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The climate is an excellent example of a forced, dissipative system dominated by nonlin-
ear processes and featuring non-trivial dynamics of a vast range of spatial and temporal
scales. The understanding of the climate’s structural and multiscale properties is cru-
cial for the provision of a unifying picture of its dynamics and for the implementation
of accurate and efficient numerical models. Many open questions remain when trying
to put together such a complex picture. How to describe comprehensively the scale-
scale interactions and couplings, and how to construct robust, seamless parametriza-
tions in numerical models? How to study the climatic response to perturbations? How
to construct a succinct picture of the climate able to summarize its energy fluxes, the
energy pathways, and the entropy budget? How to take into account the fundamental
symmetries of the system? There has always been a fruitful mutual exchange of ideas,
stimulations, methods between climate science and many sectors of applied mathematics
and theoretical physics, as clearly showed by examples such as chaos theory, stochastic
dynamical systems, turbulence, time series analysis, partial differential equations, and
extreme value theory. In this interdisciplinary review, we would like to point out some
recent developments at the intersection between climate science, mathematics, and the-
oretical physics which may prove extremely fruitful in the direction of constructing a
more comprehensive account of climate dynamics. We are guided by our interest in
exploring the nexus between climate and concepts such as energy, entropy, symmetry,
response, multiscale interactions, and its potential relevance in terms of numerical mod-
eling. We describe the powerful reformulation of fluid dynamics made possible by the
adoption of the Nambu formalism, and the possible potential of such theory for the
construction of more sophisticated numerical models of the geophysical fluids. Then
we focus on the very promising results on the statistical mechanics of quasi-equilibrium
geophysical flows in a rotating environment, which are extremely useful in the direction
of constructing a robust theory of geophysical macro turbulence. The second half of
the review is dedicated instead to ideas and methods suited to approaching directly
the non-equilibrium nature of the climate system. First, we give an account of some
recent findings showing how to use basic concepts of macroscopic non-equilibrium ther-
modynamics for characterizing the energy and entropy budgets of the climate systems,
with the ensuing protocols for intercomparing climate models and developing methods
aimed at studying tipping points. These ideas can also create a link between climate
science and the growing sector of astrophysics devoted to the investigation of exoplan-
etary atmospheres. We conclude our review by focusing on non-equilibrium statistical
mechanics, which allows for framing in a unified way problems as different as climate
response to forcings of general nature, the effect of altering the boundary conditions
or the coupling between geophysical flows, and the derivation of parametrizations for
numerical models.

I. INTRODUCTION

The Earth’s Climate provides an outstanding exam-
ple of a high-dimensional forced and dissipative complex

system. The dynamics of such system is chaotic, so that
there is only a limited time-horizon for skillful prediction,
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and is non-trivial on a vast range of spatial and temporal
scales, as a result of the different physical and chemi-
cal properties of the various components of the climate
system and of their coupling mechanisms (Peixoto and
Oort , 1992).

Thus, it is extremely challenging to construct satis-
factory theories of climate dynamics and it is virtually
impossible to develop numerical models able to describe
accurately climatic processes over all scales. Typically,
different classes of models and different phenomenologi-
cal theories have been and are still being developed by
focusing on specific scales of motion (Holton, 2004; Val-
lis, 2006), and simplified parametrizations are developed
for taking into account at least approximately what can-
not be directly represented (Palmer and Williams, 2009).

As a result of our limited understanding of and ability
to represent the dynamics of the climate system, it is hard
to predict accurately its response to perturbations, were
they changes in the opacity of the atmosphere, in the so-
lar irradiance, in the position of continents, in the orbital
parameters, which have been present for our planet dur-
ing all epochs (Saltzman, 2001). The full understanding
of slow- and fast-onset climatic extremes, such as drought
and flood events, respectively, and the assessment of the
processes behind tipping points responsible for the multi
stability of the climate system are also far from being
accomplished.

Such limitations are extremely relevant for problems
of paleoclimatological relevance such as the onset and
decay of ice ages or of snowball-conditions, for contingent
issues like anthropogenic global warming, as well as in the
perspective of developing a comprehensive knowledge on
the dynamics and thermodynamics of general planetary
atmospheres, which seems a major scientific challenge of
the coming years, given the extraordinary development
of our abilities to observe exoplanets (Dvorak , 2008).

Climate science at large has always been extremely
active in taking advantage of advances in basic mathe-
matical and physical sciences, and, in turn, in providing
stimulations for addressing new fundamental problems.
The most prominent cases of such interaction are related
to the development of stochastic and chaotic dynamical
systems, time series analysis, extreme value theory, and
fluid dynamics, among others. At this regard, one must
note that the year 2013 has seen a multitude of initiatives
all around the world dedicated to the theme Mathematics
of Planet Earth, and, in this context, themes of climatic
relevance have been of outstanding relevance.

In this review we wish to present some recent re-
search lines at the intersection between climate science,
physics and mathematics. Such approaches seem ex-
tremely promising for advancing, on one side, our ability
to understand and model climate dynamics, and repre-
sent correctly climate variability and climate response to
forcings. On the other side, the topics presented here
provide examples of how problems of climatic relevance

may pave the way for new, wide-ranging investigations
of more general nature.

Of course, our selection is partial and non-exhaustive.
We leave almost entirely out of this review very impor-
tant topics such as extreme value theory (Ghil et al.,
2011), multiscale techniques (Klein, 2010), adjoint meth-
ods and data assimilation (Wunsch, 2012), partial differ-
ent equations (Cullen, 2006), linear and nonlinear sta-
bility analysis (Vallis, 2006), general circulation of the
atmosphere (Schneider , 2006), macroturbulence (Love-
joy and Schertzer , 2013), networks theory (Donges et al.,
2009), and many relevant applications of dynamical sys-
tems theory to geophysical fluid dynamical problems (Di-
jkstra, 2013; Kalnay , 2003).

Our selection will focus, instead, on the concepts of
energy, entropy, symmetry, coupling, fluctuations, and
response, and also within this realm, we have to make
painful choices given the vastly of the field. We are specif-
ically motivated by the desire of bridging the gap between
some extremely relevant results in mathematical physics,
statistical mechanics, and theoretical physics, and open
problems and issues of climate science, hoping to stimu-
late further investigations and interdisciplinary activities.

We will first concentrate on the properties of invis-
cid, unforced geophysical flows. In Sec. II, we provide
an overview of a very powerful variational formulation
of hydrodynamics based on the formalism introduced by
(Nambu, 1973) and present its applications in a geophys-
ical context, suggesting how these ideas could lead to
new generation of numerical models. In Sec. III, start-
ing from the classical investigation by (Onsager , 1949)
of the dynamics of point vortices, we will show how to
develop a statistical mechanical theory of turbulencefor
geophysical flows in a rotating environment.

We will then move to the paradigm of out-of-
equilibrium systems, i.e. we firmly set ourselves in the
realm of dissipative chaotic flows. In Sec. IV, taking
inspiration from the points of view of (Prigogine, 1961)
and of (Lorenz , 1967), we explore how through classi-
cal non-equilibrium thermodynamics one can construct
tools for assessing the energy budgets and transport, the
efficiency, and the irreversibility of the climate system,
thus characterizing its large scale properties, and gather
information on tipping points. In Sec. V, we address
the non-equilibrium statistical mechanics formulation of
climate dynamics, and explore how the formalism of re-
sponse theory allows for addressing in a rigorous frame-
work the climatic response to perturbations, taking in-
spiration from the work of (Ruelle, 1997). In Sec. VI,
we present averaging and homogenization techniques, de-
scribe how projector operator methods due to (Mori ,
1965) and (Zwanzig , 1961) provide powerful tools for de-
riving parametrizations and firm ground to the inclusion
of stochastic terms and memory effects, and discuss how
response theory can be used to derive similar results.

Finally, in Sec. VII we draw our conclusions and
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present some perspectives of future research.

II. BEYOND THE HAMILTONIAN
PARADIGM: NAMBU REPRESENTATION
OF GEOPHYSICAL FLUID DYNAMICS

A. Introduction

Hamiltonian formalism constitutes the backbone of
most physical theories. In the case of a discrete sys-
tem, the basic idea is to provide a full description of
the degrees of freedom by defining a set of canonical
variables q and of the related momenta p (q and p be-
ing N -dimensional vectors), and by identifying the time
evolution to a flow in phase space such that the canon-
ical Hamiltonian system H acts as a stream-function,
q̇ = ∂pH, ṗ = −∂qH. H(q, p) corresponds to the en-
ergy of the system. The flow is inherently divergence
free (solenoidal), so that the phase space does not con-
tract nor expands, as implied by the Liouville Theorem.
As suggested by Noether’s theorem, the presence of sym-
metries in the system implies the existence of so-called
physically conserved quantities Xi, such that Ẋi = 0. In
a system possessing time invariance the energy is con-
stant, while in a system possessing translational invari-
ance, the total momentum M is also constant. A system
can possess many constant of motions, apart from energy,
but the Hamiltonian plays a special role as it is the only
function of phase space appearing explicitly in the defini-
tion of the evolution of the system (Landau and Lifshits,
1996).

Nambu (1973) presented a generalization of canonical
Hamiltonian theory for discrete systems. The dynamical
equations are constructed in order to satisfy Liouville’s
Theorem and are written in terms of two or more con-
served quantities. The Nambu approach has been ex-
tremely influential in various fields of mathematics and
physics and is viable to extension to the case of con-
tinuum, so that it can be translated into a field the-
ory. The construction of a Nambu field theory for geo-
physical fluid dynamics went through two decisive steps.
The first was the discovery of a Nambu representation
of 2D and 3D incompressible hydrodynamics (Névir and
Blender , 1993). The second important step was the find-
ing that the Nambu representation can be used to design
conservative numerical algorithms in geophysical models,
and that classical heuristic methods devised by Arakawa
for constructing accurate numerical models actually re-
flected deep symmetries coming from the Nambu struc-
ture of the underlying dynamics of the flow (Salmon,
2005).

The physical basis for the relevance of the Nambu
theory for describing and simulating conservative geo-
physical fluid dynamics, i.e. stratified and rotating flows
comes from the existence of relevant conservation prin-

ciples other than energy’s. The first one is the mate-
rial conservation of potential vorticity, and the second
one is the particle relabeling symmetry. These proper-
ties are independent from the particular approximated
model of the geophysical flow, and are valid for 2D and
3D hydrodynamics, Rayleigh-Bénard convection, quasi-
geostrophy, shallow water model, and extends to the fully
baroclinic 3D atmosphere. In other terms, the Nambu
representation provides the natural description of geo-
physical fluid dynamics and is superior to the more tra-
ditional approaches based essentially on Navier-Stokes
equations, just the action-angle representation of the dy-
namics of a spring is superior to the simple description
provided by the second Newton’s law of motion.

B. Hydrodynamics in 2D and 3D

In incompressible hydrodynamics enstrophy (in 2D)
and helicity (3D) are known as integral conserved quan-
tities besides energy (Kuroda, 1991). These two quan-
tities originate in the particle relabeling symmetry in
the Lagrangian description of fluid dynamics. Névir and
Blender (1993) adapted Nambu’s formalism to incom-
pressible nonviscous hydrodynamics by using enstrophy
and helicity in the dynamical equations.

1. Two-dimensional hydrodynamics

In two dimensions incompressible hydrodynamics is
governed by the vorticity equation

∂ζ

∂t
= −u · ∇ζ (1)

with ζ = vx − uy and ∇ · u = 0. The Hamiltonian is the
kinetic energy

H =
1

2

∫
u2 dA = −1

2

∫
ζψ dA (2)

where ψ is the stream-function for u, u = k × ∇ψ (k
denotes the z-unit vector).

The Hamiltonian H is a functional of velocity. In gen-
eral functionals are extensive functions in phase space
and defined as maps assigning functions to numbers. In
the dynamical equations the functional derivative δH/δζ
is needed which describes the change of the functional
H with respect to a changing dynamic variable ζ. The
dependency can be explicitly denoted as H[ζ]. The func-
tional derivative of a functional G[f ] for a function f(x)
is defined for a small variation δf in the linear expansion

G[f + δf ] = G[f ] +

∫
δG
δf(x)

δf(x)dx+ . . . (3)

Throughout this review we assume periodic boundary
conditions.
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The functional derivative δH/δζ for (2) is explicitly
calculated by

δH =

∫
∇ψ · δ∇ψ dA

=

∫
∇ · (∇δ∇ψ) dA−

∫
ψδζ dA (4)

Since the first integral vanishes due to the boundary con-
ditions, we obtain δH/δζ = −ψ.

Based on the material advection of the vorticity (1)
any functional of the vorticity is conserved

C =

∫
f(ζ) dA (5)

among these the most well-known is enstrophy

E =
1

2

∫
ζ2 dA (6)

The functional derivative of the enstrophy is simply
δE/δζ = ζ.

The 2D vorticity equation can be expressed in a Nambu
form using the enstrophy E

∂ζ

∂t
= −J

(
δE
δζ
,
δH
δζ

)
(7)

with the Jacobi operator

J (a, b) = ∂xa ∂yb− ∂ya ∂xb (8)

which is an anti-symetric bracket for the two arguments.
Using the aforementioned functional derivatives the vor-
ticity equation (1) is recovered as

∂ζ

∂t
= J (ζ, ψ) (9)

The Nambu form (7) represents a field theoretic exten-
sion of the dynamics introduced by Nambu (Nambu,
1973) which uses additional conservation laws in the dy-
namical equations besides the Hamiltonian.

In the following the relationships between Nambu me-
chanics and Hamiltonian theory are briefly summarized.
The time-evolution of an arbitrary functional of vorticity
F = F [ζ] is determined by

∂F
∂t

= −
∫
δF
∂ζ
J
(
δE
δζ
,
δH
δζ

)
dA

= {F , E ,H} (10)

which defines a Nambu bracket for the three functionals
involved. The bracket is anti-symmetric in all arguments,
{E ,H,F} = −{H, E ,F}, etc. In general a bracket is an
anti-symmetric map in the space of functions. Using re-
arrangements of these functionals and partial integration
it can be shown that the Nambu bracket is cyclic

{F , E ,H} = {E ,H,F} = {H,F , E} (11)

The cyclicity of this bracket is a main ingredient in
Salmon’s application of Nambu mechanics (Salmon,
2005) to construct conservative numerical codes (see Sec-
tion II.C.2).

A system is Hamiltonian if its dynamics can be written
as

∂F
∂t

= {F ,H}P (12)

with an antisymmetric Poisson bracket. Additionally the
bracket has to satisfy the Jacobi identity (see (Takhtajan,
1994) for the extension to Nambu brackets).

The Poisson bracket for 2D hydrodynamics (Salmon,
1988; Shepherd , 1990) is easily obtained from the Nambu
bracket if the dependency δE/δζ = ζ is evaluated

{F ,H}P = {F , E ,H} =

∫
ζJ (Fζ ,Hζ) dA (13)

with the short cut Hζ for the functional derivative (here
cyclicity is used (11)).

The Poisson bracket used in Eulerian hydrodynamics
is degenerate leading to the notion noncanonical Hamil-
tonian mechanics. Degeneracy is equivalent to the exis-
tence of a so-called Casimir function C[ζ] for which the
Poisson bracket vanishes for any function f [ζ]

{C, f}P = 0 (14)

Casimir functions are automatically conserved due to
{C, H}P = 0. In 2D hydrodynamics Casimirs are given
by integrals of arbitrary functions of the vorticity since
this annuls (14). Noncanonical Hamiltonian dynamics
has been extensively used to investigate non-dissipative
hydrodynamics and applications pertain to nonlinear sta-
bility analysis, symmetries, and approximation theory
(for reviews see (Salmon, 1988; Shepherd , 1990)).

The relationship (13) demonstrates that noncanonical
Hamiltonian mechanics is embedded in Nambu mechan-
ics. The main extension is that in Nambu mechanics two
Hamiltonians, the enstrophy and the energy, are used (7),
and that the Nambu bracket (10) is nondegenerate and
void of Casimir functions.

2. Three-dimensional hydrodynamics

Incompressible inviscid fluid dynamics in 3D is deter-
mined by the vorticity equation for ξ = ∇× u

∂ξ

∂t
= ξ · ∇u− u · ∇ξ (15)

and ∇ · u = 0, with the velocity u. Total energy

H =
1

2

∫
u2 dV = −1

2

∫
ξ ·AdV (16)
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and helicity

h =
1

2

∫
ξ · udV (17)

are conserved. A is the vector potential, u = −∇ ×A,
with ∇ · u = 0. The functional derivative of the energy
with respect to the vorticity is given by δH/δξ = −A
and for helicity δh/δξ = u (compare the 2D version (4)).

The Nambu form of the vorticity equation is

∂ξ

∂t
= K

(
δh

δξ
,
δH

δξ

)
(18)

with

K(A,B) = −∇× [(∇×A)× (∇× B)] (19)

A functional F = F [ξ] evolves according to

∂F
∂t

= −
∫ (
∇× δF

δξ

)
×
(
∇× δh

δξ

)
·
(
∇× δH

δξ

)
dV = {F, h,H} (20)

The last equation defines the Nambu bracket for 3D hy-
drodynamics based on the vorticity equation. Helicity
is no longer a hidden conserved quantity but enters the
dynamics on the same level as the Hamiltonian.

C. Geophysical fluid dynamics

In this section we summarize Nambu representations
of the most important models in geophysical fluid dy-
namics: the quasi-geostrophic potential vorticity equa-
tion (Névir and Sommer , 2009), the shallow water model
(Salmon, 2005; Sommer and Névir , 2009), Rayleigh-
Bénard equations for two-dimensional convection (Bihlo,
2008; Salazar and Kurgansky , 2010), and the baroclinic
stratified atmosphere (Névir and Sommer , 2009).

1. Quasi-geostrophic approximation

Quasi-geostrophic dynamics in absence of dissipative
processes and of forcings is determined by the material
conservation of the quasi-geostrophic potential vorticity

∂Q

∂t
+

1

f0
J(Φ, Q) = 0 (21)

where J is the Jacobian (8). Q is the quasi-geostrophic
approximation of Ertel’s potential vorticity

Q = ζg +
f0

σ0

∂2Φ

∂p2
+ f (22)

with the geostrophic vorticity ζg = 1/f0∇2
hΦ, geopoten-

tial Φ, stability parameter σ0, and Coriolis parameter f .

The first conserved integral is the total energy

H =
1

2

∫ [(
∇hΦ

f0

)2

+

(
1

N

∂Φ

∂z

)2
]

dV (23)

where the first term is the density of kinetic energy and
the second term is the density of potential energy Holton
(2004). The second conserved integral is potential en-
strophy

E =
1

2

∫
Q2dV (24)

with the Brunt-Vaisala frequency N . The dynamics is
determined by the Nambu bracket

∂F
∂t

= −
∫
δF
δQ

J

(
δE
δQ

,
δH
δQ

)
dV = {F , E ,H} (25)

which is identical to (10). The Nambu representation of
the quasi-geostrophic potential vorticity equation is

∂Q

∂t
= −J

(
δE
δQ

,
δH
δQ

)
(26)

Thus, the mathematical structure is analogous to the
two-dimensional vorticity equation (10).

2. Shallow water model

The Nambu representation of the shallow water model
was derived by Salmon (2005). Sommer and Névir
(2009) present a numerical simulation of these equations
on a spherical grid, and Névir and Sommer (2009) pub-
lished the multilayer shallow water equations. Here the
single layer model is summarized (Sommer and Névir ,
2009). The dynamics can be constructed on the evolu-
tion equation for the vorticity for the divergence µ = ∇·v

∂tζ = −∇ · (ζav) (27)

∂tµ = k · ∇ × (ζav) +∇2(v2/2 + gh) (28)

The shallow water model possesses two conserved inte-
grals, the total energy, given by the sum of kinetic and
potential energy

H =
1

2

∫ (
hv2 + gh2

)
dV (29)

and potential enstrophy

E =
1

2

∫
hq2dV (30)

with the absolute potential vorticity q = ζa/h, ζa = ζ+f ,
and the height of the fluid h.
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The dynamics of any functional F is determined by
the sum of three Nambu brackets

∂tF = {F ,H, E}ζ,ζ,ζ + {F ,H, E}µ,µ,ζ + {F ,H, E}ζ,µ,h
(31)

Here Fζ = δF/δζ, etc. The first bracket is

{F , H, E}ζ,ζ,ζ =

∫
J(Fζ , Hζ)EζdA (32)

which is analogous to the 2D Nambu bracket (10). For
the other brackets we refer to (Salmon, 2005; Sommer
and Névir , 2009). Salmon (2007) calculated the Nambu
brackets based on the velocities instead of vorticity.

3. Rayleigh-Bénard convection

Here the equations for the two-dimensional Rayleigh-
Bénard convection are summarized (see (Bihlo, 2008),
Salazar and Kurgansky (2010) studied the three-
dimensional problem). The fluid flow is incompressible
and obeys the Boussinesq approximation in a nondimen-
sional form

∂ζ

∂t
+ [ψ, ζ] =

∂T

∂x
,

∂T

∂t
+ [ψ, T ] =

∂ψ

∂x
(33)

where [a, b] = ∂xa ∂zb − ∂za ∂xb denotes the Jacobian
operator. The equations preserve the Hamiltonian

H =

∫ (
1

2
(∇ψ)2 − Tz

)
dxdz (34)

where, as usual, the term in the integral indicate the
density of kinetic and potential energy, respectively, and
the Casimir

C =

∫
ζ(T − z)dxdz (35)

This Casimir is a consequence of Kelvin’s circulation the-
orem. The Nambu form of the coupled equations are
explicitly written as

∂ζ

∂t
= −

[
δC
δT

,
δH
δζ

]
−
[
δC
δζ
,
δH
δT

]
= {ζ, C,H} (36)

∂T

∂t
=

[
δC
δζ
,
δH
δζ

]
= {T, C,H} (37)

with the bracket

{F ,G,H} = −
∫ (

δF
δT

[
δG
δζ
,
δH
δζ

]
+
δF
δζ

[
δG
δT

,
δH
δζ

]
+
δF
δζ

[
δG
δζ
,
δH
δT

])
dxdz (38)

Note that the Casimir (35), as helicity (17), has no defi-
nite sign.

4. Baroclinic atmosphere

Névir and Sommer (2009) published the equations de-
termining the dynamics of a baroclinic atmosphere in
Nambu form (denoted as Energy-vorticity theory of ideal
fluid mechanics). The Nambu representation encom-
passes the Eulerian equation of motion in a rotating
frame, the continuity equation, and the first law of ther-
modynamics. The Nambu dynamics uses three brack-
ets for energy helicity, energy-mass, and energy-entropy.
Due to it’s special role in all three brackets the integral of
Ertel’s potential enstrophy is coined as a super-Casimir.

The Nambu form shows an elegant structure where
fundamental processes are combined by additive terms.
Incompressible, barotropic or baroclinic atmospheres are
associated to additive contributions. Thus approxima-
tions are simply attained by the neglect of terms.

The momentum equation, the continuity equation and
the first law equation are

∂tv = {v, ha, H}h + {v,M,H}m + {v, S,H}s (39)

∂tρ = {ρ,M,H}m (40)

∂tσ = {σ, S,H}s (41)

with σ = ρs, s being the entropy density.
There are four conservation laws. The first is the total

energy

H =

∫ {
1

2
ρv2 + ρe+ ρΦ

}
dV (42)

e is the specific internal energy and Φ the potential of
the gravitational and the centrifugal force. The absolute
helicity is

ha =

∫
va · ξadV (43)

where the absolute velocity is va = v+Ω×r with angular
velocity Ω. Mass and entropy are

M =

∫
ρdV, S =

∫
ρsdV (44)

and potential enstrophy is with the potential vorticity Π

Eρ =

∫
ρΠ2dV, Π =

ξa · ∇θ
ρ

(45)

The three brackets are

{F , ha,H}h = −
∫ [

1

ρ

δF
δv
·
(
δha
δv
× δH
δv

)]
dV (46)

{F ,M,H}m = −
∫ [

δM
δρ

δF
δv
· ∇δH

δρ

+
δF
δρ
∇ ·
(
δM
δρ

δH
δv

)]
dV + cyc(F ,M,H) (47)
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{F ,S,H}s = −
∫ [

δS
δρ

δF
δv
· ∇δH

δσ

+
δF
δσ
∇ ·
(
δS
δρ

δH
δv

)]
dV + cyc(F ,M,H) (48)

For a barotropic flow, the first law of thermodynamics
and therefore the energy-entropy bracket are omitted.
The energy-entropy bracket has to be removed in the Eu-
lerian equation of motion, leading to the energy-vorticity
representation of a compressible barotropic fluid. Note
the different brackets for velocity (46) and vorticity (20)
in 3D hydrodynamics.

D. Conservative algorithms and numerical models

Salmon (2005, 2007) recognized that the existence
of a Nambu bracket with two conserved integrals al-
lows the design of conservative numerical algorithms.
The single necessary ingredient is that the discrete form
of the Nambu bracket preserves antisymmetry. For
the barotropic vorticity equation the Arakawa Jacobian
could be retrieved by equally weighting the cyclic permu-
tations of the Nambu bracket. The approach is applicable
to any kind of discretization, e.g. for finite differences,
finite volumes, or spectral models. Furthermore, arbi-
trary approximations of the conservation laws are pos-
sible. The approach is extremely useful in GFD turbu-
lence simulations because these flows are characterized
by the existence of conservation laws besides total en-
ergy. In particular, the conservation of enstrophy inhibits
spurious accumulation of energy at small scales. Salmon
(2007) presents the first numerical simulation of a shallow
water model by equations derived from Nambu brackets.
The simulation is on a square rectangular grid and the
design on an unstructured triangular mesh is outlined.

Sommer and Névir (2009) report the first simulation
of a shallow water atmosphere using Nambu brackets.
The authors use an isosahedric grid (as in the ICON
model, ICOsahedric Non-hydrostatic model, of the Ger-
man Weather Service and the Max Planck Institute for
Meteorology, Hamburg). The construction of the algo-
rithm is as follows (Sommer and Névir , 2009):

• First the continuous versions of the Nambu-
brackets and conservation laws need to be given.

• On the grid the following expressions need to be
calculated: functional derivatives, discrete opera-
tors (div and curl), discretization of the Jacobian
and the Nambu brackets.

• Finally the prognostic equations are obtained by
inserting the variables in the brackets. The time
stepping is arbitrary ((Sommer and Névir , 2009)
use a leap-frog with Robert-Asselin filter).

FIG. 1 Enstrophy tendencies in the enstrophy conserving
ICON shallow water model and the Nambu model of Sommer
and Névir (2009) (courtesy of Matthias Sommer, University
of München). Note that the tendency in the Nambu model is
of the order of the numerical accuracy.

The authors find quasi constant enstrophy and energy
compared to a standard numerical design (Fig. 1).

Gassmann and Herzog (2008) suggest a concept for a
global numerical simulation of the non-hydrostatic atmo-
sphere using the Nambu representation for the energy-
helicity bracket {F , ha,H} (Névir , 1998). Their sugges-
tion incorporates a careful description of Reynolds aver-
aged subscale processes and budgets. Gassmann (2013)
describes a global non-hydrostatic dynamical core based
on an icosahedral nonhydrostatic model on a hexago-
nal C-grid. The model conserves mass and energy in a
noncanonical Hamiltonian framework. This study notes
that there are unsolved numerical problems which occur
when the non-hydrostatic compressible equations are in
a Nambu bracket form.

E. A phase space view: Lorenz-63 model

(Nambu, 1973) introduced his extension of classi-
cal Hamiltonian dynamics on the basis of a dynami-
cal system with three degrees of freedom and two con-
served quantities. Here we consider the Lorenz-63 model
(Lorenz , 1963) to present a geometric view of Nambu
dynamics in 3D space (for a 10 degree truncation see
(Blender and Lucarini , 2013)). The conservative parts
of the equations are extracted by eliminating the forcing
and dissipation terms which violate Liouville’s Theorem
(Névir and Blender , 1994).

In order to distinguish the conservative and dissipa-
tive contributions in the Lorenz-63 model a parameter m
is introduced which controls the magnitude of the non-
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conservative terms (m = 1 is the standard case)

ẋ = σy − σmx (49)

ẏ = rx− xz −my (50)

ż = xy −mbz (51)

The equations (49)-(51) with m = 0 have two con-
served quantities, which can be found by integrating the
two equations dy/dz = (r − z)/y and dz/dy = x/σ

H =
y2

2
+
z2

2
− rz, C =

x2

2
− σz (52)

H represents available potential energy and C is total
energy (see Fig. 2).

Using the two conserved quantities H and C in (52)
we can write (49)-(51) in a Nambu representation for
X = (x, y, z), ∇ = (∂x, ∂y, ∂z)

Ẋ = ∇C ×∇H (53)

The system satisfies the Liouville Theorem because the
flow Ẋ is solenoidal in state space

∇ · Ẋ = ∇ · (∇C ×∇H) = 0 (54)

The flow is tangent to both conserved surfaces and paral-
lel to the intersection. Thus, Nambu mechanics provides
an illuminating global geometric view of the dynamics.
Roupas (2012) visualizes the geometry of the conserva-
tion laws H and C for different parameters.

FIG. 2 Conservation laws C and H in the Nambu representa-
tion (Eq. 52) of the non-dissipative Lorenz equations (cour-
tesy of Annette Müller, Freie Universität Berlin). Parameters
of the model: r = 1 and σ = 1.

F. Perspectives

Like Hamiltonian mechanics, the Nambu approach is
a versatile tool for the analysis and simulation of dynam-
ical systems. Here some possible research directions are
outlined.

Modular modeling and approximations: In sev-
eral applications a Nambu representation can be found by
adding brackets which conserve a particular Casimir, this
is already mentioned by Nambu (1973) (see the baroclinic
atmosphere (Névir and Sommer , 2009) and the classifi-
cation in (Salazar and Kurgansky , 2010)). The dynam-
ics is determined by these ’constitutive’ Casimirs (a no-
tion coined in (Névir and Sommer , 2009)) which are not
conserved in the complete system. Decomposition leads
to subsystems where the constitutive Casimirs are con-
served. An example is helicity which is constitutive in
the baroclinic atmosphere and only conserved in the 3D
incompressible flow. The decomposition is directly asso-
ciated with approximations (Névir and Sommer , 2009).
Composition allows a process-oriented model design.

Statistical Mechanics: The statistical mechanics of
fluids is characterized by the existence of conservation
laws besides total energy (Bouchet and Venaille, 2012),
see also Sect. III in this review. Thus these conserva-
tion laws have a two-fold impact: They determine the
dynamics in a Nambu bracket and the canonical proba-
bility distribution in equilibrium.

Dynamics of Casimirs: Casimir-functions of a con-
servative system are ideal observables to characterize
the dynamics in the presence of forcing and dissipation.
Pelino and Maimone (2007) and Gianfelice et al. (2012)
have determined recurrence maps of extremes of energy
and a Casimir in a Lorenz-like map to assess predictabil-
ity and properties of the invariant measure.

III. EQUILIBRIUM STATISTICAL MECHANICS FOR
GEOPHYSICAL FLOWS

A. Introduction

The basic idea of equilibrium statistical mechanics is to
build a probability measure for the system under consid-
eration, based only on the dynamical invariants. In par-
ticular, this is an invariant measure for the original dy-
namics, provided the Liouville theorem is satisfied (vol-
ume in phase space is conserved by the dynamics). This
probability measure allows one to compute the statis-
tics of any function of the dynamical variables, which is
expected to coincide with the macroscopic behavior of
the system, without knowing the details of the micro-
scopic dynamics. This approach, initiated at the end of
the 19th century by Boltzmann and Gibbs, has proven
very fruitful in classical and quantum mechanics all along
the 20th century. However, most of the standard ap-
plications of equilibrium statistical mechanics deal with
dynamics on a finite dimensional phase space (e.g. fi-
nite number of molecules for ideal gas, or finite number
of spins for ferromagnetism models), with a finite num-
ber of dynamical invariants. The equations describing
the dynamics of geophysical flows violate both these con-
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straints. Several solutions have thus been proposed: they
are reviewed briefly in the next sections, going from the
main fundamental ideas1 to selected geophysical applica-
tions2. The predictions of the theories take the form of
equilibrium states, that is to say the large-scale organi-
zation of the flow, and equilibrium spectra for conserved
quantities. Equilibrium states include a vast collection of
coherent structures, which are indeed observed in nature
and numerical experiments. Equilibrium spectra reveal
the dominant directions of invariant quantities transfers
across the scales of motion. In both cases, the equilibrium
methods indicate the natural tendency of the nonlinear
evolution. In practice, the system may never reach these
equilibrium features, either because of non-ergodicity, or
because it is subjected to forcing and dissipation which
are not accounted for in this approach. It is worthy of
note that, in spite of this, the equilibrium approach still
yields useful results to understand the out-of-equilibrium
system. Note that the response theory applied to equilib-
rium states, as first suggested by (Kubo, 1957), provides
a connection with the non-equilibrium approach, which
constitutes a first step to understand departures from
equilibrium conditions.

In section III.B, we give a brief account of the point
vortex approach introduced by Onsager. Then we dis-
cuss the geophysical ramifications of the pioneer work by
Kraichnan on Galerkin truncated inviscid flows (section
III.C), before introducing the theory developed by Miller,
Robert and Sommeria, which treats continuous flows and
treats all the invariants (section III.D).

B. Point vortices

1. Negative temperature states and clustering of vortices

Onsager was the first to understand that the coherent
structures and persistent circulations that appear ubiq-
uitously in planetary atmospheres and in the Earth’s
oceans could be explained on statistical grounds (On-
sager , 1949). His work focused on 2D incompressible,
inviscid fluids: ∂tu + u · ∇u = −∇P,∇ · u = 0, or
equivalently in vorticity form, ∂tω + u · ∇ω = 0, with
ω = ∇ × u. To make the system tractable, he intro-
duced an approximation of the vorticity field in terms
of N point vortices with strength γi and position ri(t):

ω(r, t) =
∑N
i=1 γiδ(ri(t) − r). Introducing the Hamilto-

1 Equilibrium statistical mechanics theories for geophysical fluids
have also led to progress in statistical mechanics itself, through
the theoretical issues of ensemble equivalence, invariant mea-
sures, ergodicity,... Due to length constraints, these theoretical
developments are not reviewed here.

2 Although there are also interesting applications in magnetohy-
drodynamics, potentially relevant for astrophysical flows, this
topic is left aside in the present review.

nian H = −
∑
i<j γiγjG(ri, rj), where G is the Green

function of the Laplacian, the dynamics reads simply

γi
dxi
dt

=
∂H

∂yi
, γi

dyi
dt

= −∂H
∂xi

. (55)

This is a canonical Hamiltonian system with a finite num-
ber of degrees of freedom, for which the standard meth-
ods of statistical mechanics apply directly. In particu-
lar, the microcanonical probability measure, associating
a uniform probability to all the configurations with the
same energy, is given by

ρE({ri}1≤i≤N ) =
δ(H({ri}1≤i≤N )− E)

Ω(E)
, (56)

where Ω(E) is the structure function, which measures
the volume in phase space occupied by configurations
with energy E. It is easily proved that, for a bounded
domain, and hence a finite volume phase space, this func-
tion reaches a maximum for a given value of the energy.
Hence, the thermodynamic entropy S(E) = kB ln Ω(E)
decreases for a range of energies, and the statistical tem-
perature 1/T = ∂S/∂E becomes negative. Negative tem-
peratures, although counter-intuitive, have since been
commonly encountered in the study of systems with long-
range interactions (Dauxois et al., 2002), and correspond
to self-organized states. Here, the energy increases when
two same-sign vortices move closer, while it decreases for
opposite signs. When the temperature is negative, the
entropy increases when energy increases, and there is no
energy-entropy competition, which results in the appear-
ance of ordered states. Hence, equilibrium states exhibit-
ing clusters of same-sign vortices are expected. This be-
havior has been confirmed by numerical simulations with
up to N = 6724 point vortices: see Fig. 3.

a small scale to a large scale [16]. In Fig. 5, the initial con-
ditions are E ! 24:1"# E2 <Ec$ and I1 ! %1:17&
10%13 ' 0 so that the temperature is positive. The vortices
diffuse over the circular cross section, and the positive
and the negative vortices mix almost uniformly. This is a
common feature observed in systems with positive tem-
perature and corresponds to a normal cascade.

Snapshots of the asymptotic states corresponding to
different values of energy are shown in Fig. 6. The inverse
temperatures !2, !3, and !4 associated with the system
energy E2, E3, and E4, respectively, satisfy !2 > 0> !3 >
!4. The small clumps (spots) are created as a result of the
vortex condensation in the negative temperature cases in
Figs. 6(b) and 6(c). It is noticeable that the size of the
clump depends on the temperature. The size becomes
larger as the inverse temperature ! goes down at !< 0.

The other essential feature of the negative temperature
system is the energy concentration in a specific group of
the vortices. There is no viscous term in the equation of
motion (4), and the reduction of the total energy due to the
numerical dissipation is evaluated to be less than 0.1% in
Fig. 4. Thus, the total energy is conserved in the simulation.
If the energy of a part of the system increases, the energy of
the rest should decrease. In Fig. 4, ‘‘a part of the system’’ is
the vortices inside the clumps, and the rest is the back-
ground vortices (outside the clumps). We evaluate the time
evolution of the energies belonging to the clumps and the
background vortices for the case in Fig. 4. The result is
shown in Fig. 7. The energy of the vortices that constitutes

the clumps certainly increases during the initial period up
to " ! 20 when the formation of almost circular clumps is
finished. On the other hand, the energy belonging to the
background vortices goes down. The time traces of the
energies belonging to the two groups are symmetric about
the line representing the ratio of 0:5. After " ! 20, the
energy of each group remains constant. It is noticeable that
the exchange of the energy between the two groups of the
vortices enables the vortex condensation. This observation
indicates the common and essential role of background
vortices in supporting the condensation of two-sign vorti-
ces as well as in assisting the generation of symmetric
configuration of non-neutral plasma clumps [9,12–15].

Let us briefly examine the mechanism to determine
the asymptotic configuration of the two clumps by em-
ploying a simple model. Suppose that the clumps are
confined uniformly within two circular patches of ra-
dius 0:2R that are separated by the distance of 2r across
the center of the circular boundary of radius R. A calcu-
lation indicates that the energy of the clump system is
maximized for r ' 0:5R. This maximum-energy configu-
ration has a noticeable similarity to the distribution ob-
tained at " ! 32 in Fig. 4. Though the contribution of the
background vortices is neglected by assuming they are
sufficiently neutralized, the model consideration suggests
that the clumps tend to share the maximum energy avail-
able under the constraint of conservation of the system
energy and the angular impulse. It is consistent with the
common feature of the negative temperature system.

In summary, we have numerically examined the dynam-
ics of two-sign point vortices confined in the circular
boundary. The state of the vortex system is characterized

FIG. 4 (color online). Time evolution of the negative tempera-
ture system is plotted. The values of the parameters are N !
6724, nc ! 4, Rc ! 0:5R, rc ! 0:2R, "c ! 15:6, and E !
2:69& 104"! E1$.

FIG. 6 (color online). Snapshots of different energies
(a) E2 ! 24:1, (b) E3 ! 142, and (c) E4 ! 315 at " ! 128 are
shown.

FIG. 5 (color online). Time evolution of the positive tempera-
ture system is plotted. The values of the parameters are N !
6920, nc ! 20, Rc ! 0:2R, rc ! 0:07R, "c ! 9:3, and E !
24:1"! E2$. Because the clumps overlap each other, we see
only the outline of the clumps (hollow ring) at " ! 0.

FIG. 3. Critical energy Ec and width at half maximum are
plotted as a function of N. In each case, the number of sampling
is 107.
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FIG. 3 Time evolution for a numerical simulation of two-
sign point vortices, for positive temperatures (upper panel)
and negative temperatures (lower panel) (Yatsuyanagi et al.,
2005). For negative temperatures, we observe the clustering
of same-sign vortices.
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2. Mean-field equation

The above argument is qualitative; to characterize the
coherent structures which are expected to emerge from
the clustering of same-sign vortices, we introduce the
mean field probability density for vorticity: ρ(σ, r, t) =
(1/N)

∑
j δ(σ − γj)δ(r − rj(t)). The probability den-

sity for a vortex with strength γi to be found at point
r at time t is just ρi(r, t) = ρ(γi, r, t)/nγi , where the
normalization factor nγ =

∑
j δγjγ is needed so that∑

i

∫
ρi(r, t)dr = 1. We define a coarse grained vor-

ticity field ω(r, t) =
∫
σρ(σ, r, t)dσ =

∑
i γiρi(r, t).

The mean-field probability density is expected to con-
verge towards its statistical equilibrium: the equilib-
rium distribution maximizes the statistical entropy S =
−
∫
ρ(σ, r) ln ρ(σ, r)dσdr = −

∑
i

∫
ρi(r) ln ρi(r)dr. The

solution of this variational problem is given by ρi(r) =

e−β(γiψ(r)−µi)/Z where β and βµi are the Lagrange pa-
rameters associated with conservation of global energy
and normalization of each ρi, respectively, and ψ =
−∆−1ω is the coarse-grained stream function, while the
normalization factor Z is called the partition function.
Averaging over this equilibrium distribution gives the
coarse-grained vorticity field, which satisfies the mean-
field equation:

ω(r) =
1

Z
∑
i

γie
−β(γiψ(r)−µi). (57)

This is an equation of the form ω = F (ψ), characteris-
tic of the steady-states of the 2D Euler equations. A
well-known particular case is that of N vortices with
circulation 1/N and N vortices with circulation −1/N .
In that case, the mean-field equation can be recast as
ω = A sinh(βΨ), with Ψ = ψ+(µ+−µ−)/2 (Montgomery
and Joyce, 1974).

The theory can be generalized in a straightforward
manner to quasi-geostrophic (QG) flows (Miyazaki et al.,
2011). (DiBattista and Majda, 2001) have given solutions
of the mean-field equation for a two-layer model where
the point vortices stand for hetons, introduced by (Hogg
and Stommel , 1985) as a model of individual convective
towers in the ocean. They have shown that a background
barotropic current (the barotropic governor) confines po-
tential vorticity and temperature anomalies, thereby sup-
pressing the baroclinic instability, in accordance with nu-
meric simulations (Legg and Marshall , 1993).

C. Galerkin truncated flows

1. 2D Turbulence

Rather than a discretization in physical space, one
may consider a finite number of modes in Fourier space,
as proposed by (Lee, 1952) and (Kraichnan, 1967) in
the context of the Euler equations. For 2D flows —

for simplicity, we consider here a rectangular geome-
try with periodic boundary conditions; the case of a
spherical geometry can be found in (Frederiksen and
Sawford , 1980) — writing the vorticity field as a trun-
cated Fourier series ω(x) =

∑
k ω̂(k)eik·x, the evolution

in time of the Fourier coefficients follows an equation
of the form ∂tω̂(k) =

∑
p,qAkpqω̂(p)ω̂(q), where the

summation is restricted to a finite set of wave vectors
B = {k ∈ 2π/LZ3, kmin ≤ k ≤ kmax}. This dynam-
ics preserves two quadratic quantities: the energy E =∑

k|ω̂(k)|2/(2k2) and the enstrophy Γ2 =
∑

k|ω̂(k)|2.
(Kraichnan, 1967) suggested to consider the canonical
probability distribution for the Galerkin truncated sys-
tem:

ρ({ω̂(k)}k∈B) =
e−βE−αΓ2

Z
, (58)

In particular, the average energy at absolute equilibrium
is given by

〈E〉 = −∂ lnZ
∂β

=
1

2

∑
k∈B

1

β + 2αk2
, (59)

which corresponds to an equipartition spectrum for the
general invariant βE + αΓ2: E(k) = πk/(β + 2αk2). In-
viscid numerical runs indeed relax to this spectrum (Bas-
devant and Sadourny , 1975; Fox and Orszag , 1973). Note
that the Lagrange parameters α and β cannot take ar-
bitrary values; they are constrained by the realizability
condition — for the Gaussian integral defining Z to con-
verge. Here, this condition reads: β + 2αk2

min > 0 and
β + 2αk2

max > 0. In particular, when α > 0, negative
temperatures can be attained. In this regime, which cor-
responds to 〈Γ2〉/(2〈E〉) small enough (Kraichnan and
Montgomery , 1980), the energy spectrum is a decreasing
function of k. When β → −2αk2

min, a singularity appears
at k → kmin, which means that the energy is expected to
concentrate in the largest scales. Hence, statistical me-
chanics for the truncated system predicts that when the
enstrophy is small enough compared to the energy, we
expect the energy to be transferred to the large scales.
(Kraichnan, 1967) gives other arguments to support and
refine this view; in particular he shows the existence of
two inertial ranges, with a constant flux of energy and
enstrophy, respectively, with the energy spectrum scal-
ing as E(k) ∼ Cε2/3k−5/3 and E(k) ∼ C ′η2/3k−3 re-
spectively, where ε and η are the energy and enstrophy
fluxes. In particular, the equilibrium energy spectrum at
large scales is shallower than the energy inertial range
spectrum. Assuming a tendency for the system to relax
to equilibrium — although the equilibrium is never at-
tained in the presence of forcing and dissipation — we
thus expect the flux of energy to be towards the large
scales; a process referred to as the inverse cascade of
2D turbulence (see Fig. 4). Similarly, the transfer of
enstrophy in the corresponding inertial range should be
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FIG. 4 Energy spectrum (solid blue curve) for 2D turbulence
at statistical equilibrium in the negative temperature regime;
there is an infrared divergence at kmin, corresponding to con-
densation of energy in the gravest mode. At large k, the
equilibrium energy spectrum scales like k−1. We have super-
imposed on this graph the slopes of the energy and enstrophy
inertial ranges, k−5/3 and k−3, which build up in the forced
case (see text for details).

towards the small scales. The dual cascade scenario has
been confirmed both by numerical simulations (Boffetta,
2007) and laboratory experiments (Paret and Tabeling ,
1997).

2. Topographic turbulence

The work of (Kraichnan, 1967) was extended to flow
over a topography by (Salmon et al., 1976) and (Her-
ring , 1977). If H(k) is the (prescribed) bottom to-
pography spectrum, the energy spectrum now reads
〈E(k)〉 = πk/(β + 2αk2) + 2α2k2/(β + 2αk2)2H(k).
The second term arises because of a non-vanishing mean
flow: straightforward computations show that 〈ω̂(k)〉 =

−2αk2ĥ(k)/(β + 2αk2), so that the second term is the
energy spectrum of the mean flow, while the first term
stems from the fluctuations. In the absence of topogra-
phy, the ensemble average vorticity is zero, but in a par-
ticular realization, the mean flow will not vanish; the sys-
tem will spontaneously adopt a choice of phase for each
wave vector. Summing over the possible phase choices
yields the zero ensemble mean. Note that the mean
flow at absolute equilibrium has vorticity proportional
to the stream function. This feature has been tested nu-
merically, in connection with the emergence of Fofonoff
flows (Griffa and Salmon, 1989; Wang and Vallis, 1994),
see Fig. 5. The equilibrium energy spectrum and flow-
topography correlation have also been confirmed numer-
ically with very good agreement (Merryfield and Hol-
loway , 1996).

3. Quasi-Geostrophic Turbulence

The dynamical equations of QG flow are very similar
to the Euler equations, replacing vorticity by potential
vorticity. In particular, they conserve similar quadratic
invariants, and the theory can be extended in a straight-
forward manner (Holloway , 1986; Salmon, 1998). The
role of bottom topography has already been investigated
in section III.C.2; we will discuss in this section the effect
of stratification and beta effect.

Perhaps the simplest framework to consider the role
of stratification is the two-layer QG case. As in section
III.C.1, a canonical probability distribution can be con-
structed, taking into account the three invariants: the
total energy E and the enstrophies of each layer, Z1 and
Z2. The corresponding partition function can be com-
puted, and the spectrum studied in the various regimes,
with similar results. In particular, negative temperature
states are accessible, which correspond to condensation
of the energy on the largest horizontal scales. Maybe
more interestingly, although the various forms of energy
(kinetic energy K1,K2 in each layer and potential energy
P ) are not individually conserved, we can compute their
average value at equilibrium, as (Salmon et al., 1976)
did. Alternatively, the standard decomposition in terms
of the barotropic and baroclinic modes, with their ki-
netic energies KT and KB , can be used. As (Salmon
et al., 1976) highlighted, the Rossby deformation scale
kD plays an important role. At scales smaller than the
deformation scale (k � kD), the two layers behave es-
sentially as two independent copies of 2D turbulence; the
energy spectrum in each layer is the same as in the 2D
case, the correlation at statistical equilibrium is low, and
there is about as much energy in the barotropic mode and
the baroclinic mode: 〈KT (k)〉/〈KB(k)〉 ∼ 1. Besides,
the potential energy is small compared to the kinetic en-
ergy: 〈P (k)〉/〈KT (k)〉 = O(kD/k). At scales larger than
the deformation radius (k � kD), the system rather be-
haves as a unique barotropic layer: the amount of energy
in the two layers is about the same, but the energy is
essentially in the barotropic mode, with negligible en-
ergy in the baroclinic mode, and a statistical correla-
tion between the two layers of order 1. This theoretical
analysis goes in strong support of the standard picture
of two-layer QG turbulence, developed on phenomeno-
logical grounds ((Rhines, 1979; Salmon, 1978), see also
(Vallis, 2006, chap. 9)), and is in accordance with nu-
merical simulations (Rhines, 1976). These results were
extended to an arbitrary number of layers and to continu-
ously stratified flows by (Merryfield , 1998). Although the
equilibrium mean, vertically integrated stream function
remains similar to the two-layer case, the distribution of
the statistics on the vertical differs as higher-order mo-
ments are considered. The ratio of potential to kinetic
energy for instance, can become significantly underes-
timated, especially in the limit of strong stratification
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Figure 8. Experiment using the smoothed average 5 field in ISRDl instead of random field as 
initial condition. Now the field has very little transient component. The fields are averaged 
from 10 T,, and then smoothed. Shown here are (a) relative vorticity 5, (b) absolute vorticity 
q, (c) streamfunction IJJ and (d) scatter-plot of q - I). 

consistent with the theory. Roughly measuring from the scatter-plots, we obtain Apl 
CL- -0.37 where E is the average of p’s in the two experiments, A~J, is the increase in 
t,r, from 32 x 32 to 128 x 128 experiments. Therefore, we have: 

AE 3Ak -- --- 
E - - 2 CL - 55-5%* 

Both energies are the components contained in the time mean fields. Hence, when 
R, = 3.18 x 10e3 in the initial random flows, then as resolution is increased from 

FIG. 5 Convergence towards the statistical equilibrium in inviscid Galerkin-truncated barotropic flow on a β-plane (Wang and
Vallis, 1994). Left: Stream function. Right: scatterplot of the q-ψ relation.

(kD → 0) where the two-layer model does not capture
well the possibility that an important fraction of the en-
ergy may be trapped near the bottom.

The second dominant effect in geophysical flows, in
addition to stratification, is rotation. The Coriolis force
introduces a linear term in the equations, which does not
affect directly the previous analysis of the nonlinear en-
ergy transfers: the conserved quantities remain the same
and the statistical theory is easily extended by replacing
relative vorticity with absolute vorticity. However, the
variation of the Coriolis force with latitude is responsi-
ble for the appearance of Rossby waves, which modify the
physical interpretation of the predicted cascade of energy.
As anticipated by (Rhines, 1975) and verified numerically
(e.g Vallis and Maltrud , 1993), the Rossby waves deflect
the inverse energy cascade. The ratio of the wave pe-
riod to the eddy turnover time, ε(k) = τW (k)/τNL(k)
gives an estimate of the validity of the above predictions;
when ε� 1, nonlinear effects dominate, while for ε� 1,
the waves are much faster than the nonlinear effects and
the statistical equilibrium may never be reached. The
curve defined by ε(k) = 1 in k-space delimitates the two
regimes; it has a dumbell shape which shows that the
waves should prevent access to low wavenumbers along
one direction in k-space only. Hence the Rossby waves
deflect the cascade and lead to the preferential formation
of zonal flows.

4. Beyond balanced motion

Although the motions of the atmosphere and oceans
of the Earth are nearly geostrophically balanced, non-
balanced motions, like inertia-gravity waves, also play
important roles. It is therefore important to understand
how energy is exchanged by nonlinear interactions be-
tween the slow, balanced motions and the fast, wave mo-
tions, and some insight has been gained through equilib-

rium statistical mechanics.

(Errico, 1984) first observed a tendency for unforced
inviscid flows described by hydrostatic primitive equa-
tions to reach an energy equipartition state, in which the
energy in the fast wave modes is comparable to that in
the slow balanced modes. The study by (Warn, 1986),
in the context of the shallow water equations, essentially
confirms that QG flows are not equilibrium states, and
that a substantial part of the energy may end up in the
fast (surface) wave modes at statistical equilibrium, im-
plying a direct cascade of energy to the small scales.
(Bartello, 1995) has obtained analytically the equilib-
rium energy spectrum for the Boussinesq equations (ne-
glecting the nonlinear part of potential vorticity), in the
presence of rotation, confirming the direct cascade of en-
ergy. In particular, there is no negative temperature
states in this case, due to the presence of the inertia-
gravity waves. Studying the resonant triadic interactions,
he also discussed the possibility of a wave-vortical mode
decoupling, and related the issue of geostrophic adjust-
ment with the existence of an inverse cascade.

Without decoupling assumptions on the dynamics, in-
verse cascades can be obtained by restricting the compu-
tation of the partition function, as done generally when
studying metastable states (Penrose and Lebowitz , 1979),
to the subset of phase space made of balanced modes.
This approach indicates that parity symmetry breaking
(Beltrami) flows should display an inverse cascade of en-
ergy (Herbert , 2013a). It has also been applied to ro-
tating and/or stratified flows in the Boussinesq approx-
imation (Herbert et al., 2013) to obtain the direction of
the energy transfers in anisotropic Fourier space. Com-
bined with an analysis of the deflecting effect of waves
similar to the case of Rossby waves (see section III.C.3),
this could explain why inverse cascades have been seen in
numerical simulations of rotating (e.g. Mininni and Pou-
quet , 2010) and rotating and stratified (e.g Marino et al.,
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2013) flows, but not in purely stratified flows (e.g. Waite
and Bartello, 2004).

D. The Robert-Miller-Sommeria theory

The RMS theory bears some resemblance with the
point vortices theory; the main difference is that rather
than following the (Lagrangian) motion of points with
fixed vorticity, the theory is built as the continuous limit
of lattice approximations in the Eulerian framework. The
rationale behind this choice is, roughly speaking, that al-
though Lagrangian motion is unpredictable, the statistics
of the Eulerian flow is (Robert and Rosier , 2001).

1. Mean-field theory

Above, we have considered finite-dimensional models
conserving two quadratic quantities, the energy and the
enstrophy. In fact, the majority of the flows considered
above — and in particular 2D and QG flows — conserve
an infinite family of invariants, called Casimir invariants:
for any function s,

∫
s(ω)dr is conserved. The specific

case sn(x) = xn corresponds to the moments of the vor-
ticity distribution, n = 1 is the circulation and n = 2 is
the enstrophy, while, sσ(x) = δ(x − σ) yields that the
area γ(σ) where the vorticity takes value σ is conserved.
This is due to the absence of a vortex stretching term, in
contrast with full 3D flows; here the vorticity (or poten-
tial vorticity) patches are stirred in such a way that their
area remains conserved, which implies that their bound-
aries become more and more filamented. The theory de-
veloped by (Miller , 1990) and (Robert and Sommeria,
1991) introduces a coarse-grained vorticity field ω, which
corresponds to the macroscopic state of the flow. This
coarse-grained vorticity field can be predicted based on
the invariants using statistical mechanics. To do so, we
introduce the probability distribution ρ(σ, r) for the vor-
ticity field to take value σ at point r. The coarse-grained
vorticity field is given by ω(r) =

∫∞
−∞ ρ(σ, r)dσ. The

invariants of the system are the energy

E [ρ] =

∫
D2

drdr′
∫
R2

dσdσ′σσ′G(r, r′)ρ(σ, r)ρ(σ′, r′),

(60)

with G the Green function of the Laplacian, and the
Casimir invariants

Gn[ρ] =

∫
D
dr

∫
R
dσσnρ(σ, r), (61)

or equivalently, the vorticity levels

Dσ[ρ] =

∫
D
drρ(σ, r). (62)

The idea of the theory is to select the probability dis-
tribution ρ which maximizes a mixing entropy S [ρ] =
−
∫
D
∫
R drdσρ(σ, r) ln ρ(σ, r), under the constraints of

conservation of the invariants, and point wise normal-
ization N [ρ](r) =

∫
R dσρ(σ, r) = 1. Hence, we are inter-

ested in the variational problem:

S(E, {Γn}n∈N) = max
ρ,N [ρ](r)=1

{S [ρ] | E [ρ] = E,

∀n ∈ N,Gn[ρ] = Γn}, (63)

or equivalently,

S(E, γ(σ)) = max
ρ,N [ρ](r)=1

{S [ρ] | E [ρ] = E,

∀σ ∈ R,Dσ[ρ] = γ(σ)}. (64)

The expression for the mixing entropy S is justified by
the validity of the mean-field theory for long-range inter-
actions (Bouchet and Venaille, 2012).

The critical points of the variational problem (64)
are simply given by δS −

∫
drζ(r)δN (r) − βδE −∫

dσα(σ)δDσ = 0, where β and α(σ) are the Lagrange
multiplier associated with the conservation constraints.
Easy computations yield the solution

ρ(σ, r) =
1

Z
e−βσψ(r)−α(σ), (65)

so that the coarse-grained vorticity is given by

ω = F (ψ), with F (ψ) = − 1

β

δ lnZ
δψ

, (66)

and Z(ψ) =
∫
R dσe

−βσψ−α(σ). To compute the equilib-
rium states of the system, one should solve the partial
differential equation (66), referred to as the mean-field
equation, and check afterwards that the obtained critical
points are indeed maxima of the constrained variational
problem by considering the second derivatives. This will
automatically ensure that the equilibrium states are non-
linearly stable (Chavanis, 2009).

2. Equilibrium states for 2D
and barotropic flows

The mean-field equation (66) is in general difficult to
solve; one issue is that the ω - ψ relation is in general
nonlinear. Most of the analytical solutions have been
obtained in the linear case, by decomposing the fields on
a basis of eigenfunctions of the Laplacian on the domain
D. This technique was first introduced in a rectangular
domain by (Chavanis and Sommeria, 1996), who showed
that the statistical equilibrium is either a monopole or a
dipole, depending on the aspect ratio (Fig. 6).

The same method was extended to the case of
barotropic flows, replacing vorticity by potential vortic-
ity. Taking into account the beta effect, Fofonoff flows are
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FIG. 6 Maximum entropy states as a function of the aspect
ratio for a rectangular domain, in the linear (strong mixing)
ω-ψ limit (Chavanis and Sommeria, 1996). For τ < τc, the
equilibrium is a monopole, while for τ > τc, it is a dipole.

obtained as statistical equilibria in a rectangular basin
(Naso et al., 2011; Venaille and Bouchet , 2011a). On a
rotating sphere, the equilibria, in the linear limit, can
be either solid-body rotations or dipole flows (Herbert
et al., 2012a,b). Note that in general, in the linear limit,
all the energy is expected to condense into the gravest
modes in the equilibrium state (Bouchet and Corvellec,
2010). The effect of the higher-order, fragile Casimir in-
variants3 is to prevent complete condensation, leading
to a wider variety of flow topologies at equilibrium, and
to non-linear ω - ψ relationships. The condensation can
also be arrested due to geometric effects, as in the case of
the sphere, for which additional invariants appear (Her-
bert , 2013b). (Bouchet and Simonnet , 2009) have also
considered the role of a small nonlinearity in the ω - ψ
relationship for a rectangular domain of aspect ratio close
to 1, thereby obtaining two topologies for the equilibrium
states: dipole and unidirectional flows. Adding a small
stochastic forcing generates transitions from one to the
other equilibrium.

In the case of the equivalent barotropic model, for
which the potential vorticity is given by q = −∆ψ +
ψ/R2 + h, the Rossby deformation radius R introduces
a new length scale. Another limit which is analytically
solvable is that of a very small Rossby deformation ra-
dius: R � L, where L is the size of the domain. This
limit leads to sharp interfaces separating phases of dif-
ferent free energies, characterized by different, well ho-
mogenized potential vorticities (Bouchet and Sommeria,

3 As the fragile invariants cannot be recovered from the predicted
coarse-grained field, it was suggested to treat them in a canoni-
cal manner (Turkington, 1999). This introduces the conceptual
difficulty of defining a potential vorticity reservoir.

2002). Strong jets form at the interface between two such
homogeneous potential vorticity regions; mid basin east-
ward jets, such as the Gulf Stream and the Kuroshio,
can be interpreted as such statistical equilibria when the
beta effect is neglected, but in the presence of beta effect,
these solutions become metastable or unstable (Venaille
and Bouchet , 2011b). In the jet regions, mesoscale rings
form and propagate westward (Chelton et al., 2007). (Ve-
naille and Bouchet , 2011b) have shown that mesoscale
rings could also be seen as local equilibrium states in a
channel (see Fig. 7).

FIG. 7 Modulus of the velocity in the ring statistical equilib-
rium of the QG model in the limit of small Rossby deforma-
tion radius R (Venaille and Bouchet , 2011b). The width of
the jet is of order R.

3. Stratified flows

In addition to the 2D and quasi-2D cases mentioned
above, the RMS theory has also been applied to strat-
ified fluids (essentially in the quasi-geostrophic regime).
(Herbert , 2013c) has obtained and classified the statis-
tical equilibria of the two-layer QG model in the frame-
work of the RMS theory, and updated the discussion of
the vertical distribution of energy at statistical equilib-
rium (see section III.C.3). In the context of continuously
stratified flows, (Venaille, 2012) has taken up the thread
initiated by (Merryfield , 1998) (see section III.C.3) and
shown that bottom-trapped currents are indeed statisti-
cal equilibria of the RMS theory. Still in the continuous
case, (Venaille et al., 2012) have also studied the verti-
cal distribution of energy at statistical equilibrium, fo-
cusing on the tendency to reach barotropic equilibrium
states; as also observed in the two-layer model, the con-
straint of conservation of fine-grained enstrophy prevents
complete barotropization. As the beta effect increases,
barotropization is facilitated, until we enter a regime
dominated by waves.
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E. Subgrid scale parameterization

The equilibrium approach has found other practical
applications with parameterization methods. A notable
one is the Neptune effect parameterization: given the ten-
dency of ideal Galerkin truncated flows to go towards the
state of maximum entropy (Zou and Holloway , 1994),
(Holloway , 1992) suggested that instead of the usual sub-
grid scale parameterizations in ocean models (e.g. eddy
viscosity ν∗∆u), which drives the system towards rest,
one should use a relaxation towards the statistical equi-
librium state u∗ (e.g. of the form ν∗∆(u− u∗) for eddy
viscosity). This parameterization has been used tested
and commented in a number of studies (Cummins and
Holloway , 1994, e.g.). For more perspective on this type
of subgrid-scale parameterizations, the reader is referred
to (Holloway , 2004) and (Frederiksen and O’Kane, 2008).

Along similar lines, (Kazantsev et al., 1998) have pro-
posed more generally to treat the subgrid scales so as
to maximize the entropy production, inspired by the re-
laxation equations formulated in the RMS theory (Cha-
vanis and Sommeria, 1997). Note also that it has been
shown in direct numerical simulations of ideal 3D turbu-
lence that the small scales thermalize progressively, and
act as a sort of effective viscosity even in the ideal sys-
tem, leading to the appearance of transient Kolmogorov
scaling laws (Cichowlas et al., 2005). This seems to be
consistent with the above suggestions for subgrid scale
parameterizations.

IV. THERMODYNAMICS OF FORCED AND
DISSIPATIVE SYSTEMS

A. Introduction

The atmosphere and the oceans are out-of-equilibrium
systems, which exchange irreversibly matter and energy
from their surrounding environment and re-export it in
a more degraded form at higher entropy. For example,
Earth absorbs short-wave radiation (lo entropy solar pho-
tons at Tsun ≈ 6000 K) which is then re-emitted to space
as infrared radiation (high entropy thermal photons at
Tearth ≈ 255 K). In addition to that, spatial gradients
in chemical concentrations and temperature as well as
their associated internal matter and energy fluxes can be
established and maintained for long time within nonequi-
librium systems (e.g. the temperature contrast between
the polar and equatorial regions and the associated large-
scale, atmospheric and oceanic circulation). In contrast,
closed, isolated systems cannot maintain disequilibrium
and evolve towards structureless, homogenous thermo-
dynamical equilibrium, as a result of the second law of
thermodynamics (Prigogine, 1961).

The basis of the physical theory of climate was estab-
lished in a seminal paper by (Lorenz , 1955), who elu-

cidated how the mechanisms of energy forcing, conver-
sion and dissipation are related to the general circula-
tion of the atmosphere. Oceanic and atmospheric large
scale flows results from the conversion of available poten-
tial energy - coming from the differential heating due to
the inhomogeneity of the absorption of solar radiation-
into kinetic energy. through different mechanisms of in-
stability due to the presence of large temperature gra-
dients. The understanding of the fundamentally ther-
modynamical origin of such dynamical instabilities, as
clarified by (Charney , 1947) and (Eady , 1949), is the
other cornerstone of geophysical fluid dynamics. Such
instabilities create a negative feedback, as they tends to
reduce the temperature gradients they feed upon by fa-
voring the mixing between masses of fluids at different
temperatures. Attaining the closure of such a thermo-
dynamical/dynamical problem would mean obtaining a
self-consistent theory of climate able to connect instabili-
ties and large scale stabilizing processes on longer spatial
and temporal scales.

Furthermore, in a forced and dissipative system like
the Earth’s climate, entropy is continuously produced by
irreversible processes and at steady state, the entropy
production is balanced by a net outgoing flux of entropy
at the boundary of the system, in our case, the top of
the atmosphere. Therefore, on the average the entropy
budget - just like the energy budget - vanishes (deGroot
and Mazur , 1984; Prigogine, 1961). Besides the dissi-
pation of kinetic energy due to viscous processes, many
other irreversible processes such as turbulent diffusion of
heat and chemical species, irreversible phase transitions
associated to various processes relevant for the hydrolog-
ical cycle, and chemical reactions relevant for the bio-
geochemistry of the planet contribute to the total ma-
terial entropy production(Goody , 2000; Kleidon, 2009).
The study of the climatic entropy sources (Fraedrich and
Lunkeit , 2008; Goody , 2000; Kleidon, 2009; Kleidon and
Lorenz , 2005; Lucarini et al., 2011; Pascale et al., 2011;
Pauluis and Held , 2002a,b) has been revitalized after
(Paltridge, 1975, 1978) proposed a principle of maxi-
mum entropy production (MEPP) as a constraint on the
climate system. Although there is still great confusion
about MEPP and other nonequilibrium variational prin-
ciples (for an updated review see Dewar et al., 2013),
this has lead the scientific community to refocus on the
importance of a thermodynamical approach – as com-
plementary to the dynamical one – for studying classes
of problems like those relevant for nonlinear geophysical
flows.
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B. Climatic energy budget and energy flows

1. Conservation of energy

A detailed knowledge of the energy flows and their
response to perturbations is fundamental for progress-
ing understanding of the climate system. The right clo-
sure of the energy budget and an accurate representa-
tion of the transport of energy in all forms have to to
be properly accounted for in any climate model in or-
der to have a good representation of the climate state,
The total specific energy of a geophysical fluid is given
by the sum of internal, potential, kinetic and latent en-
ergy, e = i + φ + k + l (e = cvT + gz + v2/2 + Lq for
the atmosphere and e = c0T + gz + v2/2 for the ocean,
standard notation is used). The conservation of energy
and mass require that (Peixoto and Oort , 1992):

∂ρe

∂t
= −∇ · (Jh + FR + FS + FL)−∇(τ · v) (67)

where ρ is the density; t is time; v is the velocity vec-
tor; FR, FS, and FL are the vectors of the radiative,
turbulent sensible, and turbulent latent heat fluxes, re-
spectively; p is the pressure; and τ is the stress tensor and
the total enthalpy transport Jh = (ρe + p)v = ρhv has
been introduced. By expressing Eq. (67) in spherical co-
ordinates (r, λ, ϕ) and assuming the usual thin she’ll ap-
proximation r = R+ z, z/R� 1, where R is the Earth’s
radius and z is the vertical coordinate of the fluid, it can
be shown that:

[Ė] = − 1

R cosϕ

∂TT
∂ϕ

+ [FR]toa (68)

in which [E](ϕ, t) ≡
∫
E(λ, ϕ, t)dλ and the meridional

enthalpy transport has been defined as:

TT (ϕ, t) ≡
∫∫

Jhϕ(ϕ, λ, z, t)R cosϕdzdλ. (69)

Equation (68) relates the rate of change of the vertically
and zonally integrated total energy to the divergence of
the meridional transport by the atmosphere and oceans
and the zonally integrated radiative budget at the top-
of-the-atmosphere. Integrating along ϕ ({X} =

∫
Xdϕ),

the expression for the time derivative of the net global
energy balance is straightforwardly derived:

{[FR]toa} = {[Ė]}. (70)

Similar relationships can be written for the atmosphere,
ocean and land provided that energy fluxes of sensible,
latent heat as well as radiative fluxes are taken into ac-
count at the surface (Lucarini and Ragone, 2011).

Under steady state conditions, the long term aver-

age Ė = 0 because otherwise, trends would be present.

Therefore from equation (70) the stationarity condition
implies that

{[FR]toa} = 0. (71)

Equation (71) is a particular case of a general property
of forced dissipative systems that, under generic bound-
ary conditions, realize steady states obeying zero sum
properties for energy fluxes on the average(Prigogine,
1961). A physically consistent climate model there-
fore should feature a vanishing net energy balance
when statistical stationarity is eventually obtained. Lu-
carini and Ragone (2011) analyzed the behavior of more
than twenty atmosphere-ocean coupled climate models
(PCMDI/CMIP3 intercomparison project, http://www-
pcmdi.llnl.gov/) under steady state conditions (preindus-
trial scenario) and found that models’ energy balances
are wildly different with global balances spanning be-
tween −0.2 and 2 W m−2, with a few ones featuring im-
balances larger than 3 W m−2. We have analyzed similar
budgets for the last generation of climate models (CMIP5
intercomparison project, Taylor et al. (2012)) and have
not found a significant improvement (Fig. 8). Spurious
energy biases may be associated with non-conservation
of water in the atmospheric branch of the hydrological
cycle (Liepert and Lo, 2013) and in the water surface
fluxes (Hasson et al., 2013; Lucarini et al., 2008), with
the fact that dissipated kinetic energy is not re-injected
in the system as thermal energy (Becker , 2003), as well
as with nonconservative numerical schemes (Gassmann,
2013).

2. Meridional enthalpy transport

The meridional distribution of the radiative fields at
the top-of-the-atmosphere poses a strong constraint on
the meridional general circulation (Stone, 1978). As clear
from equation (68), the stationarity condition (71) leads
to the following indirect relationship for TT :

TT (ϕ) = −2π

∫ π/2

ϕ

R2 cosϕ′(FR)toa(ϕ′). (72)

In other terms, the flux TT results from the fact that low-
latitude zones feature a positive imbalance between the
net input of solar radiation – determined by planetary
albedo, i.e. clouds (Donohoe and Battisti , 2012) – and
the output of longwave radiation, while the high latitudes
feature a negative imbalance. Atmospheric and oceanic
circulations act as responses needed to equilibrate such
an imbalance.

The climatic meridional enthalpy transport TT (ϕ) –
and its atmospheric and oceanic components, TA and
TO – is a fundamental measure of nonequilibrium and
provides a concise picture of the processes by which the
climatic fluid reduces the temperature difference between
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FIG. 8 Mean and standard deviation of globally averaged
top-of-the-atmosphere radiative budget (top), atmosphere en-
ergy budget (top-middle), ocean (bottom-middle) and land
energy budget (bottom) for inter-comparable CMIP3 (red)
and CMIP5 (blue) climate models control simulations.

the low and high latitude regions with respect to what
imposed by the radiativ-convective equilibrium picture.
Stone (1978) showed that TT depends essentially on the
mean planetary albedo and on the equator-to-pole con-
trast of the incoming solar forcing, while being mostly
independent from dynamical details of atmospheric and

oceanic circulations. As emphasized by, Enderton and
Marshall (2009), if one assumes drastic changes in the
meridional distributions of planetary albedo differences
emerge with respect to Stone’s theory. A comprehen-
sive thermodynamic theory of the climate system able to
predict the peak location and strength of the meridional
transport, the partition between atmosphere and ocean
(Rose and Ferreira, 2013) and to accommodate the vari-
ety of processes contributing to it, is still missing.

Besides theoretical difficulties, observational estima-
tions of TT , TA and TO also poses non-trivial challenges.
For simplicity, we here refer to TT . There is still not
an accurate estimate of such a fundamental quantity for
testing the output of climate models, despite the efforts of
several authors (Fasullo and Trenberth, 2008; Mayer and
Haimberger , 2012; Trenberth and Caron, 2001; Trenberth
and Fasullo, 2010; Wunsch, 2005). The precision of the
estimates relies on the knowledge of the boundary fluxes
FR, FS, and FL and on the reanalysis datasets. Wun-
sch (2005), by using measurements of the radiative fluxes
at the top of the atmosphere and previous estimates of
the oceanic enthalpy transport, gave a range of values
of 3.0 − 5.2 PW (1 PW = 1015 W) for the maximum
in the Northern Hemisphere (NH) and 4.0− 6.7 PW for
the maximum in the Southern Hemisphere (SH). Tren-
berth and Fasullo (2010), by combining measurements
of top-of-the-atmosphere radiative fields with different
reanalyses and ocean datasets, found the range to be
4.7− 5.1 PW for the SH maximum and 4.6− 5.6 PW for
NH. Mayer and Haimberger (2012), using two reanalysis
datasets (ERA-40 and the more recent ECMWF reanaly-
sis ERA-Interim), constrained the two peaks in narrower
confidence intervals: 5.1 − 5.6 PW in the SH (4.4 − 4.9
PW in the NH) for the ERA-40 data and 5.1 − 5.6 PW
in the SH (4.4−4.9 PW in the NH) for the ERA-Interim
data. Unfortunately reanalysis datasets are affected by
mass and energy conservation (e.g. +1.2 W m−2 at the
top-of-the-atmosphere and +6.8 W m−2 over oceans in
ERA-Interim, (Mayer and Haimberger , 2012)) problems
that may potentially bias the transport estimates. Fur-
thermore, these estimates are dependent on the analy-
sis method and the model used – Trenberth and Caron
(2001), using other reanalysis dataset (NCEP), found a
value of the maxima 0.6 PW larger in the NH than those
found with the ECMWF reanalysis.

The use of numerical climate model does not help to
reduce such uncertainties Lucarini and Ragone (2011)
analyzed a large dataset of coupled climate mod-
els (PCMDI/CMIP3, http://www-pcmdi.llnl.gov/) and
found a large spread in the meridional enthalpy trans-
ports peaks with discrepancies of the order of 15-20 %
around a typical value of about 5.5 PW. State-of-the-art
climate models (CMIP5 intercomparison project, Taylor
et al. (2012)) show little improvement in terms of mu-
tual agreement (Fig. 9). Donohoe and Battisti (2012)
attributed such a large spread in TT to intermodel dif-
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FIG. 9 Value and position of the peak of the poleward merid-
ional enthalpy transport in the pre-industrial scenario for the
whole climate (top), atmosphere (middle) and ocean (bottom)
for the some of the CMIP3 (red) and CMIP5 (blue) general
circulation models.

ferences in the meridional contrast of absorbed solar ra-
diation, which, in turn, is mainly due to the inter-model
difference in the shortwave optical properties of the at-
mosphere (cloud distribution). Figure 9 also shows that,
while the disagreement among models for the peak of the
atmospheric transport is comparable to that for the peak
of the total transport, enormous differences emerge when
comparing oceanic transports.

Interesting information emerge when looking at the po-
sition of the peaks of the transport. Stone (1978) pre-
dicts that the position of the maximum of TT is well con-
strained by the geometry of the system and weakly de-
pendent of longitudinal homogeneities, and, accordingly
in Fig. 9 both CMIP3 and CMIP5 models feature small
spread in the position of the peak of TT , with minute dif-
ferences between the two hemispheres, except one outlier.
Similarly, the spread among models is small with respect
to the position of the peak of TA in both hemispheres
and of TO in the Northern Hemispheres, while a larger
uncertainty exists in the position of the peak of TO in the
Southern Hemisphere.

C. The maintenance of thermodynamical
disequilibrium

The basic understanding of the maintenance of the at-
mospheric general circulation was achieved nearly sixty
years ago by E. N. Lorenz (Lorenz , 1955) through the
concepts of available potential energy and atmospheric
energy cycle. The concept of available potential energy,
first introduced by Margules (1905) to study storms, is
defined as A =

∫
cp(T −Tr)dV , where Tr is the tempera-

ture field of the reference state, obtained by an isentropic
redistribution of the atmospheric mass so that the isen-
tropic surfaces become horizontal and the mass between
the two isentropes remains the same. By its own def-
inition, this state minimizes the total potential energy
at constant entropy. Such a definition is somewhat arbi-
trary and different definitions lead to different formula-
tions of atmospheric energetics. For example, the choice
of a reference state maximizing entropy at constant en-
ergy (Dutton, 1973) leads in a natural way to the concept
of exergy4, common in heat engines theory (Rant , 1956).
A review on the various theories of available energetics
and their link to exergy, is given by (Tailleux , 2013). In-
depth literature on the Lorenz’s energetics theory can be
found in (Lorenz , 1967) and (Peixoto and Oort , 1992).
Here a succinct review of the global thermodynamical
properties of the atmosphere is presented and the main
implications of the first and second law of thermodynam-
ics are analyzed.

The total energy budget of the atmosphere can be writ-
ten as E = P +K, where K = (1/2)

∫
v2ρdV represents

the total kinetic energy and P =
∫

(cpT +Lq)ρdV the to-
tal potential energy5 and V is the atmospheric domain.
It can be shown (Peixoto and Oort , 1992) that:

Ṗ = −W (P,K) + Ψ̇ +D, (73)

K̇ = −D +W (P,K), (74)

in which D =
∫
ρε2dV > 0 is the dissipation of ki-

netic energy due to friction, W (P,K) = −
∫

v · ∇pρdV
is the potential-to-kinetic energy conversion rate and
Ψ̇ =

∫
q̇nfdV is the non-frictional diabatic heating due to

the convergence of turbulent sensible heat fluxes, conden-
sation/evaporation, and convergence of radiative fluxes.
The conversion term W can be interpreted as the the
instantaneous work performed by the system. In this re-
spect, equation (73) represents the statement of the first
law of thermodynamics for the atmosphere. Equations

4 Exergy is the part of the internal energy measuring the departure
of the system from its thermodynamic and mechanical equilib-
rium, that is a state of maximum entropy at constant energy.

5 The total potential energy is locally defined as cvT + gz + Lq.
However under the hydrostatic approximation it is straightfor-
ward to show that

∫
(cvT + gz)ρdz =

∫
cpTρdz (see e.g. Lorenz ,

1967).
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(73)-(74) imply that Ė = Ṗ + K̇ = Ψ̇ and therefore the
frictional heating D does not increase the total energy
since it is just an internal conversion between kinetic and
potential energy. The terms involved in eqs. (73)-(74) are
schematically shown in Fig. 10. Stationarity implies that

Ṗ = K̇ = 0 and therefore D = W . A third independent
measure of the strength of the Lorenz’s energy cycle not
implicit in equations (73)-(74) is the generation of avail-
able potential energy, G =

∫
q̇nf (1 − T/Tr)dV in which

Tr is the temperature field of the reference state and, for
a steady state, G = W = D. Lorenz (1955) showed that

G ≈
∫
γT̃ ′q̇′nfρdz, which emphasizes the dependence of

G on the gross static stability γ = −(Rθ/cppT )(∂θ̃/∂p)
(vertical structure of the atmosphere) and on the covari-

ance of temperature and heating on pressure levels T̃ ′q̇′nf
(horizontal structure of the atmosphere).

The strength of the Lorenz energy cycle is a fundamen-
tal nonequilibrium property of the atmosphere, which
just as the meridional enthalpy transport (Sect. IV.B.2),
is known with large uncertainty. Reanalysis (with all
associated problems, see Sect. IV.B.2) constrain D in
the range 1.5 − 2.9 W m−2 (Li et al., 2008). On the
other hand, general circulation models feature values of
D from 2 to 3.5 W m−2 (Marques et al., 2011). Recent
studies suggest that small scales processes such as precip-
itation (Pauluis and Dias, 2012) may significantly con-
tribute to D, which might therefore be considerably un-
derestimated. Furthermore, the knowledge of how the
Lorenz energy cycle will change in a warming scenario
is an important metric to understand changes in future
large scale circulation. Numerical simulations show that
a CO2 doubling causes a decrease of G of nearly 10% (Lu-
carini et al., 2010). Warming patterns can alter G either
by affecting the gross static stability γ or the meridional
temperature/diabatic heating distribution. Hernandez-
Deckers and von Storch (2012) show that the decrease in
G is mostly associated with changes in the gross static
stability changes (i.e. in γ) rather than with meridional
temperature gradient changes.

Another aspect to be considered is that usually the in-
tensity of the Lorenz energy cycle is formulated assuming
hydrostatic conditions and is computed for models that
do not treat explicitly convection, but rather parametrize
it with some sort of adjustment scheme. Therefore,
the Lorenz energy cycle in itself neglects any system-
atic transfer of potential into kinetic energy occurring
through non-hydrostatic, small scale motions. Obviously,
the thermodynamics behind the set-up of organized con-
vective motions can be framed in terms of an energy cycle
similar to Lorenz’, and requires a separated treatment.
See the comments in Steinheimer et al. (2008).

The oceans’ energy cycle is formally identical to that
introduced for the atmosphere, with the only difference
that generation of kinetic energy due to wind stresses
at the surface and dissipation of potential energy due

FIG. 10 Schematic figure showing atmospheric potential P
and kinetic K reservoirs and the transfer processes (ψ,W,D)

between them. Q̇ = ψ +D is the total diabatic heating.

to molecular and small scale eddy mixing are not neg-
ligible (Peixoto and Oort , 1992) and therefore must be
accounted for. As opposed to the atmospheric case, the
oceanic energy cycle is powered mostly by an input of ki-
netic energy, and not of available potential energy. The
oceanic Lorenz’s energy cycle is still poorly understood
from a theoretical point of view (Tailleux , 2013) and the
various dissipation and generation terms are highly un-
certain within the (1 − 2) × 10−2 W m−2 range (Oort
et al., 1994; Storch et al., 2012).

1. Heat engine and efficiency

By defining the total diabatic heating q̇ = q̇nf+ρε2 and
splitting the atmospheric domain V into the subdomain
V + in which q̇ = q̇+ > 0, and V −, where q̇ = q̇− < 0, it
can be seen from equation (73) that:

W =

∫
V +

q̇+ρdV +

∫
−
q̇−ρdV ≡ Φ+ + Φ−, (75)

with Φ+ > 0 and Φ− < 0 by definition. Therefore the
atmosphere can be interpreted as a heat engine, in which
Φ+ and Φ− are the net heat gain and loss, and W the
mechanical work. The efficiency of the atmospheric heat
engine, i.e. the capability of generating mechanical work
given a certain heat input, can therefore be defined as:

η = (Φ̇+ + Φ̇−)/(Φ̇+) = W/Φ̇+. (76)

The analogy between the atmosphere and a (Carnot)
heat engine can be pushed further if we introduce
the total rate of entropy change of the system, Ṡ =∫
q̇/TρdV = Ṡ+ + Ṡ−. In a steady state the following

expression holds:

Ṡ =
Φ̇+

T+
+

Φ̇−

T−
= 0, (77)

where T± ≡ Φ̇±/
∫
V ±

q̇±/TρdV from which it follows
that η = 1− T−/T+.
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Johnson’s approach generalizes to the global circu-
lation similar heat engine theories previously used to
characterize hurricane dynamics (Emanuel , 1991). In
Emanuel’s theory a mature hurricane is depicted as an
ideal Carnot engine driven by the thermal disequilibrium
between the sea-surface temperature Ts and the cooling
temperature T0 with an efficiency 1 − T0/Ts ≈ 1/3. A
similar approach was extended also to moist convection
(Emanuel and Bister , 1996; Rennò and Ingersoll , 1996)
for determining the the wind speed performed by the con-
vective system for a certain rate of heat input Fin from
the sea, W = Fin(1 − T0/Ts). Such an approach has
been used to study large scale, open systems (e.g. Hadley
cell, Adams and Rennò, 2005), and a grand goal seems
the possibility of providing a thermodynamic theory of
monsoonal circulation extending the results by Johnson
(1989).

There are many, different definitions of efficiency used
to characterize global circulations(Ambaum, 2010; John-
son, 2000; Perna et al., 2012; Schubert and Mitchell ,
2013). As a future perspective, it would be desirable,
from a theoretical point of view, to reconcile these defi-
nitions of thermodynamic efficiency and understand their
differences.

2. Entropy production

More insight can be gained if we split Ṡ into the sum
of two contributions, Ṡ = Ṡe + Ṡi, where Ṡe is associated
with the entropy fluxes with the surroundings and Ṡi ≥ 0
with internal irreversible processes (deGroot and Mazur ,
1984). The term Ṡe is associated with a certain amount of
external heat q̇ added to the system by radiation (Goody ,
2000), therefore the previous statement can be written,
according to Clausius’ formulation, as:

Ṡ =

∫
q̇

T
ρdV + Ṡi, Ṡi ≥ 0. (78)

For a steady state Ṡ = 0, hence Ṡe ≤ 0 (which is the
analogue of Clausius’ inequality

∮
δQ/T ≤ 0) implying

that non-equilibrium systems must export entropy to the
surroundings in order to maintain their patterns of flows
and associated gradients.

In the case of the atmosphere, Ṡi = Ṡfric+Ṡhyd+Ṡdiff ,
that is the sum of contributions associated with fric-
tional heating , hydrological cycle (diffusion of water and
phase-changes) and heat diffusion respectively. Entropy
production due to heat diffusion is generally small (≈ 2
mW m−2 K−1, (Kleidon, 2009)) and associated mostly
with dry-convection occurring nearby the surface. Fric-
tional heating is associated with turbulent energy cascade
bringing kinetic energy from large scales down to scales
(millimeters or less for geophysical flows) where viscos-

ity can act and Ṡfric =
∫
ε2/TρdV ≈ 10 mW m−2 K−1

(Fraedrich and Lunkeit , 2008; Pascale et al., 2011).
Pauluis and Dias (2012) argued that another large source
of frictional dissipation (comparable to Ṡfric) comes from

shears surrounding falling hydrometeors. Finally, Ṡhyd
is due to irreversible processes associated with the hy-
drological cycle – evaporation of liquid water in unsatu-
rated air, condensation of water vapour in supersaturated
air and molecular diffusion of water vapour (Pauluis and
Held , 2002a,b) and requires the knowledge of relative hu-
midity H and the molecular fluxes of water Jv:

Ṡhyd =

∫
(C − E)R(lnH+ Jv · ∇pw)dV

−
∫
z=0

Jv,zR lnH. (79)

An indirect estimate of (79) can be obtained from the en-
tropy budget for the water substance Ṡw = Fl/T + Ṡhyd
(Pauluis and Held , 2002b), where Ṡw is the rate of change
of entropy of water substance and Fl the amount of
heat per time that the water substance receives from
its environment (i.e. through evaporation and conden-

sation ≈ 80 W m−2). For a steady state Ṡw = 0 and

so Ṡhyd = Fl(1/Ts − 1/Ta) ≈ 37 mW m−2 K−1 (Pas-
cale et al., 2011). Furthermore, in atmospheric mod-
els aphysical entropy sources due to diffusive/dispersive
numerical advection schemes are also present(Johnson,
1997). Detailed estimates of the entropy budget of the
climate system and of the material entropy production

(Ṡi ≈ 50 mW m−2 K−1) can be found in (Goody , 2000;
Pascale et al., 2011). Oceanic entropy production due
to small-scale mixing gives a small contribution (≈ 1
mW m−2 K−1) to Ṡi (Pascale et al., 2011).

Furthermore, since Ṡi = −Ṡe, an indirect estimation
of the material entropy production may be obtained as
soon as the outgoing entropy fluxes are known. In the
case of the climate systems, for example, this requires the
knowledge of the radiative entropy fluxes. It is immedi-
ately understood the direct method may be, in principle,
applied also to other planets (for which radiative fluxes
is the only thing we can know) in order to infer infor-
mation about their dissipative processes in their interior
(Schubert and Mitchell , 2013). Starting from eq. (78)
(Lucarini et al., 2011) derived an approximate relation
for Ṡi based only on 2-D radiative fluxes which permits
to decompose Ṡi into the sum of contributions due to
horizontal and vertical processes (Pascale et al., 2012).

D. Applications and future perspectives

1. Bistabiliy and tipping points

Based on the evidence supported by Hoffman and
Schrag (2002) and from numerical models (Budyko, 1969;
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FIG. 11 Material entropy production (mW m−2 K−1) as a
function of solar constant S∗ and the CO2 concentration. The
transition SB→W and W→SB are marked with dashed arrows
starting from the tipping point regions (courtesy of R. Boschi,
Universität Hamburg).

Ghil , 1976; Sellers, 1969), it is expected that the Earth is
potentially capable of supporting multiple steady states
for the same values of some parameters such as, for ex-
ample, the solar constant. Such states are the presently
observed warm state (W), and the entirely ice covered
Snowball Earth state (SB). This is due to the presence
of two disjoint strange (chaotic) attractors. The W→SB
and SB→W transitions are due, mathematically, to the
catastrophic disappearance of one of the two strange at-
tractors (Arnold , 1992) and, physically, to the positive
ice-albedo feedback. The SB condition, which might be
a common feature also of Earth-like planets, hardly al-
lows for the presence of life, so this issue is of extreme
relevance for defining habitability condition in extrater-
restrial planets.

PLASIM (Fraedrich et al., 2005), a general circulation
model of intermediate complexity, was used by Boschi
et al. (2013); Lucarini et al. (2013) to reconstruct an
extensive portion of the region of multistabilityin the
plane described by the parameters (S∗, [CO2]). The sur-
face temperature Ts(S

∗, [CO2]) is shown in Fig. 11. The
boundary of the domain in the parametric space where
two states are admissible correspond to the tipping points
of the system.

The thermodynamical and dynamical properties of the
W and SB states are largely different. In the W states,
surface temperature are 40 − 60 K higher than in the
corresponding SB state and the hydrological cycle dom-
inates the dynamics. This leads to a material entropy
production (Fig. 12) larger by a factor of 4 – order of
(40 − 60) × 10−3 W m−2 K−1 vs. (10 − 15) × 10−3 W
m−2 K−1 – with respect to the corresponding SB states
(Boschi et al., 2013). The SB state is eminently a dry
climate, with entropy production mostly due to sensible
heat fluxes and dissipation of kinetic energy.

The response to increasing temperatures of the two
states is rather different: the W states feature a decrease
of the efficiency of the climate machine, as enhanced la-
tent heat transports kill energy availability by reducing
temperature gradients, while in the SB states the effi-
ciency is increased, because warmer states are associated
to lower static stability, which favors large scale atmo-
spheric motions (Fig. IV.D.1). The entropy production
increases for both states, but for different reasons: the
system become more irreversible and less efficient in the
case of W states, while stronger atmospheric motions lead
to stronger dissipation and stronger energy transports in
the case of SB states. A general property which has been
found is that, in both regimes, the efficiency η increases
for steady states getting closer to tipping points and dra-
matically drops at the transition to the new state be-
longing to the other attractor (Fig. IV.D.1). In a rather
general thermodynamical context, this can be framed as
follows: the efficiency gives a measure of how far from
equilibrium the system is. The negative feedbacks tend
to counteract the differential heating due to the stellar
insolation pattern, thus leading the system closer to equi-
librium. At the bifurcation point, the negative feedbacks
are overcome by the positive feedbacks, so that the sys-
tem makes a global transition to a new state, where, in
turn, the negative feedbacks are more efficient in stabi-
lizing the system (Boschi et al., 2013).

FIG. 12 Top: material entropy production (10−3 W m−2

K−1) vs. emission temperature TE(K) for Ω = Ωearth (ma-
genta) and Ω = 0.5Ωearth (black). Bottom: as in top figure
but for efficiency (courtesy of R. Boschi).

Another interesting aspect is the determination of em-
pirical functional relations between the main thermody-
namical quantities and globally averaged emission tem-
perature TE = (LWtoa/σ)1/4, as shown in Fig. 12. This
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would permit to express nonequilibrium thermodynami-
cal properties of the system in terms of parameters which
are more directly accessible through measurements (Lu-
carini et al., 2013).

2. Applications to planetary sciences

The discovery of hundreds of planets outside the solar
system (exoplanets) (Seager and Deming , 2010) is ex-
tending the scope of planetary sciences towards the study
of the so-called exoclimates (Heng , 2012a). A large num-
ber of the exoplanets discovered so far are tidally locked
to their parental star, experiencing extreme stellar forc-
ing on the dayside where temperature up to 2000 K can
be reached. Starlight energy, deposited within the at-
mosphere at the planet’s dayside, is then transported by
atmospheric circulation to the night side. Such a sys-
tem, similarly to the Earth’s climate, works like a heat
engine (Sect. IV.B.2, Sect. IV.C). The strength of the
day-to-night enthalpy flux controls the ratio of outgo-
ing longwave energy fluxes from the night and day side
ξ = LWnight/LWday, called efficiency of heat redistribu-
tion in the astrophysical literature. Observations through
infrared light curves show that the hotter the planet, the
more inefficient is the atmospheres at redistributing stel-
lar energy leading to larger day-night temperature differ-
ences. Numerical simulations (Perna et al., 2012) show
that ξ varies between 0.2 (low heat redistribution) and
1 (full heat redistribution) and depends critically on the
atmospheric optical properties and the intensity of the
stellar irradiance. Relating this definition of efficiency
with what proposed in Sect. IV.C would provide a link
between energy conversion and energy transport in plan-
etary atmospheres.

A thorough understanding of dissipative processes
is fundamental for dealing with planetary atmospheres
(Goodman, 2009; Pascale et al., 2013). Dissipative pro-
cesses are poorly known on Solar System planets (Schu-
bert and Mitchell , 2013) and on exoplanets where pro-
cesses unusual on Earth as Ohmic dissipation6 and cas-
cading mechanisms such as shock wave breaking are be-
lieved to be common features (Batygin and Stevenson,
2010; Heng , 2012b).

6 In hot Jupiters temperatures may be very high (≥ 1500 K), al-
lowing for thermal ionization (governed by the Saha equation)
and thus fast-moving (in hot Jupiters winds ∼ 1 km s−1) electric
charges. This induces an electric current towards the interior of
the planet, where energy is then converted into heat by ohmic
dissipation.

V. CLIMATE RESPONSE AND PREDICTION

A. Introduction

In the previous section, we have investigated the cli-
mate as a non-equilibrium physical system and have em-
phasized the intimate relation between forcing, dissipa-
tion, energy conversion, and irreversibility. The same
approach can be brought to a more theoretical level by
taking the point of view of non-equilibrium statistical
mechanics.

Non-equilibrium statistical mechanics provides the
natural setting for investigating the mathematical prop-
erties of forced and dissipative chaotic systems, which live
in a non-equilibrium steady state (NESS). In this state,
typically, the phase space contracts, entropy is gener-
ated, and the predictability horizon is finite. Deviations
from this behavior are possible, but extremely unlikely
. Conceptually, non-equilibrium steady states are gen-
erated when a system is put in contact with reservoirs
at different temperatures or chemical potentials, and one
disregards the transient behaviors responsible for the re-
laxation processes (Gallavotti , 2006).

The science behind non-equilibrium statistical me-
chanical systems is still in its infancy, so that, as op-
posed to the equilibrium case, we are not able to predict
the properties of a system given the parameters describ-
ing its internal dynamics and the boundary conditions,
except in special cases where the dynamics is trivial.

It is then important to choose a suitable mathemat-
ical setting for being able to state some useful general
results and compare numerical experiments with theory.
It is advantageous to assume that the forced and dissi-
pative systems under our consideration possess a unique
Sinai-Ruelle-Bowen (SRB) measure (Eckmann and Ru-
elle, 1985; Ruelle, 1989; Young , 2002), which guarantees
that, regardless of the initial state of the system, the
steady state statistical properties are well defined and
stable with respect to adding some noise. The invari-
ant measure is supported on the attractor on the sys-
tem, which is smooth along the unstable directions, and
singular along the stable directions of the flow. In the
very intuitive language of Lorenz, the attractor locally
looks like the product of a manifold and a Cantor set.
Moreover, the SRB measure can be considered as the
zero-noise limit of the invariant measure of the original
system perturbed by (small) stochastic forcing, and is
thereby referred to as physical measure. Note that al-
most every time numerical simulations are performed,
these hypotheses are implicitly assumed, because in the
absence of an SRB measure, for most cases of practical
interests it would make little sense to compute any sta-
tistical property of the system. In the case of multistable
systems, possessing a disjoint attractor, one can assume
that the statistical properties are well defined for all ini-
tial conditions belonging to the basin of attraction of the
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same of the distinct piece of the attractor.
(Ruelle, 1997, 1998a,b, 2009) recently proved that in

the case of an Axiom A system, its SRB measure, despite
its geometrical complexity, has also an extremely fasci-
nating degree of regularity. In fact, there is a smooth
dependence of the SRB measure to small perturbations
of the flow, and it is possible to derive corresponding ex-
plicit formulas. Such response formulas boils down to
a Kubo-like (Kubo, 1957; Kubo et al., 1988) perturba-
tive expression where the terms describing the linear and
nonlinear response of the system can be written as ex-
pectation values of observables on the unperturbed SRB
measure. This approach is especially useful for studying
the impact of changes in the internal parameters of a sys-
tem or of small modulations to the external forcing, and
various studies have highlighted the practical relevance
of Ruelle theory for studying what we may call the sen-
sitivity of the system to small perturbations. Among the
many results, one can mention the actual implementa-
tion of the response theory as an algorithm for predict-
ing the finite and infinite time ensemble-averaged impact
of forcings (Abramov and Majda, 2008), the provision of
a connection between response theory and ensemble ad-
joint schemes (Eyink et al., 2004), the investigation of the
frequency-dependent linear response of the system (Re-
ick , 2002). Finally, some efforts have been directed at ex-
tending the analysis of the frequency dependent response
to the nonlinear case (Lucarini , 2008) and on testing the
robustness of the theory with simple chaotic models (Lu-
carini , 2009), and then applying the Ruelle’s formulas
to simples cases of geophysical relevance (Lucarini and
Sarno, 2011). Recently the response theory has been
used to study the impact of stochastic perturbations of
chaotic systems (Lucarini , 2012) and derive rigorously
parametrizations for reducing the complexity of multi-
scale systems (Wouters and Lucarini , 2012) (see next
Section).

B. Response formulas

Let’s consider an Axiom A dynamical system whose
evolution equation can be written as ẋ = F (x) and
let’s assume that it possesses an invariant SRB measure
ρ(0)(dx). Ruelle (1997, 1998a,b, 2009) has shown that
if the system is weakly perturbed so that its evolution
equation can be written as:

ẋ = F (x) + Ψ(x)T (t) (80)

where Ψ(x) is a weak time-independent forcing and T (t)
is its time modulation, it is possible to write the mod-
ification to the expectation value of a general smooth
observable A as a perturbative series:

ρ(A)t =

∞∑
n=0

ρ(n)(A)t, (81)

where ρ(0)(A)t = ρ(0)(A) is the expectation value of A
according to the unpertubed invariant measure ρ0, while
ρ(n)(A)t with n ≥ 1 represents the contribution due to
nth order processes and can be expressed as a n−uple
convolution product:

ρ(n)(A)t,=

∫ ∞
−∞

dτ1 . . .

∫ ∞
−∞

dτnG
(n)
A (τ1, . . . , τn)

× T (t− τ1) . . . T (t− τn). (82)

The integration kernel G
(n)
A (τ1, . . . , τn) is the nth order

Green function, which can be written as:

G
(n)
A (τ1, . . . , τn) =

∫
ρ(0)(dx)Θ(τ1) . . .Θ(τn − τn−1)

× ΛΠ(τn − τn−1) . . .ΛΠ(τ1)A(x). (83)

where Λ(•) = Ψ·∇(•) describes the impact of the pertur-
bation field and Π(σ) is the unperturbed time evolution
operator such that Π(σ)K(x) = K(x(σ)). The Green
function obeys two fundamental properties

• its variables are time-ordered: if j > k, τj > τk →
G

(n)
A (τ1, . . . , τn) = 0;

• the function is causal: τ1 < 0→ G
(n)
A (τ1, . . . , τn) =

0.

It is important to note that many authors suggest that,
at all practical purposes, the validity of the response the-
ory extends well beyond the (rich but somewhat limited)
mathematical world of Axiom A systems if one consider
reasonable physical systems. See discussions in (Eyink
et al., 2004; Lacorata and Vulpiani , 2007; Marconi et al.,
2008). One way to rationalize this statement comes from
the so-called Chaotic Hypothesis: Axiom A systems can
be considered as good effective models of actual systems
with many degrees of freedom (Gallavotti , 1996).

Limiting our attention to the linear case we have:

ρ(1)(A)t =

∫ +∞

−∞
dτ1G

(1)
A (τ1)T (t− τ1) (84)

where the first order Green function can be expressed as
follows:

G
(1)
A (τ1) =

∫
ρ0(dx)Θ(τ1)Ψ(x) · ∇A(x(τ1)), (85)

In systems possessing a smooth invariant measure, like
when equilibrium conditions apply or stochastic forcing
is imposed, we can write ρ0(dx) = ρ0(x)dx, where ρ0(x)
is the so-called density. In this case, we can rewrite Eq.
85 as follows:

ρ(1)(A)t =

∫ +∞

−∞
dτ1Θ(τ1)

∫
dxρ0(x)

×B(x)A(x(τ1)T (t− τ1), (86)
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where B(x) = −∇ ·
(
ρ0(x)Ψ(x)

)
/ρ0(x). In other terms,

one can predict the response at any time horizon t from
the knowledge of the lagged correlation between the cho-
sen observable A and the observable B, which depends
on the invariant measure ρ0 and on the perturbation vec-
tor field Ψ. Equation (86) provides a very general form
of the Fluctuation-Dissipation Theorem (FDT) (Lacorata
and Vulpiani , 2007; Ruelle, 1998a), which extends the re-
sults by (Kubo, 1957) obtained considering the classical
case of equilibrium system immersed in a heat bath. Re-
cently, the FTD for system possessing a smooth invariant
measure result has been extended to the nonlinear case
(Lucarini and Colangeli , 2012).

The more common forms of the FDT can be obtained
by taking one or more of the following assumptions: :

• the perturbation flow is the form Ψ(x) = εx̂i;

• the observable is of the form A(x) = xj .

where xk is the kth component of the x vector and x̂k is
the corresponding unit vector. In this case, Eq. 86 takes
the form:

ρ(1)(xj)t = −ε
∫ +∞

−∞
dτ1Θ(τ1)

∫
dxρ0(x)

× ∂i log[ρ0(x)]xj(τ1)T (t− τ1),
(87)

If one takes the additional simplifying assumption that
unperturbed invariant measure has a Gaussian form, so
that ρ0(x) = 1/Z exp(−β

∑N
j=1 x

2
j/2), where β > 0 and

Z is a normalizing factor, we obtain:

ρ(1)(xj)t = εβ

∫ +∞

−∞
dτ1Θ(τ1)

∫
dxρ0(x)

× xixj(τ1)T (t− τ1)

= εβ

∫ +∞

−∞
dτ1Θ(τ1)Ci,j(τ1)T (t− τ1), (88)

where Ci,j is the lagged correlation between xi and xj
in the unperturbed state. See also discussion in (Cooper
and Haynes, 2011; Cooper et al., 2013).

Unfortunately, the link between linear response of the
system to external perturbations and its internal fluctu-
ations seems more elusive when the unperturbed state ,
as in general in case of non-equilibrium deterministic sys-
tems discussed above, has a singular invariant measure.
In e.g. (Ruelle, 2009) it is shown that since the invariant
measure is singular, the response of the system contains
two contributions, such that the first may be expressed
in terms of a correlation function evaluated with respect
to the unperturbed dynamics along the space tangent to
the attractor (unstable manifold) and is formally identi-
cal to what given in Eq. 86. This part of the response
decays rapidly due to mixing. On the other hand, the
second term, which has no equilibrium counterpart, de-
pends on the dynamics along the stable manifold, and,

hence, it may not be determined from the unperturbed
dynamics and is also quite difficult to compute numer-
ically. The response to forcings along the stable direc-
tions can also be shown to converge as perturbations in
these directions get damped exponentially fast by defi-
nition. These properties suggest the basic fact, already
suggested heuristically by (Lorenz , 1979), that in the case
of non-equilibrium systems internal and forced fluctua-
tions of the system are not equivalent, the former being
restricted to the unstable manifold only.

Despite such a serious mathematical difficulty, the ap-
plication of FDT, even in extremely simplified, quasi-
Gaussian, approximation, has enjoyed a good success in
climate science, even if it is clear that the ability of FDT
in predicting the response to perturbation depends crit-
ically on the choice of the observable of interest, on the
length of the integrations needed for constructing the
approximation of the invariant measure, and, of course,
on the validity of the linear approximation (Cooper and
Haynes, 2011; Cooper et al., 2013; Gritsun and Bransta-
tor , 2007; Langen and Alexeev , 2005).

There are, in fact, various ways to circumvent the prob-
lem of the rigorous non-equivalence between forced and
free fluctuations. First, one can consider the smooth-
ing effect due to unavoidable physical or numerical noise.
On a more basic level, one can observe that when con-
sidering smooth, coarse-grained observables, one expect
to see little influence of the fine structure of the invari-
ant measure of chaotic deterministic systems, as projec-
tions from high-dimensional spaces to lower dimensional
ones are involved(Marconi et al., 2008). In the case of
climate problems, one expects that, for a given length
of the control run needed for accumulating the statistics,
the FDT will perform better in predicting the response of
the system to perturbations if we consider as observable
A quantities like the globally averaged surface tempera-
ture or the globally averaged emitted longwave radiation
at the top of the atmosphere, than in predicting the re-
sponse of, e.g. the surface temperature in an individual
grid point. Moreover, it is indeed not obvious a priory to
determine the range of forcings one which the response
of a given observable will be closely approximated by the
linear component of the response. Further comments can
be found at the end of Sec. VI

C. Computing the Response

1. Spectroscopic method

If we select T (t) = ε cos(ω0t) = ε/2(exp(−iω0t +
exp(iω0t)) as modulating factor of the perturbation field
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Ψ(x), from equation Eq. 84 we derive:

ρ̃(1)(A)t = ε/2

∫ +∞

−∞
dτ1G

(1)
A (τ1) exp(−iω0(t− τ1))

+ ε/2

∫ +∞

−∞
dτ1G

(1)
A (τ1) exp(iω0(t− τ1))

= ε/2 exp(−iω0t)χ
(1)
A (ω) + c.c. (89)

where χ
(1)
A (ω0) is the Fourier Transform of G

(1)
A (t), usu-

ally referred to as linear susceptibility, evaluated at fre-
quency ω = ω0, and c.c. indicates complex conjugate.
Therefore, under the hypothesis of linearity, by perform-
ing an ensemble of experiments where the forcing is of the
form T (t) = ε cos(ω0t), we can extract the linear suscep-
tibility at frequency ω by selecting the ω0 component of
the Fourier transform of the signal ρ̃(1)(A)t obtained by
taking the ensemble average of the difference between the
time series of A in the perturbed and unperturbed case.
By changing systematically the frequency ω of the forc-

ing, one can reconstruct the susceptibility χ
(1)
A (ω) on a

chosen interval of frequencies. It is useful to recapitulate
some useful features of the susceptibility:

• In general the response of a system to a forcing can
be extremely different at for time scales of forcings.
Therefore, one should use with great caution the

concept of scale analysis. Moreover, limω→0 χ
(1)
A (ω)

is the static response of the system and is a posi-
tive number, which gives what is usually called the
sensitivity.

• Resonances in the susceptibility function corre-
spond to spectral ranges where the system is ex-
tremely sensitive to forcings. In Fig. 13 we show
the real and imaginary part of the susceptibility
for z variable of the (Lorenz , 1963) model - see Eqs
.(49)-(51) - for the classical values of the param-
eters (m = 1, σ = 10, r = 28, β = 8/3) and
a given choice of the forcing (Ψ(x) = [0;x; 0]>,
T (t) = 2ε cos(ωt)). We find that for ω ∼ 8.3,
a very peaked spectral feature is apparent. Such
a resonance is due to the Unstable Periodic Or-
bits (UPOs) (Cvitanović, 1988) of the system with
the corresponding period (Eckhardt and Ott , 1994).
UPOs populate densely the attractors of chaotic
systems and constitute the so-called skeleton of
the dynamics. One can, in principle, reconstruct
the whole statistics focussing on such special or-
bits then on the usual trajectories of the flow. In
the case geophysical flows, UPOs have been associ-
ated to modes of low-frequency variability (Grit-
sun, 2008). One can, more qualitatively, asso-
ciate resonance to positive feedbacks acting on time
scales corresponding to the resonant frequency.

• While |χ(1)
A (ω)| measures the amplitude of the re-

sponse of the system to perturbation at frequency

ω, arctan(={χ(1)
A (ω)}/<{χ(1)

A (ω)}) gives the phase
delay between the forcing and the response, be-

cause the <{χ(1)
A (ω) (={χ(1)

A (ω)) gives the compo-
nent of the response that is in phase (our of phase)
with the forcing. Depending on the forcing, on the
system, and on the observable, this angle can vary
significantly even in a relatively small range of fre-
quencies, as a result of resonances. There is, in
general, nothing nonlinear in the presence of delays
between forcing and response.

• The two components ={χ(1)
A (ω)} and <{χ(1)

A (ω)}
are connected by integral equations, the so-called
Kramers-Kronig relations (Lucarini , 2008, 2009;
Lucarini et al., 2005; Ruelle, 2009). Such relations
have their foundation in the causality of the Green
function and establish a fundamental connection
between the response at different time scales:

<{χ(1)
A (ω)} =

2

π
P

∫
dω′

ω′={χ(1)
A (ω′)}

ω′2 − ω2
; (90)

={χ(1)
A (ω)} = −2ω

π
P

∫
dω′

ω′<{χ(1)
A (ω′)}

ω′2 − ω2
. (91)

where P indicates that the integral is taken in prin-
cipal part. In particular one finds that:

<{χ(1)
A (0)} =

2

π

∫
dω′
={χ(1)

A (ω′)}
ω′

, (92)

which provides a fundamental link between the
static response - the sensitivity - and the out-of-
phase response at all frequencies. An enormous
literature exists in optics, acoustics, condensed
matter physics, particle physics, signal processing
on the theory and on the many applications of
Kramer-Kronig relations and on the related sum
rules, which provide integral constraints related to
the asymptotic behavior of the susceptibility (Lu-
carini et al., 2005). This approach boils down to
a spectroscopic investigation of the system and is
thoroughly discussed, also in its numerical aspects,
in (Lucarini , 2009; Lucarini and Sarno, 2011).

In Fig. 14 we present the real and imaginary part of
the susceptibility of the mean energy e of the celebrated
Lorenz (1996) model:

dxi
dt

= xi−1(xi+1 − xi−2)− xi + F (93)

where i = 1, 2, ....., N , and the index i is cyclic so that
xi+N = xi−N = xi, and e = 1/N

∑N
j=1 x

2
j/2. The

quadratic term in the equations simulates advection, the
linear one represents thermal or mechanical damping and
the constant one is an external forcing. The evolution
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FIG. 13 Measured real (blue line) and imaginary (red line)
part of the susceptibility z variable of the Lorenz 63 model.
Data from Lucarini (2009)
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FIG. 14 Measured real (blue line) and imaginary (red line)
part of the susceptibility for the average energy of the Lorenz
96 model. The rigorous extrapolation of the susceptibility
obtained via Kramers-Kronig analysis is reported (real part:
black line; imaginary part: magenta line). Data from Lucarini
and Sarno (2011)

.

equations are invariant under i → i + 1, so that the dy-
namics is the same for all variables. Please find details
on the experiments in Lucarini and Sarno (2011), per-
formed using N = 40 and F = 8. The system is per-
turbed by the vector field Ψ(x) = [1; . . . ; 1]> modulated
by T (t) = 2ε cos(ωt). The resulting real and imaginary

part of χ
(1)
e (ω) are reported in Fig. 14, together with

the output of the data inversion performed via Kramers-
Kronig relations. Once we obtain the susceptibility, as
discussed in (Lucarini and Sarno, 2011), it is possible to
derive the corresponding Green function by applying the
inverse Fourier Transform. This is the first application
of the Kramers-Kronig theory in a geophysical context.

2. Broadband forcing

If, instead, we select T (t) = δ(t), we derive from Eq.

85 that ρ(1)(A)t = G
(1)
A (t), i.e. the Green function corre-

sponds to the relaxation of an ensemble of trajectories of
the system after a finite displacement along Ψ(x). Ob-

viously, we have that ρ̃(1)(A)ω = χ
(1)
A (ω), where the ˜

symbol, indicates, as customary, that a Fourier Trans-
form has been applied, so that the Fourier Transform of
the signal is the linear susceptibility. Therefore, using
just one ensemble of experiments where the perturbation
is described by an impulsive forcing, we can gather the
same information on the response of the system which,
in the previous case required an accurate sampling of dif-
ferent frequencies.

It is not always possible or advantageous to perform
either of this class of experiments. Let’s look at the prob-
lem from a slightly more general point of view., We apply
the Fourier Transform to both sides of Eq. 84 and obtain:

ρ̃(1)(A)ω = χ
(1)
A (ω)T̃ (ω) (94)

Choosing a sine or cosine function with argument ω0t
for the function T (t) amounts to selecting as T̃ (ω) the
sum of two δ’s centered in ω = ω0. Therefore, the input
(forcing) allows only a small portion of the information to
derived on the system from the output (response). Let’s
assume that we choose the modulation T (t) such that
T̃ (ω) is not vanishing for any ω. A good option is to
consider a broadband modulation, i.e. such that T̃ (ω)
is not vanishing for any ω and decreases slowly enough,
e.g. like a power law. At this purpose, it is enough
to choose a function which is differentiable only a finite
numbers of times, including the case where there T (t) is
not continuous. If we perform an ensemble of simulations
of the forced system, measure ρ̃(1)(A)ω, we can readily
derive:

χ
(1)
A (ω) =

ρ̃(1)(A)ω

T̃ (ω)
(95)

Therefore, one single set of experiments is, in fact all we
need to do to learn about the linear response properties
of the system for the observable A. If we want to predict
the response at finite and infinite time of the system to
forcing with the same spatial pattern Ψ(x) but with dif-

ferent time modulation R(t), we can derive G
(1)
A (t) from

χ
(1)
A (ω) obtained via Eq. 95, and then plug it into Eq.

84. Alternatively, one can write:

ρ̃(1)(A)Rω = ρ̃(1)(A)Tω
R̃(ω)

T̃ (ω)
(96)

where the upper indices R and T have been inserted for
clarity, and then compute the inverse Fourier transform
to derive the response at all times.
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e (t) for the average energy

e of the Lorenz (1996) model using the perturbation given in
Eq. 97. Compare with Fig. 4 in Lucarini and Sarno (2011)
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D. Prediction via Response theory

The real test of the quality of an experimentally de-

rived linear Green function G
(1)
A is the assessment of

its ability to support predictions about the system’s re-
sponse to any temporal pattern of forcing R(t). The real
benefit of the broadband approach described here relies

on exploiting linearity, and so deriving G
(1)
A from just one

ensemble of simulations, each performed with the same

modulation T (t). Computing the G
(1)
A per se might be,

in fact of little relevance 7.

At this regard, we have performed additional experi-
ments on the (Lorenz , 1996) model mirroring what pre-
sented in Sec. V.C.1. In this case, we have chosen as
time modulation T (t) = εΘ(t), whose spectrum is indeed
broadband (T̃ (ω)/ε = πδ(ω) + iP[1/ω]). In this case, we
have quite simply that:

G(1)
e (t) =

d

dt
ρ(1)(e)t. (97)

Using about 1/100 of the computing time needed in (Lu-
carini and Sarno, 2011), we have produced an estimate
of the Green function of comparable quality; see Fig. 15.
Additionally, we decided to check the predictive power
of the reconstructed Green function given in Fig. 15 by
testing its performance in predicting, through Eq. 84,
the response of the system to a perturbation having tem-
poral pattern given by T (t) = ε sin(2πt) (ε = 0.25). The
results are presented in Fig. 16. The agreement between
the measured value of ρ(1)(e)t and the value predicted

using
∫
dτG

(1)
e (τ)T (t − τ) is remarkable. One must em-

phasize that the agreement is comparable if one selects
ε = 1, thus moving away from the linear regime.

7 The authors are thankful to F. Cooper for pointing out this issue.
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FIG. 17 Comparison between the observed response in the
globally averaged surface temperature TS to an exponential
increase at 1% per year of CO2 concentration from 360 to
720 ppm, with subsequent stabilization (black line), with the
prediction performed using linear response theory (blue line).
The experiment has been carried out using an ensemble of
200 climate simulations performed using the PLASIM model
(Fraedrich et al., 2005)

.

E. Climate Response, Climate Change prediction

Let’s take inspiration from the previous example in or-
der to get some results of stricter geophysical relevance:
we want to perform predictions on the impact of increases
in the CO2 concentration on the globally averaged sur-
face temperature as simulated by a climate model.

So, we consider that ẋ = F (x) is the system of equa-
tions describing the discretized version of a given model
of the continuum PDEs describing the evolution of the
climate in a baseline scenario with set boundary condi-
tions - and in particular the the value of the CO2 con-
centration and of the solar constant. We assume, for
simplicity, that system model does not feature daily or
seasonal variations in the radiative input at the top of
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the atmosphere. Let’s choose for the observable A the
globally averaged surface temperature of the planet TS ,
let’s consider as perturbation field Ψ(x) the convergence
of radiative fluxes due to change in the logarithm of the
atmospheric CO2 concentration. We want to be able to
predict at finite and infinite time the response of the the
system to one of the standard CO2 forcing scenario given
by the IPCC by performing an independent set of per-
turbed model integrations.

The test perturbation is modulated by the function
εΘ(t), where ε is such that we double the amount of CO2

concentration in the atmosphere. Our goal is to predict
the climate response to the customary 1% increase of
CO2 concentration from the baseline value to its double.
We select as baseline concentration [CO2] = 360 ppm.
We perform 200 simulations, each lasting 200 years for
both scenarios of CO2 forcing. Our experiments are per-
formed using PLASIM (Fraedrich et al., 2005) with a T21
spatial resolution, 10 vertical layers in the atmosphere,
and swamp ocean having depth of 50 m.

From the time series of the ensemble mean of the
change of TS - ρ(1)(TS)t - resulting from the sudden in-

crease in the CO2, we derive the Green function G
(1)
TS

(t)
using Eq. 97. Climate sensitivity is, in fact, defined by
Eq. 92. Given the chosen pattern of forcing, we can
rewrite is as follows:

∆T = <{χ(1)
A (0)} =

2

π

∫
dω′<{ρ̃(1)(TS)ω′}, (98)

which relates climate response at all frequencies to its
sensitivity.

We then convolute the Green function with the tem-
poral pattern of forcing of the second set of experiments.
Since our relevant control parameter is the logarithm
of the CO2 concentration, the pattern of forcing corre-
sponding to an exponential increase is, in fact, a straight
line. The results are presented in Fig. 17, where we com-
pare the predicted pattern of increase (blue line) with the
measure one (black line). The agreement is remarkable,
both on the short and on the long time scales, while a
discrepancy lower than 10% exists between 50 and 100
years lead time.

Apparently, despite all the nonlinear feedbacks of the
climate model, the response to changes in the logarithm
of CO2 concentration can be accurately described by lin-
ear response theory at all time scales, not only in the
static case, corresponding to climate sensitivity, which is
our model, is extremely high as a result of lack of the
seasonal cycle. Nonlinearity in the underlying equations
and presence of strong positive and negative feedbacks
do not rule out the possibility of constructing accurate
methods for predicting the response. In fact, the meth-
ods described here could be extended to the nonlinear
case by looking at the response in the frequency domain

(Lucarini , 2008, 2009), even if the data quality require-
ment is obviously stricter.

The result presented here suggests that, in fact, many
of the scenarios of greenhouse gases concentration in-
cluded in the IPCC reports (IPCC , 2001, 2007, 2013)
may in fact be partly redundant, as for certain variables
might be accurately described by linear response theory
starting from just one scenario. Equations 95 - 96 con-
stitute the basis for predicting climate response at all
scales.

Obviously, with a given set of forced experiments, it is
possible to derive the sensitivity to the the given forcing
for as many climatic observables as desired. It is im-
portant to note that, for a given finite intensity ε of the
forcing, the accuracy of the linear theory in describing
the full response depends also on the observable of inter-
est: the performance of the methods described here may
be excellent for TS but probably not for the precipitable
water in the atmosphere, which, in first approximation,
increases exponentially on the atmospheric temperature.
Moreover, the signal to noise ratio and, consequently, the
time scales over which predictive skill is good may change
a lot from variable to variable.

F. Noise and Prediction

Of course, in order to talk about predictability, we need
to specify what are the time scales over which we expect
to have satisfactory predictive skills. In fact, linear re-
sponse theory allows for deriving some scaling laws for
addressing this matter. The main obstacle for achiev-
ing a good degree of predictability is the uncertainty on
the estimate of response signal given in Eq. 94 from the
outcomes of the numerical experiments because of the
finiteness of the ensemble and of the duration of each
numerical simulation.

The limits to predictability can be estimated as fol-
lows. As a result of the presence of a finite ensemble
of N simulations of finite length L, the estimates of the
absolute value of the response |ρ̃(1)(A)obsω | due to a forc-
ing with spatial pattern Ψ(x) and temporal pattern T (t)
differs from the true real and imaginary parts of the re-
sponse |ρ̃(1)(A)ω| by a background function η(ω), which
is a white noise of standard deviation σ ∼ αN−1/2L−1/2,
where α is a constant, because the system decor relates
exponentally fast thanks to its chaotic behavior. In the
limit of either N →∞ or L→∞, if our estimate - as we
expect - in unbiased, we obtain |ρ̃(1)(A)obsω | → |ρ̃(1)(A)ω|.

From Eq. 95 we derive, that, if |T (ω)| ∼ βω−ν

for large values of ω, then the absolute value of

|χ(1)
A (ω)obs| is affected by a non stationary error due to

undersampling, whose standard deviation increases as

αβ−1N−1/2L−1/2ων . Let’ assume that |χ(1)
A (ω)| ∼ κω−γ

as ω → ∞, with κ also a constant. Clearly, when ω is
large enough, the absolute value of the true susceptibil-
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ity |χ(1)
A (ω)| s smaller than the frequency dependent noise

due to the unavoidable presence of η(ω). This happens
when

ω & ωcrit =

(
α

βκ

)−1/(γ+ν)

N1/(2γ+2ν)L1/(2γ+2ν). (99)

In other terms, for frequencies larger than ωcrit, the esti-

mate of χ̂
(1)
A (ω) is of little utility. This translates into

the fact that the corresponding empirical Ĝ
(1)
e (t) will

perform poorly in predicting changes occurring on time
scales smaller than

tcrit ∼
(
α

βκ

)1/(γ+ν)

N−1/(2γ+2ν)L−1/(2γ+2ν). (100)

Therefore, we are able to perform prediction on smaller
and smaller scales if we have long integrations, many
members of the ensemble, or a slow asymptotic decay of
the susceptibility, and it is advantageous to choose, when
probing the system, an observable which is as broadband
as possible. Equations 99-100 provide a guidance on how
the computational needs required to achieve predictive
skills on a given time scale. Similar results can be ob-
tained by looking at the impact of noise due to under-
sampling on the real and imaginary part of the response
and of the susceptibility.

VI. MULTISCALE SYSTEMS AND
PARAMETRIZATIONS

A. Introduction

The climate is a complex system featuring non-trivial
behavior on a large range of temporal and spatial scales
(Lucarini , 2011; Peixoto and Oort , 1992; Vallis, 2006).
It is clear that, no matter which are the available com-
puting resources, we are able to simulate explicitly only
the variable relevant for given ranges of spatial and tem-
poral scales. Different choices of such ranges, in fact, cor-
respond to different approximate theories of geophysical
fluid dynamics aimed at describing specific phenomenolo-
gies, the most prominent case being, probably, the case
of quasi-geostrophic theory.

A manifestation of the inability to treat ultraslow vari-
ability can be found in the usual practice in climate mod-
eling of choosing fixed or externally driven boundary con-
ditions, such as done when assuming a fixed extent for
the land-based glaciers, and, consequently, for the sea-
level, or imposing a specific path of CO2 concentration
for the atmosphere. See, at this regard, the distinction
between macroweather and climate proposed by (Lovejoy
and Schertzer , 2013). Instead, the impossibility of treat-
ing accurately fast processes requires the construction of
so-called parametrizations able to account, at least ap-
proximately, the effect of the small scales on the large

scales, as a function of the properties of the large scale
variables. The process of deriving parametrizations is
also called model reduction or variable elimination.

Whereas deterministic and stochastic parametrizations
are by now common in geophysical fluid dynamical mod-
els (Palmer and Williams, 2009), many of the approaches
used up to now have been based on the existence of a time
scale separation between microscopic and macroscopic
processes. If one does assume a vast time-scale separation
between the slow variables X and the fast variables Y ,
averaging and homogenization methods (Arnold , 2001;
Kifer , 2004; Pavliotis and Stuart , 2008) allow for deriv-
ing an effective autonomous dynamics for the X vari-
ables, able to encompass the impact of the dynamics of
the Y variables. In this prototypical case, one speak of
a two-level system where the X and Y variables consti-
tute the two levels, respectively. A typical example of
how this kind of theory can be used in climate science is
the setting considered by Hasselmann, where fast weather
systems influence slow climate dynamics. These methods
will be reviewed in section VI.B.

Unfortunately, in many practical cases of interests geo-
physical fluid dynamics, such a scale separation does not
exist,so that there is no spectral gap able to support uni-
vocally the identification of theX and Y variable. In fact,
when the resolution of a numerical model is changed, all
the parametrizations have to be re-tuned, because the
set of resolved variables has changed. The possibility of
constructing a robust theory of parametrizations would
allow for constructing schemes applicable seamlessly to a
model when its resolution is changed.

Here we will focus on analytical methods that allow
one to derive reduced models from the dynamical equa-
tions of the full model. Projector operator techniques
have been introduced in statistical mechanics with the
goal of effectively removing the Y variables. In partic-
ular, considerable interest has been raised by the Mori-
Zwanzig approach, through which a formal - albeit prac-
tically inaccessible - solution for the evolution of the X
variables is derived (Zwanzig , 2001). These equations
in general contain both a correlated noise term and a
memory term. Some attempts have been made to make
approximation to the Mori-Zwanzig projected equations
to obtain practically useful equations. In applications of
stochastic mode reduction in climate science, the memory
term is usually not taken into account. This term could
however be very relevant in systems without a time-scale
separation, as for example in the parametrization of cloud
formation in an atmospheric circulation model. The pres-
ence of memory in such systems has been discussed in
(Bengtsson et al., 2013; Davies et al., 2009; Piriou et al.,
2007). The Mori-Zwanzig projection operator technique
and related approaches are described in section VI.D.

Besides a limit of infinite time scale separation, the
limit of weak coupling between the different scales can
also be considered. In this limit, the dynamics retains the
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correlated noise and memory dependence that appeared
in the Mori-Zwanzig reduced equations. The advantage
of looking at this limit is however that the noise autocor-
relation function and memory kernel can now be written
as simple correlation and response functions of the un-
resolved dynamics. This approach will be reviewed in
section VI.E

Many other parametrization methods have been pro-
posed from a more heuristic point of view. Particularly
relevant with respect to the current study are the re-
sults by (Kwasniok , 2012) indicating that non-Markovian
parametrizations are superior to Markovian ones when a
large time scale separation is absent. A similar conclusion
can be reached from the work on empirical model reduc-
tion by Chekroun et al. (2011a), where non-Markovian
models are fitted to data without a clear time scale sep-
aration.

B. Averaging and homogenization

When applying averaging and homogenization tech-
niques, one considers dynamical systems where a small
parameter ε controls the time scale separation between a
slow and fast evolution in the system. The prototypical
set of equations for such a problem is

ẋ =f(x, y)

ẏ =
1

ε
g(x, y)

The principle behind averaging can be considered sim-
ilar to the law of large numbers. If the time scale sep-
aration becomes large, the fast system will go through
its entire attractor on the time scale of evolution of the
slow system. In the limit of ε going to zero, the slow
system x will therefore ’see’ all possible values of y. As
in the law of large numbers, the overall effect of all these
contributions can be substituted by one single value. It
can be shown that for finite time T , the trajectory x(t)
converges to a solution of the equation

Ẋ = F (X)

where F (X) = ρ∞,X(f(X, y)) is the averaged value of the
tendency, the average taken over the invariant measure
ρ∞,X of the dynamical system

ẏ =g(X, y)

resulting for y when X is considered as a fixed forcing
parameter. The convergence to the averaged solution de-
pends on the type of the y dynamical system (stochastic
or chaotic), on the coupling (full two-way or fast-to-slow
only), and on the initial conditions (Kifer , 2009). Exam-
ples of dynamical systems can be constructed where for a
large set of initial conditions of y, the solution for x does

not converge to the averaged solution (Kifer , 2008). Fur-
thermore, if the y system has long time correlations, such
as in a system with regime behaviour, the homogenized
system may converge badly and an extension based on
a truncation of the transfer operator has been proposed
(Schütte et al., 2004).

Let’s consider a simple example system.

ẋ =xy

ẏ =− λ

ε
y +

1√
ε

dW

dt

The y system is an Ornstein-Uhlenbeck process, indepen-
dent of x. The invariant measure of the fast y system is
a Gaussian distribution with zero mean. Taking the av-
erage of f(x, y) = xy, we see that the averaged equation
in this case is the uninteresting equation Ẋ = 0.

This example immediately motivates the use of homog-
enization methods. Here one scales the equation to a
longer time scale θ = εt, the so called diffusive time scale
and then performs the asymptotic expansion. Similarly
to how correctly rescaling the sums of the law of large
number leads to the more interesting central limit theo-
rem instead, also in the setting of time scale separated
systems, we get stochastic behavior on the diffusive time
scale. For the example considered above, we get a weak
convergence to a reduced stochastic differential equation
for the X variable instead of the trivial dynamical system
obtained before.

(Abramov , 2012) has recently presented an applica-
tion of this method to deriving a simplified dynamics
for a system of geophysical relevance. A study of aver-
aging and homogenization for idealized climate models,
with a range of examples, can be found in (Monahan and
Culina, 2011). Another rather successful attempt in this
direction is given in (Majda et al., 2001).

A study of homogenization for geophysical flows was
performed in Bouchet et al. (2013). The slow system is
considered to be the evolution of zonal jets of a barotropic
flow, which is forced by noise. The fast degrees of freedom
are those representing the fast non-zonal turbulence. Ho-
mogenization has also been applied in (Dolaptchiev et al.,
2012) to the Burgers equation, where the slow variables
are taken to be averages over large grid boxes and the
fast variables are the subgrid variables.

When one wants to consider very large time scales (for
examples times of the order of exp(1/ε)), one needs to
look beyond the central limit type theorems of homog-
enization and consider so called large deviation results.
These describe for example the transitions between dis-
connected attractors of the averaged equations (Kifer ,
2009).
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C. Dyson decomposition

The Dyson decomposition is an operator identity that
allows to decompose the time evolution of observables of
a dynamical system into a background evolution plus a
term representing the effect of a perturbative vector field.
This decomposition forms the basis of the Mori-Zwanzig
method and the weak coupling method described in sec-
tions VI.E and VI.D.

Given a non-linear dynamical system ẋ = F (x) on
a manifold M, the analysis of perturbations can be
formally simplified by turning the problem into a lin-
ear equation for the evolution of observable functions
A : M → R. To this end, we define a linear differen-
tial operator L(x) = (F (x).∇) called the Liouville op-
erator, determining the time derivative of observables,
dependent on time through a solution x(t) of the dy-
namical system. We thus have that by the chain rule
Ȧ(x(t)) = L(x(t))A(x(t)). A solution of A over time is
then given by A(t) = Π(t)A(0) where Π(t) = exp(Lt).
Although this equation does not tell us anything about
the actual value of the solution, it does allow us to ana-
lyze perturbations, where the defining vector field F , and
hence also L, are slightly altered.

As described e.g. in (Evans and Morriss, 2008), these
perturbative relations can be easily derived formally in
the resolvent formalism, by taking the Laplace transform
of Π(t):

L{Π}(s) =

∫ ∞
0

dt exp(Lt) exp(−ts) = (s− L)−1 (101)

If L consists of a perturbation around an operator L0,
i.e. L = L0 + L1, with L1 small in an appropriate sense,
we can expand the Laplace transform using the equality

(A−B)−1 = A−1 +A−1B(A−B)−1 . (102)

In the case of the Laplace transform in Eq. 101, we take
A = s−L0 and B = L1, so that the A−1 and (A−B)−1

terms are themselves the Laplace transforms of Π0(t) =
exp(L0t) and Π(t) respectively. Inverting the Laplace
transform, the product of transforms gives a convolution
term, resulting in the following decomposition of Π(t):

Π(t) = Π0(t) +

∫ t

0

dτΠ0(t− τ)L1Π(τ) (103)

Another decomposition can be obtained when making use
of the following equality for operator inverses:

(A−B)−1 = A−1 + (A−B)−1BA−1 . (104)

This gives rise to:

Π(t) = Π0(t) +

∫ t

0

dτΠ(t− τ)L1Π0(τ) (105)

These decompositions separate the evolution under the
background evolution defined by L0 from the effect of the
perturbation L1.

As the right hand side of Eq. (103) and (105) still
contain Π(t), they can be iterated by to expand Π(t) −
Π0(t) at different orders of the perturbation L1.

D. Projection operator technique

In the case of the Mori-Zwanzig approach (Mori et al.,
1974; Zwanzig , 1960, 1961) a projection is carried out on
the level of the observables to remove unwanted, irrele-
vant and usually fast degrees of freedom. Here the ex-
pansion is performed around the evolution that involves
only the relevant part of the phase space.

If a dynamical system is defined on a manifoldM, one
defines a projection P from the space of observable func-
tions on the full phase spaceM to a space of observables
which are considered to contain only the interesting dy-
namics. Many different choices are possible; if the mani-
foldM consists for example of a product of submanifolds
K of relevant and L of irrelevant variables, one can take
a conditional expectation with respect to a measure on
M, given the value of the relevant variables x ∈ K:

(PA)(x) =

∫
N A(x, y)ρ(x, y)dy∫
N ρ(x, y)dy

.

It is easily verified that this is a projection, i.e. P2 =
P and that P is orthogonal w.r.t the product defined
by ρ: 〈A,B〉 =

∫
M ρAB. Another possible choice is a

projection onto a set of functions on M, such as linear
functions of the coordinates in a Euclidean phase space.

The evolution operator L is now split into its projec-
tion PL onto the relevant space of observables and the
complement QL := (1−P)L. As described by (Zwanzig ,
2001), a generalized Langevin equation can then be de-
rived based on Eq. 105. We write the Liouville equation
for an observable A as

dA(t)

dt
=LA(t) = etLLA

=etLPLA+ etLQLA

The factor exp(tL) in the second term can be further
expanded by making use of Eq. 105 with L0 = QL. This
gives the following equation

dA(t)

dt
=etLPLA

+ (etQL +

∫ t

0

ds e(t−s)LPLesQL)QLA

It is then argued (Zwanzig , 2001) that this equation is a
generalization of the Langevin equation, where the sec-
ond term is a correlated noise term dependent on the ini-
tial conditions of the irrelevant degrees of freedom and
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the third term represent the memory of the system due
to the presence of irrelevant variables that have inter-
acted with the relevant ones in the past. Note that we
have done nothing more than manipulating the original
evolution equation Ȧ = LA. Correspondingly, the Mori-
Zwanzig equation in itself does not simplify the problem.
In order to derive a set of equations that are useful for nu-
merical simulations, assumptions need to be made about
the dynamical system.

Several approximations to the Mori-Zwanzig equations
have been proposed in the literature. There are the short
and long memory approximations made in the method of
optimal prediction (Bernstein, 2007; Chorin and Stinis,
2006; Chorin and Hald , 2013; Chorin et al., 1998, 2000,
2002, 2006; Defrasne, 2004; Hald and Kupferman, 2001;
Park et al., 2007).

In the limit of an infinite time-scale separation between
the relevant and irrelevant variables, the stochastic com-
ponent of the parametrization can be represented as a
white noise term, while the non-Markovian term van-
ishes, as the irrelevant variables decorrelate quickly, this
brings us back to the homogenization method of sec-
tion VI.B. For a discussion of the applicability of Mori-
Zwanzig in climate sciencess, see the paper by Gottwald
(2010).

E. Weakly coupled systems

We now consider dynamical systems consisting of two
systems with a weak coupling. In this case an expansion
of the dynamics can be made in orders of the coupling,
giving insight into what properties of the coupled systems
determines the memory kernel and correlated noise that
appeared in the Mori-Zwanzig approach (Wouters and
Lucarini , 2012, 2013).

A possible application of this theory in climate science
can be found in the interaction between cloud forma-
tion and large scale atmospheric flow, where there is no
distinct time scale separation, but instead the coupling
could be considered as weak.

In this setting the background vector field F consists
of a Cartesian product (FX , FY )> of the vector fields FX
and FY defining the autonomous X and Y dynamics.
The perturbing vector field δF is a coupling (ΨX ,ΨY )>

between the two systems. The full dynamical system is
given by

dX

dt
= FX(X) + ΨX(X,Y )

dY

dt
= FY (Y ) + ΨY (X,Y ) (106)

For simplicity of presentation, for now we consider the
case where ΨX(X,Y ) = ΨX(Y ) and ΨY (X,Y ) =
ΨY (X). We will come back to the general case later.

Writing (106) in terms of observables using the chain
rule, we have

dA(X,Y )

dt
=(LX(X,Y ) + LY (X,Y ))A(X,Y )

=(FX(X) + ΨX(X,Y )).∇XA(X,Y )

+ (FY (Y ) + ΨY (X,Y )).∇YA(X,Y )

where ∇X and ∇Y denote the gradients with respect to
the variables in X and in Y respectively, LX = (FX +
ΨX)∇X and LY = (FY + ΨY )∇Y .

We now do a calculation in the style of the Mori-
Zwanzig one in Section VI.D for the dynamical system
given in Eq. 106 and for observables AX that only depend
on the relevant variables X. We start the dynamical sys-
tem at a time −t in the past. The initial condition X0

of the resolved variables is assumed to be known exactly.
The state of the Y variables is not known exactly. Assum-
ing that the coupled system is its invariant distribution
ρ allows us to use the knowledge of X to further spec-
ify the distribution of Y . The Y variable is distributed
according to the conditional distribution of ρ given X0.
Expectation values of observables of Y are given by∫

dY B(Y )ρ(X0, Y )∫
dY ρ(X0, Y )

Since the coupling in the dynamical system correspond-
ing to ρ is small, the invariant measure ρ is a perturba-
tion around the uncoupled product measure ρ0,X ⊗ ρ0,Y ,
where ρ0,X and ρ0,Y correspond to the unperturbed vec-
tor fields FX and FY . Hence to zeroth order the condi-
tional distribution of Y is simply ρ0,Y .

We now try to understand what the distribution of
tendencies of X is, given these initial conditions. As in
Section VI.D, we first perform a projection of the evolu-
tion equation of AX , in order to separate the X and Y
variables. As projection, we choose the conditional ex-
pectation given by ρ0,Y , i.e. PA =

∫
dY A(X,Y )ρ0,Y (Y ).

Applying this projection to the time derivative of AX de-
composes the coupling ΨX(Y ) into its average value and
fluctuations around it. We then apply an expansion in
terms of Ψ to the evolution of the fluctuations.

The time derivative of AX at t = 0 is given by

d

dt
AX(X,Y, t)|t=0 = (LXAX)(X,Y )

=((PLX +QLX)AX)(X,Y )

=(FX(X) + ρY (ΨX))∇XAX(X)

+ (ΨX(Y )− ρY (ΨX))∇XAX(X) (107)

We now want to find a formal solution for ΨX(Y ) −
ρY (ΨX) that we can insert into the previous equation.

The evolution of ΨX is given by

ΨX(Y ) =et(LX+LY )ΨX(X0, Y0,−t)
=et(LX+LY )ΨX(Y0)
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Making use of the decomposition of the Liouvillian L =
LX + LY into L0(X0, Y0) = FX(X0)∇X + FY (Y0)∇Y
and L1(X0, Y0) = ΨX(Y0)∇X + ΨY (X0)∇Y , we derive
by repeated use of Eq. 103 that

ΨX(Y ) =et(L0+L1)ΨX(Y0) = etL0ΨX(Y0)

+

∫ t

0

dτe(t−τ)L0L1e
τL0ΨX(Y0) +O(L2

1)

(108)

Inserting this equation in (107), we get

(
d

dt
AX)(X,X0, Y0, t)|t=0

= (FX(X) + ρY (ΨX) + σ̃(t, Y0))∇XAX(X)

+

(∫ t

0

dτh̃(t, τ,X0, Y0)

)
∇XAX(X))

where

σ̃(t, Y0) =etFY (Y0)∇Y ΨX(Y0)− ρY (ΨX)

h̃(t, τ,X0, Y0) =Π0(t− τ)L1(X0, Y0)Π0(τ)ΨX(Y0)

Due to the commutation of FX∇X and FY∇Y , we have
that

h̃ =
(
e(t−τ)FX∇X ΨY (X0)

)
× e(t−τ)FX∇X∇Y eτFY∇Y ΨX(Y0)

Now we can make use of the fact that Y is distributed
according to ρY , the invariant measure under the flow
generated by FY . The average of σ̃ is then zero and the
auto-correlation is given by the auto-correlation of the
coupling function in the uncoupled Y system:

ρY (σ̃(t, Y0)) = 0

ρY (σ̃(t, Y0)σ̃(t+ τ, Y0))

= ρY
(
ΨX(Y0)eτFY∇Y ΨX(Y0)

)
and the averaged memory kernel is given by a response
function of the uncoupled Y system:

h = ρY (h̃) = ΨY (f t−τX (X0))ρY
(
∇Y eτFY∇Y ΨX(Y0)

)
(109)

Proposing now a surrogate equation

dX̃(t)

dt
=FX(X̃(t)) +M + σ(t)

+

∫ ∞
0

dτh(τ, X̃(t− τ)) (110)

we have that the average tendency of X̃ to third order
and its autocorrelation to second order in the coupling
function correspond to those of the fully coupled system.

FIG. 18 Diagram describing the mean field effect of the Y
variables on the X variables. Term M in Eq. 112.

FIG. 19 Diagram describing the impact of fluctuations of the
Y variables on the X variables. Term σ in Eq. 112.

F. Response Theory

The response theory is a rather flexible tool as the
formalism can be applied in a variety of situations, as
the perturbation flow Ψ(x) can be of very different na-
ture. Considering Eq. 106 a special case of such a forc-
ing is the internal coupling of degrees of freedom given
by (ΨX ,ΨY )> , to the unperturbed flow whose tendency
is given by (FX , FY )>. We can now use the formalism
described in Section V for computing at all orders the
change in the expectation value of A = A(X) due to the
coupling between the X and Y variables. After lengthy
calculations, one obtain the explicit expression for

ρ(A)t = ρ0(A)t + ρ(1)(A)t + ρ(2)(A)t +O(Ψ3) (111)

As shown in (Wouters and Lucarini , 2012), if one col-
lects these first and second order responses to the cou-
pling Ψ, an identical change in expectation values from
the unperturbed ρ0 up to third order in Ψ can be ob-
tained by adding a Y -independent forcing to the ten-
dency of the X variables as follows:

dX(t)

dt
=FX(X(t)) +M + σ(t)

+

∫ ∞
0

dτh(τ,X(t− τ)) (112)

where M = ρ0,Y (ΨX) is an averaged version of the
Y to X coupling, σ is a stochastic term, mimicking the
two time correlation properties of the unresolved vari-
ables and h is a memory kernel that introduces the non-
Markovianity. A diagrammatic representation of pro-
cesses responsible that these three additional terms are
parametrizing is given in Figs. 18-20. The memory effect
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FIG. 20 Diagram describing the non-Markovian effect of the
on the X variables on themselves, mediated by the Y vari-
ables. Term h in Eq. 112.

is present due to the finite time scale difference between
resolved and unresolved variables.

It should be noted that the choice of parametriza-
tion is not unique. Any time-dependent forcing σ with
the correct two-point time-correlations will give the right
response up to second order. Also for the memory term
there is some freedom. If the coupling functions ΨX and
ΨY are allowed to be dependent on both X and Y , the
above analysis can still be carried out. For the case of
separable couplings ΨX(X,Y ) = ΨX,1(X)ΨX,2(Y ) and
ΨY (X,Y ) = ΨY,1(X)ΨY,2(Y ) the average term becomes
X dependent and the noise term becomes multiplicative
instead of additive. An expression for more general cou-
plings can be derived be decomposing the coupling func-
tions into a basis of separable functions.

As obvious, Eqs. 110 and 112 are identical, which im-
plies that, in terms of parametrization, it is equivalent
to try to optimize the tendencies in an averaged sense
or to try to minimize the bias in the statistical proper-
ties of any observable. Equations 110-112 provide a very
general result concering direct methods for constructing
parametrizations from the statistical properties of un-
perturbed systems and the equivalence between the two
results, obtained using rather distinct methods and con-
cepts, suggest that there is a solid ground for exporting
parametrizations developed for weather forecast into cli-
mate models.

The results contained in Eqs. 110 and 112 imply that,
up to second order, the dynamics of the X variables con-
tains a stochastic term, so that one can expect that the
projection of the X variables of the invariant measure of
the system given in Eq. 106 is, in fact to a good approx-
imation, smooth, asa result of the regularizing effect due
to noise. Therefore, the FDT applies when we consider
observables A = A(X), i.e. functions of the resolved,
slow variables only. This provides a solid reason why the
empirical application of the FDT in a context of climate
dynamics has proved partially successful, and of why the
degree of success depends critically on the climatic vari-
able of interest.

VII. CONCLUSIONS

The main goal of this review paper is the provision of
an overview of some ideas emerging at the interface be-
tween from theoretical physics, mathematics, and climate
science. The topics have been selected by the authors
with the goal of covering (at least partially) relevant as-
pects of the deep symmetries of geophysical flows, of the
processes by which they convert and transport energy
and generate entropy, and of constructing relevant sta-
tistical mechanical models able to address fundamental
issues like the response of the climate system to forcings,
the representation of the interaction across scales, the
definition of relevant physical quantities able to describe
succinctly but accurately the dynamics of the system.
The themes covered in the review also inform the devel-
opment and testing of climate models of various degrees
of complexity, by analyzing their physical and mathemat-
ical well-posedness and for constructing parametrizations
of unresolved processes, and by putting the basis for con-
structing diagnostic tools able to capture the most rele-
vant climate processes.

The Nambu formulation of geophysical fluid dynamics
explored in Sec. II emphasizes the existence, in the in-
viscid case, of non-trivial conserved quantities that are
embedded in the equations of motion. Such quantities -
which include potential vorticity in the three dimensional
case - play a fundamental role, analogous to energy’s, in
the description of the state of the system and can be re-
garded as observables of great relevance also in the case
where dissipation and forcing are present. Moreover, the
Nambu formalism suggests us ways for devising very ac-
curate numerical schemes, which do not have spurious
diffusive behavior.

The symmetry properties of the flow in the inviscid
limit allow the construction of the ensembles describ-
ing the equilibrium statistical mechanical properties of
the geophysical flows (Sec. III), where the vorticity -
in the two dimensional case - plays the role of the most
important physical quantity. Starting from the classi-
cal construction due to Onsager of the gas of interact-
ing vortices, the theory leads us to construct a theory of
barotropic and baroclinic QG turbulence.

Taking the point of view of non-equilibrium system,
the description of the climate system is enriched as the
presence of gradients of physical quantities like temper-
ature and chemical concentrations - in first instance due
to the inhomogeneity of the incoming solar radiation, of
the optical properties of the geophysical fluids, and of the
boundary conditions- supports the possibility of work be-
ing performed, resulting in organized fluid motions. In
Sec. IV the analysis of the energy and entropy budgets of
the climate system is shown to provide a comprehensive
picture of climate dynamics, with promising outlook in
terms of investigation of the climate tipping points and as
a method for studying the properties of general planetary
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atmospheres.

Section V introduces some basic concepts of non-
equilibrium statistical mechanics, connecting the macro-
scopic properties described in the previous section to the
features of the family of chaotic dynamical systems which
constitute the backbone of the mathematical description
of non-equilibrium systems. For such systems, the re-
lationship between internal fluctuations and response to
forcings is studied with the goal of developing methods
for predicting climate change. After clarifying the con-
ditions under which the fluctuation-dissipation theorem
is valid, we show for the first time examples of successful
climate prediction for decadal and longer time scales. In
this sense, we show that the problem of climate change
is mathematically well-posed.

Non-equilibrium statistical mechanics is also the sub-
ject of Sec. VI, where we show how the formalism of
Mori-Zwanzig projection operator supports the provision
of rigorous methods for constructing parametrizations of
unresolved processes. It is possible to derive a surrogate
dynamics for the coarse grained variable of interest for cli-
matic purposes, incorporating, as result of the coupling
with the small scale, fast variables, a deterministic, a
stochastic, and a non-Markovian contribution, which add
to the unperturbed dynamics. The same results can be
obtained using the response theory described in Sec. V,
thus showing that the construction of parametrizations
for weather and for climate models should have common
ground.

Among the many topics and aspects left out of this
review, we need to mention recent developments aimed
at connecting the complementary, rather than oppos-
ing (Lorenz , 1963) and (Hasselmann, 1976) perspectives
on complex dynamics dynamics, which focus on deter-
ministic chaos and stochastic perturbations to dynam-
ical systems, respectively. We refer in particular to the
idea of constructing time-dependent measures for non au-
tonomous dynamical systems (Chekroun et al., 2011b)
through the introduction of the so-called pullback attrac-
tor, which is the geometrical object the trajectories ini-
tialized in a distant past tend to at time t with proba-
bility 1 as a result of the contracting dynamics. Such an
object is not invariant with time, as a result of the time-
dependent forcing, but, under suitable conditions on the
properties of the dynamical system, the supported mea-
sure has at each instant properties similar to those of the
(invariant) SRB measure one can construct for, e.g. au-
tonomous Axiom A dynamical (Ruelle, 1989). Such an
approach allows for treating in a coherent way the pres-
ence of modulations in the dynamics of the system, with-
out the need of applying response formulas or of assuming
time-scale separations, and in particular allows for ana-
lyzing the case where the forcing is stochastic, leading to
the concept of random attractor (Arnold , 1988). On a
different line of research, it is instead possible to use Ru-
elle response theory for computing the impact of adding

stochastic noise on chaotic dynamical systems (Lucarini ,
2012). One finds the rate of convergence of the stochas-
tically perturbed measure to the unperturbed one, and
discovers the general result that adding noise enhances
the power spectrum of any given observables at all fre-
quencies. The difference between the power spectrum of
the perturbed and unperturbed system can be used, mir-
roring a fluctuation-dissipation result, for computing the
response of the system to deterministic perturbations.

The methods, the ideas, the perspectives presented in
this paper are partially overlapping, partially comple-
mentary, partly in contrast. In particular, it is not obvi-
ous, as of today, whether it is more efficient to approach
the problem of constructing a theory of climate dynam-
ics starting from the framework of hamiltonian mechan-
ics and quasi-equilibrium statistical mechanics or taking
the point of view of dissipative chaotic dynamical sys-
tems, and of non-equilibrium statistical mechanics, and
even the authors of this review disagree. The former ap-
proach can rely on much more powerful mathematical
tools, while the latter is more realistic and epistemolog-
ically more correct, because, obviously, the climate is,
indeed, a non-equilibrium system. Nonetheless, the ex-
perience accumulated in many other scientific branches
(chemistry, acoustics, material science, optics, etc.) has
shown that by suitably applying perturbation theory to
equilibrium systems one can provide an extremely ac-
curate description of non-equilibrium properties. Such a
lack of unified perspective, of well-established paradigms,
should be seen as sign of the vitality of many research
perspectives in climate dynamics.
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Cvitanović, P. (1988), Invariant measurement of strange sets
in terms of cycles, Phys. Rev. Lett., 61, 2729–2732, doi:
10.1103/PhysRevLett.61.2729.

Dauxois, T., S. Ruffo, E. Arimondo, and M. Wilkens (Eds.)
(2002), Dynamics and Thermodynamics of Systems with
Long Range Interactions, Lecture Notes in Physics, vol.
602, Springer, New York.

Davies, L., R. S. Plant, and S. H. Derbyshire (2009), A sim-
ple model of convection with memory, Journal of Geo-
physical Research: Atmospheres, 114 (D17), n/an/a, doi:
10.1029/2008JD011653.
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