Mathematical Programming manuscript No.
(will be inserted by the editor)

Jan Fiala Michal Ko¢vara Michael Stingl

PENLAB: A MATLAB solver for nonlinear semidefinite
optimization*

Received: date / Revised version: date

Abstract. PENLAB is an open source software package for nonlineantpdition, linear and nonlinear
semidefinite optimization and any combination of theses lvritten entirely in MATLAB. PENLAB is a
young brother of our code PENNON [23] and of a new implemémarom NAG [1]: it can solve the same
classes of problems and uses the same algorithm. Unlike FEENIRENLAB is open source and allows the
user not only to solve problems but to modify various parthefalgorithm. As such, PENLAB is particularly
suitable for teaching and research purposes and for tastivgalgorithmic ideas.

In this article, after a brief presentation of the underyedgorithm, we focus on practical use of the
solver, both for general problem classes and for specifictiped problems.

1. Introduction

Many problems in various scientific disciplines, as well aangnindustrial problems
lead to (or can be advantageously formulated) as nonlirganzation problems with
semidefinite constraints. These problems were, until tceronsidered numerically
unsolvable, and researchers were looking for other fortiwuga of their problem that
often lead only to approximation (good or bad) of the tru@igoh. This was our main
motivation for the development of PENNON_[23], a code for lnogar optimization
problems with matrix variables and matrix inequality coastts.

Apart from PENNON, other concepts for the solution of noaéinsemidefinite pro-
grams are suggested in literature; $eé [32] for a discussidhe classic augmented La-
grangian method applied to nonlinear semidefinite progr§@;&0/12] for sequential
semidefinite programming algorithms and|[19] for a smodgtiirpe algorithm. How-
ever, to our best knowledge, none of these algorithmic qusdead to a publicly avail-
able code yet.

In this article, we present PENLAB, a younger brother of PENNNand a new
implementation from NAG. PENLAB can solve the same clas$@sablems, uses the
same algorithm and its behaviour is very similar. Howevtsmpérformance is relatively

Jan Fiala: The Numerical Algorithms Group Ltd, Wilkinson i$e, Jordan Hill Road, Oxford, OX2 8DR,
UK, e-mail: jan@nag.co.uk

Michal Kotvara: School of Mathematics, University of Bimgham, Birmingham B15 2TT, UK and Insti-
tute of Information Theory and Automation, Academy of Scies of the Czech Republic, Pod vodarenskou
véZzi 4, 18208 Praha 8, Czech Republic, e-nmaikocvara@bham.ac.uk

Michael Stingl: Applied Mathematics II, University of Edgen-Nuremberg, Nagelsbachstr. 49b, 91052 Er-
langen, Germany, e-mastingl@am.uni-erlangen.de

* The research of MK was partly supported by the Grant Agendh@®iCzech Republic through project
GAP201-12-0671.

2 Jan Fiala et al.

limited in comparison to [23] and [1], due to MATLAB implemtation. On the other
hand, PENLAB is open source and allows the user not only teesptoblems but to
modify various parts of the algorithm. As such, PENLAB istmardarly suitable for
teaching and research purposes and for testing new alguciitieas.

After a brief presentation of the underlying algorithm, wets on practical use of
the solver, both for general problem classes and for spegxiictical problems, namely,
the nearest correlation matrix problem with constraintgondition number, the truss
topology problem with global stability constraint and thetie output feedback prob-
lem. More applications of nonlinear semidefinite programgyproblems can be found,
for instance, in[[2, 118, 26].

PENLAB is distributed under GNU GPL license and can be doagéal from
http://web.mat.bham.ac.uk/kocvara/penlab

We use standard notation: Matrices are denoted by capttatde(4, B, X, ...)
and their elements by the corresponding small-case I€tigrd;;, z;j, - . .). For vec-
torsz,y € R", (z,y) := > ., z;y; denotes the inner produ@™ is the space of
real symmetric matrices of dimensiai x m. The inner product o§™ is defined by
(A, B)sm = Tr (AB). When the dimensions of andB are known, we will often use
notation(A, B), same as for the vector inner product. Notatibrs B for A, B € S™
means that the matriB — A is positive semidefinite. I is anm x n matrix anda;
its j-th column, then ved is themn x 1 vector

vecA = (aT af - aD)".

Finally, for® : S™ — S™ and X, Y € S™, D®(X;Y) denotes the directional deriva-
tive of & with respect taX in directionY.

PENLAB: A MATLAB solver for nonlinear semidefinite optimitian 3

2. The problem

We intend to solve optimization problems with a nonlinegieotive subject to nonlin-
ear inequality and equality constraints and nonlinear imatequalities (NLP-SDP):

weRn,YlersI}Jllr,l...,YkeSpk f(z,Y) (1)
subjectto g;(z,Y) <0, i=1,...,my
hi(xz,Y) =0, i=1,...,my
Ai(z,Y) =<0, i=1,...,ma
M =Y =N i=1,... k.
Here
— x € R" is the vector variable;
— Y, € SPr ... Y, € SP* are the matrix variableg; symmetric matrices of dimen-
sionspy X pi1,...,pk X Pk,

— we denot&” = (Y1,...,Y%);

— f.g: andh; areC? functions fromR™ x SP* x ... x SP* tOR;

—),; and); are the lower and upper bounds, respectively, on the eifjegwaf Y,
1=1,...,k

— A;(z,Y) are twice continuously differentiable nonlinear matrixeogtors from
R™ x SP* x ... x SPx to SP4: wherepya,,i = 1,...,m4, are positive integers.

3. The algorithm

The basic algorithm used in this article is based on the nealirescaling method of
Roman Polyak [30] and was described in detail in [23] and.[BHre we briefly recall
it and stress points that will be needed in the rest of thepape

The algorithm is based on a choice of penalty/barrier fumstix : R — R that
penalize the inequality constraints a#id S? — SP penalizing the matrix inequalities.
These functions satisfy a number of properties (sek [231B4t guarantee that for any
m > 0andIl > 0, we have

2(x) <0 <= mp(z(x)/7) <0, z€ C*R™ = R)
and
Z <0 < IIP(Z/IT) <0, ZecSP.
This means that, for any > 0, II > 0, problem [[1) has the same solution as the
following “augmented” problem

zER™, Ylegglln Y €SPk () (2)
subjectto ¢, (gi(z,Y)) <0, i=1,...,my

S (Ai(x,Y)) =0, i=1,...,mu

(NI —Y;) =<0, i=1,... .k

Or(Yi — NI) <0, i=1,...,k

hi(l‘,Y):O, i= yeoe s Mp s,

4 Jan Fiala et al.

where we have used the abbreviatigns= 7y (-/7) and®; = II1P(-/1IT).

The Lagrangian of{2) can be viewed as a (generalized) augad&mgrangian of

@:

F(z,Y,u,5,U,U,v, 7, II)

mg ma
= F@Y)+) wipe(gi(@ V) + Y (55, P (Ai(@,Y)))
i=1 =1
k k . _
+D (U b (AT =Ya) + D> (T ®u(Yi = XI)) + 0 h(z,Y); (3)
i=1 =1
hereu € R™s, 5 = (51,...,5,), 5 € SP4, andU = (Uy,... U, U =
(Uy,...,Ug),U;,U; € SPi, are Lagrange multipliers associated with the standard and
the matrix inequality constraints, respectively, and R™" is the vector of Lagrangian
multipliers associated with the equality constraints.
The algorithm combines ideas of the (exterior) penalty amigijor) barrier meth-
ods with the augmented Lagrangian method.

Algorithm 1 Letz!,Y! andu!, =1, UL, T, ! be given. Letr! > 0, IT' > 0 and
al >0.For/ =1,2,...repeattill a stopping criterium is reached:

(i) Findz**!, Y**! andv®*! such that
||Vw7yF(:c“1,Y”l,ue,EK,QK,UZ,UHI,WK,HZ)H <al
Hh({+1 Y€+1)|| S O/

(i) utt = so,re(gz(x‘“ YY), i=1,...,m,
Ef“ By (AL YY) ED =1, ma
Uttt = DAdim((AI YO U, i=1,... .k

U“1 = Db (VI = NI:TY), i=1,...k

(53) 7 <xt, ot <mt o<t

In Step (i) we attempt to find an approximate solution of tHeWing system (in
x,Y andv): o
VeyF(z,Y,u, =2, U, U,v,m,II) =0

hz,Y)=0, @

where the penalty parametersiI, as well as the multipliers, =, U, U are fixed. In
order to solve it, we apply the damped Newton method. Destiesttions are calcu-
lated utilizing the MATLAB commandd! that is based on the factorization routine
MAS57, in combination with an inertia correction strategwpdebed in[[31]. In the forth-
coming release of PENLAB, we will also apply iterative methpas described in [24].
The step length is derived using an augmented Lagrangiait fonection defined as

— 1
F(z,Y,u,2,0,0,v,m,IT) + 5| h(z,Y)l3
1

PENLAB: A MATLAB solver for nonlinear semidefinite optimitian 5

along with an Armijo rule.

If there are no equality constraints in the problems, theonstrained minimization
in Step (i) is performed by the modified Newton method wittelsearch (for details,
see([23]).

The multipliers calculated in Step (ii) are restricted id@rto satisfy:

uf“ 1
n < ’U,Z < ;
1

with some positive: < 1; by default,. = 0.3. A similar restriction procedure can be

applied to the matrix multiplier&**, Tt and=’; see agairn 23] for details.

The penalty parameters I in Step (iii) are updated by some constant factor de-
pendent on the initial penalty parametets IT'. The update process is stopped when
Teps (Dy defaultl0~%) is reached.

Algorithm[1l is stopped when a criterion based on the KKT eiscsatisfied and

both of the inequalities holds:

£, YY) — Pt Y uf, 20 UL T o nf, 1Y)

1+ [f(2f,Y0)] =
|f(ljayg) - f(lj—l,yé—l)l
1+ (2l Y0)] =

wheree is by defaultl0—6.

3.1. Choice ofp and®

To treat the standard NLP constraints, we use the penaltigbfunction proposed by
Ben-Tal and Zibulevsky [3]:

1 .
T—|—§T2 if r>7
e S log (AT hr g L i< ®
S\ T 17 2 :

by default,r = —1.

The penalty functiorp;; of our choice is defined as follows (here, for simplicity,
we omit the variabl&”):
O (A(x)) = —IT*(A(x) — IIT) ™' — 111 . (6)

The advantage of this choice is that it gives closed formfdashe first and second
derivatives ofp ;. Defining

Z(z) = —(A(z) —II)~ (7)

6 Jan Fiala et al.

we have (see [23]):

2 on(A) = 205D 2 ()
0? 9 0A(x) OA(x) 0*A(x)
0A(x) 0A(x)
+ 7z, Z(x) oz,)Z(x)

3.2. Strictly feasible constraints

In certain applications, some of the bound constraints marstin strictly feasible for
all iterations because, for instance, the objective fuumathay be undefined at infeasible
points (see examples in Sectionl7.2). To be able to solve ptatiiems, we treat these
inequalities by a classic barrier function. In case of matarriable inequalities, we split
Y in non-strictly feasible matrix variablé$ and strictly feasible matrix variablés,
respectively, and define the augmented Lagrangian

ﬁ(a:,Yl,Yg,u,E,Q,U,v,W,H, /{) = F(Z,Yl,U,E,Q,U,’U,’/T,H) +/{@bar(Y2>a
(8)

wheredy,,, can be defined, for example for the constraint- 0, by
Drar(Y2) = —log det(Ya).

Strictly feasible variables are treated in a similar manner. Note that, while the penalty
parameterr may be constant from a certain indéxsee again [31] for details), the
barrier parametex is required to tend to zero with increasifg

4. The code

PENLAB is a free open-source MATLAB implementation of thga@ithm described
above. The main attention was given to clarity of the codearahan tweaks to improve
its performance. This should allow users to better undedsthe code and encourage
them to edit and develop the algorithm further. The code igewrentirely in MATLAB
with an exception of two mex-functions that handles the cotajionally most intense
task of evaluating the second derivative of the Augmentegtdragian and a sum of
multiple sparse matrices (a slower non-mex alternativeasiged as well). The solver
is implemented as a MATLAB handle class and thus it should ugparted on all
MATLAB versions starting from R2008a.

PENLAB is distributed under GNU GPL license and can be doagéal from
http://web.mat.bham.ac.uk/kocvara/penlab . The distribution package
includes the full source code and precompiled mex-funsti®ENLAB User’s Guide
and also an internal (programmer’s) documentation whichlmgenerated from the
source code. Many examples provided in the package showugavways of calling
PENLAB and handling NLP-SDP problems.

PENLAB: A MATLAB solver for nonlinear semidefinite optimitian 7

4.1. Usage

The source code is divided between a clpsslab which implements Algorithm 1
and handles generic NLP-SDP problems similar to formutefl) and interface rou-
tines providing various specialized inputs to the solvems of these are described in
Sectior 6.

The user needs to prepare a MATLAB structure (here caléean) which describes
the problem parameters, such as number of variables, nushbenstraints, lower and
upper bounds, etc. Some of the fields are shown in Tdble 1, donmlete list see the
PENLAB User’s Guide. The structure is passegéalab which returns the initialized
problem instance:

>> problem = penlab(penm);
The solver might be invoked and results retrieved, for edapiyy calling

>> problem.solve()
>> problem.x

The pointx or option settings might be changed and the solver invokathaghe
whole object can be cleared from the memory using

>> clear problem;

Table 1. Selection of fields of the MATLAB structurpenm used to initialize PENLAB object. Full list is
available in PENLAB User’s Guide.

field name meaning

NXx dimension of vector:

NY number of matrix variable¥”

Y cell array of length NY with a nonzero pattern of each of thatmx variables
IbY NY lower bounds on matrix variables (in spectral sense)

ubY NY upper bounds on matrix variables (in spectral sense)

NANLN number of nonlinear matrix constraints

NALIN number of linear matrix constraints

IbA lower bounds on all matrix constraints

ubA upper bounds on all matrix constraints

4.2. Callback functions

The principal philosophy of the code is similar to many otbpetimization codes—we
use callback functions (provided by the user) to computetfan values and derivatives
of all involved functions.

For a generic problem, the user must define nine MATLAB calbfinctions:
objfun ,objgrad ,objhess ,confun ,congrad ,conhess ,mconfun ,mcongrad ,
mconhess for function value, gradient, and Hessian of the objectivection, (stan-
dard) constraints and matrix constraint. If one constrigio¢ is not present, the corre-
sponding callbacks need not be defined. Let us just show tfameders of the most
complex callbacks for the matrix constraints:

8 Jan Fiala et al.

function [Ak, userdata] = mconfun(x,Y,k,userdata)
function [dAki,userdata] = mcongrad(x,Y,k,i,userdata)
function [ddAKkij, userdata] = mconhess(x,Y k,i,j,userda ta)

Herez, Y are the current values of the (vector and matrix) variattesametek: stands
for the constraint number. Because every element of thegradnd the Hessian of a
matrix function is a matrix, we compute them (the gradiertt e Hessian) element-
wise (parameters j). The outputsik,dAki,ddAKkij are symmetric matrices saved
in sparse MATLAB format.

Finally, userdata is a MATLAB structure passed through all callbacks for user’
convenience and may contain any additional data needetiéda@valuations. It is un-
changed by the algorithm itself but it can be modified in thibeaks by user. For
instance, some time-consuming computation that dependsiark but is independent
of i can be performed only far = 1, the result stored inserdata and recalled for
anyi > 1 (see, e.g., Sectidn 7.2, example Truss Design with BuckKlioigstraint).

4.3. Mex files

Despite our intentions to use only pure Matlab code, twoinastwere identified to
cause a significant slow-down and therefore their m-fileseveaibstituted with equiv-
alent mex-files. The first one computes linear combinatioa sét of sparse matrices,
e.g., when evaluatingl; (z) for polynomial matrix inequalities, and is based on ideas
from [7]. The second one evaluates matrix inequality cbotions to the Hessian of
the augmented Lagrangidd (3) when using penalty fundiipn (6

The latter case reduces to computing= (T' AU, A) for £ = k,...,n where
T,U € S™ are dense and, € S™ are sparse with potentially highly varying densities.
Such expressions soon become challenging for nontriviand can easily dominate
the whole Algorithnil. Note that the problem is common eveprimal-dual interior
point methods for SDPs and have been studied ih [13]. We dpedla relatively sim-
ple strategy which can be viewed as an evolution of the thoegpaitational formulae
presented in[13] and offers a minimal number of multiplicas while keeping very
modest memory requirements. We refer to it dsak-ahead strategy with cachinty
can be described as follows:

Algorithm 2 Precompute a sef of all nonempty columns across aly, £ =k,...,n
and a setZ of nonempty rows ofi; (look-ahead)Reset flag vectar < 0, setz = 0
andv = w = 0. For eachj € J perform:

1. compute selected elements of fié column of4,.U, i.e.,
Vi = Z;n:l(Ak>iaUaj fori e 7,

2. for eachA, with nonempty-th column go through its nonzero elemefis);; and
(@) if¢; < j computew; = >° .7 Tiava and sete; < j (caching)
(b) update trace, i.eze = zp + w;i(Ag)j.

PENLAB: A MATLAB solver for nonlinear semidefinite optimitian 9

5. Gradients and Hessians of matrix valued functions

There are several concepts of derivatives of matrix funstithey, however, only differ
in the ordering of the elements of the resulting “differatitiin PENLAB, we use the
following definitions of the gradient and Hessian of matr@ued functions.

Definition 1. Let I be a differentiablen x n real matrix function of ap x ¢ matrix of
real variablesX. The(, j)-th element of thgradientof F' at X is them x n matrix

OF (X ‘ .
[VE(X)];; = 8;-4)’ i=1,...,p,5=1,...,q. 9)
ij

Definition 2. Let F' be a twice differentiablen x n real matrix function of amp x ¢
matrix of real variablesX . The(ij, k¢)-th element of thelessiarof F' at X is them x n
matrix

_ 0’F(X)

5 Yo\
[V F(X)} ij, kb " axijaxkf

iLwk=1,...,p, j,£=1,...,q. (10)

In other words, for every pair of variables;, z¢, elements ofX, the second partial

derivative of F'(X) with respect to these variables is thex n matrix %

How to compute these derivatives, i.e., how to define thebaeK functions? In
Appendix A, we summarize basic formulas for the computadibalerivatives of scalar
and matrix valued functions of matrices.

For low-dimensional problems, the user can utilize MATLAEBymbolic Toolbox.

For instance, foF’(X) = X X, the commands

>> A=sym('X',[2,2]);
>> J=jacobian(X *X,X());
>> H=jacobian(J,X(:));

generate arrayg and H such that the-th column ofJ is the vectorized-th element
of the gradient of'(X); similarly, the k-th column of H, k = (i — 1)n? + j for
i,j = 1,...,n% is the vectorizedi, j)-th element of the Hessian df(X). Clearly,
the dimension of the matrix variable is fixed and for a difféardimension we have to
generate new formulas. Unfortunately, this approach igeasdor higher dimensional
matrices (the user is invited to use the above commands(far) = X ~! with X € §°
to see the difficulties). However, one can always use symlmoimputation to check
validity of general dimension independent formulas on $diatensional problems.

6. Pre-programmed interfaces

PENLAB distribution contains several pre-programmedriiaiges for standard opti-
mization problems with standard inputs. For these probjéinesuser does not have to
create thgpenm object, nor the callback functions.

10 Jan Fiala et al.

6.1. Nonlinear optimization with AMPL input

PENLAB can read optimization problems that are defined inEedessed by AMPL
[11]. AMPL contains routines for automatic differentiatiohence the gradients and
Hessians in the callbacks reduce to calls to appropriate lAMBtines.

Assume that nonlinear optimization problem is processedlPL, so that we
have the correspondingl file, forinstancechain.nl |, stored in directorgatafiles
All the user has to do to solve the problem is to call the follaythree commands:

>> penm = nlp_define('datafiles/chain100.nl’);
>> problem = penlab(penm);
>> problem.solve();

6.2. Linear semidefinite programming

Assume that the data of a linear SDP problem is stored in a M &tructuresdpdata .
Alternatively, such a structure can be created by the user 8DPA input file[[14]. For
instance, to read problearch0.dat-s stored in directorglatafiles |, call

>> sdpdata = readsdpa(’datafiles/controll.dat-s’);

To solve the problem by PENLAB, the user just has to call thefong sequence of
commands:

>> penm = sdp_define(sdpdata);
>> problem = penlab(penm);
>> problem.solve();

6.3. Bilinear matrix inequalities

We want to solve an optimization problem with quadratic otij® and constraints in
the form of bilinear matrix inequalities:

1
min —z'Hz + L'z (11)
rER™ 2

subjectto biow < Bx < byp
n n n
Q%-ﬁ-zku'z—i—ZZkang#O, t=1,...,m.
k=1 k=1 ¢=1
The problem data should be stored in a simple format expddmBEENLAB User’s

Guide. All the user has to do to solve the problem is to callftiiewing sequence of
commands:

>> |oad datafiles/bmi_example;
>> penm = bmi_define(bmidata);
>> problem = penlab(penm);

>> problem.solve();

PENLAB: A MATLAB solver for nonlinear semidefinite optimitian 11

6.4. Polynomial matrix inequalities

We want to solve an optimization problem with constraintthie form of polynomial
matrix inequalities:

1
min —z' Hx + ¢’z (12)
z€R™ 2
subjectto bioyw < Bx < byp

Ai(x) =0, i=1,...,m

with _
Ai(z) = Zx(ﬁ (J))Q;_
J

Wh_erem"'(j) is a multi-index of thei-th constraint with possibly repeated entries and
(")) is a product of elements with indices fi(5).
For example, for

A(z) = Q1 + 1123Q2 + 1275Q3
the multi-indices are:(1) = {0} (Q1 is an absolute term);(2) = {1,3} andx(3) =
{2,4,4,4}.
Assuming now that the problem is stored in a strucfuredata (as explained in
PENLAB User's Guide), the user just has to call the followsggiuence of commands:

>> |oad datafiles/pmi_example;
>> penm = pmi_define(pmidata);
>> problem = penlab(penm);

>> problem.solve();

7. Examples
All MATLAB programs and data related to the examples in tleisteon can be found in
directoriesexamples andapplications of the PENLAB distribution.

7.1. Correlation matrix with the constrained condition rnogn

We consider the problem of finding the nearest correlatiotmimgl7]):

H}gfli;l(Xij — Hij)? (13)
subject to

Xy=1, i=1,....n

X >0.

12 Jan Fiala et al.

In addition to this standard setting of the problem, let usrabthe condition number
of the nearest correlation matrix by adding the constraint

condX) =«.
We can formulate this constraint as
I=<X =<kl (14)
the variable transformation B
X =(X.

After the change of variables, and with the new constralivg,groblem of finding the
nearest correlation matrix with a given condition numbexdseas follows:

r??i;(%i” - Hy)? (15)
subject to

X;i—¢=0, i=1,....,n

I =X <kl

The new problem now has the NLP-SDP structurébf (1).

We will consider an example based on a practical applicdtiom finances; see
[33]. Assume that we are givenfax 5 correlation matrix. We now add a new asset
class, that means, we add one row and column to this matrix.nBw data is based
on a different frequency than the original part of the matnkich means that the new
matrix is no longer positive definite:

1 —-0.44 -0.20 0.81 —0.46 —0.05
—-0.44 1 0.87 —0.38 0.81 —0.58
-0.20 .87 1 -0.17 0.65 —0.56
081 -0.38 -0.17 1 —0.37-0.15
—-0.46 0.81 0.65 —-0.37 1 —0.08
—0.05 —0.58 —0.56 —0.15 0.08 1

When solving problen{{15) by PENLAB witk = 10, we get the solution after
11 outer and 37 inner iterations. The optimal valug @ 3.4386 and, after the back
substitutionX = %X , we get the nearest correlation matrix
X =
1.0000 -0.3775 -0.2230 0.7098 -0.4272 -0.0704
-0.3775 1.0000 0.6930 -0.3155 0.5998 -0.4218
-0.2230 0.6930 1.0000 -0.1546 0.5523 -0.4914
0.7098 -0.3155 -0.1546 1.0000 -0.3857 -0.1294
-0.4272 0.5998 0.5523 -0.3857 1.0000 -0.0576
-0.0704 -0.4218 -0.4914 -0.1294 -0.0576 1.0000

with eigenvalues

eigenvals =
0.2866 0.2866 0.2867 0.6717 1.6019 2.8664

and the condition number equal to 10, indeed.

Hext =

PENLAB: A MATLAB solver for nonlinear semidefinite optimitian 13

Gradients and HessiansWhat are the first and second partial derivatives of funstion
involved in problem[(7)? The constraint is linear, so theveer is trivial here, and we
can only concentrate on the objective function

f(z,X) = Z (2Xij — Hij)* = (:X — H,2X — H), (16)

i,j=1
where, for convenience, we introduced a variable %

Theorem 1.Letz;; andh;j;, ¢, 5 = 1,...,n be elements of andH, respectively. For
the functionf defined in[(1b) we have the following partial derivatives:

() V. f(z,X) = 2(X,2X — H)

(ii) {V)}f(z,)})} | =2y —hy), hj=1.n
(i) V2, f(z,X) =2(X, X)

(iv) [vji(f(z,f()Lj - [V;Qz,z f(z,ff)} , =4y = 2hy, ii=1...n

(v) {V)%Xf(z,)?)} = 222 fori = k, j = ¢ and zero otherwisei(j, k, ¢ =

ig,ke
1,...,n).

The proof follows directly from formulas in Appendix A.

PENLAB distribution This problemis stored in directoapplications/CorrMat
of the PENLAB distribution. To solve the above example anskte the resulting eigen-
values ofX, run in its directory

>> penm = corr_define;

>> problem = penlab(penm);

>> problem.solve();

>> eig(problem.Y{1} * problem.x)

7.2. Truss topology optimization with stability constitgin

In truss optimization we want to design a pin-jointed framewnconsisting ofn slen-
der bars of constant mechanical properties characterizéitelr Young's modulusv.
We will consider trusses in @&dimensional space, whetde= 2 or d = 3. The bars are
jointed at7i nodes. The system is under load, i.e., forgess R? are acting at some
nodesj. They are aggregated in a vectbrwhere we putf; = 0 for nodes that are
not under load. This external load is transmitted along #s bausing displacements
of the nodes that make up the displacement vectdret p be the number of fixed
nodal coordinates, i.e., the number of components withcpitesd discrete homoge-
neous Dirichlet boundary condition. We omit these fixed congnts from the problem
formulation reducing thus the dimensionwfo

n=d-n-—p.

14 Jan Fiala et al.

Analogously, the external loaflis considered as a vectorRi*.

The design variables in the system are the bar volumes. ., x,,,. Typically, we
want to minimize the weight of the truss. We assume to haveiguemmaterial (and
thus density) for all bars, so this is equivalent to minimgthe volume of the truss,
i.e., > 1", ;. The optimal truss should satisfy mechanical equilibriwnditions:

K(a)u=f; (17)
here
m E;
=1 ?

is the so-called stiffness matri¥;; the Young modulus of thé&h bar,; its length and
~; then—vector of direction cosines.

We further introduce the compliance of the trySsu that indirectly measures the
stiffness of the structure under the for€@nd impose the constraints

fTugfy.

This constraint, together with the equilibrium conditipoan be formulated as a single
linear matrix inequality {[21])

FA
The minimum volume single-load truss topology optimizatwoblem can then be
formulated as a linear semidefinite program:

2 t9)
subject to
K(z) f>
>0
(roy) =
z; >0, 1=1,...,m.

We further consider the constraint on the global stabilftthe truss. The meaning
of the constraint is to avoid global buckling of the optimtxusture. We consider the
simplest formulation of the buckling constraint based angb-called linear buckling
assumption[21]. As in the case of free vibrations, we neambtistrain eigenvalues of
the generalized eigenvalue problem

K(z)w = AG(z)w, (20)

in particular, we require that all eigenvalues[ofl(20) ligside the interval [0,1]. The
so-called geometry stiffness mati@(z) depends, this time, nonlinearly on the design
variablez:

G(2) =2 Gil@), Gi(e) = 77 (O K@)~ @8] +niml). (22)

PENLAB: A MATLAB solver for nonlinear semidefinite optimitian 15

Vectorsd, are chosen so that §, n are mutually orthogonal. (The presented formula
is for d = 3. In the two-dimensional setting the vecipis not present.) To simplify the
notation, we denote

Ap = 607 +minf -

It was shown in[[2]1] that the eigenvalue constraint can bevatgntly written as a

nonlinear matrix inequality

K(z)+G(z) =0 (22)
that is now to be added th {[19) to get the following nonlinesnilefinite programming
problem. Note that; are requested to be strictly feasible.

2 @2)
subject to
K(x) f
>0
(o) =
K(z)+G(z) =0
z; >0, 2=1,....m

Gradients and HessiansLet M : R™ — R™*" be a matrix valued function assigning
each vectot a matrix M (£). We denote by, M the partial derivative of\/ (£) with
respect to thé-th component of vectd.

Lemma 1 (based on[[27])Let M : R™ — R™*™ be a symmetric matrix valued func-
tion assigning eacl € R™ a nonsingularn x n) matrix M (£). Then (for convenience
we omit the variablé&)

VM ™' = — MYV M)M L.

If M is alinear function of, i.e., M (£) = Y_." | &M, with symmetric positive semidef-
inite M;,i = 1,..., m, then the above formula simplifies to

ViM™' = MMMt
Theorem 2 ([21]).LetG(x) be given as in(21). Then

E T -—1 S Etj T -—1 -1
[VG],F@%K FA =Y ZFATKTK KT A

3
j=1 ej
and
2 E T —1 —1 E T —1 —1
VG = -3 K KK fA, — v KKy K fA,

Gt 4

m

Et; B _ _
—ZE—?)J%-TK KKK K~ A
j=1 "J

" Et;
- Z K—;VJ»TK_lKkK_IKgK_IfAj.
j=1 7

16 Jan Fiala et al.

Example Consider the standard example of a laced column under addiig (ex-
ampletim in the PENLAB collection). Due to symmetry, we only considere half
of the column, as shown in Figulé 1(top-peft); it has 19 naatesd 42 potential bars,
son = 34 andm = 42. The column dimensions a5 x 1, the two nodes on the
left-hand side are fixed and the “axial” load applied at thieiem tip is (0, —10). The
upper bound on the compliance is choser as 1.

Assume first that;; = 0.425,7 = 1,...,m, i.e., the volumes of all bars are equal
and the total volume is 17.85. The valuestpfvere chosen such that the truss satisfies
the compliance constraint:" « = 0.9923 < ~. For this truss, the smallest nonnegative
eigenvalue of[{20) is equal to 0.7079 and the buckling cairgt{22) is not satisfied.
Figure[d(top-right) shows the corresponding the bucklimglm(eigenvector associated
with this eigenvalue). Let us now solve the truss optim@afproblemwithoutthe sta-

XDXDXDXDXIXIXIXD E%KVAVA
D S

Fig. 1. Truss optimization with stability problem: initial trustp-left); its buckling mode (top-right); optimal
truss without stability constraint (bottom-left); and iopal stable truss (bottom-right)

bility constraint[28). We obtain the design shown in Fidilfleottom-left). This truss is
much lighter than the original on&(x; = 9.388), it is, however, extremely unstable

1=1
under the given load, as (20) has a zero eigenvalue.

When solving the truss optimization problemith the stability constrain{{23) by
PENLAB, we obtain the design shown in Figure 1(bottom-nghhis truss is still

significantly lighter than the original oné(x; = 12.087), but it is now stable under

=1
the given load. To solve the nonlinear SDP problem, PENLABdeel 18 global and
245 Newton iterations and 212 seconds of CPU time, 185 ofwiviere spent in the
Hessian evaluation routines.

PENLAB distribution Directoriesapplications/TTO andapplications/TTObuckling
of the PENLAB distribution contain the problem formulatiand many examples of
trusses. To solve the above example with the buckling caim$trun

>> solve_ttob('GEO/tim.geo’)

in directoryTTObuckling

PENLAB: A MATLAB solver for nonlinear semidefinite optimitian 17

7.3. Static output feedback

Given a linear system witll € R"*" B € R"*™ (C € RP*"

¢ = Az + Bu
y=Cx

we want to stabilize it by static output feedback= Ky . That is, we want to find
a matrix K € R™*P such that the eigenvalues of the closed-loop system BKC
belong to the left half-plane.

The standard way how to treat this problem is based on theun@p stability
theory. It says thatl + BKC has all its eigenvalues in the open left half-plane if and
only if there exists a symmetric positive definite matfhsuch that

(A+ BKC)'P+ P(A+ BKC) = 0. (24)

Hence, by introducing the new variable, the Lyapunov matjxve can formulate the
SOF problem as a feasibility problem for the bilinear maitnequality [24) in variables
K andP. As typicallyn > p,m (oftenn > p, m), the Lyapunov variable dominates
here, although it is just an auxiliary variable and we do rexdto know its value at
the feasible point. Hence a natural question arises whetb@&an avoid the Lyapunov
variable in the formulation of the problem. The answer wasigin [15] and lies in the
formulation of the problem using polynomial matrix inegtiak.
Let k = vecK. Define the characteristic polynomial df+ BK C:

q(s,k) =det(sI — A— BKC) = Z qi(k)s®,
i=0

whereg; (k) = 3, ¢iak® anda € N™? are all monomial powers. Theermite stability
criterion says that the roots af(s, k) belong to the stability region D (in our case the
left half-plane) if and only if

H(q) = Z Z qi(k)q; (k) Hij = 0.

Here the coefficientsl;; depend on the stability region only (see, elg.] [16]). Fer in
stance, fom = 3, we have

2q0q1 0 2qoqs3
H(q) = 0 2q192 —2q0q3 O
2q0q3 0 2q2q3

The Hermite matrix? (¢) = H (k) depends polynomially ok:

H(k) =Y Hok* =0 (25)

whereH,, = HI € R"™" anda € N™? describes all monomial powers.

18 Jan Fiala et al.

Theorem 3 ([15]). Matrix K solves the static output feedback problem if and only if
k = vecK satisfies the polynomial matrix inequalify{25).

In order to solve the strict feasibility problemn_{25), we caoive the following opti-
mization problem with a polynomial matrix inequality

_ 2
keng}gfgeRA pllk|l (26)

subjectto H(k) = AT .

Herep > 0 is a parameter that allows us to trade off between feasilofithe PMI and
a moderate norm of the matrix, which is generally desired in practice.

COMPIlib examples In order to use PENLAB for the solution of SOF probleins (26),
we have developed an interface to the problem library COM[BE:E. Tabld2 presents
the results of our numerical tests. We have only solved CA@Mibblems of small size,
with n < 10 andmp < 20. The reason for this is that our MATLAB implementation of
the interface (building the matrik (k) from COMPIib data) is very time-consuming.
For each COMPIib problem, the table shows the degree of ttiexpalynomial, prob-
lem dimensions: andmp, the optimal\ (the negative largest eigenvalue of the ma-
trix K), the CPU time and number of Newton iterations/linesearepssof PENLAB.
The final column contains information about the solutionlidquaF" means failure of
PENLAB to converge to an optimal solution. The plus sign “+2ans that PENLAB
converged to a solution which does not stabilize the systehi@ is used when PEN-
LAB converged to a solution that is on the boundary of theifdagiomain and thus
not useful for stabilization. The reader can see that PENIcAB solve all problems
apart from AC7, NN10, NN13 and NN14; these problems are, kewd&nown to be
very ill-conditioned and could not be solved via the Lyapunmatrix approach either
(seel[22]). Notice that the largest problems with polyndsnid degree up to 8 did not
cause any major difficulties to the algorithm.

PENLAB distribution The related MATLAB programs are stored in directapplications/SOF
of the PENLAB distribution. To solve, for instance, examplel, run

>> sof('AC1Y);

COMPIlib program and library must be installed on user’s cotap

8. PENLAB versus PENNON (MATLAB versus C)

The obvious concern of any user will be, how fast (or bettew Blow) is the MATLAB
implementation and if it can solve any problems of non-#li\size. The purpose of
this section is to give a very rough comparison of PENLAB afNRON, i.e., the
MATLAB and C implementation of the same algorithm. The reasleould, however,
not make any serious conclusion from the tables below, fdHowing reasons:

1 The authors would like to thank Didier Henrion, LAAS-CNRSUTause, for developing a substantial
part of this interface.

PENLAB: A MATLAB solver for nonlinear semidefinite optimitian 19

Table 2. mmm

Problem degree n mp Aopt CPU (sec) iter remark
AC1 5 5 9 —0.871 - 109 2.2 27130

AC2 5 5 9 —0.871 - 10° 2.3 27/30

AC3 4 5 8 —0.586 - 109 1.8 37/48

AC4 2 4 2 0.245 -10~2 1.9 160/209 +
AC6 4 7 8 —0.114 - 104 1.2 22/68

AC7 2 9 2 —0.102 - 108 0.9 26/91

AC8 2 9 5 0.116 - 10° 3.9 346/1276 F
AC11 4 5 8 —0.171 - 10® 2.3 65/66

AC12 6 4 12 0.479 - 100 12.3 62/73 +
AC15 4 4 6 —0.248 - 1071 1.2 25/28

AC16 4 4 8 —0.248 - 1071 1.2 23/26

AC17 2 4 2 —0.115 - 102 1.0 19/38

HE1 2 4 2 —0.686 - 102 1.0 22/22

HE2 4 4 4 —0.268 - 10° 1.6 84/109

HE5 4 8 8 0.131 - 102 1.9 32/37 +
REA1 4 4 6 —0.726 - 102 1.4 33/35

REA2 4 4 4 —0.603 - 102 1.3 34/58

DIS1 8 8 16 —0.117 - 102 137.6 30/55

DIS2 4 3 4 —0.640 - 101 1.6 59/84

DIS3 8 6 16 —0.168 - 102 642.3 66/102

MFP 3 4 6 —0.370-1071 1.0 20/21

TF1 4 7 8 —0.847-10"8 1.7 27/31 0
TF2 4 7 6 —0.949 -10~7 1.3 19/23 0
TF3 4 7 6 —0.847-10"8 1.6 28/38 0
PSM 4 7 6 —0.731 - 102 1.1 17/39

NN1 2 3 2 —0.131 - 10° 1.2 32/34 0
NN3 2 4 1 0.263 - 102 1.0 31/36 +
NN4 4 4 6 —0.187 - 102 1.2 33/47

NN5 2 7 2 0.137 - 102 1.5 108/118 +
NN8 3 3 4 —0.103 - 101 1.0 19/29

NN9 4 5 6 0.312 - 10! 1.6 64/97 +
NN10 6 8 9 0.409 - 10* 18.3 300/543 F
NN12 4 6 4 0.473 - 10! 1.4 47/58 +
NN13 4 6 4 0.279 - 1012 2.2 200/382 F
NN14 4 6 4 0.277 - 1012 2.3 200/382 F
NN15 3 3 4 —0.226 - 109 1.0 15/14

NN16 7 8 16 —0.623 - 103 613.3 111/191

NN17 2 3 2 0.931-10"1 1.0 25/26 +

— Both implementations slightly differ. This can be seen amdifferent numbers of
iterations needed to solve single examples.

— The difference in CPU timing very much depends on the typb@ptroblem. For in-
stance, some problems require multiplications of spargecea with dense ones—
in this case, the C implementation will be much faster. Orotiver hand, for some
problems most of the CPU time is spent in the dense Choleskgrfaation which,
in both implementations, relies on LAPACK routines and tthesrunning time may
be comparable.

— The problems were solved using an Intel i7 processor withdaes. The MAT-
LAB implementation used both cores to perfosomecommands, while the C im-
plementation only used one core. This is clearly seen,exgmple lameemd10 in
Table[3.

20 Jan Fiala et al.

— For certain problems (such as mater2 in Table 5), most of g time of PENLAB
is spent in the user defined routine for gradient evaluaionlinear SDP, this only
amounts to reading the data matrices, in our implementaiements of a two-
dimensional cell array, from memory. Clearly, a more sajptased implementation
would improve the timing.

For all calculations, we have used a notebook running Wirsddoy82 bit) on Intel Core
i7 CPU M620@2.67GHz with 4GB memory and MATLAB 7.7.0.

8.1. Nonlinear programming problems

We first solved selected examples from the COPS collectipudi®g AMPL interface.
These are medium size examples mostly coming from finite etémiscretization of
optimization problems with PDE constraints. Table 3 présére results.

Table 3. Selected COPS examples. CPU time is given in seconds.idteredunt gives the number of the
global iterations in Algorithrf]1 and the total number of stefthe Newton method.

problem vars constr. constraint PENNON PENLAB
type CPU iter. CPU iter.
elec200 600 200 = 40 81/224 31 43/135
chain800 3199 2400 = 1 14/23 6 24/56
pinene400 8000 7995 = 1 77 11 17/17
channel800 6398 6398 = 3 3/3 1 3/3
torsion100 5000 10000 < 1 17/17 17 26/26
bearing100 5000 5000 < 1 17/17 13 36/36
laneemd10 4811 21 < 217 30/86 64 25/49
dirichlet10 4491 21 < 151 33/71 73 32/68
henon10 2701 21 < 57 49/128 63 76/158
minsurf100 5000 5000 box 1 20/20 97 203/203
gasoil400 4001 3998 = & box 3 34/34 13 59/71
ductl5 2895 8601 =& < 6 19/19 9 11/11
tri_turtle 3578 3968 < & box 3 49/49 4 17/17
marine400 6415 6392 < & box 2 39/39 22 35/35
steering800 3999 3200 < & box 1 9/9 7 19/40
methanol400 4802 4797 < & box 2 24/24 16 47167
catmix400 4398 3198 < & box 2 59/61 15 44/44

8.2. Linear semidefinite programming problems

We solved selected problems from the SDPLIB collection (@@ and Topology Opti-
mization collection (Tablgl5); se€l[5.20]. The data of afifgems were stored in SDPA
input files [14]. Instead of PENNON, we have used its clone BBER that directly reads
the SDPA files and thus avoid repeated calls of the call bac&tions. The difference
between PENNON and PENSDP (in favour of PENSDP) would onlgigeificant in
the mater2 example with many small matrix constraints.

PENLAB: A MATLAB solver for nonlinear semidefinite optimitian 21

Table 4. Selected SDPLIB examples. CPU time is given in secondsatiter count gives the number of the
global iterations in Algorithrf]1 and the total number of stefthe Newton method.

problem vars constr. constr. PENSDP PENLAB
size CPU iter. CPU iter.
control3 136 2 30 1 19/103 20 22/315
maxG11 800 1 1600 18 22/41 186 18/61
gpG11 800 1 1600 43 22/43 602 18/64
ss30 132 1 294 20 23/112 17 12/63
theta3 1106 1 150 11 15/52 61 14/48

Table 5. Selected TOPO examples. CPU time is given in seconds.itterabunt gives the number of the
global iterations in Algorithrf]1 and the total number of stefthe Newton method.

problem vars constr. constr. PENSDP PENLAB
size CPU iter. CPU iter.
buck2 144 2 97 2 23/74 22 18/184
vibra2 144 2 97 2 34/132 35 20/304
shmup2 200 2 441 65 24/99 172 26/179
mater2 423 94 11 2 20/89 70 12/179

A. Appendix: Differential calculus for functions of symmetric matrices

Matrix differential calculus—derivatives of functionsgnding on matrices—is a topic
covered in several papers; see, elgl./[4.19.28,29] and tie[Bd]. The notation and the
very definition of the derivative differ in these papers. Eerfor reader’'s convenience,
we will give a basic overview of the calculus for some typigalsemidefinite optimiza-
tion) functions of matrices.

For a matrixX (whether symmetric or not), let;; denote its(i, j)-th element. Let
further E;; denote a matrix with all elements zero except for a unit efdrimethei-the
row andj-th column (the dimension df;; will be always clear from the context). Our
differential formulas are based on Definitidds 1 &hd 2, heme®nly need to find the
partial derivative of a functiod’(X '), whether matrix or scalar valued, with respect to
a single element;; of X.

A.1. Matrix valued functions

Let F" be a differentiablen x n real matrix function of ap x ¢ matrix of real variables
X. Table[6 gives partial derivatives @f(X) with respect taz;;, ¢ = 1,...,p, j =
1,..., ¢ for some most common functions. In this tablg;; is always of the same
dimension asX. To compute other derivatives, we may use the followingltesuthe
chain rule.

Theorem 4.Let F' be a differentiablen x n real matrix function of am x ¢ matrixY”
that itself is a differentiable functio& of ans x ¢ matrix of real variablesX, that is
F(Y)=F(G(X)). Then

OF (G STy OF(Y 8(;()],cZ | -

axu =1 f—1 ayk/

22 Jan Fiala et al.

Table 6.
F(X) 85;?” Conditions
ij

X Eij
xT Ej;
AX AEZ']' A € RmxP
XA Ei]'A Ace RMXP
XX EijX + XE;j
XTX E]zX + X Ezy
XXT EinTJFXEjz

s—2
X B X 4 > XFE;xeTh 4 X7 e X squarep = 1,2, ...

k=1
X! —X'E;Xx7! X nonsingular

In particular, we have

AG(X)H(X)) 9G(X) OH(X)
el =) + 60 2 (28)
AEO — ooy Z 8 ao) . 29)

We finish this section with the all important theorem on dafiixes of functions of
symmetrianatrices.

Theorem 5.Let F' be a differentiable:. x n real matrix function of a symmetria. x m
matrix of real variablesX. DenoteZ;; be the(i, j)-th element of the gradient éf(X)
computed by the general formulas in Table 6 and The@iem 4 The

VF(X)]ii = Zii
and

[VF(X)]Z] = Zij + Zj; fori #£j.

2
T11 X T T12T T11T T12T
Example LetX = (' "!*) andF(X) = X2 = R
T21 T22 T11221 + T21X22 X12T21 + T35
Then

(23311 1512) (3321 11 + 3922)
. Io1 0 0 T21
VI(X) = T12 0 0 z2

11 + T22 T12 T21 2T22

(a2 x 2 array of2 x 2 matrices). If we now assume th&tis symmetric, i.ex1o = xo1,

we get
(23011 3021) (2r21 x11 + 3022>
2
VF(X) = z21 0O T11 + X292 T21

2r21 ®11 + T22 0 zo1
T11 + To2 2mo1 T21 2T22

PENLAB: A MATLAB solver for nonlinear semidefinite optimitian 23

We can see that we could obtain the gradient for the symnmatitax using the general
formula in Tablé_b together with Theoréh 5.

Notice that if we simply replaced eagh, in VF(X) by x2; (assuming symmetry
of X), we would get arincorrectresult

2711 T21 To1 11 + T22
z91 O 0 T21

Ta1 0 0 o1
11 + T2z To1 T21 2T22

A.2. Scalar valued functions

VF(X) =

Table[T shows derivatives of some most common scalar valusttibns of ann x n
matrix X .

Table 7.
F(X) equivalently %@ Conditions
ij
TrX (I, X) 61’]’
TrAx”T (A, X) A;i; AeR™X™
aT Xa (aaT,X) a;a; a€ER" m=n
Tr X2 (X,X> Qiji m=n

Let ¢ and¥ be functions of a square matrix variabte The following derivatives
of composite functions allow us to treat many practical jeots (Tablé B). We can use

Table 8
F(X) equivalently 8F(X) Conditions
©j
Tr AB(X) (A, 8(X)) (A, 22X
ij
Tro(X)>2 (B(X), (X)) 2(B(X), 22X,
ij

TH@COV(X) (@(X), (X)) (@(X),) + (L w(x))

i

it, for instance, to get the following two results fonax n matrix X anda € R™:

0

al‘ij

(e’ X la) = aa (aa™, X1
Tij

= —(aaT, X_IEZ']'X_1>
=—a'X'E; X a,

24 Jan Fiala et al.

in particular,

Trx—1'= 9

IX Y= X'E; X Y)=-Tr(X'E; X 1).
Jon xij<,) (I, iX7) (iX)

Recall that for aymmetricn x n matrix X, the above two formulas would change to

%(QTXfla) =—a(Z;; + ZZ —diagZ;;)a
ij
and 5
ax_'TrXfl = —Tr(Zy; + Z}; — diagZ;;)
j
with

Zij = XﬁlEinil .

A.3. Second-order derivatives

To compute the second-order derivatives of functions oficegt, we can simply apply
the formulas derived in the previous sections to the elesefihe gradients. Thus we
get, for instance,

2x2 9
6xij8mkg a 6W

(EZ]X + XEZJ) = EijEké + EkgEij

or
#2X' 0
&’Cijaxkg - &’Ckg

(—X "By X) =X"EjX 'EgX '+ X By X B X!

for the matrix valued functions, and

o (X)), P2(X)) = 2<8¢(),a@(X)>+2<@(X),M>

6xij6xk¢ 6xkl am,-j amijaxw

for scalar valued matrix functions. Other formulas easljofv.

References

1. NAG Numerical Librarieshttp://www.nag.co.uk/ , 2013.

2. Ch. Anand, R. Satirov, T. Terlaky, and Z. Zheng. Magneg®onance tissue quantification using optimal
bssfp pulse-sequence desi@pptimization and Engineering(2):215-238, 2007.

3. A. Ben-Tal and M. Zibulevsky. Penalty/barrier multiplimethods for convex programming problems.
SIAM Journal on Optimizatiqri7:347-366, 1997.

4. R.J.Boik. Lecture notes: Statistics 550. Technical repdontana State University, Bozeman, Spring
2006. online.

5. B. Borchers. SDPLIB 1.2, a library of semidefinite prognaimg test problemsOptimization Methods
and Softwarell & 12:683-690, 1999. Available http://www.nmt.edu/"borchers/

6. R. Correa and H. Ramirez. A global algorithm for nonlineamidefinite programmingSIAM Journal
on Optimization 15(1):303-318, 2004.

7. Timothy A. Davis.Direct Methods for Sparse Linear Systems (Fundamentaldgofighms 2) Society
for Industrial and Applied Mathematics, Philadelphia, R/SA, 2006.

http://www.nag.co.uk/

PENLAB: A MATLAB solver for nonlinear semidefinite optimitian 25

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

. E.D.Dolan, J. J. Moré, and T. S. Munson. Benchmarkingrapation software with COPS 3.@8rgonne

National Laboratory Technical Report ANL/MCS-TM-22804.

. P.S. Dwyer and M. S. MacPhail. Symbolic matrix derivagiv&he Annals of Mathematical Statistics

19(4):517-534, 1948.

B. Fares, D. Noll, and P. Apkarian. Robust control viausetjial semidefinite programmingSIAM
Journal on Control and Optimizatigrt0(6):1791-1820, 2002.

R. Fourer, D. M. Gay, and B. W. Kerningha®AMPL: A Modeling Language for Mathematical Pro-
gramming The Scientific Press, 1993.

R. W. Freund, F. Jarre, and C. Vogelbusch. Nonlinear definite programming: sensitivity, conver-
gence, and an application in passive reduced order magleath. Program, 109(2-3):581-611, 2007.
K. Fujisawa, M. Kojima, and K. Nakata. Exploiting sp&rsh primal-dual interior-point method for
semidefinite programmingviathematical Programming79:235-253, 1997.

K. Fujisawa, M. Kojima, K. Nakata, and M. Yamashita. SOBger's Manual—Version 6.00. Technical
report, Department of Mathematical and Computing Sciefiockyo University of Technology, 2002.

D. Henrion, J. Lofberg, M. Ko€vara, and M. Stingl. Soly polynomial static output feedback problems
with PENBMI. In Decision and Control, 2005 and 2005 European Control Cariee. CDC-ECC’05.
44th |IEEE Conference opages 7581-7586. IEEE, 2005.

D. Henrion, D. Peaucelle, D. Arzelier, and 8tbek. Ellipsoidal approximation of the stability domain
of a polynomial. InProceedings of the European Control Conference, Portotugad, 2001.

N. J. Higham. Computing the nearest correlation matexgroblem from finance.IMA Journal of
Numerical Analysis22(3):329-343, 2002.

Y. Kanno and I. Takewaki. Sequential semidefinite pnagfar maximum robustness design under load
uncertainty.Journal of Optimization Theory and Applicatigris30(2):265-287, 2006.

C. Kanzow and C. Nagel. Some structural properties of\atdietype method for semidefinite pro-
grams.J. of Opt. Theory and Application422:219-226, 2004.

M. Kocvara. A collection of sparse linear SDP problemisirzg in structural optimization. Available at
http://web.mat.bham.ac.uk/kocvara/pennon/problems.h tml .

M. Kotvara. On the modelling and solving of the trussgtegroblem with global stability constraints.
Struct. Multidisc. Optimization23(3):189-203, 2002.

M. Kotvara, F. Leibfritz, M. Stingl, and D. Henrion. A miinear SDP algorithm for static output feed-
back problems in COMPIib. LAAS-CNRS research report no.08%AAS, Toulouse, 2004.

M. Kocvara and M. Stingl. PENNON—a code for convex nogdir and semidefinite programming.
Optimization Methods and Softwark8(3):317-333, 2003.

M. Kotvara and M. Stingl. On the solution of large-scal@P problems by the modified barrier method
using iterative solversdMathematical Programming (Series,B09(2-3):413-444, 2007.

F. Leibfritz. COMPIeib: COnstraint Matrix-optimizati Problem library—a collection of test examples
for nonlinear semidefinite programs, control system desigd related problems. Technical report,
Universitat Trier, 2004.

F. Leibfritz and S. Volkwein. Reduced order output feszkocontrol design for pde systems using
proper orthogonal decomposition and nonlinear semidefpmbgrammingLinear Algebra and Its Ap-
plications 415(2-3):542-575, 2006.

J. Magnus and H. Neudeckafatrix differential calculus Cambridge Univ Press, 1988.

K. B. Petersen and M. S. Pedersen. The Matrix Cookboagiore20121115. Technical report, Techni-
cal University of Denmark, 2012.

D. S. G. Pollock. Tensor products and matrix differdrdédculus. Linear Algebra and its Applications
67:169-193, 1985.

R. Polyak. Modified barrier functions: Theory and methddathematical Programmingb4:177-222,
1992.

M. Stingl.On the Solution of Nonlinear Semidefinite Programs by Augeddragrangian Method$”hD
thesis, Institute of Applied Mathematics Il, FriedricheXander University of Erlangen-Nuremberg,
2006.

D. Sun, J. Sun, and L. Zhang. The rate of convergence eitipmented lagrangian method for nonlinear
semidefinite programmingVath. Pogram, 114(2):349-391, 2008.

R. Werner and K. Schottle. Calibration of correlatioatrites—SDP or not SDP. Technical report,
2007. Available ahttp://gloria-mundi.com.

	Introduction
	The problem
	The algorithm
	The code
	Gradients and Hessians of matrix valued functions
	Pre-programmed interfaces
	Examples
	PENLAB versus PENNON (MATLAB versus C)
	Appendix: Differential calculus for functions of symmetric matrices

