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Abstract

We consider the holographic entanglement entropy in /' = 4 SYM coupled to massive
flavor degrees of freedom. The flavors are introduced by putting D7 branes in AdSs. The
resulting geometry including the backreaction of the branes is known in a perturbation
expansion in the ratio Ny/N.. We consider the expansion to first order, and compute the
entanglement entropy of a region of the boundary. We consider two different cases for the
geometry of the region: a slab and a ball. We find analytic solutions for the minimal surfaces
in the bulk whose area gives the entropy, and analyze the structure of the UV divergence and
the dependence on the masses. Our results confirm the general structure that was predicted
by free field theory calculations, but with coefficients that depend on the coupling.
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1 Introduction

Entanglement is one of the most distinctive properties of quantum systems. Informally
speaking, it corresponds to the fact that a measurement performed on a part of the system will
affect another part, or alternatively it quantifies the amount of information on a subsystem
that is accessible by performing measurements on another subsystem. There exist several
measures of entanglement; the most commonly used is the entanglement entropy. It can be
naturally introduced in a quantum system divided into two subsystems A and B. Consider an
observer that has only access to the subsystem A; the results of all the possible measurements
he can make are encoded in the reduced density matrix p,.q obtained by integrating out the
degrees of freedom in B. The entanglement entropy (EE) of the subsystem A with B is defined
as the von Neumann entropy associated to the reduced density matrix:

Sa = —tr(preq log pred) - (1.1)

Very often one considers the case in which the subsystems are the degrees of freedom living in
different regions of space. The definition is completely general and can be in principle applied
to any system, provided that the degrees of freedom are local, so that one can associate a
Hilbert space to a given region of spacetime. On the other hand, EE is a very non-local
observable, therefore it provides different information compared to local quantities such as
correlators; for instance, it has been used as a probe of long-range topological order in two-
dimensional systems with a mass gap [I]. It is also useful in many other contexts ranging
from condensed matter to quantum information.

EE has been the subject of intensive study in the last few years; its computation is
generally a very challenging problem and few exact results are known. In a quantum field
theory, EE is a UV divergent quantity and its computation requires the introduction of an
ultraviolet regulator a. In terms of this cutoff the structure of the divergence, for a theory
in d 4+ 1 spacetime dimensions, can be summarized as follows (see [2] for a more extended
review of known properties):

Cd—1 C1
Sy = = 1 S 1.2
A= g+t Felogat Sy, (1.2)



where S} is finite for a — 0; the coefficients ¢; depend in general on the geometric properties
of the boundary surface ¥ separating the regions A and B, and have been computed in a
limited number of cases (a review of the computational tools used to compute EE in free
quantum field theories can be found in [3]). The leading divergent term is proportional to the
area of X, a fact known as the “area law”. Most of the terms in the expansion are actually
ambiguous, as they are not invariant under a rescaling of the cutoff. One exception is the
coefficient of log a; in a conformal field theory, it has been shown to be related to the central
charges appearing in the trace anomaly.

In a seminal paper [4] Ryu and Takayanagi proposed a remarkably simple recipe for the
computation of EE in theories with a holographic dual gravity description. The quantum
field theory lives on the boundary of AdS; consider a region of the boundary A enclosed
by the entangling surface A = 3. According to the proposal, the EE of the region is
proportional to the area A of a minimal surface that extends in the bulk of AdS and whose
restriction to the boundary of AdS is 0A:

A

Among the various applications of this formula (see [0]) it is worth mentioning the identifi-
cation of the exact contribution of the central charges to the loga term [8]. This proposal
has been proved in the case of a spherical entangling surface by mapping the problem of
computing entanglement entropy to that of computing thermal entropy using a conformal
transformation [6]. A more general proof, that should be applicable to any geometry of the
entangling surface, has been recently proposed [7] based on arguments about the solutions
of gravitational theories with a boundary and their relation to the entropy of the density
matrix.

The structure of the entanglement entropy presented in is valid for conformal the-
ories. When we move away from conformality the result can depend also on the intrinsic
scales of the theory, such as masses. We will concentrate on the corrections that appear in a
massive deformation of a CFT. Such corrections have been studied in [9] for free scalar field
theory with finite correlation length £ = 1/m in a waveguide geometry and it has been found
that there is a finite contibution to the entropy of the form, in d = 3,

A
Sy = fmz logm + fologm + fim (1.4)
T

where the coefficients f; depend on the geometrical characteristics of the waveguide, and Ay is
the area of the entangling surface. The terms appearing in are finite and independent
of the ultraviolet regulator. They can be isolated from the UV-divergent part by taking
derivatives with respect to the correlation length (see [I1], 12] for an alternative proposal for
defining finite universal parts).

In [I0] the first term of has been computed perturbatively in a scalar field theory
with ¢3 and ¢* interactions, with the result that the structure remains the same but the
bare mass is replaced by the renormalized mass. The same term has also been identified in a
holographic computation of the entanglement entropy in [I3] by introducing a massive scalar
in AdS that sourced a relevant deformation of the CFT.



In this paper we will consider another calculable example of EE in a massive field theory.
We use the holographic prescription to compute the EE for N' = 4 U(N) SYM coupled to
Ny massive hypermultiplets; this is the theory that lives at the intersection of N, D3 and Ny
D7 branes [I4]; in the regime Ny < N, the theory has a dual description in terms of probe
D7 branes in AdSs. In order to see the contribution of the flavor fields to EE we need to go
beyond the probe (quenched) approximation and include the backreaction of the D7 branes
(although at leading order it would also be possible to do the calculation remaining in the
probe limit, see [I5]). The backreacted solutions are known perturbatively in e = Ny/N,
[17].

We compute the EE in two cases, for an infinite region delimited by two hyperplanes (a
slab) and for a ball, delimited by a sphere. We identify the p?log u term and some of the
power-law terms in , thereby confirming Hertzberg’s conjecture about the universality
of these contributions. Moreover, given the consistent setup we use, we can compute the
exact value of the coefficients; we found that they are modified from their free theory value.

We should notice that even though we start from a consistent solution of supergravity,
the dual theory is not in fact UV-complete: it has a Landau pole, as is reflected in the bad
boundary behavior of the metric. This could be potentially problematic, and requires some
special care when considering the boundary conditions and the counterterms. We found
however that if the perturbative expansion is reorganized in terms of an effective coupling ¢,
defined at the scale of the flavor fields’ mass, the structure of the divergences is not different
than what is expected in a renormalizable theory.

The paper is organized as follows: in section [2] we present the gravity solution dual to the
D3/D7 system; in section [3| we start by reviewing the Ryu-Takayanagi prescription in the
case of pure AdS, then we present our computation in the backreacted-branes geometry for
the case of the slab and the ball; we conclude in section 4 by discussing our results, comparing
them with previous results in the literature and pointing out some possible extensions of our
work.

2 The backreacted D3/D7 geometry

We give a quick overview of the supergravity solution that we will use. The starting point
is the AdS® x Sj supergravity theory which is dual to A' = 4 SYM. Then we add flavors
by introducing D7 branes and the backreaction of the branes is computed perturbatively in
€ ~ Ny /N, using the smearing technique (for an overview see [16]). The branes are extended
in space along the following directions:

‘33‘0 r1 T2 X3 T4 X5 Xg 7 T8 X9
D3| x X X X
D7 | x X X X X X X X

Since the number of D3 branes is parametrically larger than the number of D7 branes, one
can consider first the backraction of the D3 branes which results in the AdSs x S° geometry.
The D7 branes, considered as probes in the geometry, extend along the boundary directions
of the AdSs, along a part of the radial direction, and along an S® C S°. The action of the



coupled D3/D7 system in this regime is composed by the supergravity action in the AdS
background and the DBI action describing the flavor branes:

S:Sb—i-Sfl (2.1)

with:

. 1 10 1 M 1 20 -2 11 2
Sy = Zﬂg%[)/d v/ —g10 |:R—28M(I>a @—56 F(l) —§aF(5) (2.2)

Sp=-Tr ) </ a8 xeq’ﬁ—/cg) . (2.3)
Ny

If the D7 branes are localized in the directions transverse to their worldvolume, the equations
of motion have delta-function sources at the position of the branes and this makes them
difficult to solve. The smearing technique consists in replacing the localized distribution of
branes in the transverse space by a uniform brane density starting from a “seed” embedding
and averaging using the symmetries of the internal space. In our case the D7 brane wraps
an S3 C S°. Even after averaging, there is a memory of the breaking of the isometries of
the sphere that is reflected in a squashed sphere. This motivates the following ansatz for the
metric:

dsty = h=12(—dt? + di3) + h'/? [F2dp* + S%dspe + F2(dr + Acp2)?] (2.4)

1 1 1
dstps = dez +3 cos? §<d92 + sin? Bdp?) + 1 cos? gsm2 %(dw + cos Bdyp)?

1
Acp2 = 5 cos? %(dd) + cos Odyp)
X?H € [Oaﬁ] 7¢76 € [0727T] Jﬁ € [0747T]

The full solution contains also non-trivial RR forms but we will not mention them here since
we will not need them. More details can be found in [I7] ; we report here the part of the
results relevant for us.

All the fields depend only on the coordinate p and we can find an one dimensional
effective action by plugin in the ansatz in the action and integrating out the rest of the
coordinates. The equations of motion arising from this action are equivalent to the following
set of equations for a zero temperature setup:

c F?
Oph = Qe ({9,)F=F(3—2—Qfeq>cos4x>

-S4 52 2 2
F? X o 4X 22)
9,8 = < Opx = —2tan§; 0,® = Qe cos 5

where x(p) is the “seed” brane embedding and the charges Q. and Qs are proportional to
the number of colors and flavors respectively.
If the D7 branes are absent, the equations are solved by the AdS metric. In the probe
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approximation, one sees that the branes extend along the radial direction from the boundary
p — oo to a finite point py, related to the mass of the flavors in the boundary theory. This
feature is preserved by the smearing procedure and persists after the backreaction.

The solution found for p > p, is:

/ 1 ]‘676 3272 3474 1474 2pq—2 1/
S>:\/076P 1+ e, 6+p*_p_66pq P_§€Pq P+16Pq P_Zepq Px 4 g4Pa—2Px

2pg—2 1, 4p,—4 2pg—2 1, 4pg—4 1/2
|:1+6*(p*_p_epq p_i_zepq P_|_epq p*_zepq p*)]

1/3
[1 + €x (% + P —p— %eﬁprﬁﬂ — %eQPq*QP + %64&1*41’ — ie4pq*4p* 4 €2pq*2p*)] /

F> == \/Jep

o, =P, —log (1 + € <,0* —p—ea? 4 364%_4‘) + e2Pa2p ie4pq_4p*>> )

The dilaton diverges and the metric is not asymptotically AdS when p — co. The solution
depends also on an arbitrary scale p,, an anchoring point at which the value of the dilaton
is fixed; this point should also be viewed as the effective UV cutoff of the theory. Physically,
this means that because of the Landau pole the theory can not be used for arbitrarily high
energy. At the end of the calculation one should be able to send p, — oc.

The solution in the region where the D7 branes do not extend i.e. for p < pg, reads:

3 1
(I)< _ q)q — Q* . IOg <1 + €y (p* — Pg — 1 + 62Pq—2p* o 464Pq—4p*>> ,

Se =F. = ValePe 6P
For all values of the radial coordinate we can find h by integrating the equation

dh Q.

with Q. being proportional to the number of colors N.. The perturbation parameter is given
by:
1 N
= 2\
872" " N,
where A, is the 't Hooft coupling at the p, scale. For our purposes though it is preferable
to express the solution in terms of a perturbation parameter fixed at the flavor mass scale
given by:

2.7)

€x

e = exe® P (2.8)

Since we are interested in computing quantities at the scale lower than the mass of the flavors,
€q is the effective expansion parameter that has to be kept small; the residual dependence
on the cutoff scale leads to subleading contributions that can be suppressed sending p, —
oo. This observation was done in [I8] in considering the dynamics of probe quarks in the
unquenched flavored plasma; we verified explicitly that the same happens in our case.



Fixing the reparametrization invariance of the metric we can define a new coordinate z
by imposing that h takes the form:

2’4

h(z) = ﬁ;

R'= 1Qc. (2.9)
4

This form is the same as in the unflavored case and it is convenient for comparing our results

with the pure AdS case. Imposing this condition and integrating equation order by

order we find an expression for z(p). We fix the additive integration constant in h by requiring

that z — 0 when p — oo. Then we have for p > pg,:

e PR? € (8¢ ®R? 45e % RS  30e - R®
2s(p) =——= |1+ 7
Vol 720
120e—2°R*  120e 2+ R*
o/zg o/zg

3.6 2.4 2.4
o z oz oz
! ! ! (2.10)

+ 120p — 120p4 + 10)}

where we defined 2z, = 2(p,). Now we can invert this relation to obtain F% (2) and S~ (z) as
expansions up to first order in €,:

Py = (s 0,20 10,6 1 16,0

>(z)—7 240222(— 2z 440272, — 10z, 4+ 162°)
R2 R

Su(z) =— (152122 — 202221 41028 — 426) |

z 240,2:25i

Imposing continuity of the function h at p = p, we obtain the following expressions for the
coordinate z and for the functions F(z) and S<(z) for p < p,:

L (eter etz Rt 1 (V) pe 1
“\ 24028 T 240R°  6azz 6\ R 6 8|
(2.11)

e P R?

z<(p) W

R? R2zf1l
F<(Z) = S<(Z) :7 + EQW .

3 Holographic entanglement entropy computation

3.1 Review of the pure AdS case

We recall here the computation of the entanglement entropy for a slab and a ball geometry
in pure AdSgys. The metric is given by:

R d
ds® = =1 <—dt2 +) daf + dz) . (3.1)

=1



The slab is defined on a constant time slice on the boundary as:

z1 € [—1/2,1/2] ; 23,4 € (—00,00)

Xi>1 ‘r

NS

Y (a) (b)

Figure 1: The slab geometry (a) and the ball geometry (b) and the corresponding
minimal surfaces in AdS space.

We will use the regularized length L for the infinite directions as shown in the geometrical
construction in fig. [1| (a). The holographic entanglement entropy can be computed as the
area A of the minimal surface extending in the AdS bulk and whose boundary lies on the
entangling surface separating the slab and the rest of the boundary. We start by minimizing
the area functional for the surface extending in the bulk. Choosing an embedding of the
form z = z(z1) = z(x) for the surface we have:

0/2
/1 12
Sarea = RIL4 / dz % (3.2)
—/2

Given that the integrand does not depend explicitly on x we can compute the constant of
motion and get

% B z2d _ ,2d (3 3)
de 2@ '
where Z is the turning point of the surface. The minimal area is therefore given by:
dyd—1 z4
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To compute the integral we need to introduce a UV cutoff a and also satisfy the constraint:
¢ VA T (450
3= / de = R?Y— 24 /3 (3.5)

The area of the minimal surface after regularization is given by:

oRd (LN 2dgd/2pd (T (Ld)\? py
Apdgs = — — T - . (3.6)
d—1\a d—1 r (ﬂ) L
We move on now to the computation for the ball geometry where the entangling surface is

a sphere of radius ¢ (fig. [1] (b)). It is convenient to write the metric in spherical coordinates;
introducing the coordinate 12 = 25:1 x; the metric becomes

2
ds® = % (=dt® + dr® + r?dQ5_, + dz°) . (3.7)

Choosing an embedding of the form r = r(z) the area functional is given by
d—1

Sarea = R%vol(S%71) /dz T 1y, (3.8)

~d

The equations of motion of this area functional admit the solution

2422 =02 (3.9)

The minimal area is therefore given by:

1 9\ 4=2
A = Révol(S771) / gy L=w) 7 (3.10)
a/tl

where a is the UV cutoff. For small values of the cutoff and for d odd the minimal area can
be expressed as a series of the following form:

p1 <> + p3 <> + ..+ P2 <> +polog—1 . (3.11)
a a a a

The values of the coefficients for d = 3, which will be of interest to us are p; = 1/2 and
Po=—1/2.

27Td/2Rd

- T(d/2)

3.2 Flavor corrections : the slab

We move now to the computation of the entanglement in the backreacted D3/D7 geometry
given in (2.4). For the case of the slab geometry, we choose an embedding of the form



p = p(x); the area functional of the surface is then given byﬂ

¢/2
L2
Saeen = 25 / de W?FS*/T+ hEZp2. (3.12)
—£/2

The embedding function satisfies the equation

dp  VhF2S8 — LF258

- =— — (3.13)

dz VhhFFS
where we denote p the turning point of the surface and the tilded functions are the values of
the functions at the turning point. Using this relation the minimal area can be computed as
follows:

2 7 3/2 73 g8
A=22[dp MRS (3.14)
R J VhE2S8 — 258
VhhFFS4

(=2 1
/ ’ S s (319)

For convenience we switch to the z coordinates given in terms of p by eq. and
in the regions p > p,; and p < p, respectively. To regularize the area integral we introduce a
UV cutoff at z = a. We compute the width of the slab and the minimal area to first order
in the perturbation parameter €,:

{ =14y + €q£1 (316)
A= Ay+ €A . (3.17)

I. Turning point located at p > p, (Z < z,)

We start by computing the entropy for the case p > p, i.e. the turning point is located in
the region where the D7 branes extend. We can express both the length ¢ and the area A in
terms of the parameter b = Z/z,.

byo
— =yb —B° (483 — 15 —b3 4075 — 160 3.18
P [720 (4875 — 1592) + 75507 (4072 )+ 8}’ (3.18)

q I gt
b (2445 — — 8y, — 16(6log(bz,) + 1 + log 4
et Tt {144 (2473 = 3n2) - 8b2+144[872 6(6log(bzq) +1+log )]}
(3.19)

'We divide the area by R°vol(S%) to make the results comparable with the AdS case where there is no internal
five sphere.



where

_ 2y/7(2/3) _ I(2/3)r'(5/6) _I(1/3)r(7/e)
YT Tse) 2T JT B I '
The divergent piece of the area is given by:
L’R3 1 2
v = —— — €, L’R3 | — — 1 . 2
Adiv 2 eqL°R [4@2 3z3 og a] (3.20)

The zeroth order term of the area matches the result for the AdS case eq. (3.6) for d = 3 as
expected. To express the area in terms of £ we can pertubatively invert the relation (3.18))
which leads to:

+ eqL2R3

(3.21)
922 100324 402

6logve + 1 —2log2 302 o
202

I1. Turning point located at p < p, (2 > z,)

To compute the length and area integrals in this case we must split them in two parts: one
from the boundary to p, and another one from p, to the turning point. The results that we
find for the length and area are:
14 € 30 157 30 1 11
— =yb+ L |- - S — 4800 + o +480°B (-, =
W +2160[ T e 32
6v/b2 — 1 (56b* + 71b% + 31 5 121
+ ( )+ —150° +400° + — +90b | B —=;=,- )|,
P2+ 1 b3 b6’ 3’2

2
“q

m_ M. & op (L. L 1Y L Caps a6 st 121
A = T e {241)3([)673,2 + (=36% + 8% — 186" + 1) bB { 53 3, 5

—A48b" — 48b" (—2cosh ™! (b%) + 61og(bzy) + 21log2)

6v/b% — 1 (126° + 9b% + 176* — b* — 1) -
02+ 1 T
(3.23)
where B(z;a,b) is the incomplete Beta function defined as:
B(z:a,b) = / 11— )Lt (3.24)

0

The counterterms used for the regularization of the area are the same as for the surface
extending only in the p > p, region since the fact that the surface extends further in the
interior does not affect the ultraviolet behavior of the integrals. Now we can invert again the
relation ¢(b) to express the area in terms of ¢:
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2 6,6 6.6

Zq_ g1l M €q 9077z, 125 Z 114 27
0) = - F= 52, 72.F | =, =52

L2R3A () 2b2+720[ IG 241 273a3a + 2141 3,2,3, /6

10710 10 10,}/?22 3 10’}/1 Zq 06— Y1 26 ~
- + 160 cosh™! + + 801og < L >
£10 (6 3 z;;’ Vi

2327722, /06 — 4§28 2320, /€6 — ~928 242123 06 — 4928
- 80| . (3.25)

C(Vizd + 30222 + 1) R R TP N T (Vizd + 320222 + 1)

We are interested in the behavior of the theory for large values of ¢ in order to probe the cutoff
independent mass corrections to the entanglement entropy. Following Hertzberg and Wilczek
[9], we can extract these cutoff-independent contributions; identifying ¢! = m = 1/ 2q, the
cutoff independent part is

oS
Se = (¢ 3.26
e= (-6 5 (3.26)
We can check that indeed this quantity is UV-finite, and it is a function of A% = ¢2/ zq2. The
large A expansion, £ > £, reveals the following term:

L?R3 1 1 As,

Re—— === —sA N Ne—— . 2
S~ g m3a T g dlNiNe g (3.27)
Note that an entropy of the form
Ay 1 4by
S=- lo — + 2bg 1 3.28
oay ez 1088 — ¢ F2hologg (3.28)
produces an S¢ of the following form
As, by
Se=—=5+—+bg. 3.29
5 487’[‘52 + g + 0 ( )

Therefore the term that we found for the slab geometry corresponds to the m?logm term
in . The constant term and the 1/£ terms are missing compared to which was
identified as the free field theory result in a waveguide geometry in [9]. The coefficient b; is
related to the perimeter of the waveguide and the by is related to curvature; the fact that
there are no analogs of these geometric quantities in the slab geometry is probably the reason
of the absence of these terms.

3.3 Flavor corrections : the ball

In this section we consider the case where the entangling surface is a sphere of radius ¢. The
embedding of the minimal surface is given in terms of a function r(z) where r is the radial
coordinate in the boundary, 72 = >"2?. Tt is convenient to make a change of variable to
r?2 = y(2)? — z2. The AdS solution then reads simply y = const = £. The area functional is
now

4
Sarea = Rg)/dz h1/254F(y2 - 22)1/2\/(ny - 2)2 + hFQp/(z)Q(yQ - 22) . (330)
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The corresponding equations of motion
4F5h35’p,4 (yz _ 22) + 2F3h2pl {p/S [z2 (y/Q + 2) _ y3y// +yz (zy” _ Gy/) + y2 (2y/2 + 1)]
—(4S'p = Sp") (2 = y*) (= —yy') } + 2h (SF' +4FS') (2 — yy’)3 + FSh' (z — yy’)3 =0
(3.31)

can be solved at first order in ¢;,. We denote the perturbed solution by y = yo + €,y1. Again
we have to distinguish the case where the surface extends in the bulk only in the region
p > pq from the case where it goes further in the bulk.

I. Turning point located at p > p, (Z < z,)

In this case the perturbed solution is

Cl (22 - 20?)

yi() = wE)+—m=—+ G, (3.32)
B 4 2.2 V2 —224¢ .
) 403 log z (40t — 222 )log< E ) 28 024 N P N 022 22
w(z) = — — -z
3z] 32212 — 22 800z} 30z} ' 1822 © 322 8(

In order for the solution to be regular at z = ¢ we must set CY = 0. The other constant
is fixed by the boundary condition 3! (z = 0) = 0:

403
I _

q

The integral for the area can be calculated analytically, and we have

12 1 0 2 AP 43z a A (|
I 3 q
=4 2~ Zlog(— S g () e — —
A= anlt g gleely) T <8a2 Tz 8 T et TR T 16
(3.33)
II. Turning point located at p < p, (2 > 2,)
In this case the embedding is described by two different functions:
2 262
w(z)—%C{I%—{—CQH, 0<2z<z
—Z
n=9 P (3:34)
Zq _
Dy(Vz2—2— —— ) +D
144622+ 1( 22—/ z2—€2>+ 2, 2g<z<Z

As in case I, regularity of the solution at z = £ fixes D7 = 0, and the boundary condition
yH (2 =0) =0 fixes
ci N 202 log(2¢)

17 _
= 322

12



The two remaining constants are fixed by requiring the continuity of the solution and of
the first derivative at the matching point z = z,. Notice that even though we are matching
the solutions in two different regions, the point z, is not really a boundary as the metric
is smooth across this point, therefore there is no “refraction” and the geodesics are smooth
curves. The matching condition gives:

cll — 4 02 — 22 (140222 — 224 +30%) + 150322 1o o 20
2 1 a q q q 08 ’
4524 N

1
— 830222, /02 — 22 + 1624, /02 — 32

q q q q

90z3 (E (, /02 — zg + E) — zg)

+1264(1010g 2 = 1) /€2 — 22 = 1206 (¢ (\/2 = 22 + ¢) = 22) 1og (,/1 - ;ﬁ +1

— 290z, + 120°(1 4+ 101log 2) + ¢*(17 — 120 log 2)z§] :

Dy =

(3.35)

Once again the integration can be performed analytically, with the following result

II 12 1 2 1 a 62—22-}-6
A” 1L ! {E [4£2zg<60£10g <” ! )

8a2 7200z}

P 2 2%, T4 20z,

— 83,/ — 22 + 70£> + 2 <180£ log - (y 52%—2»23 +) — 450 — 64,02 — zg>
q
T+t (0 /e - 22) }

The turning point, both in case I and II, is modified from its zeroth order value and is
determined by Z = ¢+ ¢€,y1(¢). However this shift does not affect the area, to first order in €,
since the integrand of the action functional evaluated on the zeroth order solution vanishes

(3.36)

at z.

The divergent terms in the last formula are the same as in (3.33)), as it must be since the
divergence comes only from the z ~ 0 region. We extract the mass-dependent universal part
using (3.26). Again we find that it is a function of A% = £2/22. In the limit of large A, £ > ¢,

it has an expansion

1 1. A As 1
Se mATR3e, (ZA2 — =) = ZLNGN, | —= — — ) . 3.37
g~ AmRie (G 3) = on2 VN | Ggne T 16 (3.37)

Comparing with (3.29)), we see that we find the leading term and the constant term, while
the term proportional to 1/ is once again missing.
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4 Conclusions

We have computed the corrections to the entanglement entropy due to the massive flavor
fields coupled to N' = 4 SYM in 3+1 dimensions; from these we could extract the UV-
divergent terms and the universal mass-dependent finite terms. The main results of this
paper are contained in eqs. (3.25)),(3.27)),(3.36),(3.37), giving the exact result for the area
and the finite mass-dependent terms for the slab and the ball, respectively.

It is instructive to compare what we found with the previously known results. As already
mentioned, the mass-dependent terms have been computed for the first time in [9] for a free
field; the contribution is

Sfree ~ ’Y-AE m2 logm

1 1
with v = —— for a scalar, and y = —— for a Dirac fermion (in 3+1 dimensions).

Subsequeqltly, in [I0] the coupling 7cTonstamt dependence of the coefficient v was studied
at one loop in perturbation theory for cubic and quartic scalar interactions; the result was
that + is unchanged if m is taken to be the renormalized mass.

In [20] the entanglement was computed in the ' = 2* SYM theory, which is a deformation
of N = 4 SYM by relevant operators m%@g + m ;O3 that give mass to the scalars and to
the fermions. The theory is supersymmetric only for m; = my, otherwise susy is broken and
for my > my there is a tachyonic mode, however the computation of the entanglement is
insensitive to these issues. The result they found is that adding the operator m;QOs,

3
P
O3 = —iTr fypy + gmy ;Tr\cmlz,

which gives mass m; to fermions and 2/3m3£ to bosons, the entanglement computed holo-

graphically is
2

N
SN —ox ~ E.Ag m? logm .

It can be easily verified that the computation at weak coupling would give instead a factor
of 1/4m. There is then a disagreement between weak and strong coupling, the two results
differ by a finite multiplicative factor.

In the theory we considered, the massive degrees of freedom are N' = 2 hypermultiplets
Qr, Q" in the bifundamental representation of U (N #) x U(N,). Each hypermultiplet contains
two complex scalars and two Weyl fermions. The weak-coupling computation would give then

6N+ N,
I Ay m? logm .
247

Comparing with or we see that like for the N’ = 2* case we have a disagreement:
at strong coupling the factor 6 in the numerator is replaced by A;/2mw. These results cast
some doubt on the conjecture of [10] even though both cases are not very conclusive: in
[20] the operator O3 actually does not contain only mass terms but also Yukawa couplings
(that we didn’t write). In our case also one source of ambiguity comes from the difficulty

Sn=2 ~
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in defining precisely the flavor mass, since the quarks are not gauge-invariant operators and
one should more properly talk about meson masses.

It would be interesting nevertheless to pursue the perturbative computation of [10] to
higher order, to see if the discrepancy persists.

It would also be interesting to consider other cases of massive theories obtained by top-
down string constructions (for instance in the flavored Klebanov-Strassler model [16]), as well
as considering the setup of D3/D7 branes at finite temperature and density; the background
geometries are known also in this case [19].

Finally, as we mentioned in the introduction, there are other mass-dependent terms with
coefficients that depend on the geometry of the entangling region. In the case we studied we
found one coefficient related to the curvature of the entangling surface, namely the constant
term in , that is non zero for the ball. It would be interesting to compute the entan-
glement for other cases, e.g. in the case of a waveguide geometry. Unfortunately we have
not been able to find an analytic solution for the corresponding equations of motion for the
minimal surface.
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