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Abstract: We discuss the DC conductivity of holographic theories with translational

invariance broken by a background lattice. We show that the presence of the lattice

induces an effective mass for the graviton via a gravitational version of the Higgs

mechanism. This allows us to obtain, at leading order in the lattice strength, an

analytic expression for the DC conductivity in terms of the size of the lattice at the

horizon. In locally critical theories this leads to a power law resistivity that is in

agreement with an earlier field theory analysis of Hartnoll and Hofman.
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1. Introduction

Here’s a simple question. Take a quantum field theory, heat it up and throw in a

background density of charged stuff. If you pass a DC current through this system,

what is the resistance?

If the field theory has translational invariance, this simple question has a simple

answer: the resistance is zero and the material is a perfect conductor. This is true

for trivial reasons. Translational invariance implies momentum conservation which, in

turn, means that there is no mechanism to dissipate the current. To extract something

more interesting, we have to work a little harder and introduce effects that break the

translational symmetry such as impurities or a background lattice.

Umklapp Processes

Progress can be made if the breaking of translational invariance does not change the

infra-red fixed point of the theory. This means that, from the IR perspective, the effects

can be captured by the addition of irrelevant operators O to the Hamiltonian, which

is schematically of the form

H = H0 + εO(kL)

where kL is the characteristic momentum of the underlying lattice or impurity. In a

beautiful paper, Hartnoll and Hofman [1] showed that perturbative Umklapp process
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give rise to momentum relaxation rate, Γ, and hence resistivity, given by the retarded

Green’s function,

Γ ∼ ε2k2
L lim
ω→0

ImGR
OO(ω, kL)

ω
(1.1)

This is an interesting formula. Because it involves the spectral density of the operator

O at momentum kL, if there is to be any significant momentum dissipation — say,

enough to give the resistivity ρ a power-law dependence on temperature T — then

there must be low-energy ω → 0 excitations at momentum kL. If not, the relaxation

rate will be Boltzmann suppressed.

Fermi surfaces provide a natural context in which one has light degrees of freedom at

finite momentum. Such modes are simply electrons scattering across the Fermi surface

with a net momentum transfer. Applying (1.1), with the operator O taken to be the

four-fermion Umklapp operator, reproduces the well known ρ ∼ T 2 behaviour of the

resistivity of Fermi liquid theory.

There is another, more exotic, way to get low-energy modes at finite momentum.

At critical points, excitations have a typical dispersion relations ω ∼ kz, with z the

dynamical exponent. In the limit z →∞, this dispersion relation broadens out. Such

theories are known as locally critical and arise naturally in the framework of holography

in the guise of infra-red AdS2 regions of spacetime. In such theories, time scales but

space does not and the dimension of an operator O(kL) is dependent on the momentum

kL. The formula (1.1) then gives a power-law resistivity

ρ ∼ T 2∆kL (1.2)

where the exponent, ∆kL is the frequency space scaling dimension of the operator and

depends on the lattice spacing kL.

The arguments of [1] sketched above are purely field theoretic. Given that locally

critical theories arise naturally in holography, one can also try to derive the scaling (1.2)

using holographic methods alone. The appropriate holographic lattices were introduced

in [2] where Einstein’s equations were solved numerically (see also [3, 4, 5] for related

work). Here strong evidence was presented that the DC conductivity indeed obeys (1.2)

with O given by the charge density. However, this evidence relied heavily on numerics.

The purpose of the present paper is, in part, to gain an analytic understanding of this

scaling behaviour in a purely holographic framework. Before describing this, there is

another thread that we would like to weave into the discussion.
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Massive Gravity

A different approach to incorporating momentum dissipation in holographic models

was introduced in [6]. The basic idea is straightforward: momentum conservation in

the boundary theory follows from diffeomorphism invariance in the bulk. If you want

to model a theory without momentum conservation, you need to consider a bulk theory

without diffeomorphism invariance. Such theories usually go by the name of massive

gravity.

The closet of massive gravity contains both skeletons and ghosts. There has been

recent progress in constructing a (seemingly) consistent theory of a propagating massive

spin 2 particle [7]. However, in the context of holographic massive gravity, life is likely

to be somewhat easier. To capture momentum dissipation, you only need to give a

mass to the gravitons with polarisation parallel to the boundary. This means that the

bulk theory retains diffeomorphism invariance in both time and radial directions. In

particular, since the timelike components of the graviton do not get a mass, it seems

likely that the constraints imposed by ghosts are much weaker, if not completely absent.

The appeal of massive gravity is that, in contrast to explicit lattices or impurities, it

is analytically tractable. Moreover, various aspects of thermodynamics and transport

in holographic massive gravity have been explored and give encouragingly sensible

answers. The low-frequency optical conductivity exhibits a Drude peak [6, 8], with the

momentum relaxation rate of the boundary theory determined by the graviton mass

[8, 9]. In particular, a universal formula for the DC conductivity was presented in [9].

This formula, which holds at finite temperature and chemical potential, relates the

resistivity of the boundary field theory to the mass of the graviton evaluated on the

horizon of the bulk black hole.

Massive gravity provides a phenomenological way to implement momentum dissipa-

tion in holography. But its microscopic origins remain mysterious and it is unclear how

one can derive it from better motivated models. A second goal of this paper is to shed

some light on this.

Synthesis

The purpose of this short note is to draw these threads together. We start by consid-

ering Einstein-Maxwell theory in AdS4, coupled to a neutral scalar field. Translational

invariance is broken by introducing a spatially modulated source for the scalar; this

is precisely the set-up studied in [2]. However, rather than solving the bulk equa-

tions numerically, we instead work perturbatively in the strength of the background

lattice. We will see that, to leading order, the bulk conductivity calculation simplifies
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tremendously, with only a handful of fields responding to an applied electric field on

the boundary.

Foremost among the bulk modes is a phonon — a Goldstone boson arising from the

lattice. Because of bulk diffeomorphism invariance, this phonon is eaten by the metric

to give an extra propagating graviton degree of freedom. The net result is a Higgs

mechanism for gravity, with the graviton gaining a radially-dependent effective mass,

determined by the profile of the bulk lattice. We will show that the equations describing

the perturbations of the holographic lattice coincide with those arising from massive

gravity. This allows us to import the result of [9], relating the resistivity to the mass of

the graviton at the black hole horizon. Our punchline is that this formula reproduces

the expected temperature dependence that arises from (1.2) in locally critical theories.

2. The Holographic Lattice

We work with the familiar Einstein-Maxwell theory in d = 3 + 1 dimensions, with

negative cosmological constant. We add to this a neutral scalar field, φ.

S1 =

∫
d4x
√
−g

[
1

2κ2

(
R +

6

L2

)
− 1

4e2
FµνF

µν − 1

2
gµν∂µφ ∂νφ−

m2

2
φ2

]
We will choose m2 ≤ 0 so this field corresponds to a relevant or marginal operator, O,

in the boundary theory.

The workhorse solution for applications of holography is the Reissner-Nordström

black hole, describing the boundary field theory at temperature T and chemical poten-

tial µ. This will be our starting point. When T � µ, it is well known that the solution

asymptotes to an AdS2 ×R2 geometry in the infra-red. This reflects the fact that the

boundary theory flows to a locally critical fixed point.

We now break translational invariance by introducing a spatially modulated source

for the operator O. For static solutions, φ0(x, y, r), the near the boundary expansion

of the scalar wave-equation takes the form

φ0(r, x, y) ∼ φ−(x, y)
( r
L

)∆−

+ φ+(x, y)
( r
L

)∆+

+ . . . (2.1)

where ∆± = 3
2
±
√

9
4

+m2L2. For technical simplicity, we will work with the standard

quantisation which means that we impose a source by fixing the leading fall-off, φ−.

Here we choose to work with the striped source

φ− = ε cos(kLx) (2.2)
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where ε is a small number that allows us to treat the lattice perturbatively. Turning on

this source is equivalent to turning on a spatially modulated potential in the boundary

theory, somewhat analogous to the optical lattices in cold atom experiments. As usual

the subleading fall-off, φ+, has the interpretation of the expectation value of the dual

operator O in the boundary theory.

The radial profile of the lattice is dynamically determined by the scalar wave equation

in the bulk. At leading order in ε, we can work with the Reissner-Nordström geometry.

The bulk solution takes the form φ(r, x, y) = ε φ0(r) cos(kLx), where the background

lattice profile φ0(r) satisfies

d

dr

(
f

r2

dφ0

dr

)
− k2

L

r2
φ0 −

m2L2

r4
φ0 = 0 (2.3)

with f(r) the familiar emblackening factor of the Reissner-Nordström metric1.

Because the operatorO is relevant (or possibly marginal) one might expect that, once

sourced, the profile φ0 will grow in the infra-red. Indeed, as one moves away from the

boundary, φ0 does indeed begin to grow. However, the homogeneous mode of O is not

sourced by (2.2) and this changes the expected behaviour of the perturbation under

RG flow. As one moves yet further into the bulk, the finite wave-vector corrections

become important and φ0 develops a maximum. By the time one reaches the infra-red

AdS2×R2 geometry, the scalar field is decaying: it is dual to an irrelevant operator in

the locally critical theory2.

This behaviour means that the scalar field φ is bounded everywhere in the bulk, with

its size controlled by ε. This makes a perturbative treatment possible. Our goal in this

paper is to calculate the resistivity due to the lattice to order O(ε2). By turning on a

lattice in the scalar field, as opposed to the chemical potential, we have ensured that

the stress tensor of our lattice is smaller than the lattice itself - that is O(ε2). As we

now explain, the key benefit of this is that it allows us to neglect the back reaction of

the lattice on the background geometry.

In principle, the metric and the gauge field will receive corrections due to the back

reaction that can be expanded as power series in ε. To compute the conductivity to

1For those who have forgotten, f(r) = 1− r3/r3h − µ2r3/4rh + µ2r4/4r2h. See, for example, [10, 11]

for a review of this background and some of its many applications.
2Actually, for m2 < 0, it is necessary for kL to be sufficiently large in order for φ to be irrelevant

in the IR. This is the case we consider in this note.
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O(ε2), we must expand the metric and gauge field as

gµν = g0
µν(r) + ε2

[
gHµν(r) + gIµν(r) cos(2kLx)

]
+ . . .

Aµ = A0
µ(r) + ε2

[
AHµ (r) + AIµ(r) cos(2kLx)

]
+ . . .

The corrections contain both homogeneous (e.gAHµ ) and inhomogeneous (e.gAIµ) pieces.

For our purposes, the inhomogeneous components can be neglected because they can

only contribute to the zero-momentum conductivity equations after interacting with

another oscillation, after which they become O(ε4). In contrast, the homogenous parts

of the background do enter the conductivity equations at O(ε2). Nevertheless, it was

shown in [9] that, in the context of massive gravity, the DC conductivity is independent

of the corrections to the background. We will see shortly that the same result holds

here too. This means that, to leading order, the DC conductivity is blind to all these

corrections to the background.

The net result of these simplifications is that, in order to compute the DC conduc-

tivity, we may treat the background geometry as being the Reissner-Nordström black

hole, with an oscillating scalar lattice sitting on top3.

Shake it

We now perturb the lattice background to determine the conductivity. We do this by

adding a small electric field on the boundary of the form δAxe
−iωt. We impose ingoing

boundary conditions at the IR horizon to determine the solution δAx(r;ω), the optical

conductivity is then given by

σ(ω) =
1

e2

δA′x
iωδAx

∣∣∣∣
r=0

(2.4)

To compute the DC conductivity, we must work at finite ω and, at the end, take the

limit ω → 0. Importantly, however, all perturbations have zero momentum. This

simple fact will help us below.

In the usual case of a homogeneous black hole, δAx sources a metric perturbation

δgtx but, if we work in gauge δgrx = 0, nothing more. In contrast, in the full lattice

background, studied numerically in [2], things are much more complicated and one

ends up having to solve for 11 coupled perturbations. Thankfully, in our small-lattice

expansion, things are not so bad. We can continue to work in the gauge δgrx = 0. We

3There is, in fact, an even simpler system in which this is the true solution: this is a complex

scalar field with ψ ∼ eikLx source so that the modulation cancels out in the stress tensor. A related

background was discussed in [12].
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have already argued that to leading order it is consistent to treat the background metric

and gauge field as homogeneous. As a result, the metric perturbation δgtx sources an

inhomogeneous scalar perturbation δφ, but there things stop4.

The upshot is that we have three perturbations: δAx, δgtx and δφ, together with the

constraint equation that arises from the gauge fixing condition δgrx = 0. Before we

jump into a morass of coupled equations, let us first explain some of the physics that

underlies these perturbations.

We start with the new ingredient which is the scalar perturbation δφ. A simple

parity argument ensures that the scalar perturbation takes the form,

δφ(r, x, t) = δφ(r, t) sin(kLx)

However, there is deeper interpretation of this functional form: it is a bulk phonon

mode. This is easily seen by rewriting the perturbation as a position dependent phase

of the bulk lattice

φ(r, x, t) = εφ0(r) cos (kL[x− π(r, t)])

The phonon mode π is related to the scalar perturbation by δφ = εkLφ0(r)π(r, t).

We require that δφ(r, t) ∼ r∆+ near the boundary, corresponding to a change in

the response, δ〈O〉, in the boundary theory. Because we have broken translational

invariance explicitly in the boundary theory, there is no Goldstone mode. Instead

the response δ〈O〉 describes the “unparticle” soup oscillating in the background of the

lattice. It is analogous to cold atoms oscillating in a background optical lattice.

In contrast, in the bulk, the phonon π is a propagating Goldstone mode. At each

radial slice in the bulk, you can think of a layer of material with “ions” (i.e. peaks of

the lattice) positioned at x−π(r, t) = 2πn/kL. A non-zero momentum in the bulk, δgtx,

collides with these layers and shifts them relative to one another. This disturbance then

propagates as a transverse phonon in the radial direction until it reaches the horizon

where the momentum is lost to the system. This simple picture makes it clear that the

phonon is responsible for the momentum dissipation in the boundary theory and that

this dissipation is ultimately governed by the properties of the horizon. This will be

manifest in our formula below for the DC conductivity.

4For example: the scalar perturbation δφ sources an inhomogeneous metric perturbation δgxx at

O(ε2). But, because it is inhomogeneous, it feeds back into the resistivity only through interactions

with the lattice, which introduces further powers of ε and so can be neglected.
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The existence of this bulk phonon mode is intimately tied with the fact that the lattice

induces a mass for the graviton. To see this, we can use diffeomorphism invariance to

freeze the phonon mode at the expense of introducing a new, propagating degree of

freedom in the metric. All we need to is to switch to a new coordinate defined by

x̃ = x − π(r, t). This coordinate transformation places the dynamics back into the

metric. In this new gauge, δgrx becomes dynamical and corresponds to the extra

polarisation of a massive graviton. This is entirely analogous to the Higgs mechanism

in gauge theory where a would-be Goldstone mode is eaten by the gauge field. Here,

instead, the phonon is eaten by the metric. The whole discussion parallels the usual

Stückelberg formulation of massive gravity [13], now with the phonon playing the role

of the Stückelberg field.

To truly see that our lattice describes a massive graviton, we should look at the full

perturbation equations below. But there is a quick, cheap way to get the basic idea.

From the discussion above, it is clear that the mass should arise from the breaking

of translational invariance. In other words, it comes from the (∂xφ)2 terms in the

action. Evaluated on the background solution φ = ε φ0(r) cos(kLx), the homogeneous

contribution to the mass is

Seff =
1

2

∫
d4x
√
−gM2(r) gxx (2.5)

where the effective mass M(r) is radially dependent and given by

M2(r) =
1

2
ε2k2

Lφ0(r)2 (2.6)

Expanding out the determinant
√
−g in (2.5) will give the promised effective mass

to δgtx and δgrx. The mass term (2.5) has the same form as those that arise in the

holographic massive gravity theory of [6], albeit with a different radial profile (2.6).

With these basic explanations of the relevant physics in place, let’s now turn to the

details. As described above, we focus on the homogenous perturbations to leading

order in ε. To avoid clutter, we’ll set 2κ2 = L2 = e2 = 1 in what follows. It’s simplest

to keep the phonon as a physical degree of freedom and work in δgrx = 0 gauge. The

three equations governing the perturbations at order O(ε2) are the Maxwell equation,

(fδA′x)
′
+
ω2

f
δAx =

µ

rh

(
r2δgtx

)′
The scalar equation,

r2

(
fM2

r2
π′
)′

+
ω2M2

f
π = iω

r2M2

f
δgtx
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and the r-x component of the Einstein equation,(
r2δgtx

)′
=
µr2

rh
δAx +

fM2

iω
π′

There is a further t-x component of the Einstein equations but, as usual, the constraints

of general relativity mean that this is implied by the three equations above5.

The UV boundary condition for the phonon field π plays an important role. The

fact the we have explicitly, as opposed to spontaneously, broken translational invariance

means that we require the fall-off π(r, t) ∼ r∆+−∆− at the boundary. In contrast, in

situations where translational symmetry is broken spontaneously, the correct boundary

condition is that the phonon approaches a constant at the boundary.

It is simple to eliminate δgtx, leaving two coupled equations for δAx and π,

(fδA′x)
′ +

ω2

f
δAx =

µ2r2

r2
h

δAx +
µfM2

iωrh
π′ (2.7)

1

r2

(
r2f

M2

(
fM2

r2
π′
)′)′

+
ω2

r2
π′ =

iωµ

rh
δAx +

fM2

r2
π′ (2.8)

The key observation is that these perturbation equations are equivalent to those that

arise in massive gravity [6, 8, 9]6 with an effective graviton mass M2(r). The phonon

mode π is related to the extra propagating metric mode grx in massive gravity through

the relation π′ → r2grx. Of course this is not a surprise — as we have already empha-

sised, the two descriptions are gauge equivalent.

3. Conductivity

To compute the optical conductivity, we need only solve (2.7) and (2.8) subject to the

appropriate boundary conditions. Fortunately, many of the relevant calculations have

already been performed in the context of massive gravity.

The full optical conductivity σ(ω) depends on details of the bulk geometry and

gauge field. At small lattice strength it exhibits a Drude peak, as plotted7 numerically

in Figure 1.

5In order to satisfy the full Einstein equations, it is necessary to take into account the homogeneous

back reaction of lattice, AHµ and gHµν .
6These equations can be compared, for example, to equations (3.8) and (3.9) of [9].
7The plots were made with m2L2 = −0.25, kL = 0.433µ and ε = 0.1. Strictly speaking, we should

compute the O(ε2) corrections to the backgrounds before determining the ω 6= 0 conductivity but, by

eye, the plots are identical
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Figure 1: The optical conductivity

shown, in descending order, for T/µ =

0.0023, 0.0046 and 0.0092

Figure 2: A log-log plot of the DC

conductivity. The analytic prediction for

these values is σDC ∼ T−0.5275.

The DC conductivity is computed numerically in Figure 2. However, here we can

make more analytic progress. This is because, as shown in [9], the DC conductivity

depends only on the behaviour of the fields at the infra-red horizon. The argument is

generalisation of an earlier observation by Iqbal and Liu [14]. The essence of it goes as

follows: the photon δAx has an effective mass proportional to the charge density µ/rh;

meanwhile, as we described above, the phonon has a mass proportional toM2. However,

the two modes mix. And it is simple to check that there is a linear combination which

is massless and, in the ω → 0 limit, does not evolve from the horizon to the boundary.

Furthermore, this linear combination carries the information about the conductivity.

This means that one can compute the DC conductivity in terms of properties of the

horizon of the black hole.

For completeness, we provide a more detailed review of the above calculation in the

Appendix. The end result is that the scattering rate is fixed by graviton mass evaluated

at the horizon [9],

Γ =
s

4π

M2(rh)

E + P
(3.1)

where the entropy density s, energy density E and pressure P are thermodynamic

functions that are non-zero in the extremal RN black hole background. This result was

also obtained for hydrodynamic transport in massive gravity in [8]. The fact that this

scattering rate is already proportional to ε2 through the graviton mass is ultimately

why were able to ignore the homogeneous corrections to the RN geometry. These would

only affect the thermodynamic factors, and hence the scattering rate, at higher order.

The key content of this formula is that the scattering rate is simply determined by
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the effective graviton mass induced by lattice:

Γ ∼M2(rh) ∼ ε2k2
Lφ0(rh)

2

where we have dropped the other coefficients on the grounds that they are, to leading

order, constants that are independent of temperature.

All that remains is to determine the infra-red behaviour of the scalar profile φ0(r)

which will govern the temperature dependence of graviton mass (2.6). But this is

straightforward. At T = 0, the infra-red geometry is AdS2 × R2. As we reviewed

in the introduction, this is the holographic manifestation of a locally critical theory.

If we denote the radial coordinate in AdS2 as ζ, the regular solution for φ falls off

asymptotically in the infra-red as

φ0 ∼ ζ
1
2
−νkL

where νkL + 1/2 is the dimension of the dual operator O(kL) in real space, with the

dependence on the lattice spacing given by νkL =
√

1
4

+ 1
6
m2L2 + 2k2

L/µ
2. Upon taking

a Fourier transform, the dimension of the operator in frequency space becomes ∆kL =

νkL − 1/2, so we have

φ0 ∼ ζ−∆kL

At finite temperature, the AdS2 geometry terminates in a horizon at ζH ∼ T−1. This

means that the effective graviton mass, and hence resistivity, scales as

ρ ∼ ε2k2
LT

2∆kL (3.2)

Happily, this is precisely the result of Hartnoll and Hofman [1] that we reviewed in the

introduction.

4. Closing Remarks

Throughout this paper, we have relied on the technical crutch of the small-lattice

expansion. This allowed us to isolate the phonon mode as the relevant, extra de-

gree of freedom in computing the resistivity. However, we would like to suggest that,

even in more complicated situations, the phonon mode continues to dominate the low-

temperature physics. Here we offer some suggestions on how this may happen.
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Let us first address what would happen if we compute the resistivity to higher order

in the lattice strength, ε. Further fields — including, most pertinently, the gauge

field At — will pick up a spatial modulation and therefore contribute to the effective

mass of the graviton at O(ε4). The analysis of [1] shows that each such field will give a

contribution to the DC conductivity of the form (1.1). At low temperatures, the charge

density J t(2kL) is the least irrelevant operator (together with Ttt, with which it mixes)

to get a spatially modulated expectation value and so, although it is sub-leading in the

ε-expansion, dominates the low-temperature resistivity [1, 2].

Although technically more involved, it seems clear how the field theory expectations

above are mirrored in the gravity calculation. Clearly, we will have many more per-

turbed fields in the game. However, among these we expect that there remains a linear

combination which is massless and, therefore, does not evolve from the horizon to the

boundary. This means that we can focus attention on the far infra-red geometry. Here,

the gauge field At is the largest spatially-varying field and the fields dominating the

perturbation equations are δAx, δgtx and now the phonon δAt arising from the induced

ionic lattice. Thus, in the far IR, the perturbation equations reduce to those considered

here and resistivity will again be given by (3.2), but with the exponent ∆k replaced by

the appropriate dimension of the ionic lattice (which was computed in [16]).

We note that the conceptual steps sketched above also hold for other situations, such

as the ionic lattice, where no simple expansion in the lattice strength is available. In-

stead, we replace the expansion in ε with an infra-red expansion. Of course, this is what

one naturally expects for the DC conductivity and, even without an explicit demon-

stration of the massless mode, it should be possible to extract the leading temperature

dependence of the resistivity by a matching calculation [17, 15].

Moving beyond the AdS2 × R2 infra-red geometries, there are other “hyperscaling

violating” geometries which, while exhibiting local criticality, do not suffer from the

pathology of a ground state entropy [18, 19]. Rather, the horizon radius scales as some

power of temperature s ∼ r−2
h ∼ T η. In the context of massive gravity, the DC conduc-

tivity can again be computed exactly [9], but now there is a temperature dependence

even if the mass of the graviton is constant. (See also [21]). It is a simple matter to

repeat the calculations above for these geometries. From the scalar wave equation, one

finds that the IR behaviour of the lattice field is now given by φ0(r) ∼ r1+1/η−2νkL/η.

From our general result (3.1) we can then deduce that the leading temperature depen-

dence of the resistivity is given by

ρ ∼ φ2
0(rh)

r2
h

∼ T 2νkL−1
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This is in agreement with the scaling derived using the memory matrix formalism

[20, 22].

Finally, there is one last issue that we would like to address: what happens in

situations in which breaking of translational symmetry occurs spontaneously8. There

are a number of holographic examples of spontaneous lattice formation, including [23,

24, 25]. The perturbation equations that we derived above continue to hold, with one

important difference: the UV boundary condition for the phonon becomes π ∼ const.

rather than the fall-off π ∼ r∆+−∆− required for explicit breaking. With these boundary

conditions, the derivation of the DC conductivity presented in the Appendix no longer

holds. Indeed, solving the perturbation equations numerically with this new boundary

condition, we find that the delta function in the conductivity is restored. This is the

expected behaviour in models with spontaneously broken translational invariance.
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A. Appendix

In this Appendix, we provide a derivation of the result (3.1). The derivation presented

here is simpler than that originally given in [9], but at the cost of being slightly less

rigorous. (Specifically, in a number of places we will assume that the DC conductivity

is finite; readers that find this unsatisfactory can return to the original proof of [9]).

To make contact with the result of [9], we change gauge and work with the metric

component δg̃rx = f(r)δgrx = f(r)π′/r2. The equations of motion (2.7) and (2.8) can

then be written in the schematic form(
L1 0

0 L2

)(
δAx
δg̃rx

)
+
ω2

f

(
δAx
δg̃rx

)
=M

(
δAx
δg̃rx

)
(A.1)

where Li are linear differential operators and M is a mass matrix whose exact form

can be found in [9]. The universality of the DC conductivity hinges on the observation

8We thank Sung-Sik Lee for prompting us to think about this question.
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that detM = 0. This means that there exists a massless eigenmode of the differential

equations that is some linear combination of δAx and δg̃rx. The equation of motion for

this mode, which appears above Equation (3.12) in [9], can be written in the form

Π′ +
ω2

f

(
δAx −

µr2

iωrh
δg̃rx

)
= 0

In the ω → 0 limit, this allows us to deduce that there is a conserved quantity Π

Π(r) = f(r)

[
δA′x −

µr2

iωrhM2

(
M2δg̃rx

)′]
(A.2)

When translational symmetry is broken explicitly by a source, the boundary condition

on the phonon translates into the condition that (M2δg̃rx)
′
= 0 at the boundary. This,

in turn, implies that for all scalar fields above the BF bound, the second term in (A.2)

is subleading in the UV. We can therefore identify the boundary value of Π with the

current in the boundary theory, that is Π(r = 0) = δA′x(r = 0). This allow us to use Π

to define a membrane conductivity associated with each radial slice via

σDC(r) = lim
ω→0

Π

iωδAx

which reduces to the conductivity of the boundary theory as r → 0.

The next step of the argument is to show that σDC(r) is independent of r. We have

already seen that, at low frequencies, Π is a constant in the bulk. Under the assumption

that the DC conductivity is finite, we must have δAx ∼ O(1) and δA′x ∼ O(ω) in the

bulk. We can therefore also take δAx to be a constant at leading order, and hence the

DC conductivity σDC(r) is indeed independent of the radial position.

All that remains is to evaluate σDC(r) near the horizon. Ingoing boundary conditions

mean that the gauge perturbation oscillates as δAx(r) = f(r)−iω/4πT . The behaviour

of δg̃rx can be deduced from (2.7). Once again, assuming a finite DC conductivity, the

two terms on the right-hand side of (2.7) must cancel to leading order in ω to allow

δA′x ∼ O(ω). This means that

δg̃rx(r) = − iωµ

rhM2(r)
δAx(r) +O(ω2)

With these two results, it is a simple matter to evaluate σDC at the horizon. It is given

by

σDC =
(

1 +
µ2

M2(rh)

)
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For the lattice models of interest in the current paper, we can only trust this compu-

tation of the resistivity to order ε2. This means that, upon inverting, we drop the +1

above. From the conductivity, we can extract the scattering time via the identification

[1]

σDC =
Q2

E + P
1

Γ

where Q is the charge density. For our holographic models, the charge density is related

to the chemical potential by µ2 = Q2r2
h = 4πQ2/s where s is the entropy density. This

then gives the result (3.1).
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