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We derive a general evolution equation for a shallow layer of a generalised Newtonian
fluid undergoing two-dimensional gravity-driven flow on an inclined plane. The flux term
appearing in this equation is expressed in terms of an integral involving the prescribed
constitutive relation and, crucially, does not require explicit knowledge of the velocity
profile of the flow; this allows the equation to be formulated for any generalised Newtonian
fluid. In particular, we develop general solutions for travelling waves on a mild slope
and for kinematic waves on a moderately steep slope; these results provide simple and
accessible models of the propagation of mud and debris flows.

1. Introduction

The dynamics of ‘shallow’ or ‘slender’ flows with a small aspect ratio have been a
topic of scientific and mathematical investigation since the work of Reynolds (1886).
A key feature of such flows is that the mathematical models that describe them can be
asymptotically reduced to a simpler form, which captures the essential physics of the flow
without requiring intensive computations. Such reduced models have been successfully
employed in many contexts (Oron et al. 1997; Craster & Matar 2009). Further simplifi-
cations are possible because in shallow flows the reduced Reynolds number, the product
of the aspect ratio and the standard Reynolds number, is typically small and so inertia
may be neglected — the so-called ‘lubrication approximation’.

A particularly important application of shallow-flow theory is to large-scale free-surface
flows such as debris flows and lahars (see e.g. Ancey 2001). In the simplest descriptions of
these phenomena, a fixed volume of fluid is instantaneously released, and the aim of the
model is to predict how far and how fast the resulting viscous gravity current can travel.
Huppert (1982a,b) considered two paradigm problems. In one problem (Huppert 1982b),
the fluid is released on a horizontal surface, and after a period of initial adjustment
the current spreads according to a self-similar solution. In the other problem (Huppert
1982a), the fluid is released on a moderately steep slope, and propagates downslope as
a kinematic wave; like other such waves (Weir 1983), at large times the kinematic-wave
solutions approach the ‘centred-wave’ solution that corresponds to an instantaneous point
release of fluid. Huppert’s analysis of the behaviour of such kinematic waves was later
extended to account for the modification of the kinematic-wave solution near the front
of the current by surface tension (Troian et al. 1989) or hydrostatic pressure gradients
(Hunt 1994).

Although the theory of shallow flows was first developed for Newtonian fluids, many
fluids of practical interest, ranging from lavas to colloidal suspensions such as muds,
possess non-Newtonian rheological properties such as shear thinning and a yield stress
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(Balmforth & Craster 2001). There is therefore a substantial body of work in which lubri-
cation theory has been extended to non-Newtonian fluids. For the problem of spreading
on a horizontal surface, notable contributions include those of Gorodtsov (1989) and
Pascal (1991), who independently extended the self-similar solutions of Huppert (1982b)
to power-law fluids; this work was later extended by Gratton et al. (1999), who found
a wider range of self-similar solutions. Another important contribution was made by
Balmforth & Craster (1999), who demonstrated how lubrication theory could be formu-
lated consistently for viscoplastic fluids; this work was built on to model the spreading of
viscoplastic lava domes on a horizontal surface (Balmforth et al. 2000) and viscoplastic
coating flows (Ross et al. 2001).

Models of non-Newtonian flow on a slope have been independently developed by several
researchers. One of the earliest contexts was glacier flow, since if basal slip and thermal
effects are neglected, a glacier modelled using Glen’s constitutive law obeys a power-law
rheology with exponent n = 1/3. Shallow-flow models, including kinematic-wave solu-
tions, were constructed by Nye (1960) and further developed by many researchers (e.g.
Fowler & Larson 1978; Hutter 1980); such models remain a topic of research (Ahlkrona
et al. 2013). Kinematic-wave models for a power-law fluid were presented inter alia by
Berezhin et al. (1998) and by Perazzo & Gratton (2003), while the explicit centred-wave
solution has recently been presented and discussed by Ganguly et al. (2012). Huang &
Garcia (1998) presented both the kinematic-wave solution and the front corrections for
a viscoplastic Herschel–Bulkley fluid.

Another class of solutions for flow on a slope is that in which the slope is mild. In this
case, the governing lubrication equations admit travelling-wave solutions, which propa-
gate downslope at a constant speed and can be regarded as representing the behaviour of
an existing flow when the rate of supply of fluid is abruptly changed. Liu & Mei (1989)
first developed such solutions for a Bingham fluid, while Perazzo & Gratton (2003, 2004)
presented a thorough analysis of the problem and the possible types of solution for a
power-law fluid. Extensions of the lubrication equations to inertial, but still laminar,
flows have been presented for power-law, Bingham and Herschel–Bulkley fluids (Ng &
Mei 1994; Liu & Mei 1994; Laigle & Coussot 1997). More recent developments in the
study of non-Newtonian flows on slopes have largely focused on viscoplastic fluids, with
a particular interest in the final deposit shape generated by slumping from various initial
conditions (Balmforth et al. 2007; Hogg & Matson 2009) and what can be deduced from
it about the fluid rheology (the ‘Bostwick consistometer’ experiment: see Perona 2005).
A still more recent extension has been to gravity currents of thixotropic fluid on a slope
(Hewitt & Balmforth 2013).

So far, most shallow-flow models have been developed for relatively simple rheologies,
in which velocity profiles in free-surface flow may be determined explicitly. However,
such simple rheologies are not necessarily good descriptions of the behaviour of complex
fluids such as mud. For more complicated and realistic rheological models, it is generally
not possible to obtain velocity profiles explicitly: this has hindered the development of
shallow-flow theory for complex fluids and may have encouraged a focus on mathemat-
ically tractable but unrealistic rheologies. In particular, the popular power-law model
predicts an infinite effective viscosity in the limit of low shear rate, which is mathemati-
cally pathological and may lead to physically misleading results; Myers (2005) has argued
that this issue, while well known, is often not properly acknowledged.

In the present contribution, we address the need for a more general non-Newtonian
shallow-flow theory. We demonstrate in section 2 that because the stress distribution
in shallow flows is known in advance, the governing equations for the unsteady shallow
two-dimensional flow of any generalised Newtonian fluid can be written in terms of an
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integral of a function that is obtained directly from the constitutive law. In the following
sections, we specialise this general equation successively to two regimes in which the
evolution equation simplifies substantially. First, in section 3, we consider the mild-slope
regime in which the gradients of the inclined plane and of the free surface are comparable;
then, in section 4, we consider the moderately-steep-slope regime in which the gradient
of the inclined plane is dominant and a kinematic-wave description of the flow becomes
appropriate. Having formulated these general problems, we illustrate them by presenting
solutions in each case for the propagation of waves downslope, using the particular choice
of a Carreau rheology to explore the effects of shear-thinning behaviour, and of Bingham
and Casson rheologies where appropriate to explore the effects of yield-stress behaviour.

2. Model description

2.1. Generalised Newtonian fluids

The mass-conservation and momentum-balance equations for an incompressible fluid of
density ρ are

∇ · u = 0 (2.1)

and

ρ
Du

Dt
= −∇p + ρg + ∇ · σ, (2.2)

where u, p and σ are the velocity, pressure and extra-stress tensor of the fluid, g denotes
acceleration due to gravity, and t denotes time.

The constitutive equation for a generalised Newtonian fluid is of the form

σ = 2µ(q)e, (2.3)

where e is the rate-of-strain tensor, given by

e =
1

2

(

∇u + (∇u)T
)

, (2.4)

q is the local shear rate, given by q =
(

2 tr(e2)
)1/2

, and µ = µ(q) is a prescribed
shear-rate-dependent viscosity function. A measure of local extra stress is given by

τ =
(

1
2 tr(σ2)

)1/2
= µ(q)q.

2.2. Unsteady shallow flow down an inclined plane

We consider the unsteady two-dimensional gravity-driven flow of a shallow layer of a
generalised Newtonian fluid on a planar substrate inclined at an angle α > 0 to the
horizontal. Referred to Cartesian coordinates Oxyz with the x axis down the line of
greatest slope, the y axis horizontal and the z axis normal to the substrate z = 0, we
denote the free surface of the fluid by z = h(x, t). With a velocity of the form

u = u(x, z, t)i + w(x, z, t)k (2.5)

we have q = |∂u/∂z| to the usual accuracy of shallow-layer theory (see, e.g., Craster &
Matar 2009), and equations (2.1) and (2.2) reduce in the lubrication approximation to

∂u

∂x
+

∂w

∂z
= 0, 0 = −

∂p

∂x
+ρg sin(α)+

∂

∂z

(

µ
∂u

∂z

)

, 0 = −
∂p

∂y
, 0 = −

∂p

∂z
−ρg cos(α),

(2.6)
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where g = |g| and µ = µ(q). The equations (2.6) are to be integrated subject to the
no-slip and no-penetration boundary conditions at the substrate,

u = w = 0 on z = 0, (2.7)

and stress conditions at the free surface,

∂u

∂z
= 0 and p = pa − γ

∂2h

∂x2
on z = h, (2.8)

where γ denotes the (constant) coefficient of surface tension and pa denotes atmospheric
pressure. Additionally we have the kinematic condition

∂h

∂t
+

∂Q

∂x
= 0, (2.9)

where Q denotes the downslope volume flux of fluid in the x-direction (per unit width
in the y direction), given by

Q =

∫ h

0

u dz =
[

(z − h)u
]h

0
−

∫ h

0

(z − h)
∂u

∂z
dz =

∫ h

0

(h − z)
∂u

∂z
dz. (2.10)

The solution for p is

p = pa + ρg cos(α)(h − z) − γ
∂2h

∂x2
, (2.11)

and then from (2.6) we have

∂

∂z

(

µ(q)
∂u

∂z

)

= −G, (2.12)

where G = G(x, t) is given by

G = −
∂

∂x

(

ρg cos(α)h − γ
∂2h

∂x2

)

+ ρg sin(α). (2.13)

As our focus is on large-scale geophysical flows, from this point onward unless otherwise
stated we will take γ = 0 and thus neglect any effects of surface tension. For similar
reasons we also confine the discussion to slopes for which 0 6 α < π/2, so the substrate
is not overhanging.

Integrating (2.12) once and using (2.8) we have

µ(q)
∂u

∂z
= G(h − z). (2.14)

We now restrict our attention to free-surface flows in which ∂u/∂z > 0 everywhere, so
that q = ∂u/∂z. Then from (2.14)

µ(q)q = G(h − z), (2.15)

so it follows that Gdz = −{d
[

µ(q)q
]

/dq} dq. From (2.10), the flux Q may therefore be
written in the form

Q =
F (q0)

G2
, (2.16)

where F (q0) is a function which depends only on the rheology of the fluid, and is defined
by

F (q0) =

∫ q0

0

µ(q)q2 d
[

µ(q)q
]

dq
dq, (2.17)
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and where q0 = q0(x, t) = q
∣

∣

z=0
is the shear rate at the substrate, satisfying

µ(q0)q0 = Gh. (2.18)

Thus from the kinematic condition (2.9) we obtain our key result, namely the partial
differential equation governing the evolution of the free surface height h(x, t):

∂h

∂t
+

∂

∂x

(

F (q0)

G2

)

= 0, (2.19)

in which q0 is determined implicitly in terms of Gh by the algebraic equation (2.18), and
G is given by (2.13).

For example, in the case of a power-law fluid, with µ(q) = µnqn−1, where µn and n
are positive material parameters, equation (2.18) gives q0 = (Gh/µn)1/n, and then (2.19)
leads to

∂h

∂t
+

n

(2n + 1)µ
1/n
n

∂

∂x

(

G1/nh(2n+1)/n
)

= 0 (2.20)

(cf. Gratton et al. 1999). For a Newtonian fluid, with n = 1 and µ = µ1, this reduces
further to

∂h

∂t
+

1

3µ1

∂

∂x

(

Gh3
)

= 0 (2.21)

(cf. Huppert 1982b).
If the constitutive equation of the fluid is prescribed in the form q = φ(τ) (rather than

in the form µ = µ(q) or the equivalent form τ = τ(q) = µ(q)q) then (2.17), (2.18) and
(2.19) may be written more simply as

F̂ (τ0) =

∫ τ0

0

φ(τ)τ dτ, τ0 = Gh,
∂h

∂t
+

∂

∂x

(

F̂ (Gh)

G2

)

= 0, (2.22)

respectively. We will see in section 4.2.2 that this formulation is particularly useful when
describing the flow of a fluid with a yield stress.

The evolution equations (2.19) and (2.22) constitute the most general results presented
in this study. To demonstrate the capabilities of this approach, in the following sections
we specialise to particular regimes of the slope of the incline, first a mild slope and then
a moderately steep slope, and seek solutions for specific rheologies in each regime.

3. Flow on a mild slope: travelling waves

We first consider the regime in which the slope is mild, 0 < α ≪ 1. In this regime
we may consistently seek solutions of the lubrication equations for which |∂h/∂x| ∼
tan(α) and so the hydrostatic pressure and alongslope gravitational contributions to G
are comparable in magnitude. Then from (2.13) and (2.18) we have

G = ρg sin(α) − ρg cos(α)
∂h

∂x
and µ(q0)q0 = Gh. (3.1)

Generalising the results obtained for power-law fluids by Perazzo & Gratton (2004),
we will seek travelling-wave solutions of the form h(x, t) = H(η), where η = x − ct for
some constant wave velocity c. Equation (2.19) then becomes

−c
dH

dη
+

d

dη

(

F (q0)

G2

)

= 0, (3.2)
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where G = G(H ′) and q0 = q0(H, H ′) are given by

G = ρg sin(α) − ρg cos(α)H ′ and µ(q0)q0 = (ρg sin(α) − ρg cos(α)H ′)H, (3.3)

and where F (q0) is defined by (2.17).
Equation (3.2) can be integrated immediately to give

L(H, H ′) ≡ −cH +
F (q0(H, H ′))

[G(H ′)]2
= L0 (3.4)

for some constant L0 which measures the downslope flux of fluid seen in the frame of
the travelling wave. The constants c and L0 between them define a particular travelling
wave solution, which can be thought of as a trajectory defined by (3.4) in the (H, H ′)
phase plane. Once such a solution has been defined, equation (3.4) can in principle be
inverted to provide H ′(H) along this trajectory, and the solution can then be written in
implicit form as

η =

∫

dη =

∫

dH

H ′(H)
. (3.5)

3.1. Travelling-wave solutions for a Carreau fluid

To illustrate the approach, we will present solutions for the Carreau constitutive model
(Tanner 2000, §1.5), which does not appear to have been considered in this context before.
The constitutive equation for a Carreau fluid is (2.3) with µ(q) given by

µ = µ∞ +
µ0 − µ∞

(1 + λ2q2)(1−n)/2
, (3.6)

where λ, n, µ0 and µ∞ are (positive) material parameters, λ having the dimensions of
time, µ0 and µ∞ being the viscosities at low and high shear rates, respectively, and
n satisfying n < 1. Commonly µ0 is taken to be larger (sometimes much larger) than
µ∞, corresponding to a shear-thinning fluid; however, the case µ0 < µ∞ is also physi-
cally sensible, and corresponds to a shear-thickening fluid. The parameter λ represents
the characteristic shear rate associated with the transition from low- to high-shear-rate
behaviour.

We assume that it is possible to identify a characteristic depth H0 associated with the
solution (typically the limiting depth of the fluid far up- or downstream), and we define
dimensionless quantities, denoted by an asterisk, via

H(η) = H0H
∗(η∗), η =

H0

tan(α)
η∗, q =

ρg sin(α)H0

µ0
q∗, c =

ρg sin(α)H2
0

µ0
c∗,

G∗ = 1 −
dH∗

dη∗
, µ∗(q∗0)q∗0 = G∗H∗, F ∗(q∗0) =

∫ q∗0

0

µ∗(q∗)q∗2
d

dq∗
[µ∗(q∗)q∗] dq∗,

and µ(q∗) = µ∗

∞
+

1 − µ∗

∞

[1 + (λ∗q∗)2](1−n)/2
, where µ∗

∞
=

µ∞

µ0
, λ∗ =

ρg sin(α)H0λ

µ0
.



































(3.7)
The parameter µ∗

∞
determines whether the fluid is shear-thinning (µ∗

∞
< 1) or shear-

thickening (µ∗

∞
> 1), while the parameter λ∗ determines whether a layer of fluid of

constant depth H0, flowing downslope under its own weight, is in a high-shear-rate regime
(λ∗ ≪ 1) or a low-shear-rate regime (λ∗ ≫ 1).

The integrated governing equation (3.4) becomes

L∗(H∗, H∗′) ≡ −c∗H∗ +
F ∗(q∗0(H∗, H∗′))

[G∗(H∗′)]2
= L∗

0. (3.8)
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A variety of travelling wave solutions are available (Perazzo & Gratton 2004). We
will pay particular attention to the case where the fluid asymptotically approaches a
constant depth of h−∞ upstream and a constant depth of h∞ downstream. This provides,
for example, a simple model of a surge in a slow mud flow (Liu & Mei 1989). Taking
H0 = h−∞ in (3.7), the dimensionless boundary conditions become

H∗ → 1 as η∗ → −∞ and H∗ → H∗

∞
as η∗ → ∞, (3.9)

where H∗

∞
= h∞/h−∞ is the dimensionless downstream depth. We will set η∗ = 0 where

H∗ = 1
2 (1 + H∗

∞
) to allow a simple comparison between profiles for different parameter

values.
We may determine the values of c∗ and L∗

0 immediately by solving the coupled equa-
tions

−c∗ +
F ∗(q∗0(1, 0))

[G∗(0)]2
= L∗

0 and − c∗H∗

∞
+

F ∗(q∗0(H∗

∞
, 0))

[G∗(0)]2
= L∗

0; (3.10)

noting that G∗(0) = 1, we obtain

c∗ =
F ∗(q∗0(1, 0)) − F ∗(q∗0(H∗

∞
, 0))

1 − H∗

∞

(3.11)

and

L∗

0 =
F ∗(q∗0(H∗

∞
, 0)) − F ∗(q∗0(1, 0))H∗

∞

1 − H∗

∞

. (3.12)

For a given value of H∗ between H∗

∞
and 1, the corresponding value of H∗′ may be

obtained by solving (3.8) numerically; η∗ may then be obtained by quadrature from
equation (3.5) and plotted against H∗. (The apparently more natural process of param-
eterising both H∗ and η∗ by q∗0 is complicated by the non-monotonic variation of H∗

with q∗0 which we will remark upon below, and so we do not pursue this alternative
representation of the solution here.)

Figure 1 illustrates some typical solutions, spanning three decades of variation in λ∗.
All the profiles have the same general shape (figures 1 a and b): a blunt ‘nose’ similar to
the front of a viscous gravity current over a dry bed (Huppert 1982b), smoothly connected
by a small ‘lip’ to the fluid of depth H∗

∞
ahead of the wave. For smaller values of H∗

∞
, the

nose is more strongly pronounced and the lip less obvious. Both the basal shear rate q∗0
and the basal shear stress τ∗ = µ∗(q∗0)q∗0 peak within the steeply-sloping nose (figures 1 c
and d), where the hydrostatic pressure gradient term H∗′(η∗) is large. This peak is again
most strongly pronounced when H∗

∞
is small, as in figure 1; in the limit as H∗

∞
→ 0, the

shear rate and bed shear stress in fact become infinite at the front.
For small values of λ∗, shear-thinning effects are felt only if q∗0 ≫ 1, and so the

travelling-wave solutions are very similar to those for a Newtonian fluid (Perazzo &
Gratton 2004), for which

c∗ =
1

3
(1 + H∗

∞
+ H∗2

∞
), L∗

0 = −
1

3
H∗

∞
(1 + H∗

∞
)

and η∗ =

∫

H∗3dH∗

(H∗ − H∗

∞
)(H∗ − 1)(H∗ + H∗

∞
+ 1)

.
(3.13)

As λ∗ increases, so the degree of shear thinning increases, its effects are felt most strongly
in the region of maximum shear rate, in the middle of the ‘nose’ of the wave. The result
of this is to reduce the peak shear stress (figure 1 d). It also has a weak effect on the
profile, tending to steepen it where the fluid is deep and make it less steep where the fluid
is less deep (figures 1 a and b). This accords with the behaviour of travelling-wave fronts
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Figure 1. Travelling-wave solutions for a Carreau fluid with µ∗

∞
= 0.1, n = 0.5 and H∗

∞
= 0.1,

for λ∗ = 0.1, 1, 10, 25 and 100; (a, b) profile of the current H∗(η∗); (c, d) basal shear stress
τ∗ = µ∗(q∗0)q∗0 . Parts (b) and (d) are enlarged plots of the region of the ‘nose’. The solutions for
λ∗ = 0.1 are visually indistinguishable from those for a Newtonian fluid.

in shear-thinning power-law fluids as the power-law index n is varied (see e.g. figure 6 of
Perazzo & Gratton 2004).

Figure 2 illustrates how the wave speed c∗ varies with the rheological parameters
λ∗ and µ∗

∞
and the depth H∗

∞
of the fluid downstream. Figure 2 a clearly shows that

deviation from the Newtonian result (c∗ = 7/12 ≈ 0.583 in this case) occurs only when
λ∗ is large and µ∗

∞
is small: as these shear-thinning effects become stronger, the wave

speed increases. The same tendency of the wave speed to increase with increasing shear-
thinning (larger λ∗) is apparent in figure 2 b, which also illustrates how the wave speed
increases as H∗

∞
increases and the fluid layer downstream becomes more mobile.

4. Flow on a moderately steep slope: kinematic waves

We now consider the regime in which the slope is moderately steep, so that |∂h/∂x| ≪
tan(α) nearly everywhere. (We will see that this condition may be violated locally.) The
hydrostatic pressure contribution to G is therefore negligible; thus from (2.13) and (2.18)
we have

G = ρg sin(α) = constant, µ(q0)q0 = ρg sin(α)h, (4.1)

and so equations (2.17)–(2.19) yield

∂h

∂t
+ c(h)

∂h

∂x
= 0, µ(q0)q0 = ρg sin(α)h, c(h) = q0h =

µ(q0)q
2
0

ρg sin(α)
. (4.2)
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Figure 2. (a) A Carreau fluid with n = 0.5: the wave speed c∗ for H∗

∞
= 0.5 as a function

of the reference shear rate λ∗ and the high-shear-rate viscosity µ∗

∞
. Contours are at c∗ = 2n/2

from n = −1 to n = 4. (b) A Carreau fluid with n = 0.5 and µ∗

∞
= 0.1: the wave speed c∗ as

a function of the reference shear rate λ∗ and the downstream fluid depth H∗

∞
. Contours are at

c∗ = 2n/2 from n = −2 to n = 5. In the Newtonian limit, c∗ = (1 + H∗

∞
+ H∗2

∞
)/3.

The implicit solution of (4.2) satisfying h(x, 0) = h0(x) for some initial free surface shape
h0(x) is

h = h0

(

x − c(h)t
)

, (4.3)

in which c(h) is given implicitly by eliminating q0 from (4.2).
For example, in the case of a power-law fluid, equations (4.1)–(4.3) lead to

q0 =

(

ρg sin(α)

µn

)1/n

h1/n, c(h) =

(

ρg sin(α)

µn

)1/n

h(n+1)/n, (4.4)

and thus

∂h

∂t
+

(

ρg sin(α)

µn

)1/n

h(n+1)/n ∂h

∂x
= 0, h = h0

(

x −

(

ρg sin(α)

µn

)1/n

h(n+1)/nt

)

(4.5)

(cf. Perazzo & Gratton 2003).
If the function z = h0(x) has inverse x = h−1

0 (z) on some suitable domain then the
solution (4.2) and (4.3) may be written

x = c(h)t + h−1
0 (h) , µ(q0)q0 = ρg sin(α)h, (4.6)

which with c(h) = q0h = µ(q0)q
2
0/ρg sin(α) leads to a parametric representation for h at

time t in terms of the parameter q0, namely

x =
µ(q0)q

2
0

ρg sin(α)
t + h−1

0

(

µ(q0)q0

ρg sin(α)

)

, h =
µ(q0)q0

ρg sin(α)
. (4.7)

As is common with kinematic waves, this general solution is too general to be directly
informative, and so we will specialise further to a particularly relevant class of solutions.

4.1. A finite release of fluid: general solution at finite t

Consider the release at time t = 0 of a fixed quantity of fluid, with finite length in the
x direction and with volume A (per unit width in the y direction). The mass of fluid is
constant, and so

∫ xF(t)

0

h(x, t) dx = A (4.8)



10 D. Pritchard, B. R. Duffy and S. K. Wilson

at all time, where x = xF(t) denotes the position of the front of the fluid at time t.
Equation (4.8) is an algebraic equation which determines xF; the solution for h is then
given by (4.3) for 0 6 x 6 xF.

4.2. A finite release of fluid: centred-wave solution at large t

In the asymptotic limit of large time, t → ∞, the current ‘forgets’ its initial state (Weir
1983), and the solution (4.3) for h takes the form of a centred wave, for which

c(h) ∼
x

t
. (4.9)

This shows both that, no matter what form the function µ(q) may take, eventually h
depends on x and t only in the combination x/t. Moreover, at large t equations (4.2) and
(4.9) give h parametrically in terms of q0:

h =
µ(q0)q0

ρg sin(α)
,

x

t
∼

µ(q0)q
2
0

ρg sin(α)
. (4.10)

Since also c = q0h, equation (4.9) or (4.10) shows that q0 ∼ x/(ht) at large t, and so the
parametric solution (4.10) may alternatively be written in the implicit form

µ
( x

ht

)( x

ht

)2

∼ ρg sin(α)
x

t
. (4.11)

For the centred-wave solution (4.10) the mass-conservation condition (4.8) leads to

(ρg sin(α))2A = t

∫ q0F

0

µ(q0)q0

d
[

µ(q0)q
2
0

]

dq0
dq0 = t[µ(q0F(t))]2q3

0F(t) − tF (q0F(t)), (4.12)

where q0F(t) = q0(xF(t), t) is the shear rate at the substrate at the front x = xF(t). (Note
that the first term on the right-hand side of (4.12) may be written as (ρg sin(α))2xFhF,
illustrating how the rheology of the fluid, represented by F (q0), ‘corrects’ the shape of
the current.) Equation (4.12) is an algebraic equation which determines q0F(t); the front
position and the depth at the front hF(t) ≡ h(xF(t), t) are then given by

hF(t) =
µ(q0F)q0F

ρg sin(α)
, xF(t) =

µ(q0F)q2
0F

ρg sin(α)
t (4.13)

at large t. Note that this solution has a height discontinuity at the front, where the
condition | cos(α)hx| ≪ sin(α) breaks down. In a solution of the full evolution equation
(2.19), a steep but continuous ‘nose’ may be expected to replace this discontinuity, and a
matched asymptotic expansion may be constructed to describe it (e.g. Hunt 1994; Huang
& Garcia 1998); however, the advance of the current and its profile away from the nose
are still described to leading order by (4.13).

For example, in the case of a power-law fluid, with c(h) given by (4.4), equation (4.10)
gives

h =
µnqn

0

ρg sin(α)
,

x

t
∼

µnqn+1
0

ρg sin(α)
, (4.14)

leading to

h ∼

(

µn

ρg sin(α)

)1/(n+1)
(x

t

)n/(n+1)

as t → ∞, (4.15)

while equation (4.12) gives

(ρg sin(α))2A = (n + 1)µ2
nt

∫ q0F

0

q2n
0 dq0 =

(

n + 1

2n + 1

)

µ2
nq2n+1

0F t, (4.16)
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and so

q0F =

(

(2n + 1)(ρg sin(α))2A

(n + 1)µ2
nt

)1/(2n+1)

. (4.17)

Hence from (4.13) we recover the solution

hF(t) =

[(

2n + 1

n + 1

)n
µnAn

ρg sin(α)tn

]1/(2n+1)

, xF(t) =

[

(

2n + 1

n + 1

)n+1
ρg sin(α)An+1tn

µn

]1/(2n+1)

(4.18)
as t → ∞ (cf. Ganguly et al. 2012). (Equation (4.18) shows, incidentally, that hFxF =
((2n+1)/(n+1))A = constant. This reflects the fact that these solutions are self-similar;
we shall show below that this is not necessarily the case for other rheologies.)

It is straightforward to generalise the above solutions to the case when fluid is supplied
or removed in a prescribed fashion, corresponding to the area A being time-dependent;
for brevity we omit this generalisation here.

4.2.1. Centred-wave solution for a Carreau fluid

To demonstrate the applicability of our approach to more complicated rheologies, we
now construct centred-wave solutions for the case of a Carreau fluid with constitutive
equation (3.6). Before presenting the results, it is convenient to non-dimensionalise the
variables appropriately. We define dimensionless quantities, denoted by an asterisk, via

q0 =
q∗

λ
, t =

(

ρg sin(α)

µ0

)2

Aλ3t∗, x =
ρg sin(α)Aλ

µ0
x∗, h =

µ0h
∗

ρg sin(α)λ
, µ(q) = µ0µ

∗(q∗).

(4.19)
We can then write the dimensionless viscosity function as

µ∗(q∗) = µ∗

∞
+

1 − µ∗

∞

(1 + q∗2)(1−n)/2
, where µ∗

∞
=

µ∞

µ0
, (4.20)

and the centred kinematic-wave solution parameterised by q∗ becomes

h∗ = µ∗(q∗)q∗,
x∗

t∗
∼ µ∗(q∗)q∗2, 1 = t∗

∫ q∗0F

0

µ∗(q∗)q∗
d
[

µ∗(q∗)q∗2
]

dq∗
dq∗. (4.21)

As in section 3.1, the parameter µ∗

∞
determines whether the fluid is shear-thinning (µ∗

∞
<

1) or shear-thickening (µ∗

∞
> 1). Note that the characteristic shear rate λ in the viscosity

function sets the time- and lengthscales for the evolution of the flow. Where the shear
rate is low, q∗ ≪ 1, the viscosity tends to its low-shear-rate value and the fluid behaves
like a Newtonian fluid with constant dimensionless viscosity 1. Where the shear rate is
high, q∗ ≫ 1, the viscosity tends to its high-shear-rate value and the fluid behaves like a
Newtonian fluid with constant dimensionless viscosity µ∗

∞
.

Figures 3 and 4 illustrate the behaviour of the solutions for a shear-thinning Carreau
fluid (µ∗

∞
= 0.2); results for shear-thickening fluids are analogous and are omitted here

for brevity. As the current spreads and thins, both the depth at the front, h∗

F(t∗), and the
front velocity, dx∗

F/dt∗, decrease (figures 3 b and c); the net effect is that the shear rate
at the front, q∗0F, decreases (figure 3 a). At sufficiently early times, the shear rate at the
front is high, q∗0F ≫ 1, and so the fluid behaves like a Newtonian fluid with dimensionless
viscosity µ∗ = 0.2. In this regime, we have

q∗0F ∼

(

3

2

)1/3

µ∗−2/3
∞

t∗−1/3, x∗

F ∼

(

3

2

)2/3

µ∗−1/3
∞

t∗1/3 and h∗

F ∼

(

3

2

)1/3

µ∗1/3
∞

t∗−1/3,

(4.22)
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Figure 3. Centred-wave solution: quantities at the front of the current for a Carreau fluid with
µ∗

∞
= 0.2 and n = 0.5: (a) front shear rate q∗0F(t∗); (b) front position x∗

F(t∗); (c) depth at the
front h∗

F(t∗). Broken lines in each plot show the results for Newtonian fluids with µ∗ = 1 (dashed
lines) and µ∗ = 0.2 (dotted lines). Note the logarithmic scales in each case.

from equations (4.18) with n = 1. As the current evolves and q∗0F decreases, the non-
Newtonian effects become apparent, and at around t∗ ∼ 1 there is a gradual transition to
a low-shear-rate regime in which q∗0F ≪ 1 and so µ∗ ∼ 1. In this low-shear-rate regime, the
Newtonian scalings are again recovered, but with different coefficients of proportionality:

q∗0F ∼

(

3

2

)1/3

t∗−1/3, x∗

F ∼

(

3

2

)2/3

t∗1/3 and h∗

F ∼

(

3

2

)1/3

t∗−1/3. (4.23)

Note that in figures 4 a and b, the front positions are not evenly spaced although the
profiles are shown at exponentially spaced intervals, indicating that the front position
deviates from Newtonian power-law behaviour.

This transition from high- to low-shear-rate behaviour can also be seen in the changing
profile h∗(x∗, t∗) of the current, which goes through two phases of adjustment (figure 4).
At very early times, t∗ ≪ 1, the shear rate is high everywhere and the profile is very close
to the Newtonian one (figure 4 c), except very close to the tail of the current where the
shear rate is always low (since, from (4.10), q0 = 0 when x/t = 0). As t∗ increases and
the flow decelerates, the low-shear-rate region expands forward, and so in figure 4 c we
see an adjustment in the profile propagating forward from the tail, eventually catching
up with the flow front at around t∗ ∼ 1. Thereafter, the profile very gradually adjusts
back to its Newtonian form (figure 4 d).

It is worth remarking that although the solution depends on x∗ and t∗ only through the
combination x∗/t∗, the front position x∗

F(t∗) does not correspond to a fixed value of x∗/t∗
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Figure 4. Profiles of the centred-wave solution for a Carreau fluid with µ∗

∞
= 0.2 and n = 0.5:

(a) and (b) show profiles h∗ at various times plotted as functions of the space variable x∗, while
(c) and (d) show scaled profiles h∗/h∗

F at the same times, plotted as functions of the scaled space

variable x∗/x∗

F; the dashed line in these figures is the Newtonian solution h∗/h∗

F = (x∗/x∗

F)1/2.
Figures (a) and (c) show profiles at early times, from t∗ = 0.01 to t∗ = 1, for nine exponentially
spaced values of t∗. Figures (b) and (d) show profiles at later times, from t∗ = 1 to t∗ = 1000,
for seven exponentially spaced values of t∗.

and so the solutions are not perfectly self-similar. Consequently the normalised profiles
in figures 4 c and d do not collapse onto a single curve. This contrasts with the solutions
for power-law fluids (including the Newtonian case), in which h∗ is proportional to a
simple power of x∗; regardless of the variation of x∗

F(t∗), the normalised profiles h∗/h∗

F

for such solutions must always collapse onto a single curve when plotted as functions of
x∗/x∗

F. It is straightforward to show from (4.10) that this property can hold only when
µ(q0) is a simple power of q0.

4.2.2. Centred-wave solutions for yield-stress fluids

The approach outlined above, in which solutions are written in terms of the shear
rate q, relies on making the change of variables from z to q. Consequently, it is not
applicable to fluids with a yield stress τy, for which q = 0 throughout the pseudo-plug
region near the free surface where 0 6 τ < τy (Balmforth & Craster 1999). However, from
equation (2.14) the shear stress τ = µ(q)q varies monotonically with z; consequently, the
formulation (2.22) in terms of τ is applicable to yield-stress fluids. An advantage of this
formulation is that it is no longer necessary to keep track explicitly of the yield surface.
We will illustrate the approach (2.22) here by obtaining solutions for kinematic waves
first in general terms and then for the Bingham and Casson rheologies (Tanner 2000,
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§1.5); the former solutions are specialisations of those due to Huang & Garcia (1998),
while the latter appear to be new.

On a moderately steep slope, we again have

τ0 = Gh, where G = ρg sin(α), (4.24)

and the evolution equation (2.22) becomes

∂h

∂t
+ c(h)

∂h

∂x
= 0, where c(h) = hφ(Gh). (4.25)

For suitable initial conditions, equation (4.9) again provides the implicit solution at large
times. Suitable initial conditions are required in this case because a yield-stress fluid on a
slope is mobile only when h exceeds the ‘yield depth’ hy = τy/G below which φ(Gh) = 0;
where h < hy, the fluid cannot flow downslope under its own weight. Thus there is a
maximum run-out distance x∞ = A/hy, and (4.9) provides a good approximation at
large times only if the initial distribution of fluid occupied a length much less than x∞.

The volume conservation condition can be written in terms of an integral either over
h or over τ0:

A =

∫ xF(t)

0

h(x, t)dx = t

∫ hF

hy

h
dc

dh
dh =

t

G2

∫ τ0F

τy

τ0
d

dτ0
[τ0φ(τ0)] dτ0. (4.26)

This condition implicitly defines hF and τ0F, respectively the depth and the basal shear
stress at the flow front, and hence the position of the front via c(hF) = xF/t.

For the simple case of a Bingham fluid with high-shear-rate viscosity µB and yield
stress τy, in simple shearing flow we have

q = φ(τ) =







1

µB
(τ − τy) if τ > τy,

0 otherwise.
(4.27)

The kinematic wave speed c(h) may then be written as

c(h) =







G

µB
h(h − hy) if h > hy,

0 otherwise.
(4.28)

The volume condition (4.26) becomes

A

t
=

∫ hF

hy

h
dc

dh
dh =

G

µB

(

2

3
h3

F −
1

2
hyh

2
F −

1

6
h3

y

)

. (4.29)

For the slightly less simple case of a Casson fluid with high-shear-rate viscosity µC and
yield stress τy, in simple shear we have

q = φ(τ) =







1

µC

(

τ1/2 − τ
1/2
y

)2

if τ > τy,

0 otherwise.
(4.30)

This yields the kinematic wave speed

c(h) =







G

µC
h
(

h1/2 − h
1/2
y

)2

if h > hy,

0 otherwise
(4.31)
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Figure 5. Comparison of the centred-wave solutions for a Casson fluid (solid lines) and a
Bingham fluid (dashed lines): (a) the length of the current x∗

F; (b) the depth at the front of the
current h∗

F, with the large-time asymptotic limit h∗

F = 1 (dotted line).

and the global volume condition

A

t
=

G

µC

∫ hF

hy

h
(

2h − 3
√

hhy + hy

)

dh =
G

µC

(

2

3
h3

F −
6

5

√

hyh
5/2
F +

1

2
hyh

2
F +

1

30
h3

y

)

.

(4.32)
We will compare the results for Bingham and Casson fluids with µB = µC = µ and

identical values of τy. We define dimensionless variables, denoted by an asterisk, via

h = hyh
∗, x = x∞x∗ =

A

hy
x∗ and t =

Aµ

Gh3
y

t∗. (4.33)

The centred-wave solution for a Bingham fluid, defined by (4.9), (4.28) and (4.29), be-
comes

x∗

t∗
= h∗(h∗ − 1) for 1 6 h∗

6 h∗

F, where
2

3
h∗3

F −
1

2
h∗2

F −
1

6
=

1

t∗
. (4.34)

while the centred-wave solution for a Casson fluid, defined by (4.9), (4.31) and (4.32),
becomes becomes

x∗

t∗
= h∗

(

h∗1/2 − 1
)2

for 1 6 h∗
6 h∗

F, where
2

3
h∗3

F −
6

5
h
∗5/2
F +

1

2
h∗2

F +
1

30
=

1

t∗
.

(4.35)
Figures 5 and 6 illustrate the solutions (4.34) and (4.35): figure 5 shows how the length
and the depth at the front of the current evolve, while figure 6 illustrates the evolving
profile of the current.

For a given shear rate q > 0, the Casson model predicts a higher shear stress τ
than does the Bingham model with the same yield stress and high-shear-rate viscosity;
informally, the Casson fluid is more viscous at finite shear rates than the Bingham fluid.
A consequence of this is that the Casson fluid advances more slowly towards its ultimate
run-out length x∗

F = 1 than the Bingham fluid (figure 5 a), and the depth at the front
decreases more slowly (figure 5 b).

These trends are the most visible feature when the current profiles are plotted for
successive times (figure 6). It is also apparent in these plots that as t∗ → ∞ the current
evolves towards a static deposit with a constant depth h∗ = 1, corresponding to h = hy.
(Note that the yield surface, not plotted here, lies a constant dimensionless distance of
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Figure 6. Profiles of the centred-wave solution for (a), (c) a Casson fluid and (b), (d) a Bingham
fluid: (a) and (b) show profiles h∗ at various times plotted as functions of the space variable
x∗, while (c) and (d) show scaled profiles h∗/h∗

F at the same times, plotted as functions of the
scaled space variable x∗/x∗

F. All profiles are plotted at eleven exponentially spaced values of t∗

from t∗ = 0.1 to t∗ = 100.

1 below the free surface when h∗ > 1.) At earlier times, the profile of the Casson fluid
(figure 6 c) varies more strongly from this rectangular limiting case than does that of
the Bingham fluid (figure 6 d), but the difference is rather subtle and would not easily
be identified experimentally.

5. Summary and conclusions

We have derived a general evolution equation for a shallow layer of generalised New-
tonian fluid undergoing unsteady two-dimensional gravity-driven flow on a horizontal or
an inclined plane. The variables in this equation are the depth h(x, t) of the layer and
an additional variable q0(x, t) or τ0(x, t) which represents the basal shear rate or shear
stress and which is related to h and its derivatives by an implicit equation. In certain
regimes of the slope, this evolution equation reduces further, and we have presented two
classes of solutions, illustrating the results for particular choices of rheology.

For flows on mild slopes, we have presented novel travelling-wave solutions for Carreau
fluids, investigating the effect of shear thinning on the solutions. The overall character
of the solutions is rather insensitive to the rheology, but shear thinning reduces the peak
of shear stress at the wave front, and also tends to increase the wave speed. For flows
on moderately steep slopes, we have presented novel centred kinematic-wave solutions
for Carreau and Casson fluids, comparing the latter with previously derived results for
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Bingham fluids (Huang & Garcia 1998). The principal feature of the solutions for Carreau
fluids is a transition from high-shear-rate behaviour at early times to low-shear-rate
behaviour at later times; it is also noteworthy that, unlike the solutions for power-law
fluids, solutions for other rheologies are not, in general, self-similar. An interesting feature
of the solutions for yield-stress fluids is that although a Bingham fluid and a Casson fluid
with the same yield stress and high-shear-rate viscosity run out to the same distance,
the run-out of the Bingham fluid is considerably faster because it is less viscous at
intermediate shear rates.

Although we have presented solutions for specific rheological models, we stress that
the same procedure can be applied for any generalised Newtonian fluid; crucially, it
does not require us to obtain the velocity profile in the flow explicitly. In particular, the
version of the procedure which employs integration over the shear stress offers a means
of obtaining shallow-flow solutions for yield-stress fluids without explicitly tracking the
yield surface within the fluid. The approach presented here therefore offers a useful way to
develop test-bed solutions with which to validate numerical methods for free-surface non-
Newtonian flows. This approach also offers a means by which theoretical predictions may
be obtained to compare with experimental results for which simple constitutive laws are
known to be inappropriate, for example allowing recent work for the Herschel–Bulkley
model (Hogg & Matson 2009) to be extended to other rheologies. Another promising
direction for the further development of this approach is to flows for which variation
in both the downslope and transverse directions is important, such as non-Newtonian
rivulets (Wilson & Burgess 1998; Yatim et al. 2010).

This work was begun while S. K. W. was a Visiting Fellow at the Isaac Newton Institute
for Mathematical Sciences in Cambridge, England, U. K., as part of the programme on
‘Mathematical Modelling and Analysis of Complex Fluids and Active Media in Evolving
Domains’, and finished while he was a Leverhulme Trust Research Fellow (2013–2015)
supported by award RF-2015-355, ‘Small Particles, Big Problems: Understanding the
Complex Behaviour of Nanofluids’.
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