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By means of high-resolution ac calorimetry and polarizing optical microscopy it is demonstrated that surface-
functionalized spherical CdSSe nanoparticles induce a twist-grain boundary phase when dispersed in a chiral
liquid crystal. These nanoparticles can effectively stabilize the one-dimensional lattice of screw dislocations,
thus establishing the twist-grain boundary order between the cholesteric and the smectic-A phases. A theoretical
model is also presented accounting for the trapping of nanoparticles in the defect cores.
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I. INTRODUCTION

The existence of twist-grain boundary phases (TGBs) was
theoretically predicted as the liquid-crystalline analogue of
the Shubnikov phase exhibiting Abrikosov flux vortices in
type-II superconductors [1, 2]. An isomorphism was proposed
between liquid crystals and superconductors as follows: chi-
ral nematic phase (N∗) - normal metal, twisted chiral line
liquid (N∗

L) - Abrikosov vortex liquid, twist-grain boundary
A (TGBA) - Abrikosov vortex lattice, smectic-A (SmA) -
Meissner phase [3]. TGBs were experimentally discovered
by Goodby et al. [4] and Nguyen et al. [5], and later found
in pure liquid crystals (LCs) or mixtures of LCs and chiral
dopants [3, 6]. Their thermal signatures [7], X-ray patterns
[8, 9], nuclear magnetic resonance spectra [10, 11] and optical
textures [12] have been clearly identified. TGBA phase con-
sists of a one-dimensional lattice of screw dislocations along
the grain boundaries that separate slabs of smectic order. This
defect lattice is pinned for TGBA, whereas it strongly oscil-
lates in the case of N∗

L phase [13].

Various types nanoparticles have been often dispersed in
liquid crystals in order to study the effects or quenched-
random disorder on phase transitions [14–18], explore mem-
ory effects [19], tailor the dielectric and optical properties
[20–22] and stabilize blue phases [23–25]. Very recently,
it has been reported that surface-functionalized nanoparticles
(NPs) that were initially used for blue phase stabilization
[26], can also induce the TGBA and N∗

L phases in a chiral
liquid crystal [27]. This is so far shown only for one sys-
tem composed of the chiral liquid crystal CE6 and surface-
functionalized CdSe nanoparticles of a 3.5 nm diameter. It is
not yet clear if such an effect, i.e., the nanoparticle-induced
TGB order, is system-dependent or it exhibits a more general
character. In this work we explore if the TGBA andN∗

L phases
can be induced in a different system of LC + NPs. The re-
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sults are obtained by means of high-resolution ac calorimetry
and polarizing optical microscopy, searching for the typical
thermal and optical patterns of TGB order. In addition, the
distinction of TGBA and N∗

L optical textures has been ven-
tured. The experimental results are accompanied by a brief
theoretical model that accounts for the trapping of NPs in the
one-dimensional lattice of screw dislocations.

II. SAMPLES AND EXPERIMENTAL METHODS

A high-purity chiral liquid crystal 4’-octyl-biphenyl-4-
carboxylic acid 4-(2-methyl-butyl)-phenyl ester (CE8) was
purchased from Merck and it was used without any additional
treatment. The CdSSe NPs have been synthesized in N.C.S.R.
“Demokritos”. Atomic force microscopy measurements yield
a diameter value of 3.4 ± 0.3 nm as shown in Fig. 1. The sur-
face of NPs is treated with flexible chains of oleyl amine and
tri octyl phosphine. Such a coating has been proven very ef-
fective for a good quality dispersion of various types of spher-
ical or anisotropic NPs in liquid crystal hosts [24, 26–28].

One mixture with CdSSe concentration of χ = 0.05 was
prepared, where χ is defined as the mass of NPs over the total
mass of the sample, i.e., χ = mNP /(mLC +mNP ). For the
mixture preparation a well-established protocol used in pre-
vious studies [24, 29] has been followed. This protocol in-
cludes the use of an ultrasonic bath to break any aggregates
in the NPS solution, persistent mixing by magnetic stirring at
elevated temperatures and, finally, pumping under vacuum in
order to remove any solvent remains. Then the sample was
placed in high-purity silver cells for calorimetric measure-
ments and between glass plates for microscopic observations.
Prior to measurements it was heated at temperatures corre-
sponding to the isotropic phase of pure CE8.

The temperature profiles of heat capacity for pure CE8 and
its mixture with CdSSe nanoparticles have been obtained us-
ing a fully-computerized, high-resolution ac calorimeter at
Jožef Stefan Institute. This apparatus operates in the conven-
tional ac as well as in relaxation (or non-adiabatic scanning)
mode. The ac mode is mostly sensitive to continuous enthalpy
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FIG. 1: Atomic force microscopy measurements yield a diameter of
3.4 ± 0.3 nm for the CdSSe NPs.

changes, whereas the phase of the ac temperature oscillations
indicates whether a transition is first or second order. The
relaxation mode on the other hand is sensitive to both contin-
uous and discontinuous (latent heat) enthalpy changes. The
comparison of the data between the two modes of operation
can provide a quantitative determination of the released latent
heat. A detailed description of the apparatus is given in Ref.
[30]. The heat capacity of the empty cell was subtracted in
order to obtain the net specific heat capacity (Cp) of the sam-
ples.

The χ = 0.05 mixture was additionally observed under a
Carl Zeiss Jena microscope. The sample was placed between
glass plates separated by 20 µm spacers. These plates are
coated with a unidirectionally rubbed polyimide, thus, impos-
ing planar anchoring conditions to the LC molecules. The im-
ages were captured under crossed polarizers. The temperature
was stabilized and slowly changed by means of a home-made
heating stage, with precision of ±10 mK.

III. EXPERIMENTAL RESULTS AND DISCUSSION

Pure CE8 exhibits a single and sharp peak at 406.4 K asso-
ciated with a direct, weakly first order N -SmA phase transi-
tion [24]. Contrary to pure CE8, the χ = 0.05 mixture exhibits
a completely different thermal behavior. Firstly, as shown by
the cooling run with a rate of 0.25 Kh−1 in Fig. 2, the heat
capacity anomaly is smeared and broadened due to the pres-
ence of CdSSe NPs. Secondly, the low temperature wing of
the Cp anomaly reveals an additional smeared thermal signa-
ture, suggesting the presence of additional phase(s) between
the N∗ and the SmA ones. In order to more accurately probe
the shape of this additional peak, a subsequent heating run was
performed using a significantly slower scanning rate of 0.15
Kh−1. This heating run revealed the presence of two small
but clearly distinct anomalies corresponding to the typical pat-
tern of a SmA-TGBA-N∗

L-N∗ phase sequence [7]. Note that
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FIG. 2: The Cp(T ) profiles for the χ = 0.05 mixture, upon cool-
ing (a) with a rate of 0.25 Kh−1 and heating (b) of 0.15 Kh−1. In
both cases the low-temperature wing shows additional features that
are more clearly visualized upon the (slower) heating. These fea-
tures correspond to the characteristic thermal pattern SmA-TGBA-
N∗

L-N∗ phase sequence [7, 27].

for systems composed of LC + NPs these additional anoma-
lies, attributed to the SmA-TGBA and TGBA-N∗

L phase tran-
sitions, appear more smeared [27] compared to the ones ob-
served in pure liquid crystals [7].

Searching for additional experimental proof about the pres-
ence of the TGBA and N∗

L phases, the χ = 0.05 mixture was
observed under the microscope upon slow heating and cool-
ing. Apart from the well-oriented SmA domains and the oily
streaks characteristic of the N∗ phase, two intermediate tex-
tures have been identified and they could be attributed to the
TGBA and N∗

L structures. These textures can be seen in Fig.
3 for heating and in Fig. 4 for cooling. In case of heating,
for TGBA the texture is similar with the one of SmA phase,
although it becomes more colorful due to the continuous rota-
tion of the smectic slabs. In addition, the elongated SmA fans
are progressively attaining rounded edges. The fans become
essentially wider and attain stripes along the next appearing
N∗

L phase and finally change to the oily streaks in the N∗

phase. Similar to the heating run, the subsequent cooling run
reproduced nicely these four different textures corresponding
to the aforementioned phases. To our knowledge, no other
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FIG. 3: Polarizing optical microscopy textures upon heating the χ =
0.05 sample from the SmA phase; (a) SmA, (b) TGBA, (c) N∗

L and
(d) N∗. The images have been obtained under crossed polarizers.

study has so far distinguished between the optical textures of
TGBA and N∗

L structures.
The results obtained by both high-resolution calorimetry

and microscopy demonstrate that the dispersion of CdSSe NPs
induce TGB order in a narrow temperature range between the
N∗ and SmA phases. The effect has been briefly described
by means of an adaptive-defect-core-targeting (ADCT) mech-
anism [27] for the system CE6 + CdSe NPs. In the follow-
ing section the NP-induced stabilization of TGB order is dis-
cussed. Here the possible contribution of saddle-splay elas-
ticity has been taken into account, something that was not yet
considered in Ref. [27].

IV. THEORY

A simple Landau-de Gennes-Ginzburg mesoscopic ap-
poach has been used in order to estimate the conditions under
which NPs stabilize LC structures exhibiting a lattice of screw
dislocations. The average volume fraction of NPs is given by

p = (NNP vNP )/Vu ∼ χ(ρLC/ρNPs). (1)

Here NNP counts the number of NPs within a volume Vu,
vNP is the volume of a nanoparticle, χ measures the mass
concentration of NPs, ρNP and ρLC stand for the mass densi-
ties of NPs and LC, respectively.

The local orientational ordering is determined by the head-
less nematic director field −→n and the translational ordering by
the complex order parameter ψ = ηeiϕ. The amplitude η de-
termines the degree of smectic ordering and the phase factor

FIG. 4: Polarizing optical microscopy textures upon cooling the
χ = 0.05 sample from the N∗ phase; (a) N∗, (b) N∗

L, (c) TGBA

and (d) SmA phase. The images have been obtained under crossed
polarizers.

ϕ reveals the position of smectic layers. The orientational or-
dering within the Cartesian coordinate frame defined by the
unit vector triad {−→e x,−→e y,−→e z} is parametrized by

−→n = sin θ∥ sin θ⊥
−→e x + sin θ∥ cos θ⊥

−→e y + cos θ∥
−→e z. (2)

A. Free energy

The free energy density of the system is expressed as f =

f
(s)
c +f

(n)
e +f

(s)
e . Here f (s)c stands for the smectic condensa-

tion contribution, and f (s)e and f (n)e describe the smectic and
nematic elastic penalties, respectively. In these terms only the
most essential contributions are included in order to estimate
the observed phase transition behavior.

The nematic elastic free energy penalty is expressed as [31]

f (n)e =
K1

2
(∇.−→n )2 +

K2

2
(−→n .(∇×−→n )− qch)

2

+
K3

2
|−→n ×∇×−→n |2

−K24

2
∇.(−→n (∇.−→n ) +−→n ×∇×−→n ), (3)

where qch stands for the chirality-enforced wave vector, and
K1,K2, K3 and K24 determine the splay, twist, bend and
saddle-splay Frank nematic elastic constant, respectively.

The smectic condensation and elastic free energy contribu-
tions are approximated by [31, 32]
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f (s)c = α0t |ψ|2 +
β

2
|ψ|4 , (4)

f (s)e = C∥ |(−→n .∇− iq0)ψ|2 + C⊥ |(−→n ×∇)ψ|2 . (5)

The quantities α0, β are the positive Landau expansion co-
efficients, t = (T −T∗)/T∗ is the reduced dimensionless tem-
perature, C∥ andC⊥ stand for the smectic compressibility and
bend elastic constant, respectively. These constants are posi-
tive in the SmA phase and enforce one-dimensional SmA lay-
ering with a thickness of d = 2π/q0, where the layer normal
points along −→n . For such a layer arrangement and t < 0 the
condensation term enforces a degree of translational ordering
given by

ηs =
√
−tα0/β ≡ η0

√
−t. (6)

The corresponding smectic free energy condensation term
reads

f (s)c = −α0 |t| η2s/2 = −α0 |t|2 η20/2. (7)

For the sake of simplicity we henceforth neglect the LC
elastic anisotropy and set C ≡ C∥ ∼ C⊥ and K ≡ K1 ∼
K2 ∼ K3 ∼ K24. The most important material-imposed
lengths are the cholesteric pitch wavelength P = 2π/qch, the
equilibrium smectic layer spacing d = 2π/q0, the smectic or-
der parameter correlation length ξ and the nematic twist pene-
tration length λ. Below T∗ the values of ξ and λ are estimated
by

ξ =

√
C

α0 |t|
≡ ξ0√

|t|
, (8)

λ =

√
K

q20Cη
2
s

≡ λ0√
|t|
. (9)

B. Geometry of the problem

The conditions under which TGBA ordering can be stable
are examined here. The main geometric features of this struc-
ture are shown in Fig. 5. TGBA phase consists of slabs of
length lb exhibiting essentially bulk SmA ordering. These
slabs are separated by grain boundaries (GB) of width ∼ λ.
Within each GB a lattice of screw dislocations resides; these
dislocations are separated by a distance ld ∼ lb [3]. The
presence of dislocations enables tilt between adjacent slabs
giving rise to a global twisting of the LC structure along the
z−axis of the coordinate frame. The volume of a representa-
tive TGBA unit cell, consisting of a SmA slab and a GB of
surface l2, is equal to Vu ∼ lbl

2. The length of each screw
dislocation is estimated by l and their number within a GB is
given by Nscr ∼ l/ld.

FIG. 5: A simple schematic illustration of the CdSSe NPs trapped in
the screw dislocations is shown here.

V. ESTIMATED PHASE TRANSITION BEHAVIOR

In the following we describe the conditions under which
even a minute concentration of dispersed NPs stabilizes the
lattice of screw dislocations. The free energy costs of a phase
within a unit cell Vu are labeled by ∆F (phase). The corre-
sponding average free energy density is given by f (phase) =
∆F (phase)/Vu.

A. Pure samples

First, the case of pure LC (without NPs) is considered.
The ordering within N∗ isdetermined by θ⊥ = qchz, θ∥ =

π/2 and η = 0. The corresponding spatially-averaged free
energy density f (phase) = ∆F (phase)/Vu equals

f (N
∗) = 0. (10)

Note that the saddle-splay elastic term can be mathemati-
cally transformed to the confining substrate. This contribution
is neglected.

We describe the SmA ordering within a unit cell for T < T∗
by −→n = −→e x and ψ = ηse

iq0x, yielding

f (SmA) = −α0 |t|2 η20
2

+
Kq2ch
2

. (11)

In the estimation of the free energy costs for the formation
of TGBA structure it is assumed that an ideal SmA ordering
is established within the smectic blocks. Across each GB of
width ∼ λ the director field is approximately rotated by an
angle [3]

∆θ⊥ ∼ d

ld
∼ d

lb
, (12)



5

and θ∥ = π/2. The nematic elastic contribution reads

lb∫
0

dz(−→n .(∇×−→n )− qch)
2 ∼ ∆θ2⊥

λ
− 2qch∆θ⊥ + q2chlb.

A global twisting of the LC configuration is enabled by
GBs incorporating a lattice of parallel screw line dislocations.
The core-size radius of each dislocation is approximated by
ξ and within the cores the smectic ordering is essentially
melted. The resulting average smectic condensation free en-
ergy within Vu is given by

F (TGB)
c = −α0 |t|2 η20

2
(Vu − Vscr). (13)

Here Vscr ∼ Nscrlπξ
2 ∼ πl2ξ2/lb is the volume occupied

by the cores of screw dislocations. The other elastic contri-
butions as well as the interactions among dislocations are not
considered [33]. Note that this approximation works well only
in the limit ld >> λ.

It follows

f (TGB) =
K

2

(
∆θ2⊥
λlb

− 2qch∆θ⊥
lb

+ q2ch

)
−α0 |t|2 η20

2
(1− πξ2

l2b
). (14)

Our samples reveal that in the absence of NPs the phase
exhibiting screw dislocations is absent, whereas it appears
if even a minute amount of NPs is added. This suggests
that in pure samples the triple point condition is roughly
established. At the direct N∗-SmA phase transition (at
T = TNA) all the competing phases coexist, therefore
f (TGB)(TNA) = f (N

∗)(TNA) = f (SmA)(TNA). Conse-
quently, λ(TNA)ξ(TNA)q0qch = 1 and

TNA = T∗(1− λ0ξ0q0qch). (15)

The critical value of the chirality wave vector enabling the
triple point condition at T = TNA reads

q
(c)
ch ∼ d

πξ2

1−

√
1− πξ2

λlb

 . (16)

Therefore, the absence of chirality corresponds to an infi-
nite value for lb.

B. Samples with NPs

Next, it is assumed that NPs of an average volume concen-
tration p are added (see Eq.(1)). It is assumed that NPs are pre-
dominantly assembled within the cores of dislocations. Con-
sequently, they decrease the condensation free energy penalty

which is required to introduce topological defects. Further-
more, due to their flexible tails the NPs disturb relatively
weakly the local LC ordering. The corresponding main free
energy penalties in the translational degree of order read

F (TGB)
c = −α0 |t|2 η20

2
(Vu − Vscr +NNP vNP ). (17)

However, the presence of NPs introduces boundaries where
saddle-splay contributions might appear. Indeed, the direc-
tor field variates along a radial direction from the center
of a screw dislocation, yielding a finite saddle-splay contri-
bution [32]. In the local cylindrical coordinate system at-
tached to a screw dislocation defined by a unit vector triad
{−→e ρ,−→e φ,−→e z}, where the center of cylindrically symmet-
ric dislocation is placed at ρ = 0, the director field can be
well parametrized by −→n ∼ cosϑ−→e z + sinϑ−→e φ. It holds
−→n (ρ = 0) = −→e z and in the limit ρ/d >> 1 the director
distribution is well described by [32]

ϑ = ArcTan(1/(ρq0)). (18)

The corresponding saddle-splay contribution within Vu is
estimated by ∆F24 = −NNP

K24

2

∫
(−→n ×∇×−→n ) .−→e d2−→r .

The integration is carried out over a NP surface and −→e is the
outer surface normal. Taking into account Eq.(18) we obtain

∆F24

Vu
∼ −Kpa24

2rd
(19)

where r stands for the characteristic linear size of NP and
1/a24 ∼ 4π2(1 + 1/(4πr2/d2))2(r/d)3. Note that this ex-
pression is approximate. Here the most important information
is that the saddle-splay term yields a finite contribution if a
NP is trapped within a screw dislocation. Therefore, in the
presence of NPs it holds

f (TGB)(p) ∼ f (TGB)(0)− p

(
α0 |t|2 η20

2
+
Ka24
2rd

)
, (20)

while the impact of NPs on the other two phases is much
smaller. Consequently, in the presence of NPs the stability
range of TGBA phase is increased to a finite temperature in-
terval that can be estimated by

∆TTGBA(χ) ∼ (T∗ − TNA)p

(
1 +

a24
q2chrd

)
l2b
πξ2

∼

(T∗ − TNA)
χρLC

ρNPs

(
1 +

a24
q2chrd

)
l2b
πξ2

(21)



6

VI. CONCLUSIONS

This study has shown that the TGBA and N∗
L phases can be

induced by dispersing surface-functionalized CdSSe NPs, of
a 3.5 nm diameter, in the liquid crystal CE8. Given the recent
observation of NP-induced TGBA and N∗

L phases in a differ-
ent system of LC + NPs, it is suggested that this phenomenon
exhibits a more general character. We anticipate that further
research can unravel the precise role of NPs size and shape on
inducing TGB order in chiral liquid crystals. Our recent pre-
liminary results show that larger anisotropic NPs with similar
surface treatment do not induce any TGB order in CE8.

VII. ACKNOWLEDGMENTS

M.T. acknowledges the support of the Project PR-05015
of the Slovenian Research Agency. G.C. and V.T. acknowl-

edge the support of the Project PE3-1535 implemented within
the framework of the Action “Supporting Postdoctoral Re-
searchers” of the Operational Project “Education and Lifelong
Learning”, co-financed by the European Social Fund and the
Greek State. Z.K. acknowledges support from the Center of
Excellence “NAMASTE” and Project P1-0125 of the Slove-
nian Research Agency. Z.K., G.C. and S.K. acknowledge the
support of the European Office of Aerospace Research and
Development Grant FA8655-12-1-2068. S.K. acknowledges
the hospitality of the Isaac Newton Institute for Mathematical
Sciences, Cambridge, UK, within the program“Mathematics
of Liquid Crystals”. One of the authors (G.C.) would like to
thank C.W. Garland for useful discussions during the prepara-
tion of this manuscript.

[1] P. G. de Gennes, Solid State Commun. 10, 753 (1972).
[2] S. R. Renn and T. C. Lubensky, Phys. Rev. A 38, 2132 (1988).
[3] H. S. Kitzerow, in The Physics of Liquid Crystals, Eds. H. S.

Kitzerow and C. Bahr (Springer, New York, 2001).
[4] J. W. Goodby, M. A. Waugh, S. M. Stein, E. Chin, R. Pindak,

and J. S. Patel, Nature 337, 449 (1989).
[5] H. T. Nguyen, A. Bouchta, L. Navailles, P. Barois, N. Isaert,

R. J. Twieg, A. Maaroufi, and C. Destrade, J. Phys. II 2, 1889
(1992).

[6] J. Fernsler, L. Hough, R. F. Shao, J. E. Maclennan, L. Navailles,
M. Brunet, N. V. Madhusudana, O. Mondain-Monval, C. Boyer,
J. Zasadzinski, et al., Proc. Natl. Acad. Sci. U.S.A. 102, 14191
(2005).

[7] T. Chan, C. W. Garland, and H. T. Nguyen, Phys. Rev. E 52,
5000 (1995).

[8] L. Navailles, P. Barois, and H. T. Nguyen, Phys. Rev. Lett. 71,
545 (1993).

[9] L. Navailles, B. Pansu, L. Gorre-Talini, and H. T. Nguyen,
Phys. Rev. Lett. 81, 4168 (1998).

[10] V. Domenici, C. A. Veracini, V. Novotná, and R. Y. Dong,
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