 and tlow = 2.8. We considered mesh
refined at the re-entrant edges as shown on the left. The
final number of DOF=208680.

fashion, in order to build eigenfunctions on ΩF. Therefore the set
{±2
√
l2 +m2 + n2} where not two indices vanish simultaneously cer-

tainly lies inside σ(M). The first eigenvalue in this set is 2
√

2. We
conjecture that there are exactly 15 eigenvalues in the interval (0, 2

√
2).

Furthermore, we conjecture that the multiplicity counting of the spec-
trum in this interval is

1, 2, 3, 2, 1, 2, 1, 3.

The table on the right of Figure 8 shows a numerical estimation of these
eigenvalues. Here we have fixed tup = 0.2 and tlow = 2.8. We have con-
sidered a family of mesh refined along the re-entrant edges. The final
mesh is shown on the left side of Figure 8. We have stopped the algo-
rithm when the tolerance δ = 0.05 has been achieved. However, note
that the accuracy is much higher for the indices k = 2, 3, 9, 10, 11, 15.

The slight numerical discrepancy shown in the table for the seem-
ingly multiple eigenvalues appears to be a consequence of the fact that
the meshes employed are not entirely symmetric with respect to permu-
tation of the spacial coordinates. Figure 9 includes the corresponding
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Figure 9. The first six eigenfunctions on ΩF for the
first six positive eigenvalues. Densities |E| (top) and
|H| (bottom). Corresponding arrow fields E (red) and
H (blue) on ∂ΩF.
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RF DOF tlow = 1.95 tlow = 2.05 tup = 1.05 tup = 0.7
(j = 1) ω−3 (j = 3) ω−3 (j = 1) ω+

3 (j = 3) ω+
3

1 4143 1.24764 1.26640 1.50395 1.3436
0.1 9648 1.25029 1.26830 1.49282 1.3336
0.01 74226 1.25063 1.26846 1.48899 1.3274

Table 1. Numerical experiment showing the depen-
dence of the accuracy in the Zimmermann-Mertins
method on the choice of tup and tlow. It is preferable
to pick tup and tlow as far as possible from ω than to
increase the dimension of L.

approximated eigenfunctions. The mesh employed for this calculation
is the same as that of Figure 8.

The slit square. As mentioned in Section 6, for a single trial space L,
the accuracy of the eigenvalue bounds produced by the Zimmermann-
Mertins method depends on the position of t relative to the spectrum
of M. In this final experiment we demonstrate that this dependence
might vary significantly with t. The numerical evidence suggests that
a good choice of tup and tlow plays a role in the design of efficient
algorithms for eigenvalue calculation based on this method.

Let Ω̃ = (0, π)2 \ S for S = [π/2, π] × {π/2}. Benchmarks on the
eigenvalues of (50) are known by means of solving numerically the cor-
responding Neumann Laplacian problems, [15]. The first seven positive
eigenvalues are

ω1 ≈ 0.647375015, ω2 = 1, ω3 ≈ 1.280686161,

ω4 = ω5 = 2, ω6 ≈ 2.096486081 and ω7 ≈ 2.229523505.

The eigenfunctions associated to ω2, ω4 and ω5 are smooth, as they are
also eigenfunctions on Ωsqr. On the other hand, ω1 and ω3, correspond
to singular eigenfunctions. Standard nodal elements are completely
unsuitable for the computation of these eigenvalues, even with a sig-
nificant refinement of the mesh on S.

Table 1 shows computation of ω±3 on a mesh that is increasingly
refined at S with a factor RF for two pairs of choices of tup and tlow.
Here h = 0.1 and we consider Lagrange elements of order r = 1. The
choice of tup and tlow further from ω3 even with the very coarse mesh,
provide qualitatively sharper ω±3 than the other choices even with the
finer mesh.
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Appendix A. Further geometrical properties of F j
L(t)

Various extensions of Lemma 2 to the case j > 1 are possible, how-
ever it is difficult to write these results in a neat fashion. The propo-
sition below is one such an extension.

The following generalization of Danskin’s Theorem is a direct con-
sequence of [6, Theorem D1]. Let J ⊂ R be an open segment. Denote
by

∂±t f(t) = lim
τ→0+

±f(t± τ)− f(t)

τ
,

the one-side derivatives of a function f : J −→ R. Let V be a compact
topological space. For given J : J × V −→ R we write

J̃ (t) = max
v∈V
J (t, v) and Ṽ(t) =

{
ṽ ∈ V : J̃ (t) = J (t, ṽ)

}
.

Lemma 17. If the map J is upper semi-continuous and ∂±t J (t, v)
exist for all (t, v) ∈ J × V, then also ∂±t J̃ (t) exist for all t ∈ J and

(52) ∂±t J̃ (t) = max
ṽ∈Ṽ(t)

∂±t J̃ (t, ṽ).

In the statement of this lemma, note that the left and right deriva-
tives of both J and J̃ might possibly be different.

Proposition 18. Let j = 1, . . . , n and t ∈ R be fixed. The following
assertions are equivalent.

a) |F j
L(t)− F j

L(s)| = |t− s| for some s 6= t.
b) There exists an open segment J ⊂ R containing t in its closure,

such that

|F j
L(t)− F j

L(s)| = |t− s| ∀s ∈ J.

c) There exists an open segment J ⊂ R containing t in its closure,
such that

∀s ∈ J, either L ∩ Es+F jL(s) 6= {0} or L ∩ Es−F jL(s)(A) 6= {0}.

Proof.
a) ⇒ b). Assume a). Since r 7→ r ± F j

L(r) are continuous and
monotonically increasing, then they have to be constant in the closure
of

J = {τt+ (1− τ)s : 0 < τ < 1}.
This is precisely b).

b) ⇒ c). Assume b). Then s 7→ F j
L(s) is differentiable in J and its

one-side derivatives are equal to 1 or −1 in the whole of this interval.
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For this part of the proof, we aim at applying (52), in order to get
another expression for these derivatives.

Let Fj be the family of (j−1)−dimensional linear subspaces of L.
Identify an orthonormal basis of L with the canonical basis of Cn. Then
any other orthonormal basis of L is represented by a matrix in O(n),
the orthonormal group. By picking the first (j−1) columns of these
matrices, we cover all possible subspaces V ∈ Fj. Indeed we just have

to identify (v1| . . . |vj−1) for [vkl]
n
kl=1 ∈ O(n) with V = Span{vk}

j−1
k=1.

Let

Kj =
{

(v1, . . . , vj−1) : [vkl]
n
kl=1 ∈ O(n)

}
⊂ Cn × . . .× Cn︸ ︷︷ ︸

j−1

.

Then Kj is a compact subset in the product topology of the right hand
side. According to (11),

F j
L(s) = max

(v1,...,vj−1)∈Kj
g(s; v1, . . . , vj−1)

where

g(s; v1, . . . , vj−1) = min
(a1,...,aj−1)∈Cj−1∑

|ak|2=1

∣∣∣∑ akṽk

∣∣∣
s
.

Here we have used the correspondence between vk ∈ Cn and ṽk ∈ L in
the orthonormal basis set above. We write

g(r, V ) = g(r; v1, . . . , vj−1) for V = Span{ṽk}
j−1
k=1 ∈ Fj.

The map g : J × Kj −→ R+ is the minimum of a differentiable
function, so the hypotheses of Lemma 17 are satisfied by J = −g.
Hence, by virtue of (52),

∂±s g(s, V ) = min
u∈L	V,‖u‖=1
|u|s=g(s,V )

(
Re ls(u, u)

|u|s

)
.

As minima of continuous functions, g(s, V ) and ∂±s g(s, V ) are upper
semi-continuous. Therefore, a further application of Lemma 17 yields

∂±s F
j
L(s) = max

(v1,...,vj−1)∈Kj
g(s;v1,...,vj−1)=F jL(s)

∂±s g(s, v1, . . . , vj−1)

= max
V ∈Fj

g(s,V )=F jL(s)

min
u∈L	V,‖u‖=1
|u|s=g(s,V )

(
Re ls(u, u)

|u|s

)
.
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Now, this shows that∣∣∣∣∣∣∣ max
V ∈Fj

g(s,V )=F jL(s)

min
u∈L	V,‖u‖=1
|u|s=g(s,V )

(
Re ls(u, u)

|u|s

)∣∣∣∣∣∣∣ = 1.

As L is finite dimensional, there exists a vector u ∈ L satisfying the
identity |u|s = F j

L(s) such that

|Re ls(u, u)|
|u|s

= 1.

Thus |Re〈(A−s)u, u〉| = 〈(A−s)u, (A−s)u〉 = F j
L(s). Hence, according

to the “equality” case in the Cauchy-Schwarz inequality, u must be an
eigenvector of A associated with either s+ F j

L(s) or s− F j
L(s). This is

precisely c).
c) ⇒ a). Under the condition c), we know there exists an open

segment J̃ ⊆ J , possibly smaller, such that t ∈ J̃ and F j
L(s) = dj(s)

for all s ∈ J̃ . As |dj(s)− dj(r)| = |s− r|, then either a) is immediate,
or it follows by taking r → t. �

Appendix B. A Comsol v4.3 LiveLink code

% Comsol V4.3 LiveLink code for computing

% fundamental frequencies on a resonant cavity

% with perfect conductivity conditions

% the test geometry below is the Fichera domain.

%

% Gabriel Barrenechea, Lyonell Boulton

% and Nabile Boussaid

% November 2012

% INITIALIZATION OF THE MODEL FROM SCRATCHES

model = ModelUtil.create(’Model’);

geom1=model.geom.create(’geom1’, 3);

mesh1=model.mesh.create(’mesh1’, ’geom1’);

w=model.physics.create(’w’, ’WeakFormPDE’, ’geom1’,

{’E1’,’E2’, ’E3’, ’H1’, ’H2’, ’H3’});

% CREATING THE GEOMETRY - IN THIS CASE THE FICHERA DOMAIN

hex1=geom1.feature.create(’hex1’, ’Hexahedron’);

hex1.set(’p’,{’0’ ’0’ ’0’ ’0’ ’pi’ ’pi’ ’pi’ ’pi’;
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’0’ ’0’ ’pi’ ’pi’ ’0’ ’0’ ’pi’ ’pi’;

’0’ ’pi’ ’pi’ ’0’ ’0’ ’pi’ ’pi’ ’0’});

hex2=geom1.feature.create(’hex2’, ’Hexahedron’);

hex2.set(’p’,{’0’ ’0’ ’0’ ’0’ ’pi/2’ ’pi/2’ ’pi/2’ ’pi/2’;

’0’ ’0’ ’pi/2’ ’pi/2’ ’0’ ’0’ ’pi/2’ ’pi/2’;

’0’ ’pi/2’ ’pi/2’ ’0’ ’0’ ’pi/2’ ’pi/2’ ’0’});

dif1 = geom1.feature.create(’dif1’, ’Difference’);

dif1.selection(’input’).set({’hex1’});

dif1.selection(’input2’).set({’hex2’});

geom1.run;

%CREATING THE GEOMETRY

model.mesh(’mesh1’).automatic(false);

model.mesh(’mesh1’).feature(’size’).set(’custom’, ’on’);

model.mesh(’mesh1’).feature(’size’).set(’hmax’, ’.8’);

mesh1.run;

% PARAMETER t WHERE TO LOOK FOR EIGENVALUES

parat=2.2;

% WHETHER TO LOOK FOR THE EIGENVALUES TO THE LEFT (-) OR

% RIGHT (+) AND WHERE ABOUT

shi=-.3;

model.param.set(’tt’, num2str(parat));

searchtau=shi;

% FINITE ELEMENTS TO USE AND ORDER

w.prop(’ShapeProperty’).set(’shapeFunctionType’, ’shlag’);

w.prop(’ShapeProperty’).set(’order’, 3);

% PHYSICS

w.feature(’wfeq1’).set(’weak’,1 ,’(H3y-H2z)*(H3y_test-H2z_test)-

i*2*tt*(H3y-H2z)*E1_test+tt^2*E1*E1_test+(i*(H3y-H2z)-tt*E1)*E1t_test’);

w.feature(’wfeq1’).set(’weak’,2 ,’(H1z-H3x)*(H1z_test-H3x_test)-

i*2*tt*(H1z-H3x)*E2_test+tt^2*E2*E2_test+(i*(H1z-H3x)-tt*E2)*E2t_test’);

w.feature(’wfeq1’).set(’weak’,3 ,’(H2x-H1y)*(H2x_test-H1y_test)-

i*2*tt*(H2x-H1y)*E3_test+tt^2*E3*E3_test+(i*(H2x-H1y)-tt*E3)*E3t_test’);

w.feature(’wfeq1’).set(’weak’,4 ,’(E3y-E2z)*(E3y_test-E2z_test)+

i*2*tt*(E3y-E2z)*H1_test+tt^2*H1*H1_test+((-i)*(E3y-E2z)-tt*H1)*H1t_test’);

w.feature(’wfeq1’).set(’weak’,5 ,’(E1z-E3x)*(E1z_test-E3x_test)+

i*2*tt*(E1z-E3x)*H2_test+tt^2*H2*H2_test+((-i)*(E1z-E3x)-tt*H2)*H2t_test’);

w.feature(’wfeq1’).set(’weak’,6 ,’(E2x-E1y)*(E2x_test-E1y_test)+
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i*2*tt*(E2x-E1y)*H3_test+tt^2*H3*H3_test+((-i)*(E2x-E1y)-tt*H3)*H3t_test’);

% BOUNDARY CONDITIONS

cons1=model.physics(’w’).feature.create(’cons1’, ’Constraint’);

cons1.set(’R’, 2, ’E2’);

cons1.set(’R’, 3, ’E3’);

cons1.selection.set([1 8 9]);

cons2=model.physics(’w’).feature.create(’cons2’, ’Constraint’);

cons2.set(’R’, 1, ’E1’);

cons2.set(’R’, 3, ’E3’);

cons2.selection.set([2 5 7]);

cons3=model.physics(’w’).feature.create(’cons3’, ’Constraint’);

cons3.set(’R’, 1, ’E1’);

cons3.set(’R’, 2, ’E2’);

cons3.selection.set([3 4 6]);

% HOW MANY EIGENVALUES TO LOOK FOR AROUND t

neval=3;

% SOLVING THE MODEL

std1=model.study.create(’std1’);

model.study(’std1’).feature.create(’eigv’, ’Eigenvalue’);

model.study(’std1’).feature(’eigv’).set(’shift’, num2str(searchtau));

model.study(’std1’).feature(’eigv’).set(’neigs’, neval);

std1.run;

% STORING SOLUTION FOR POST PROCESSING

[SZ,NDOFS,DATA,NAME,TYPE]= mphgetp(model,’solname’,’sol1’);

% DISPLAYING SOLUTION

for inde=1:neval,

tauinv=(real(DATA(inde)));

bd=parat+tauinv;

if tauinv<0, disp([’lower= ’,num2str(bd,10)]);

else disp([’upper= ’,num2str(bd,10)]);

end

disp([’DOF= ’,num2str(NDOFS)])

end
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thank Université de Franche-Comté, University College London and the
Isaac Newton Institute for Mathematical Sciences (programme Spec-
tral Theory of Relativistic Operators), for their hospitality. Funding
was provided by MOPNET, the British-French project PHC Alliance
(22817YA), the British Engineering and Physical Sciences Research
Council (EP/I00761X/1) and the French Ministry of Research (ANR-
10-BLAN-0101).

References

[1] C. Amrouche, C. Bernardi, M. Dauge, and V. Girault, Vector
potentials in three-dimensional non-smooth domains, Math. Methods Appl.
Sci., 21 (1998), pp. 823–864.

[2] D. Arnold, R. Falk, and R. Winther, Finite element exterior calculus:
from hodge theory to numerical stability, Bulletin of the American Mathemat-
ical Society, 47 (2010), pp. 281–354.

[3] G. Barrenechea, L. Boulton, and N. Boussäıd, Some remarks on the
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