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Abstract

Placing anti-D3 branes at the tip of the conifold in Klebanov-Strassler geometry pro-
vides a generic way of constructing meta-stable de Sitter (dS) vacua in String Theory.
A local geometry of such vacua exhibit gravitational solutions with a D3 charge mea-
sured at the tip opposite to the asymptotic charge. We discuss a restrictive set of such
geometries, where anti-D3 branes are smeared at the tip. Such geometries represent
holographic dual of cascading gauge theory in dS; with or without chiral symmetry
breaking. We find that in the phase with unbroken chiral symmetry the D3 charge at
the tip is always positive. Furthermore, this charge is zero in the phase with sponta-
neously broken chiral symmetry. We show that the effective potential of the chirally
symmetric phase is lower than that in the symmetry broken phase, i.e., there is no
spontaneous chiral symmetry breaking for cascading gauge theory in dSs. The positiv-
ity of the D3 brane charge in smooth de-Sitter deformed conifold geometries with fluxes
presents difficulties in uplifting AdS vacua to dS ones in String Theory via smeared

anti-D3 branes.
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1 Introduction and Summary

String Theory is expected to have a Landscape of (meta-stable) de-Sitter vacua [I]. A

generic way to construct such vacua was presented in [2] (KKLT):

» first, turning on fluxes on Calabi-Yau compactifications of type IIB string theory

produces highly warped geometry with stabilized complex structure (but not Kéhler)

moduli of the compactification [3];

® next, including non-perturbative effects (which are under control given the unbroken



supersymmetry), one obtains anti-de Sitter (AdS,) vacua with all moduli fixed;
» finally, one uses anti-D3 branes of type IIB string theory to uplift AdS, to de Sitter
(dSy) vacua.

As the last step of the construction completely breaks supersymmetry, it is much less
controlled. In fact, in [4H7] it was argued that putting anti-D3 branes at the tip of the
Klebanov-Strassler (KS) [8] geometry (as done in KKLT construction) leads to a naked
singularity. Whether or not the resulting singularity is physical is subject to debate.
In [10] it was shown that the singularity can not be cloaked by a regular event horizon,
and thus must be unphysical [11]. This conclusion is reached analyzing local Klebanov-
Tseytlin (KT) [12] or KS geometry with regular Schwarzschild horizon. Such geometry
is dual to strongly coupled cascading gauge theory plasma with unbroken [I3HI7] (in
KT case) or broken [I§] (in KS case) chiral symmetry. It was shown that a D3-brane
charge measured at the horizon is always positive, and thus can not cloak a physical
negative-D3-charge singularity.

The good versus bad gravitational singularity criteria of Gubser [11] is based on a
simple principle that singularities in gravitational backgrounds holographically dual
to some strongly coupled gauge theories arise in the interior of the bulk space-time
geometry, corresponding to the infrared (IR) in the dual gauge theories. Physical
infrared singularities in gauge theories can be removed with an infrared cutoff. In the
original paper, [I1], this cutoff is provided by a temperature. However, the role of
the cutoff can be served by a curvature scale of a boundary compactification manifold
[19], or by a Hubble scale when the strongly coupled gauge theory is formulated in
dSy [20]. In this paper we extend analysis of [10] considerin de Sitter deformation
of the KT /KS geometries (holographically dual to cascading gauge theory in dSy with
unbroken/broken chiral symmetry). As in [10], we ask the question whether it is
possible to construct smooth geometries with a negative D3 charge in the interior of
the space.

The analysis presented here closely follow [2I]. In section 2] we review dual five-
dimensional effective gravitational actions describing states of cascading gauge theory
on M, with (un-)broken chiral symmetry. In section [l we construct states of cascading
gauge theory in dS; with unbroken chiral symmetry. In section [l we repeat the exercise

for states of the theory with spontaneous broken chiral symmetry. In section [ we

1See [9] for arguments in favour of this singularity.
2The early discussion of this problem was presented in [20].



compare effective potentials of the cascading gauge theory in dS; with broken and
unbroken chiral symmetry and identify the true ground state of the theory. In section
we compute the D3 charge in the interior of the bulk of de Sitter deformed KT /KS
geometries. Using results of [21], we compute the D3 charge in the interior of the
bulk of S* deformed KT/KS geometries — in this last section we use the radius of
the three-sphere /5 as an infrared cutoff to distinguish good versus bad gravitational
singularities.

Our discussion is rather technical; so, for benefits of the readers who are interesting
in results only, we collect them here. Recall that cascading gauge theory is a four-
dimensional N' = 1 supersymmetric SU(K + P) x SU(K) gauge theory with two
chiral superfields A;, Ay in the (K + P, K) representation, and two fields By, By in the
(K + P, K). Perturbatively, this gauge theory has two gauge couplings g1, g» associated

with two gauge group factors, and a quartic superpotential
W ~ Tr (A;B; Ay By) €*el” . (1.1)

The theory has a global SU(2) x SU(2) (flavor) symmetry under which A; and By
(separately) transform as doublets. As this symmetry is always unbroken (both in the
field theory and in the gravitational dual) all our conclusions concerning uplifting to
de Sitter vacua with anti-D3 branes are strictly applicable when the anti-D3 branes are
smeared on the tip of the conifold — it is only in this case that the dual gauge theory
flavor symmetry is unbroken. To define a theory, one needs to specify the space-time
four-manifold M, in which the theory is formulated. In case when M, = R*!, i.e.,
Minkowski space-time, one finds that the sum of the gauge couplings does not run
%(ﬁzf—”Jrf—”):o, (1.2)
np\gs  gi(m) 93w
while the difference between the two couplings is
%—% ~ P [342(1—n;)] m%,

where A is the strong coupling scale of the theory and ;; are anomalous dimensionsH

(1.3)

of operators Tr A;B;. For generic My, the sum of the gauge couplings runs; however,

the theory is still determined by 2 parameters: the asymptotic value of the dilaton g,

4 4 \"
go = lim g4(p) = lim <—+—) , 1.4
0= ) = I\ G T g 4

SWhen K > P, v;; ~ —1, see [8].



and the strong coupling scale A arising in the renormalization group running of the
difference of two couplings (I3]). To summarize, cascading gauge theory is character-
ized by {P, go, A} and the choice of a four-manifold M,. Relevant to the discussion
here, when M, = dS, or R x S3, the manifold provides one additional scale to the
problem: the Hubble scale H (in case of dS,) or the compactification scale 5 (in case
of S3 compactification). Depending on the ratio of the mass scale supplied by M, and
the strong coupling scale A, the cascading theory might undergo phase transition in
the infrared associated with spontaneous breaking of the chiral symmetrytl Zop — Zs.
Ideally, we would like to explore the phase structure of the theory for arbitrary values
of parameters — in practice, we are restricted to regions of parameter space where our
numerical code used to generate M, deformed KT /KS throat geometries is stable.
We now present the summary of our results:
» When M, = dS; and the chiral symmetry is unbroken, the D3 brane charge at the
tip of the conifold is always positive, as long as

H2
———— > -04. 1.5
nA2P2g0 - ( )

1
» When M, = dS, and the chiral symmetry is broken, the D3 brane charge at the tip
of the conifold is always zero; we managed to construct geometries of this type for

2

In ——+— >
nA2P290 -

~0.03. (1.6)

» Comparing effective potential of the gauge theory in broken ng  and unbroken V;;
phases we establish that in all cases, when we can construct the phase with sponta-

neously broken chiral symmetry,
2

2

i.€., spontaneous symmetry breaking does not happen for given values of the gauge

bef >V when 1

e

> —0.03, (1.7)

theory parameters. To put these parameters in perspective, note that the (first-order)
confinement /deconfinement and chiral symmetry breaking phase transition in cascad-

ing gauge theory plasma occurs at temperature 7" such that [16]

sz fi t,xSB
1 CORTREMEILXE = (0.2571(2 1.8
n e ), (1)

4When M, is Minkowski, the chiral symmetry is spontaneously broken, see [S].



and the (first-order) chiral symmetry breaking in cascading gauge theory on S3 occurs

for compactification scale 3 = 3" such that [21]

2
In /@3]7;‘550 — 0.4309(8). (1.9)

= When M, = R x S and the chiral symmetry is unbroken, the D3 brane charge at

the tip of the conifold is negative when

2 2
H3 lu’3,negative
1 In ———— = 0.031 . 1.1
N pre < I REps o = 0.0318(3) (1.10)

However, since cascading gauge theory undergoes a first order phase transition with

spontaneous breaking of the chiral symmetry at

H3 xSB > M3, negative » (111)

and the D3 brane charge at the tip of the conifold in broken phase is zero, the charge

in the ground state is in fact zero whenever

M3 < [I3,5SB - (1.12)

Furthermore, chirally symmetric states of cascading gauge theory on S? develop sym-
metry breaking tachyonic instabilities at ji3 sachyon (Delow the first order chiral symme-

try breaking scale u37xsg)

:u%,tach on
1 W;Jgo = 0.3297(3) . (1.13)
which is again above i3 pegative-

Our results represented here, together with those reported in [10], point that the
singularity of smeared anti-D3 branes at the tip of the conifold is unphysical: had
it been otherwise, we should have been able to implement an infrared cutoff in the
geometry with a D3 brane charge measured at the cutoff being negative. The role of
the cutoff is played by the temperature (as discussed in [10]), by the compactification
scale (when M, = R x S3), or by the Hubble scale (when M, = dS,). Interesting,
we find that the D3 brane charge can become negative when the KT throat geometry
is S3 deformed; however this occurs in the regime where this phase is unstable both
via the first order phase transition and the tachyon condensation to S® deformed KS
throat geometry — the latter geometry has zero D3 brane charge at the tip. All this

raises questions about construction of generic de Sitter vacua in String Theory [2].
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2 Dual effective actions of cascading gauge theory

Consider SU(2) x SU(2) X Zs invariant states of cascading gauge theory on a 4-
dimensional manifold My = 0M5. Effective gravitational action on a 5-dimensional

manifold M describing holographic dual of such states was derived in [I§]:

108 1
S [Qqui, h;, @] :167rG5 /M vol g 91939:23 {Rlo ) (V(I))2
1 o ((hi—hg)? 1 | )
- Sl (Vh —_(Vh
5¢ (29%9%9% +Q§ (Vhy) +Q‘21 (Vhs) -
1, ( 2 ) 1 P\? 1, '
— = h —(hy— = — I
2¢ (Qgﬁg (Vha) +Q%Q§( 2 9) MRS
1 1 2
~ 0K 400 + ho (hs — hy) + §Ph1 ,

where () is a constant, Ry, is given by

2 2 @ ow
_ 1 2.2 - - — 90 (92,9202
fhio = fis <2§z§ o tw w1 Qggg) ()

2.2
— {(vm Q)2 +2(VIn)? +2(VInQ)° + (Vin (Qlﬂggg)f} , .
and Ry is the five-dimensional Ricci scalar of the metric
ds3 = gy (y)dy"dy" (2.3)
that forms part of the ten dimensional full metric
dsig =ds; +dspia,  dspia = Qi(y)gs + RBy)(g5 +g1) + L) +g3)-  (2.4)
One-forms {g;} (fori =1,---,5) are the usual forms defined in the warp-squashed

T and are given as in [18], for coordinates 0 < ¢ < 4w, 0 <6, <7 and 0 < ¢, < 27
(a=1,2).
All the covariant derivatives V, are with respect to the metric (2.3). Fluxes (and

dilaton @) are parametrized in such a way that functions hi(y), ha(y), h3(y) appear as

By =hi(y)g1 A g2 + h3(y)gs A ga,

1
F3 =§P g5 N g3 A gs+ha(y) (g1 ANga— g3 A ga) A gs (2.5)
+ (g1 Ags+ g2 A ga) Nd(he(y)) ,

D = d(y),



where P corresponds to the number of fractional branes in the conifold.

Finally, G5 is the five dimensional effective gravitational constant

729
Gs = —G 2.6
5= b0 (2.6)
where Gy is a 10-dimensional gravitational constant of type IIB supergravity.
Chirally symmetric states of the cascading gauge theory are described by the grav-

itational configurations of (2.I]) subject to constraints

P
hlzhg, hgz—, 92293. (27)
18
In what follows, we find it convenient to introduce
1 (K, P 1 (K5
hy == | — — 3692 hy=— K hs = = | — — 3612
1 P<12 36 0) ) 2 18 2 3 P<12 36 0) ) (28)
1 1 1 ’
0, == 1/2h1/4, 0, — 1/2hl/47 O — 1/2h1/47
1 ch 2 \/éfa 3 \/éfb

3 Chirally symmetric phase of cascading gauge theory on dS;

We consider here SU(2) x SU(2) x U(1) x SO(4) (chirally-symmetric) states of the
strongly coupled cascading gauge theory. We find it convenient to use a radial coordi-

nate introduced in [23]:
Y _1/9 1 2 _
ds? = g, (y)dy"dy” = h=/?p? (—dt2+m cosh®(Ht) (dS?) )—l—h1/2p 2 (dp)*, (3.1)
where h = h(p). Furthermore, we use parametrization (2.8)) and denoteH
fc:f2> fa:fb:fi’m K1:K3:K> (I):lnga (32)

with f; = fi(p), and K = K(p), g = g(p).
Notice that parametrization (3] is not unique — the diffeomorphisms of the type

p p p/(1+ap)
h h (1+ap)th
. ) ’,
f2 — ]iz = (L+ap) ) f2 : a = const (3.3)
VE JE (I+ap™=fs
K K K
g g g

®Recall that for the unbroken chiral symmetry we must set K(p) = 1.
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preserve the general form of the metric. We can completely fix (83)), i.e., parameter «
in (33), requiring that for a geodesically complete M the radial coordinate p extends
as

p € [0,+00). (3.4)

3.1 Equations of motion

For a background ansatz ([3.1]), (3:2]), the equations of motion obtained from (2.1]) take

form

f2(g)? BHR(K)?  fo(R)? 3f(f})? f2h/ 3fs 3\ .
R R Y SR T 2—f2 T (ﬁ - E) 2
3gP? K? f2(5f5 —9f2 4+ 6f3)
MY R e R
(3.5)
f (K/)2 N f3(g/>2 N f3(h’)2 N (f?/))2 B 3_f;§, fgh/ B gP2
16h f3g P2 8g* 8h? 4f3 P hp  4fahf3p? (3.6)
_ K? 5f§—6f3+3f2_3hf 2 '
8 foh? f3p? f3p? e
o, SN2 h(g)? 9(R)? | 3h(f3)? (2_f§ Iy é) , NSy
O=nt 16gf3P? 8¢ sh Af3 i J3 +2f2 P " +Pf2
9K? ﬂ h_fé) / 59P? h(fo —13f3 —6fs) 2772
- 8 foh f4p? " (fsp " 23 f2 fst Afa f3p? " f3p? TN
(3.7)
i fz_g_/_ﬁl_§) ,_ 29KP?
V=R <2f2 g h o)t T hnRe (38)
/A (g/)2 <2f3 f2 _ §> / (K/)2 . 92P2
V=T s T o) T T e (39)

Additionally we have the first order constraint

2hf3 P*(¢') N 2f3Pg(N')? 8f3hgP?(fip — 2fs)

0=(K")*+ — 120P%g(f3)* — > fs
2
16 f3gP*(4f5h + f3h') ( ) 4P%g 2K ) gP?
+ + | 96h fs — 48h fy — 16hfy — —
p Js Js & fa hf2f??
+48gPh2 f2H? .
(3.10)

We explicitly verified that the constraint (B.I0) is consistent with (3.5])-(3.9).
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3.2 UV asymptotics

The general UV (as p — 0) asymptotic solution of (3.5))-(3.10) describing the symmetric

phase of cascading gauge theory takes form

3 1 1 1
fa=1—oa1p (Hp)+ <_§p290 - ZKO + Z(Cy170)2 + 5ngo lnp) (Hp)?
o (3.11)
+ Z Z ang (Hp)"In* p,
n=3 k
1o 1 1 2, 15 2
f3 =1- 1,0 (Hp) + —§P gdo — ZKO + 1(04170) + §P Jo hlp (Hp)
o (3.12)
3 b (o,
n=3 k
1 1 1 1 119
=-P?gy + -~ Ko — =P?gy1 — Ky — P?go1 H — Pg¢
h 3 o+ 780 =59 np+a170<2 0 9o HP) ( P)+<576 90
31 2 Lo Lo 55 L 2 2
+ %KOP 9o — ZP Jooi o+ gKo + goﬁ,oKo - %P 90(62P%go + 12005 (3.13)
1 o
+4810) Inp + 5 Pgj In? p) (Hp)> + > huy (Hp)"In* p,
n=3 k
1
K =Ky —2P%gyInp — P?goa o (Hp) + (EPngQKO +9P?%g, — 40(%’0)
. o (3.14)
4 2 2 n .k
~ 3P ) (04 3 K (1 .
1 - N
9= 90 (1 - §P2go (Hp)* + Zzgnk (Hp) In” P) . (3.15)
n=3 k
It is characterized by 7 parameters:
{Ko, H, go, @10, Gap0, 60, A80, 94,0} - (3.16)
In what follows we developed the UV expansion to order O(p'?) inclusive.
3.3 IR asymptotics
We use a radial coordinate p that extends to infinity, see (.4]). Introducing
1 _
yE;7 thy2h’7 f2h,3£yf2,37 (317>
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the general IR (as y — 0) asymptotic solution of (3.3])-(B3.I0) describing the symmetric

phase of cascading gauge theory takes form

OH>P2(f30)*g0 + 6H'(K5)* — 17(f5)* (f50)* + 6./30(f30)°

f2h :fzh,o - h \4
5(f370) (318)
+Y
n=2
fh_ph H?P?(f30)°90 + 6H'(KG)? + 7(f30)*(f30)* — 18£3(f30)’
’ 50 5f2h,0(f3h,0)3 (319)
+Y
n=2
1 (1  2(BHPA(flo)’gh + W0H ) + (F0(fho)? — 6ol o)’
Al? 5 (i)' fio (3.20)
+ Z th") ,
n=2
h P2 72
K:K6‘+16K gl H y+ >y Kby, (3.21)
5(f50)* 120 ot
8ghP2H
9=9 <1+ Y gy ) (3.22)
5(f30)2 e~ =

It is characterized by 4 additional parameters:

{Kga gga f2h70> f?il,o} . (323)

In what follows we developed the IR expansion to order O(y®) inclusive.

3.4 Symmetries

The background geometry (B.1]), (8:2) enjoys 4 distinct scaling symmetries. We now
discuss these symmetries and exhibit their action on the asymptotic parameters (3.10)).

m First, we have:

1
P—- AP, g— —

v 9 Ap S K}y = Ao fi b K3 {y, 0 =y £ kY
(3.24)
which acts on the asymptotic parameters as
Jo — ! 90,
A (3.25)

{Ko>H,a1,0,a4,0,06,0,a8,0 ,94,0} — {Ko>H>041,0,a4,0,&6,0,a8,0 ,94,0}>
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and
h h gh gh h =1 h h ¢k
1Ky, 90 fao, foof = {Ky, A "6, foos 3o}
We can use the exact symmetry ([3.24]) to set

90:1.

m Second, we have:

1
P— )P, p—>)\p,

{y, 2 5 WY = D, A3 A3 R

which acts on the asymptotic parameters as

9o — 9o,
Q10 — )\041,0,

K() — )\2 (KQ — 2P2g0 ln)\) s

48

1 1
a470 — )\ <a40 + —P go(BKO — P go) hl)\ — Ep4gg lIl2 )\) s

3 5 37
gao — )\4 <g4,0 + ( 16P2Oél 0do — 64K0P2g0 + 96P4 + 3@4,0) In A
3 1
+ 6413 go(P?go + 2K) In* A — EP‘*gg In’ A) :

&9 1 1 1491
— )\ P? — —p? - K — K P'g?
ag,0 (aﬁ,o + (40 a4,090 5 909a,0 + 5 0a4,0 + 3200020

689743 11 197 419
PS¢ + — K, P?a? g9 — — P*a? g2 K2p? In \
3840000" %0 T g e @00 — gt @10 T ggap o g0 ) n
1 171 1733
_ L pig2 L geprg I peoprge  Lpag o 1T
- ( 61! ot + 16 K0P 00 + 3555 Ko 2 09 16000

463 3 3
———P%¢3 — —K,P'%?) In* \+ —P%3 In* A
* < 144000 % 160" ) AT gt o A )

12

h—= XN h, K= NK, {4, fi;,9} = {H, fi, 9},

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

) In? \

(3.34)



11289869889229
7468070400000 7

1
P290<70K0 - 141P290)

asgo — )\8 (CL&O + (-140P4a87093 —

79241 67 131
+ 18K02a42170 + 530 K0P4Oé1 0&4 ng B K0P4a%7oggg4,0 + — 4 K2P Ozl 0&4 090
17122502251 1264903
— 24K,P? i —— N ST N —— | gy £ Fo %+
047 7a4,09094,0 790272000 04" Q1090 — 26380 047y 090
3642629 3 308363 135
537600 KSPGQ%,OQ(?)’ - 1K3P4O‘411,098 7560 Pl %o 4090 + 1 PGO‘l 090940
16067 53709659 15332 875
K3P4 2 2 K P6 3 K P6 3 _ P4 4 2
* 5720 907 73087000 0T 44090 T Tgg5 Bt Godro T T 064090
1923781 2001
33600 K3P4a47ogg — 560 KOP49094,0 + 350P4a%,0a6,og§ — 12P4a4,oggg470
9013 5706 17699297459
T30 07 as0g0 — g~ KoP o0 + ~zgmiangF 0 006

1365178374361 10 5 . 4598761 St ot 4 2135

* 553100400000 10 % T goga0 T *10% T g5
48152049931 ., o , 33703011407  , 14708381
0

2
ZO7OSTRIIO _ T p ZEIVOVO7
189665280000 148176000 @409 T 555001 90940

402129463 3965783 1315 49853
3p6 3 KiP'g? + Pbagogd + - 27999 pa 2090

+21o739200 090 T 15052800 6
5436207853 35277 1469772959
qpd 2 2 _ 8 4 6.2 3
8P 9094’0) A < 307328000000 %0 T 171500° "% T 31610880000
L8O Ly, 8889 1953408y 1 o 181 s
K, P IO 00 g2p
o607 0% + gagoo 0 1095 T Tuz350600 507 9% T g0 0L Ot ed0
2780609 ,  , 859 0013 ., , 157

_ 2O p P! _T9 _ 2ipo
720007 409 T ggog L 90940 + geigggn KoL 90— 15g T 0T ota0g0

2049 3 9 36 ) 12

6
PO‘loo

K(]Pﬁg(s]

P _ 2 K,pP? K
5600 A1,090 — 5ol gogu0 T Faalodio = pdig
37TSTST . 27

2671073519 180151
—P8 4 P6 2 K.P A P4
(47416320000 % ~ Se9a1007 “19% ~ Seaas000 0L 90 ~ g Kol Lol

4513 oy 5 | BBTY

1 3 3
~ 25088007790 T 1ggog T 4090 + 45790910+ g o0 = g5 ReP as0g0

3590117 93 4537 3
) In® A + <7P 0+ =Pt 090 + == KoP’g — == KiPg;

3_
0

112806000 %0 " 1480 179200 1792

3 0 o\ s 4617 3 6 1 eu
d - 0 %\ — — PSgl |
MO “47090) h A+( 10007 90 Tgop 0% | A= 165 WAL
(3.35)

and

{K(§L7 g(})L7 f2h,07 f£0} — {)\2[{(};7 g(})L7 )\f2h707 )\f??,(]} . (336)
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We can use the exact symmetry ([B.28)) to relate different sets of { Ky, P}. For the study
of perturbative in P?/Kj expansion we find it convenient to set Ky = 1 and vary P?.
To access the infrared properties of the theory we set P = 1 and vary K,. Notice that
the two approaches connect at {Ky =1, P = 1}.

m Third, we have:

1
p_))‘p>H_)XH> {P>f2>f3>h'aKag}_>{Paf2af3>h'aKag}a

(3.37)
{y, [, [ 0" = Ay AU AT AR
This scaling symmetry acts on the asymptotic parameters as
{90, 041,0} — {90, 041,0}7 (3.38)
KQ — K() + 2P2g0 lIl)\, (339)
Ayo — Quo + iP4g2 Ll P?go | In\— ip4g2 In? \ (3.40)
4,0 4,0 13 0~ gtto 0 16 0 ) .
3 5 37 3
g470 — 94,0 + —P2Oé% Ogo + —K0P2g0 — —P4gg — 3&470 hl)\ + —P4gg
16 ' 64 96 64 (3.41)
3 1 '
— K, P? In® A + —P%g2 In®\
+ 32 0 gO) n + 16 gO n )
&9 1 1 1491
— ——p? —p? — =K, — K P'¢?
ag,0 — Qg0 1 ( 10 aq,090 + 5 9094,0 5 0Q4,0 3200020 90
689743 11 197 419
- PG 3__KP22 _P42 2 K2P2 1 )\
3340000° 90 T 30 M0t @rodo T gt et T ggqgp o g0 | AT
L s o o | . 171 12 1o 1733 5 5 2
aP al,OgO + ﬁKOP gO + % ()P 90 §P a470g0 mp gO ln )\
463 3 3
P6 3 s P4 2 1 3 A —P6 3 1 4 A
* (14400 JoF qggrtot G0 ) MUAT o g0 A
(3.42)
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180 7 @80 P (70K, — 141P2gy) \ 7468070400000 7592704000 0

1365178374361K0) PO L (17122502251 9 33703011407

1 (11289869889229 12 6 ( 17699297459
P 0_'_ -

553190400000 790272000 %0 T 15176000 @40
14708381 48152049931 ., 4598761 , \ .5 . . (1264903
T 7529200 Y40 T 1896652800000 ° 80640 0‘1’0>P ( 26380
308363 135 53709659 15332 402129463

_ 0 — K, ———K ~ 570520500
560 L0U40 T T L0940 T 3ag7a00 040 T o5 0940 T 510739200
2135 , 1315 3642629

3
~ o 10 T T 60~ WKO% 0) Pgs (ZKgofio + 12a4094,0

2001 67 875 1923781
+ K02,g4 o+ 7[(004% 094,0 + 4 ai‘oa4 0— 33600 K§a470 + 1400'8,0 — 3500‘%,()@6,0

560
49853 , 3965783 4) Lo
0

79241 16067
_ K 2 K3 8 2 o -
280 K0a0 = g Koot + 8950 = 75700 ~ 15055500 %

9013 5706 131
( T120 000 + —35~ Kooio = =

5436207853 1469772959 35277
—18K2 1 )\ _—P8 4 VI addd _ 9 6 3
a“) ( 30732800000 ( 31610880000 ° 171500710 ) %0

480 , 8889 ., 1053403 ., 2780609 859 '
(%O‘LO T 596007010 T 1053696000 ~ 137200040 mgw)P 90
(% jai, — % 04,0 — %K094,0 + % 5 — igal 004, 0)P 9o

+ 5o 0% gg : ) In® A + G% %o (%O‘%O
%KO) P <_ 189867090 40~ %0940 * 2;1(5)51;:0[(02 * %Koo‘io) gy

3 3 3590117 03
K K3 P2 1 3 P8 4 2
* (40 0940 3960 ) 90) A (112896000 o+ (44800‘1’0

4537 3 3 4617
Ko | Pogd+ | = — K2 |P'2) In* ) P®g,
179200 0) bo ¥ (70“40 1792 0) ) " AT Jaso00” %0
3
— ——KoP%3 ) In° A\ — —— P81 In® )\,
1600 ° ) " 1600 "

KgOél 0a40 + 24K0a4 094 0) P Jo

9

(3.43)

and

{K(})lv gg? fél,ov f?il,o} - {K(})lv gg? )‘_1f2h,07 A_lfizo}' (3'44)
We can use the exact symmetry (3.37) to set

H=1. (3.45)
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» Forth, we have residual diffeomorphisms (3.3) of the metric parametrization (3.1J).

The latter transformations act on asymptotic parameters as

{90, H, Ko} = {90, H, Ko}, (3.46)
a
Qg e +2 (3.47)
1 «Q 1 o?
Qg0 — Qa0 + ZP2OK1,090 T + ZPQQO 7eR (3.48)
3 a 3 o?
94,0 —7 94,0 — §P2a170g0 " §P290 ek (3.49)
11 1 5
ago — Qg0 + (—%Pﬁ‘ggam - §P29004?,0 + 3—2P290K0041,0 + 3041,()@4,0) %
11 5 a? 1 a? 1 ot (3.50)
4 2
+ <—%P —+ 32K0P Jo +3a40) H2 —+ 4P (6%} Ogo H3 —+ gP goﬁ,
1791949 16839 10337
7P6 3 It 3 P4 2
980 7 A8 (2560000 10 <64000 040 ™ 11520 10) 90
(-2 T3 ey T K20+ 20?0 gaag ) P
T MOIE0 T 7990 0N T 9500 00 T M0 T gy ALetan J g0
9 «Q 1791949 1793
-3 a 6 3 2
51,0040 + 7 Ko 040 + 100; Oa“) 7 (256OOOOP ( 1280710
16839 761 9 1417 99
—K 492 — - — —  K?+ " Kya?, | P? 10
T 54000 0) g ( 50 "0 T 10910 T 956000 T Gag 00 )17 g0 T deo
9 o? 145 5 77
+ EKOCM,O) 78] + <—mp4g§041,0 + ( 120410 + 96K0041 0)P 9o
a? 145 7 ot 1 o’
+ 100&1 0&47(]) I3 + <—@P4g2 + @K@P Jo +5a40> H4 + 4g0P Q10 7= 76
1 , af
T g
(3.51)
and
{Kga gga f2h70> f?il,O} — {Kga gga f2h70> f?il,o} (352>

As mentioned earlier, the diffeomorphisms (B3]) can be completely fixed requiring that

lim A~ '%p72 =0, 3.53
P

p—r+00
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i.e., in the holographic dual to the symmetric phase of cascading gauge theory the

manifold M5 geodesically completes in the interior with smooth shrinking of d.Sy (see

B.1) as p — +o0.

3.5 Keeping the physical parameters fixed

Cascading gauge theory on dS; has two dimensionfull physical parameters: the strong
coupling scale A, the Hubble scale H, and a dimensionless physical parameter P2gj.
Recall that a symmetry transformation ([B.37) rescales H, and a symmetry transfor-

mation ([B.28) rescales P and affects K, while leaving the combination

K H?
on +2InH +1In P?gy = invariant = —2InA +2InH = In — (3.54)
9o

A2

invariant. The latter invariant defines the strong coupling scale A of cascading gauge

theory. In particular, using the symmetry choices ([B:27) and (B.45) we identify

Ky 1 1
Notice that (B53]) is not invariant under the symmetry transformation ([328). This

is because such transformation modifies P?gy, and thus changes the theory; (3.55) is

invariant under the residual diffeomorphisms (B.3)).

As defined in (B.55]), a new dimensionless parameter ¢ is small when the IR cutoff set
by the dS, is much higher than the strong coupling scale A (and thus cascading gauge
theory is close to be conformal). In section 3.7 we develop perturbative expansion in

J.

3.6 Numerical procedure

Although we would like to have an analytic control over the gravitational solution
dual to a symmetric phase of cascading gauge theory, the relevant equations for {f,
f3, by, K, g} (B3)-(BI0) are rather complicated. Thus, we have to resort to numerical

analysis. Recall that various scaling symmetries of the background equations of motion

allowed us to set (see (B217) and (3.43)))

limg=go=1, H=1. (3.56)
p—0

While the metric parametrization ([3.I)) has residual diffeomorphisms (3.3)), the latter
are fixed once we insist on the IR asymptotics at y = % — 0 (see (353)). Finally, a
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scaling symmetry (B.28)) relates different pairs { Ky, P} so that only the ratio 3§ = = is
physically meaningful (see (B.55))). In the end, for a fixed ¢, the gravitational solution

is characterized by 5 parameters in the UV and 4 parameters in the IR:

Uv: {041,0, Q40, G0, A80, 94,0},
h h  ¢h h
IR : 1Ky, 90 f2,07 f3,0}-

Notice that 5+4 = 9 is precisely the number of integration constants needed to specify

(3.57)

a solution to (3:H)-([BI0) — we have 5 second order differential equations and a single
first order differential constraint: 2 x 5 —1 = 0.

In practice, we replace the second-order differential equation for fy (B.5) with the
constraint equation (B.10), which we use to algebraically eliminate f;} from (B.6])-(3.9).
The solution is found using the “shooting” method as detailed in [16].

Finding a “shooting” solution in 9-dimensional parameter space (B.57)) is quite
challenging. Thus, we start with (leading) analytic results for § < 1 (see section B.7))
and construct numerical solution for (K, = 1, P?) slowly incrementing P? from zero to
one. Starting with the solution at Ky, = P? = 1 we slowly decrease K, while keeping
P? =1.

. . H
3.7 Symmetric phase of cascading gauge theory at i+ > 1

In this section we describe perturbative solution in § < 1 (353) to (B.3)-(3I0). Such
gravitational backgrounds describe cascading gauge theory on dSy, which Hubble scale
H is well above the strong coupling scale A of cascading gauge theory.

In the limit 6 — 0 (or equivalently P — 0) the gravitational background is simply
that of the Klebanov-Witten model [22] on dS, [20]:

~

Ko

0=0: B =f" =1+ Ky, 0= —,
4(1 4+ V Kop)? (3.58)

KO =K, ¢9=1,

where Kj is a constant. Perturbatively, we find

© s p2NJ )
filp) = £ x Z (I}:)( ) fii(P*Ko) h(p) = h® x

0

. </ p2\’ .
K(p) = KO Z(A ) Ki(*ko),  g(p) = g x

18



Apart from technical complexity, there is no obstacle of developing perturbative solu-

tion to any order in [I;—Z. For our purposes it is sufficient to do so to order O ( K2>

Notice that explicit p dependence enters only in combination pv/ KO, thus, we can set
Ky =1 and reinstall explicit K, dependence when necessary.
Substituting (3.59) in (B.5)-(B.10) we find to order O(9) the following equations

0, p+6 _PF6 p+2 ,_§( ,)2_3p2—16p—16h
( ) 21 2p(p + 1) ! 4 ! 4p2(p + 1)2 ' (3 60)
4K+ 70 —20f50 -3 '
(p+1)p? ’
p+6 wne. PH2 316016
+ i
= g T R T 6
_|_5f2,1+8f3,1—4K1—1 '
(p+1)p ’
1 _ p+4 h/ §(K/)2+ (p+2)(fé7l+4fé,l> 9(p2_16p_16)h1
oplpr A 2p(p+1) 4p2(p+ 1)? (3.62)
~ 17f51 +068f31 — 36K, —5 '
(p+1)p? ’
+6 8
0=k"— PT0 pr_® ,
Yo2p(p+ 1) (p+ 1)) (3.63)
p+6 1\2 4
0=¢g{ —————q1 +(K])" — ———, 3.64
7 VS R A P VP (364
along with the first order constraint
+1)p (p+4)(3p+4)
O — /! _|_4 / + h/ + (p 1\2
f2,l f3,l 1 2(p_'_ 2)( 1) 2p(p_'_ 2)(p + 1) 1 (3 65)
2(4f31 + foq — 4K, — 1) .
(p+2)p

Above equations should be solved with O(d) UV and the IR boundary conditions
prescribed in sections and 3.3 We solve all the equations numerically. Parameter-

izing the asymptotics as follows
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m UV, ie., p— 0, (the independent coefficients being {1 1.0, k1,40, @1,6,0, @1,8,0, 91,40}):

31 1 , (1 1 1 ,
for=a0p+ | —5—zaio+znp) p"+ | s+ za0—zInp | p

g8 2 2 g8 2 2
5 1 4 9 29 1 8 5
2 i A T (22 Canio — Skiag — 21 5
+ ( 2 2041,1,0-1- 3 14,0 T 16 HP) P+ <96 + 5110 ~ 3R1L40 ~ 3 HP) p
1 4 25099 3 4
— ?p+ —Inpk 2090 64 (2 2p— Zlnpk
+ (160 NP e PR T onns HP+CL1,6,0) p +< 6o ™ P 5 mPRLao

8379 08 17513 3 3
L _3 kg — =20 T (2 13 2 2 ok
12800 P T QLo T 90160+ 7p R0 25600) Pt (8960 WP T Y PRLao

L6, o 80373, 20701 223043661, .
35 AP0 T os0eg00 T P T 10600 T P40 T 351932000 P T S0 ) P
+0(p°),
(3.66)
e AT s (1,1 L (4
3,1 = Q110 P 5 2041,1,0 5 npjlp 1 2CY1,1,0 5 npjlp 192
1 1 71 1 1 1
510 + 3 In P) pt+ <3—2 + L0 T 5 In P) P>+ (‘@ In® p — I In pky 40
O i — 210 — Sang0 + by go — iDL oy (212 L g
38400 P T gALLO T {460 T g P07 1958800 640 P T g PRLAO
6220 T 3 1043, 5O18TT 3 s
B 7 3, 1043 3
12800 P T gL T HL60 T Ty A0 T 1953800 8960 ~ *
3 16 28227 9409 4
—~ 1n®pk —Inpk?,,— ———In®p— In pky 40 — = k2
g PRLae T e AL T oo P T Togon P40 T 5L
167306161 231 231 120741 1IGSTO0TTY
351232000 © 7 64 VL0 T g9 L0 T AL80 T Tegm A0 T Tg1E0000 ) P

+0(p%),
(3.67)
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hy = % —2Inp+ (1 — 2041,1,0) p+ (% + a0 — lnp) P+ <—% — Q110
‘an) P+ <ﬂ+a110+1k140_ glﬂﬂ) pl+ <—@ —04110—116140
1024 O TR0 T 108 7680 MO 3N
./ 656813 189 12233 ] 4213513
) P +'(1536000+O‘“’°+566]“’4’0“128001np) P +'<_'10752000
1201 115991np) p7+-(}-?f%glﬂgp'-—9—1H2pkL&o—-%glnpkf&o

—l—@ln
61 P

~ @110 = a0 M40 + 15500 112
L1241, 41T 212, 238628771, 637
———1In n — ——————Inp+ —a
2007040 P 15680 P40 T 105"140 T 950085600 P T 64 Y0

4 O o — gy, - Lo00mal, o LOBSTIOLITTY s 0y,
g 1160 T TR0 T TR 3600 0 T 16859136000 ) © -
(3.68)

1 1 3 33 3
K, = —21 — = =P+ k 1 P2 -2k — —1 5
1 nptp=op = op +»< 10+ o np) p +><640 140 7 35 np) p
24077

307 85, 35 o, (1031 15, 15 -
3072 | 12" 040 T o5 PP 7168 4 A0 T opg PP 131072

1155 3465
l 8 9y .
+ 356 Mot Ta35s np) P+ 00

(3.69)

1, 1, 33 39 4 31
== - —— 44 1 —1 - -2
g1 1% + P + (gl74,0 + ( 64 + k174,0) np + 39 n p) P + 128 91,4,0

2 2
. (3671 35 161
+ — G140+ k140

15 3671
9216 ' 12 36

3
-2 — — Inp— —In?
k140 + (16 8k1,4,0) np 16 np

497—1—3—51{: In —1—3—51112 6+ _os b —%k
1,4,0 P Pl P 1024 1 91,4,0 19 1,4,0

384 3 128
103 45 81683 1 1155
— — 15k Inp— —In? ’ — k2 —
- < 61 L4D) BT p) P (131072 3140 T g d1a0
7117 15499 27

k14,0 ( + 18k1,4,0) Inp+ o In? p) 04+ 0" ;

768 8192

(3.70)

n IR, de,y= 71) — 0, (the independent coefficients being {al, b o, g7, k1o }:

for=aly+0(y), fa1=We+0@), g=g+0W),

6 18 72
o+ gbfo - 8]{5?,0) y+ 0,

. (3.71)
Ky =k o+ 0(y), hy = 5 + 5 %10
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we find

a110 = 043427(8) s k’17470 = 004829(9) s a1.6,0 = —040703(7)
a1s0 = —0.42707(1),  gi40 = —0.26443(7),  a},=—0.15661(4)  (3.72)
bl =—0.37883(6),  gio=—0.72222(2),  kf',=—1.10592(2)

In an analogous way, it is possible to go to second order in § by taking eqs. (B.0)-
(BI0) and evaluate them with the expansion (3.59) to second order in §. Then, we will
get equations for functions fs, f32, he, Ko, go. As with the first order equations, one
uses the UV and IR boundary conditions prescribed in sections and 3.3l Setting
H =1, we get that the independent coefficients in the UV are {as1,0, k24,0, @2,6,0, 2,50,
92,40}, while those in the IR are {a}, b5, gb, k% o}. Solving numerically, we find the
values of these constants to be

as10 = 0.35729(1) , ko4o = 0.18423(1), aseo = —0.48877(2) ,
asso = —0.60853(7),  gaa0=—0.64457(3),  ab, = 0.54009(5), (3.73)
by =0.63805(4),  gb,=0.31165(0),  kj, = 1.65246(0).

We can now identify the leading O(6%) values of general UV and IR parameters

(see (3.57)):

2
apg=—1—0a1100—0ag100",

1 4 139 a110 = 2¢140 22k140  4koao 2
(L) (- 10 | 20140 Z2hso | W20 5
G40 ( 23 1’470) +( 52~ 24 3 5 3 ’

910 = G140 0 + 9240 5%,

29 8 1
a6,0 = (@1,6,0 + 96 §k1,4,0 + 5041,1,0) o+
(ﬁ _ daiio ai g L 210 _ 491,10 + A4k140  daraokiao  8kaap
576 32 4 2 3 9 3 3
+as6,0) 5,
17513 98
ago = (al,&o —3a160 — 25600 Qy,1,0 + 1—5k1,4,0) 0+
2
<— 18972907030 - 15222381’0 - a1,21,o — 2a1,1,0041,60 — 2,1,0 — 302,60 + A2807+
101g140  2423k1a0 | 178a110k1a0 98k2,470) 5
30 180 15 15 ’

(3.74)
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K =1+kty0+kh, 62, go=1+glo0+g5,6,
flo=14al, 6 +ay, 6%, flo=1+0by 6+, 6,

where we set Ky = 1.

(3.75)

Figure [Il compares the values of general UV and IR parameters o o, a4, a6, s,
guo, K&, b, f2h70, fgffo (see ([B.57)), with their perturbative predictions at linear and
quadratic order. The results for first and second order will help to correctly initialize

the fully non-linear calculation and at the same time provide a verification of the

results, at least for small enough ¢.

o8k, . L e . 4 osh . e . . e . . . . . e
0.0 02 04 06 08 10 0.0 02 04 06 08 10 0.0 02 04 0.6 08 10

Figure 1: (Colour online) Comparison of values of UV parameters
{ai,a40, 060,080,920+ and IR parameters {a}, b, K gh} (see (BE57) in the
range 6 € [0,1] (blue curves) with their perturbative predictions ([B.74)-(3.75) at first
(green dotted) and second order (red dashed) in 4.
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4 Cascading gauge theory on dS; with spontaneously broken

chiral symmetry

4.1 RY — dS, deformation of Klebanov-Strassler state of cascading gauge

theory

referred to

N = 1 supersymmetric ground state of cascading gauge theory on R3!
as Klebanov-Strassler state — spontaneously breaks chiral symmetry [§]. A natural
route to construct a xSB state of the theory on dSy is to “deform” Klebanov-Strassler
state: RY3 — dS,;. We explain now how to achieve this in a “continuous” fashion.

Consider the five-dimensional metric of the type:
v 1 2
dst = g, (y)dy*dy” = (—dt2 + 2 cosh®(Ht) (dS?) ) +c3 (dp)?, (4.1)

where ¢; = ¢;(p). We will be interested in ySB states of cascading gauge theory on dS,
with a Hubble scale H . One can derive equations of motion from (ZT]). Alternatively,
we can construct an effective 1-dimensional actionH from (2.10), by restricting to the
metric ansatz (4.1]), and the p-only dependence of the scalar fields {®, h;, €2;}:

S5 (g Uiy hiy @] = 51 [ci, Qi by, P (4.2)

It can be verified that equations of motion obtained from S; coincide with those ob-
tained from (1), provided we varyll S; with respect to cs, treating it as an uncon-
strained field. The 1-dimensional effective action approach makes it clear that the only
place where the information about dS, enters is through the evaluation of R in (2.2)):
8c! 8y 12(cy)? | 12w

—5.t—3 52 T 3 (4'3)

Rs; =

where derivatives are with respect to p, and k = H?2.

6Effectively, in obtaining S; we perform Kaluza-Klein-like reduction of the effective action S5 on
dSy.
"This produces the first order constraint similar to (.10).
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4.2 Equations of motion

As in (3.1)) and (2.8) we denote

C1 :h'_l/4p_1 ) C3 = h1/4/0_1 ) ¢ = lnga
_1 (K P 1 (K
ha -p (E - 3690) ; ha = 13 K, hs = 12 (E - 3690) ; (4.4)
1 1 1
Qy == f12pY4 Oy = — FL2p1/4 O — — 12174
1 3fc 2 \/éf“ 3 \/éfb

The equations of motion obtained from S; [¢;, €, h;, ®] are

3f, (f,)2 5fc fC(g,>2 Sf,f, 63fa 63fb ch
0= f/— =€~ 3hfor — =% + 222 4 + ey + +
L A I VR 1 7R T R P
D)’ N 3fifr N fe(W)? f(f)? | 3fe 63 K7 N 3gP*
82 " Taf. 8K BfE | Ju? 82 SIZEfER | 2f2hp?
felaly  2TKGKG KIK? KoK} K3K3 3fe(K7)?

2fufs  32fhfogP?0®  32f2h2f2p% T Sf2N2f2p%  32f2h2f2p*  32hfigP?

| 3f(Ky)* | 3gP°K3  3gP K3 3gP'K,  9f? N 1.0 N K2K Ks
32f2hgP? ~ Shffp*  8f2hp*  2f2hp*  fufep®  hp  16f2h%f2p?
K2K1K3 _ gP2fC<Ké)2 4 27K12 27K32

TSPRER T 12fuhfs | GALhfigP?R | 6AfuhfagP?

(4.5)
4 2 ah/ P2 K/ 2 K/ 2 A ! gl 1\2 A /
O:f;,— 5fa ‘l‘f ‘l‘g ( 2) + 5( 3) _ffbfc_(fa) _|_5f _S_fa
16fc.fbp2 hp 36hfb 32fahgp2 4fcfb 8fa p2 P
KK} KGKY KK} 3gP°K, | 3gPKG
32fcfah?fip?  Sfefah®fi0?  32fcfab?fip*  2fcfahp®  8fcfahp?
. 9K: 9K} 3o, 3. 9K, Ky K2K\ K,
64fchfbgp2p2 64fchfbgP2p2 fbp2 fbp2 32fchfbgp2p2 16fcfah2fb2p2
KK K3 _ 5fagP2K22 K12 39P2 3fa(Ki)2 9 fa(g,)z

B[ fuh2f20 8fhfER 8f.fuh2f20? " 2f.fahp? 32hf2gPE p2 1 8g?

f;fl; fc,fé fa(fl;)2 9fa fa(h,)2 27fb
B Y T A VI =R VER TT R

(4.6)
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3fy b 5 _45f7 Sl K} 3/o(J5)?

O — " _ _Jbo —J0 _ _
" p 8fy T p* 16ffap®  hp  BfM2f2fip?  32hgfiP?
KK} KK} K3K 9KY 3gP2K?2
B2f 2 f2fur | BFE[2fp®  B2f IR f2fup®  GAfhgfuP2R | folifop?
9K SeRP’ 3 3L AL SKD | gPKY
64fchg.faP2p2 2fch.f3p2 fap2 fap2 4fc.fa 32hgfbp2 36hfa
. 2 + 27fa 9fb K22K1K3 . K2K1K3 5gbe2K2 . 5gbe2K22
p2 16fcp2 8fcp2 16fch2f¢3fbp2 8fch2f¢3fbp2 2fchf¢3p2 8fchf3p2
9K K 2 1! 1\2 ¥ h/ 2
1113 X fo(g') —3hfyk + faty _ fo(f2) + folfe + fo(h') 7
32fchg faP?p®  8g° 2fa  8f3  4fe  8R?
(4.7)
0=pn" + Kv22[<12 [(2[(12 K22K?3 9[<12 9K§

— + +
4f0f3szhp2 fcfgflghpz 4fcf3szhp2 16fcfabe29P2 16f0fafbp2gP2
L2 Ay AL (KPP gP'KE PR3 PR [

foo | hp | fap | 8f2gP7  8f2P? T 222 2R fZ2 Lf2R 2f
NG/ U ) SNPRR (v eV CRp (67 < ¢ K?

5 R h 2 f2 e T f2 e TR
2gP?  gP(K})? 0K, K 3h’

Ff202 7 9fufs)  Sffufsp®9P? p
(4.8)
gIGK\P? | gRGIGP? | AgEGKG P 2gKGKsP? 9fK: | 9fK;

— +
fo[ghp2 fo[ghp2 fcfghpz fcffhﬂz 2f0fap2 2f€fap2
WKP | Kif K KW RK 8K K

0=K/—

Cff2he? T O2f. g h fo P
(4.9)
0= K"+ gK3K, P? _ gR3K5P? _ 29FLK0 P2 9K, _ 9als | Kif:
s .fcszhpz .fcszhpz fcszhp2 2fc.fbp2 2fcfbp2 2fc (4 10)
K, Ry Ky 3KG K, |
g Jo h p fa
0= K _ YKo 9fakSy G 9K, K? 9K K K3
2 2fcfap2 2fc.fbp2) fcfapz 8fcgp2h.fb.fap2 4fch2hfb.fap2
_ 9K2K§ n 9K12 _ 9K K3 L Kéfé Kég’ _ Kéh’ (4 11)
8fegP?hfofap?  4fegP?hfyfap®  AfegP?hfufap®  2fe g h
3K§
p )
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g2P2K22 g2P2K§ 2g2P2K2 9K12 9K§
— — + +
2f0f3hp2 2fe b2hp2 fo[%hp2 16 f. fa fohp? P? 16 fefafohp? P2
(¢ 9KIKj (K3)° N (K1)? 24P _QQPQ(K£)2+9’fé
g 8fcfafohp?P?  8f2hP? 8fb2hP2 fef2hp? 9f.foh 2f.
9fo 93¢
fa .fb 1%

O:g//

+

(4.12)

Additionally, we have the first order constraint

8 42K2 a2P4 4 a22P2 h/2
0= SORD uful + (R 7 + (112 = 22y 2Tl )

Ah(g' ) f2f2P*  96hgfZfuP?  96hgf.fiP?  96hgf2f7P* 4gKiP?
+ + 2 + 2 - 2 - 2
g P P P fehp
KK 2 22P2/ 1 2K 2P4 42K2 2P4
+ 96h2g f2f2 P2 + 9K, 32fbfa 4 329fafy P7h 4 6g 2{1) 29 2]20b
fcp P fcp fcp
gK3KPP? AgKGKRPR gK3KZP®  Gahgf2fPRf | GhgfufiPRS,
fehp? fehp? fehp? p p
32f.hgfafuP?  18hgf.f2P%? 18hgf3f,P? 36hgf?f2P?
_16hgfafbp2f¢;f{;_ f g{ fb i g.f {b B gfaéfb + gfa2fb
p fep fep fep
9K32fbfa 2152 2 2 p2 2 1692szp4 29K§K1K3P2
- —4hgfy P*(f2)" — 4hg fi P2 ()" — +
fep? s P(fe) () fep? fohp?
AgRK.K\KaP® SRR PR, | 32hgREIRPRSL  ShgfifuPRLifl  OKEfuf.
Jehp? Je fep fe 2 fcp?
(4.13)

We explicitly verified that for any value s the constraint (£I3) is consistent with

(43)-([I2). Moreover, with
fc:f27 fa:fb:f?m K1:K3:K> K2:1> (414)

equations ({L.0)-(413) are equivalent to (B.5)-(B10).

4.3 UV asymptotics

The general UV (as p — 0) asymptotic solution of (AH)-(@I3]) describing the phase of
cascading gauge theory with spontaneously broken chiral symmetry takes the form

3 1 1 1
fe=1—oa10p+ (—ggon — EKO + ZO‘%,O + §P2go lnp) 0’

. o k (4.15)
+ ZP2041,090,03 3 femk oI p,
n=4 k
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1 1 1 1
fo=1—aiop+ <—§g0P2 — Ko+ —ozio + = P?g, lnp) p° + fa,3,0P3

4 4 2 ( )
0 4.16
+2 D Fanp p' ",
n=4 k
1 1 1 1
Jo=1—a10p+ <—§90P2 - ZKO + Za%,o + §P290 In P) P’
o0 4.1
1 2 3 n1..k ( 7)
+ §P @1,090 — fa30 | P +ZZfb,n,kp In"p,
n=4 k
2 1 2 1 1 2
h—8g(]P +4K0—§P golnp—i— —P golnp+§K0 Oél,op—F _ZQOP
) 5 119 31
—szg(]hlp‘i‘éKo)Oéio—'—%Pél +96P290K0+8K2+ P4 11’1p2

31 1 5 11 5
— EP4 golnp— §1HPP290K0)P2 + <<_ZP Golnp — 219 goP* + 8K0)a10

3 23 19 3 23
+ <2P4 In p? — EP4 golnp+ —Pig? 5111,0})290[(0WL §P290K0

64
3 o
- éKS)‘“"))pg +D D hu p "y,
n=4 k
(4.18)
1 1 9
K1 =Ko —2P%goInp — P?a og0p + (‘ZPZCV%,OQO - ZP498 Inp + 16P4
L 2 L 2, 1 2 2 2
+ §P goKo | p” + —Eal,ogoP 4—890P —36PgoIn p 4+ 13P*gq
. (4.19)
+ 6K0) a0+ @QOP (96fa,3,0 Inp+32fa30+ 32k2,3,0) ) p°
+ Z Z kl,n,k Pn lnk P,
n=4 k
3 o0
Ky =1+ (kzs,o - Zal,ongo Inp+3faz0ln P) PP+ ki "I p, (4.20)

n=4 k
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1 1 9
K3 =Ky —2P%gyInp — P?ay ogop + (—Zlﬂaiogo — 1P‘*gg Inp+ 1—6P4gg

1 1 1
+ §P290K0) p*+ ( of 490 P? + —goP? <12P2g0 In p + 29P%gq

12 48

. (4.21)

+ 6K0) Q1 — 4—890132 (96fa,3,0 Inp+32f,30+ 32k2,3,0) ) p’

£ e
n=4 k
g=go(1- 2P0 - 1a P2gp3+§:zg p" " p (4.22)
0 51790 5108790 2.2 .k . )
It is characterized by 11 parameters:

{Ko, H, go, a10, k230, fea0, fa30: fa0: faro, fas0, ga0}- (4.23)

In what follows we developed the UV expansion to order O(p'?) inclusive.

4.4 IR asymptotics

As in section B3], we use a radial coordinate p that extends to infinity, see (B.4]). The
crucial difference between the IR boundary conditions for a chirally symmetric phase
discussed in section and the IR boundary conditions for a ySB phase discussed
here is that in the former case the manifold M3 geodesically completes with (a smooth)
shrinking to zero size of dS; C M3, while in the latter case, much like in supersymmet-
ric Klebanov-Strassler state of cascading gauge theory [§], the 10-dimensional uplift of
M,

Ms; — My = M;5 x X5, (4.24)

geodesically completes with (a smooth) shrinking of a 2-cycle in the compact manifold
X5 [§]. Introducing

, W=y h, =Y fabes (4.25)

a,b,c

<
Il
N
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the general IR (as y — 0) asymptotic solution of (£0])-(4.I3]) describing the xSB phase

of cascading gauge theory takes form

19(kh )2 P2gh 3fh kD 13P2gh 6
fch :_ftiLO + <_tho - —ffohgfi - fa,Oh 2 h 920 h +
47 540h) 47 2%k, 15(fh)2hE 5
a0 19(k5,)? 3k1 5k, 2 (426)
64P293h8 5f£0k§,z 320P2fh090 20]{532P2f:090 .
+ > fl v
n=2
fh _ h 17(1{:372)2P2g8 + th hh/{ + 20]{53,4 i 4P293 E zﬁo(k‘fsy
@ el 405hf @00 Kby 45(fRo)2hh 5 A8P?ghhl
n 8 17(/{:31)2 ]‘7?3]{5:}’:1 +th 2n
5Tk,  240P2fhghhl 10k, P2frogint ) an ¥
(4.27)
fo=3 >+ fv™, (4.28)
n=2
hh :hh _g(}]lpz(kél,2)2 . QH(hh) 4gOP2 (kf3)2 o (k§71)2 y2
0 27fh, 07 9(fhy)P A8ghP2 165 P2(fl,)?
+ ) hh oy
n=2
(4.29)
Ky =ky y* + ) Ky 2 (4.30)
n=2
Ky =Ky, + K, ot + > Ky, o™, (4.31)
Ko iy (APPOBERPH APRM T L KR
37N Y 8107l 135fh0hh gttt T M T
I 2P29hkh 4/€§‘,1 (kfs)zk:}f,l 18k§,1 41(747?,1)3
15(flo)2he  5flko  480P2gghy  5(fro)2kh,  480P2(fl,)%glhy
ki (k)
o ) ) k’ 2n+1
10P2( ;tovgghgkgz) i *Z
(4.32)
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27frohl " O(fRo)3hl  48P2hlgl  16P2(f!,)2hlgl

P2hl{3h 2 4P2h k,h2 ]{Zh 2
gzgg(l—i—( 90( 2,2) 90 ( 13) ( 3,1) ) y2

0 (4.33)
+> o yz”) :
n=2
Notice that the prescribed IR boundary conditions imply
lim 02 — lim — fy hY? = lim v fy (M)Y2 =0 (4.34)
y—0 3 y—0 0 y—=0 6 ’ '
with all the other warp factors in (24 being finite. Moreover, see ([2.4)),
1 1
lim (Q? g5+ g3 + gi]) = & faolhg)"” (59?, +g5+ gi) : (4.35)
y

which is the metric of the round S® which stays of finite size in the deep infrared as
the 2-cycle fibered over it (smoothly) shrinks to zero size (4.34]). Asymptotic solution
(426)- (£33)) is characterized by 7 additional parameters:

{fc?,07 hg7 k?ﬁv k3,27 k3,47 kg,l 7gh . (436>

In what follows we developed the IR expansion to order O(y'?) inclusive.

4.5 Symmetries and numerical procedure

The background geometry (4.4]) dual to a phase of cascading gauge theory with sponta-
neously broken chiral symmetry on d.S, enjoys all the symmetries, properly generalized,

discussed in section B.4}

1
P— AP, g— XQ, {P, fa,b,ca h, K1,2,3} — {P, fa,b,c, h, K1,2,3}, (4-37)
1
P— AP, p— Xp7 {h, K1,3} — )\2{}% K1,3}7 {fa,b,caK%g} — {fa,b,ca Ks, g}, (4.38)

1

Mo, H
p—Ap, H—= <

H ) {P7 fa,b,m h'7 K1,2,37 g} — {P7 fa,b,c; h7 K1,2,37 g} ) (439>
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P P P
p p p/(1+ap)
h h l+apth
— A = (1+a pg : a=const.  (4.40)
fa,b,c fa,b,c (1 + a ,0)_ fa,b,c
Kias Kias Kias
g g g
Thus, much like in section [3.4], we can set
Ko 11
90:17 H:1> ﬁ:ln A2P2:5a (441)

The residual diffeomorphisms (4.40) are actually completely fixed once we insist on the
IR asymptotics as in (£.26)-(£.33).

The numerical procedure for solving the background equations (A3)-([Z13), subject
to the boundary conditions (IH)-([@22]) and (£26)-(@33)) is identical to the one de-
scribed earlier, see section 3.6l Given (4.4T]), for a fixed §, the gravitational solution is
characterized by 8 parameters in the UV and 7 parameters in the IR:

UV: {041,0, k2,3,0, fc,4,07 fa,3,07 fa,6,07 fa,7,07 fa,8,07 94,0},

h h h h h h h (4'42)
IR : {fa,m hy , k1,3a k:272, k2,4a k3,1a90}~

Notice that 8+7 = 15 is precisely the number of integration constants needed to specify
a solution to (AH]) -(£I3) — we have 8 second order differential equations and a single
first order differential constraint: 2 x 8 — 1 = 15.

In practice, we replace the second-order differential equation for f, (4.5 with the
constraint equation (L.13), which we use to algebraically eliminate f. from (4.6)-(4.12]).
The solution is found using the “shooting” method as detailed in [16].

Ultimately, we are interested in the solution at k = H? = 1. Finding such a “shoot-
ing” solution in 15-dimensional parameter space (£.42]) is quite challenging. Thus, we
start with the analytic result for £ = 0 (the Klebanov-Strassler state of cascading gauge
theory), and a fixed value of §, and slowly increase k to k = 1. We further use the

obtained solution as a starting point to explore other values of 9.
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4.6 k-deformation of Klebanov-Strassler state

We begin with mapping the Klebanov-Strassler solution [8] to a x = 0 solution of

(A5)-(Z13]). We set
g=1, P=1. (4.43)

N = 1 supersymmetric Klebanov-Strassler solution takes formH:

ds? = Hgy® (—di* + da? + da + da?) + Hils o2 g dr?,

(4.44)
Q;, =wiks H}{é , hi = h; ks,
coshr —1 /rcoshr 1 r
DS 8 sinh r ( sinh r ) AT sinh r
L _coshr+1 rcoshr ] _1
SK5 T 18sinhr \ sinhr ’ I=5 (4.45)
€2/3 62/3K'I1(/§ r 23 KL/2 r
= =& KS osh L _ARs o T
W1,KS8 \/GKKS ) W2 KS \/§ COoSs 9 W3,KS \/§ S 9
with
[A{ _ (smh(2r) — 27”)1/3 H, _ 16((9}1271(5 — 1)h1,KS — 9h3,KSh2,KS) 0 — 0
s 21/3ginhr 7 RS 9e8/3 K2 ¢ sinh? r P ’
(4.46)

where now r — oo is the boundary and  — 0 is the IR. Above solution is parametrized
by a single constant ¢ which will be mapped to Ky, and which in turn will determine
all the parameters in (£42) once k = 0.

Comparing the metric ansatz in (d.44)) and (€.1)), (£.4) we identify

(dpﬁ) = (wy gs(r))2(dr)?. (4.47)

Introducing
z=e3, (4.48)

we find from (4.47)

1 6 (2 2/3 z 6 _1
1_ V6 (2077 / du u , (4.49)
) 4 1 w?(1 —u'? + 12uS Inu)'/3

8See eqs. (2.22) and (2.34) in [18].

33



In the UV, r — 00, 2z — 0 and p — 0 we have

6 (2¢)%/3 27
o =, = YOI (46) p(l +Qp+ Q%"+ Q%’ + Q' + Q%7 + (%e n3+ Q°
27, 9, 9 , 27, ; 6 4 189 , :
—¢ — —€'In2+ —¢'1 —e' 1 In2+—€¢Ql
+800€ 166 n —|—2Oe Il€—|—40€ np|p’+ Q +8069n3+Q
63 4 2403 4 HL02 189 AO?
— —c Q1 — Qe In2 In
+800Q6 +2OeQn6+ Qe n ) +<400 Q" — Q +2 Q°In3
63 8 1 9729 189
+ €E4Q2lne + Q%+ 10 Qzlnp)p + (?€4Q3IHE—|— 200 € 103 — - € 10%In2
567 56
+ EE4Q3 In3+ Q%+ ﬁ64Q3 lnp) P’ 4+ O(p* lnp)) ,
(4.50)
where
2e)23 (! 1—ub 1
Q :M / du | — u I
4 0 u?(l —u'2 + 12u8 Inw)'/3  u? (4.51)
6 (2 2/3 '
— \ﬂ% x 0.839917(9) .
In the IR, r — 0, 2z — 1_ and%—>0wehave
\/6 21/3 22/3 31/3 ) 71 32/3 21/3 . 6
r= s Y ( ~ 15 an Y + 5605 55 Y + O(y )) . (4.52)

Using (450) and (£52), and the exact analytic solution describing the Klebanov-
Strassler state of cascading gauge theory (£45), (£.46) we can identify parametersH

[@.42)
5 4 2
K0:—1n3—|—§ ln2—§ lne—g, a0 =29,
3 3v6

k2,370_%52(31n3—51n2—|—41ne), feao=0, fa’?”o:T\/i =

27 81 81 27 3v6
a =——1In2 - —1 —1 32 .
fa6.0 ( 16 » +5O+80n3+20ne)6+ 1 Qe (4.53)

3v6

faro = —8009(2268—18001n2+14401ne+10801n3)6 L 3v6 f 2ot

2 4 36 52
faso = 3—2Q (270 — 1801In2 4+ 1081In3 + 144 In¢€)e +TQ €, gao =0,

We matched the asymptotic expansions (@LI5)-(@22) and [#26)-(@33) with the exact solution
([@45) to the order we developed them: O(p'®) and O(y'°) correspondingly.
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Figure 2:

(Colour online) Comparison of values of select UV parameters
{fa.3.0, fa6,0, k230} of Klebanov-Strassler state obtained numerically (blue dots) with

the analytic prediction (red curves), see (A53).

in the UV, and

fho =213 323 A3 pl = 8% % 0.056288(0),
ho 4\/6 ho 22/3 ho 11 21/3 32/3
137 g2 2,2 7 32/3 /3 24~ T 45 83 0 (4.54)
4/6 21/3 3%/%
]{jgl g \/_— , gg — 1 ,
’ 27 €2/3

in the IR. Notice that inverting the first identification in (A.53]), € = €(Kj), we obtain
a prediction for all the parameters ([£.42)) as a function of K.

Figures 2 and Bl compare the results of select UV and IR parameters in (4.42)
obtained numerically (blue dots) with analytic predictions (red curves) (A53]) and
(4.54) for the supersymmetric Klebanov-Strassler state. In this numerical computation
we must set k = 0. Notice that in Klebanov-Strassler state the string coupling is
identically constant, i.e., g = 1. The latter in particular implies that g, = 0 and g@' =
1. To find our numerical solutions, we set those values as constants and eliminate the
second order equation (A.I2) for g, finding excellent agreement between the expected
and the numerical result.

As we mentioned earlier, we are after the states of cascading gauge theory with
broken chiral symmetry on dSy, i.e., the deformations of Klebanov-Strassler states at
k = 1. In practice we start with numerical Klebanov-Strassler state at Ky = 0.25
(P = 1) and increase s in increments of 6k = 107 up to x = 1. The resulting state
is then used as a starting point to explore the states of cascading gauge theory on dSy
with xSB for other values of Ky # 0.25.
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Figure 3: (Colour online) Comparison of values of select IR parameters
{K}, K}y, Kl's} of Klebanov-Strassler state obtained numerically (blue dots) with
the analytic prediction (red curves), see (E54).

5 Ground state of cascading gauge theory on dS;

Recall that effective potential V.sf of a theory on dS; is defined (by analogy with the

free energy density in thermodynamics) via
eV Vet = Zp (5.1)

where Zp is a Euclidean partition function of the theory on dSy, and V;F is a volume

of the analytically continued de Sitter, dS, — S*,

872
VE=_—". 5.2
4 3H4 ( )
For a cascading gauge theory with a dual gravitational action given by (2.1I), the

effective potential is

Vers :/ dp L, (5.3)

pUV

where L is the Euclidean one-dimensional Lagrangian density corresponding to the
state, and pyy is the UV cut-off, regularizing the Euclidean gravitational action in (5.3)).

Briefly, holographic renormalization of the theory modifies the effective potential

/ dp Ly — / dp L+ S0 + 5P (5.4)
PUV pPUV

to include the Gibbons-Hawking and the local counterterms at the cut-off boundary
p = pyy in a way that would render the renormalized effective potential finite in the
limit pyy — 0.

Here, we have to distinguish two states of cascading gauge theory: with broken (we

use the superscript °) and the unbroken (we use the superscript ®) chiral symmetry.
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These states are constructed (numerically) in sections [ and [3] correspondingly. Given
a cascading gauge theory on dSy, i.e., having fixed its strong coupling scale A, the
dilaton asymptotic value gy, the rank offset parameter P, and the Hubble scale H, the
true ground state of the theory minimizes the effective potential V..

We now present some computational details of V° 1 — the effective potential of the
state of cascading gauge theory on dS; with (spontaneously) broken chiral symmetry.
Using the equations of motion (45)-(413), it is possible to show that the on-shell
gravitational Lagrangian (2.1]) takes form

o _ 108 (i( 30,0202

) 6 ey 0202 )

E 7 167G5 % dp C3 (5.5)
_ s < fufo(pl! + 40) LR hfafufl” '
167G dp 216hp* 8 )
leading to
167Gs 1, _ ( 2 fufooh! +4h)) [ A
108 eff — 216hp p=pUv 18 pUV p (5 6)
_ ( 2 fufu(ph! + 4h) ) _E [T, Mt
216hp* e 18 P
where we used the fact that (see (ZL26)-(@29))
N 1Y L ) N O/ Ol 13 S UL A (5.7)
p—r00 216k y0 216R" ' '

Both terms in (5.6) are divergent as pyy — 0. First, using the asymptotic expansion
(ATH)-(EI8), we isolate the divergence of the integral in (5.0):

b ! fafbfl/2 b b 2
IPUV = —6x / d p - Ifinite + Ipyy,divergent + @ (pUV In pUV) ) (58)
pPUV
1 12y,
fafb.f
I?znzte - _6’%/0 d ( p - jc?ivergent )
1/1 1 1 1 /1
jc?ivergent < gOP2 + KO - _P go 1I1p> < al OQOP lnp
7\ 8 17073 2\1 -
1 1/ 1 1 5 (59)
16Oél 0(5goP + 2K0)) -+ ; <—§P4/{gg 1n2 p + <§KQP2/§90 —+ 48P /{go) hlp
1 67 ) 1
+ 16(041{ 0)*Pg0 + T52P4Kg0 - %KOP figo — 55 02“) ;



1
b _ b
IpUV,divergent - _61{/ dp jdivergent

pUV

1 /3 3
= <§H90P2 ll’lpUV — g:‘i(—ggfﬁ + 2K0))
Puv

+ L <—§/~€al{ 090 P% In prry + §/~€al{ olgoP? + 2K0))
pov \ 2 7 g (5.10)

1 1
— ZH2P493 In® pyry — 1—92f£(—72K0P2/<og0 — 60P*kg?) In? pyry

1

— @H(—m(ago)?ﬁgo — 67P'kg2 + 60K, P*kgy + 36 K2k) In pyy

1
+ {—@Ii(—720(?7090p2 - 144K0 — 1440&1{70K0 + 7290P2)} )

where in the last line we separated the finite piece coming from the upper limit of

. . . b b
integration in Z)  yiergent-

The superscript ° in the UV parameter ;g is used to
indicate that it is computed in the phase with broken chiral symmetry. Combining the

divergent terms in (5.10) with divergences of the boundary term in (5.6) we find

—ox Verr =\ Verra =3 T Verss —5 t Verra3 T Ve = T Verro
108 P p p p
(5.11)
" 0<p°>} ,
p=puv
with
Ky—2In
b o 0 p
Vers-a T 27(1 42Ky — 41np)’ (5.12)
b
Vb = Y10 161np? — (4(1 + 4Ko)) Inp + 1 + 2K, + 4K?

I3 797(1 + 2Ky — 41n p)? ’

(5.13)
Voo = !
eff=2 3888(1 + 2K, — 41np)
+ (32(43 + 333K, — 108(a} )® + 324 K7 — 324Ko(afy)?)) In p* — (4(—97
+ 344K — 360(af 0)* + 1332K5 — 864Ko(af 4)? + 864K
— 1296 K3 (0 0)*)) Inp — 99 — 194K, + 36(af ¢)* 4+ 344K5 — T20K(af )

- (6912 Inp" — (192(37 + 72K, — 36(a} 4)?)) In p*

+ 888K} — 864K (af o) + 432K — 864K§’(al{70)2) :

(5.14)
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ab
1,0
3888(1 + 2Ky — 41n p)
— (64(413 + 1536 K, — 108(a} 1)* + 1080K; — 288K () ¢)*)) In p*
+ (48(161 + 826 Ko — 88(af 4)* 4+ 1536 K — 216 Ko(af 4)* + 720K
— 288K5(al 4)?)) Inp? — (16(134 + 483K, + 21(af 4)* + 1239K5
— 264K(a} )” + 1536 K — 324K3(a} ))* + 540Ky — 288K (af 1)%)) Inp

+ 301 + 1072K, — 300(a} o)* + 1932K§ + 168Ko(af )* + 3304K;

Virp1 = . (—27648 In p® + (1536(32 + 45K, — 6(a} 4)*)) In p*

— 1056 K3 (o 0)* + 3072K; — 864K (af 0)* + 864K — 576K§(al{70)2) ,
(5.15)

1 1 1
ngf,o =i In p® + %(13 + 12Kp) In p* — m(log + 312K, — 576(041{,0)2

+ 144K3) Inp,
(5.16)
where we set P =1, g9 = 1, Kk = 1, and used (@.I5)- . Turns out that all the

divergences are removed once we include the generalize Gibbons-Hawking term,
see [23],

/
108 1 , 1 p (KM F
UV (A4 202 _ a

(5.17)

)
pP=pPUV

pP=pPUV

and the local counter-terms obtained in [23] with the following obvious modifications:

K&T = %Kl + %Kg, QFT =30, QFT = ? Qo+ Q3) . (5.18)
We find
167G5 ngf = 3fea0 + 3?_2(@?,0)2 + %Ko(aliof + Z_gKO % - ZO‘I{,OKO
~ Selo = 8+ Tt [y O SER) + Vg (519)
VY iguity = —36k5 K§ — 36k5 Ko — 3653 ,
where V! ., comes from the renormalization scheme ambiguities {x!}, see [23].

Note that the ambiguities are completely specified by the gauge theory parameters,

10«Generalized” five-dimensional Gibbons-Hawking term is just a dimensional reduction of the 10-

dimensional Gibbons-Hawking term corresponding to (2.4]).
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e., {Ko, P,go} and the Hubble scale H, (the non-normalizable coefficients of the
holographic gravitational dual).

Identical analysis for the symmetric phase leads to

805 3 59 9 3 3
167TG5 V:ff 3@4 0 + H

T1rs 500 T g Bt 55(ei)” — Jai oK+ p(adp) Ko

16
1 ) ! s
o éKg + Ifinite + / dy (_6hh(f3h)2(yf2h)1/2> + Vambiguity )
1 1/2
s f s
finite — _6/0 d ( 2 p - jdivergent )
. 1 /1 1/1 . 1
jdivergemt = ; (g + ZKO - 5 ll’lp) + ? (1041,0 ll’lp - EQI,O(E) + 2K0))

1 1 ) 1 67 ) 1
Elf e K, 1 2y 20 O 2
+p< 3 1 p+<8 0_'_48) np+16( 1,0> + 0 0),

1152 96 32

;mbiguity = _36/{;[(3 - 36/4';[(0 — 36/{3 .
(5.20)
We can now compare the effective potentials of a chirally symmetric state and a

state spontaneously breaking chiral symmetry for a cascading gauge theory on dS; (we
restored the full {P, go, H} dependence)

3
167TG5 (ngf - Vesff) (fc40 - H Qy 0) 16( 3P2o/1’,0g0 + 2P2gg - 2K00&l1)’0

+4Kg)H*(Hof ) — o} ) —

3
1,0 —(3P%go + 2Ko)H*(H o5 0 O‘lf,o)2

32
1
+ (Zfinire I?mm)+H2( /0 dy (~6h" £ £ (F1)Y2) — /0 dy <—6hh<f§>2<yf§>”2>),

(5.21)

where we used the same renormalization scheme for computing both V? orp and Vi,
1.e., we set
b

== H_4I<LZ'

H K, , i=1,2,3. (5.22)
Figure ] presents effective potentials (and their difference) between the state with

spontaneously broken chiral symmetry, Vé’f s> and the chirally symmetric state, V7, of

cascading gauge theory on dS, as a function of In 11—22 Over the range of % studie,

167TG5 % ngf 24

e H?
pigz Frt >0, Ins > —0.03, (5.23)
0

17t is difficult to keep our current numerical procedure stable for smaller values of £
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Figure 4: (Colour online) Left Panel: effective potentials of the chirally symmetric
(VZ4s, red) and the broken phase (Vl}f, blue) of the cascading gauge theory on dSj.

e

Right Panel: the difference (Vebff — VZ%¢). The vertical lines represent the first order
chiral symmetry breaking phase transitions of cascading gauge theory on S? [21] (green

line) and at finite temperature [16] (orange line).

implying that chirally symmetric phase is a true ground state of cascading gauge theory
on dS,. For comparison, the vertical green and orange lines indicate the first order
chiral symmetry breaking phase transitions of cascading gauge theory on S? [21] and

at finite temperature [16].

6 Properties of dS, deformed KT /KS geometries

Given numerical constructions of dS; deformed KT /KS geometries as in section 3, we

can compute the D3 brane charge at the tip of the conifold. Following [10], we find

(see (B.21))

h
QP = i K(y) = 32 (6.1
and (see (E30)-(L32)
Q™ = (K2 - ) + Kal)Kal)) =0, (62

where we use superscripts ® and ® to denote chiral symmetry broken (deformed KS)
and chiral symmetry unbroken (deformed KT) phases.

Figure [l presents D3 brane charge at the tip of the conifold of the dS, deformed KT
throat geometry, QP3*, as a function of % Note that over all the range of parameters

accessible with our numerical code QP3* > 0.
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Figure 5: (Colour online) Left Panel: D3 brane charge at the tip of the conifold of the
dS, deformed KT throat geometry, Q%% as a function of % Right Panel: logarithm
of D3 brane charge at the tip of the conifold of the d.S; deformed KT throat geometry,

QP?%* as a function of %

7 Properties of S deformed KT /KS geometries

Using numerical constructions of S* deformed KT /KS geometries presented in [21], we
can compute the D3 brane charge at the tip of the conifold. Following [10], we find

(see eq.(3.24) of [21])
_ K

QP = o7 m K(y) = o - (7.1)
and (see eqs.(5.34)-(5.36) of [21])
Q™ = (K2 - Kal) + Kal)Kal)) =0 (7

where we use superscripts ® and ® to denote chiral symmetry broken (deformed KS)
and chiral symmetry unbroken (deformed KT) phases.

Figure [6 presents D3 brane charge at the tip of the conifold of the S?® deformed KT
throat geometry, Q% as a function of 22, Here, unlike the dS; deformed KT throat
geometry, we find that QP3* can become negative! This happens whenever

:U’Zzi,negative
M3 < 3 negative ; In APy, 0.0318(3), (7.3)
which is represented by black vertical lines in figure [6l However, these negative values
of QP3* are not physical. The issue is that prior we reach the compactification scale

M3, negative s namely at H3,xSB [21]

2
M3,XSB o
M3 xSB > H3 negative 5 In A2P2go - 04309(8> ) (74>
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Figure 6: (Colour online) D3 brane charge at the tip of the conifold of the S? deformed
KT throat geometry, QP>°, as a function of £, The vertical orange line represents
the value of the compactification scale p3,g5 below which it becomes energetically
favourable to tunnel to S* deformed KS throat geometry, with spontaneous breaking
of chiral symmetry. The vertical red line represents the value of the compactification
scale [13 tachyon Delow which some of the linearized fluctuations (spontaneously breaking
the chiral symmetry) become tachyonic. The vertical black lines denote the value of

the compactification scale (3 pegative below which QP3¢ < 0.

chirally symmetric phase of cascading gauge theory on S* undergoes a first order phase
transition to a symmetry broken phase (deformed KS geometry), where QP3% = 0,
see (C2). This first order transition is further enhanced by perturbative tachyonic
instabilities in chirally symmetric phase which arise at a slightly lower value of us,
namely at 13 tachyon [21]

LB > > : In M achyon, _ 0.3297(3) (7.5)

XSB = M3 tachyon = M3,negative s A?P2g, . . .

Thus, a correct behaviour of the D3 charge at the tip of the conifold in S® deformed

throat geometries is

QP** >0, 3 > [431SB ;
QD3’b =0, M3 < [3xSB -

Once again, the D3 charge at the tip of the conifold is never negative.

QP — (7.6)
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