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Based on experimental evidence that vortex reconnection commences with the approach
of nearly anti-parallel segments of vorticity, a linearised model is developed in which
two Burgers-type vortices are driven together and stretched by an ambient irrotational
strain field induced by more remote vorticity. When these Burgers vortices are exactly
anti-parallel, they are annihilated on a time-scale that remains O(1) as the kinematic
viscosity ν tends to zero. Axial flow can be included, giving helical vortex lines in each
vortex whose pitch increases exponentially under the action of the ambient strain field.
When the vortices are skew to each other, then under this action they are annihilated
over a local extent that increases exponentially in the stretching direction, with again
clear evidence of reconnection on an O(1) time-scale. The initial writhe helicity associated
with the skewed geometry is eliminated during the process of reconnection, and is not
compensated by creation of twist helicity.

1. Introduction

The reconnection of vortex filaments has been recently visualised in water in the bril-
liant experiment of Kleckner & Irvine (2013). These authors have succeeded in generating
a vortex in the form of a trefoil knot, which is highly unstable. Figure 1 shows four clips
from the video in the supplementary material to this paper. The first clip (a) shows a
recently formed trefoil vortex, visualised by air bubbles which are drawn to the pressure
minimum in the vortex core. The second clip (b) shows three regions where initially re-
mote parts of the vortex are apparently swept into close proximity; here, the colours red
and blue are used to show that where the vortex strands are close, they are in fact nearly
anti-parallel. Clip (c) shows a close-up of one of these regions, and clip (d) shows the
same an instant later, revealing that a rapid reconnection, which may fairly be described
as ‘explosive’, has occurred, with complicated evolution at the ends of the reconnecting
region.

Two length-scales characterise this type of flow, the geometric scale L of the initial
trefoil knot, and the cross-sectional radius δ of the vortex core, i.e. the tubular region in
which the vorticity is essentially concentrated; outside this region, the flow is effectively
irrotational. If the circulation of the vortex is Γ, then the induced velocity at any point
near the vortex is of order U0 ∼ Γ/L, and the rate of strain at any such point is of order
γ0 ∼ Γ/L2†. The vortex moves and is deformed under the action of the induced velocity
and strain fields, locally like the familiar Burgers vortex; its cross-sectional scale is then
given in order of magnitude by δ ∼ (ν/γ0)1/2 ∼ Re−1/2L, where Re = Γ/ν is the vortex
Reynolds number, and ν the kinematic viscosity of the fluid We shall assume throughout
that Re � 1, so that δ � L. This condition was satisfied in the above experiment, for

† This ignores the swirl component of velocity Γ/2πr at small distance r from any element
of the vortex, which does not contribute to motion of that element.
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which the Reynolds number of the initial flow was in the range 103−104. With Re = 104,
and with L ∼ 10−1m and ν ∼ 10−6m2/s for water, the above estimates are δ ∼ 1 mm,
U0 ∼ 10−1m/s, Γ ∼ 10−2m2/s, and γ0 ∼ 1 s−1.

Now let a be any intermediate scale satisfying δ � a � L. Then in any sphere of
radius O(a), centred at or near any point of the vortex, the rate of strain may be treated
as approximately uniform. If we refer to the principal axes of strain, this strain field may
be written

Us = (−αx,−βy, γz), (1.1)

where, by virtue of incompressibility, α + β = γ, and we may suppose that α > 0, γ >
0,−α 6 −β 6 γ.

If β > 0 (the case of ‘extensive strain’), then any small material element of fluid is
swept in towards the z-axis, and stretched in the ±z-directions. In this situation, if any
two initially remote elements of the vortex happen to come within a distance ∼a of each
other in such a region of extensive strain, they will be swept in towards the z-axis and
progressively aligned with it. It is this type of process that appears to be taking place
in figures 1(b) and 1(c), in which the colours red and blue are used to indicate opposite
directions of vorticity and the length of the nearly anti-parallel segments revealed in this
way is presumably ∼a. The explosive reconnection that occurs in passing from figure 1(c)
to 1(d) can then be interpreted as due to the persistent sweeping of these anti-parallel
segments towards the z-axis.

It is these considerations that motivate the simple model considered in the following
sections. For a more general discussion of the background to this problem, see Pullin
& Saffman (1998). In the turbulence context, attempts to represent turbulence as a
random distribution of vortex tubes and/or sheets go back to Burgers (1948), Townsend
(1951) and Rott (1958). Concentrated vortex filaments have been identified in many
direct numerical simulations (DNS) of turbulence (e.g. Vincent & Meneguzzi 1991), and
in the experiment of Douady, Couder & Brachet (1991) in which vortices are visualised
by small air bubbles. The analogous problem of magnetic tube reconnection is treated
in the monograph of Priest & Forbes (2000), and simple models have been treated by
Moffatt & Hunt (2002) and Hattori & Moffatt (2005).

2. Annihilation of Burgers vortices

For simplicity, we suppose that β = α, and we first consider the action of the axisym-
metric strain field

U = (−αx,−αy, 2αz), α > 0, (2.1)

on a vorticity distribution (0, 0, ω(x, y, t)). The vorticity is swept towards the z-axis and
stretched in the ±z directions. Within the context of ‘rapid distortion theory’ (RDT,
Hunt & Carruthers 1990), the linearised vorticity equation is

∂ω

∂t
− αx∂ω

∂x
− αy∂ω

∂y
= 2αω + ν

(
∂2ω

∂x2
+
∂2ω

∂y2

)
. (2.2)

Here, the ‘self-interaction’ of the vorticity field is neglected in comparison with the sweep-
ing and stretching effect of the uniform strain field (2.1). Actually there is a potential
conflict between this RDT approximation and the assumption Re � 1 introduced above
— see comment at the end of this section.

Equation (2.2) admits the well-known steady exact solution of the Navier-Stokes equa-
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(a)                                           (b)                                       (c)                              (d)               

Figure 1. Reconnection of a trefoil vortex in water (reproduced from Kleckner & Irvine 2013,
with permission): (a) the recently formed unstable vortex visualised by air bubbles sucked into
the low-pressure vortex core; (b) advanced stage of vortex evolution, in which opposite directions
of vorticity are indicated by the colours red and blue; ( c) a zoom-in to a region of nearly
anti-parallel close vortex strands; (d) the same about 100ms later, after ‘explosive’ reconnection.

tions (Burgers 1948)

ωB(x, y) = (Γ/πδ2)e−r
2/δ2 , δ =

√
2ν/α , (2.3)

where r2 = x2 +y2, Γ is the circulation of the vortex, and δ is its radial scale. If we place
a vortex of this structure with its centre-line at position (0, y0) at time t = 0, then it
will be swept towards the line (0, 0) so that at time t its centre-line is at (0, Y (t)), where
Y (t) = y0 e−αt. This moving vortex is still subject to the same uniform steady rate of
strain α, and its vorticity field is therefore given by

ω(x, y, t) = ωB(x, y − y0 e−αt) = (Γ/πδ2)e−r
2
1(t)/δ

2

, (2.4)

where r21(t) = x2 +(y−y0e−αt)2. It may be verified directly that (2.4) satisfies (2.2); this
is still an exact solution, but now of the unsteady Navier-Stokes equations, in conjunction
of course with the background uniform strain (2.1)†.

When Y (t)(= y0e−αt)� δ, we may expand (2.4) in Taylor series:

ωB(x, y − Y (t)) = ωB(x, y)− Y (t)
∂ωB(x, y)

∂y
+

1

2
Y (t)2

∂2ωB(x, y)

∂y2
+ . . . . (2.5)

Each term in this expansion is separately a solution of equation (2.2). In particular, the
second term is

ω2(x, y, t) = (2y0Γ/πδ4)e−αt y e−(x
2+y2)/δ2 . (2.6)

(Subsequent terms in the series, decaying as e−nαt may be expressed in terms of Hermite
polynomials Hn(y).)

Suppose now that we have two vortices of equal and opposite circulations ±Γ with
centre-lines initially at positions (0,±y0). The solutions are additive (vortex-vortex in-

† This solution is a particular case of the more general exact solution of the Navier-
Stokes equations, ω(x, y, t) =

(
Γ/πδ(t)2

)
exp

[
−[(x− x0e−αt)2 + (y − y0e−αt)2]/δ(t)2

]
,with

δ(t)2 = (2ν/α)(1− e−2αt) + δ(0)2e−2αt , which tends to the stable Burgers vortex as t→∞.
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teraction being neglected) so that now the required solution is

ω(x, y, t) = ωB(x, y−y0e−αt)−ωB(x, y+y0e−αt) =
Γ

πδ2

(
e−r

2
1(t)/δ

2

− e−r
2
2(t)/δ

2
)
, (2.7)

where r21,2(t) = x2 + (y ∓ y0e−αt)2. Again, this is an exact solution of equation (2.2);
it is not however an exact solution of the Navier-Stokes equations, because of the RDT
neglect of vortex-vortex interactions.

When Y (t) = y0e−αt � δ, we may again expand (2.7) as a Taylor series, in which now
only the terms odd in y survive; at leading order,

ω(x, y, t) ∼ 2ω2(x, y, t) = (4y0Γ/πδ4)e−αt y e−(x
2+y2)/δ2 . (2.8)

This describes the exponential decay of vorticity (and this despite the persistent stretch-
ing) on a time-scale ∼ α−1. It should be noted that, although this decay is caused by
viscosity ν > 0, the time-scale of decay is independent of ν however small ν may be. It
is in this sense that it may be considered to be a rapid, indeed explosive, process which
it seems appropriate to describe as one of ‘annihilation’ of vorticity.

The neglected vortex-vortex interaction probably makes very little difference to this
annihilation scenario. For so long as Y(t) is still large compared with δ, this interaction
merely provides an additional translational velocity Γ/2Y(t) in the x-direction for the
vortex pair. When Y(t) ∼ δ or smaller, this translational velocity settles down to order
Γ/δ; at this stage, the interaction presumably leads to some shedding of vorticity into a
wake region in the manner described by Buntine & Pullin (1989), but the persistent inflow
towards the (x, z)-plane will cause continuing rapid annihilation of this shed vorticity
also; indeed it seems likely that the shedding of vorticity will, if anything, accelerate the
overall annihilation process.

3. Effect of axial velocity in vortex cores

In a similar way, we may consider the addition to either vortex of an axial component of
velocity (0, 0, w(x, y, t)), which evolves under the effect of the strain field (2.1) according
to the equation

∂w

∂t
− αx∂w

∂x
− αy∂w

∂y
= ν

(
∂2w

∂x2
+
∂2w

∂y2

)
, (3.1)

or equivalently

∂w

∂t
− α

(
∂(xw)

∂x
+
∂(yw)

∂y

)
+ 2αw = ν

(
∂2w

∂x2
+
∂2w

∂y2

)
. (3.2)

There is no pressure-gradient contribution in this equation because ∂w/∂z = 0.
We assume that w(x, y, t) is exponentially small for large r2 = x2 + y2. Let

Q(t) =

∫
w(x, y, t) dx dy , (3.3)

the axial flux within the vortex. Integrating (3.2) over the (x, y) plane, we have immedi-
ately that dQ/dt+ 2αQ = 0, so that this axial flux decays exponentially:

Q(t) = Q0 e
−2αt . (3.4)

It is then not difficult to show that (3.2) admits a corresponding solution

w(x, y, t) = (Q0/πδ
2)e−2αte−r

2/δ2 , (3.5)
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Figure 2. The effective stretch γ(τ) as a function of τ = αt, as given by (4.3) and (4.1), with
initial condition β0 = π/6. As τ increases, β decreases to zero, and γ(τ) rapidly asymptotes to
2α.

where still δ2 = 2ν/α. When combined with the Burgers solution (2.3), the vortex lines
are now helices, which are stretched in the z-direction (with pitch increasing like e2αt)
while being simultaneously subject to radial diffusion (cf the ‘strained spiral vortex un-
derlying Lundgren’s 1982 model of turbulent fine structure). This combined solution
provides a helical generalisation of the Burgers vortex, again an exact solution of the
unsteady Navier-Stokes equation.

4. Skewed Burgers vortices

Suppose now that at time t = 0 we place a Burgers-type vortex with straight centre-
line L0 on the plane y = y0 and tilted at an angle β0 (0 < β0 < π/2) to the z-axis; L0 is
given in parametric form by (x0, y0, z0) = (p sinβ0, y0, p cosβ0), where p is a parameter
on the line running from −∞ to +∞. The gradient of L0 is m0 = x0/z0 = tanβ0. We
assume that the irrotational strain field (2.1) advects and stretches this line, sweeping it
towards the z-axis. At time t, the point initially at (x0, y0, z0) has moved to (X,Y, Z) =
(x0e−αt, y0e−αt, z0e2αt), so that the gradient of the line, now L(t), in the (x, z)-plane at
time t is

m = tanβ = X/Z = (x0/z0)e−3αt = e−3αt tanβ0. (4.1)

Let

e(t) = (sinβ(t), 0, cosβ(t)), (4.2)

the unit vector directed along L(t). Then the rate of stretch γ(t) acting on the vortex at
time t is

γ(t) = e · ∇U · e = −α sin2 β + 2α cos2 β = (3 cos2 β − 1)α. (4.3)

We may suppose that β0 < cos−1(1/
√

3) ≈ 55o, so that γ(t) > 0 for all t > 0. Figure 2
shows the time variation of γ starting from an initial slope β0 = π/6 (so γ(0)/α = 1.25).

Under the basic assumption Re � 1, the response of the vortex to this changing rate
of stretch is quasi-static; the radial scale σ(t) of the vortex adapts accordingly, and is
given by

1

σ(t)2
=

γ

4ν
=

α

4ν
(3 cos2 β(t)− 1). (4.4)

Note that, although the strain field is not axisymmetric about the direction of e(t), the
vortex itself at leading order remains axisymmetric about this direction, according to the
asymptotic analysis of Moffatt, Kida & Ohkitani (1994).

Now the perpendicular distance rp from any point x = (x, y, z) to the line L(t) is given
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Figure 3. Skewed vortices offset in the y-direction (viewed in the y-direction above and in
the x-direction below) subjected to the straining flow (2.1) that aligns them onto the z axis,
showing unmistakable evidence of reconnection by the time τ = 0.63; contour surfaces are
|ω|/|ω|max = 0.95 (blue) and 0.85 (purple); parameter values: β0 = π/4, ỹ0 = y0/δ = 1.356.
Note the ‘bridge’ in the lower view at τ = 0, evidence of incipient reconnection.

by

r2p(x, t) = (x cosβ(t)− z sinβ(t))2 + (y − Y (t))2, (4.5)

where still Y (t) = y0e−αt. The Burgers-type vortex centred on L(t) may then be expected
to have time-dependent vorticity field

ω(x, t) =
Γ

πσ(t)2
exp

[
−r2p(x, t)/σ(t)2

]
e(t) =

γ(t)Γ

4πν
exp

[
−γ(t)r2p(x, t)/4ν

]
e(t), (4.6)

where e(t), γ(t), and rp(x, t) are given by (4.2), (4.3) and (4.5) respectively.
Unlike (2.4), this is not an exact solution of the Navier-Stokes equation, but it provides

a leading-order approximation for the evolution of the vortex when Re � 1. Note that
for large t, when β → 0 and Y → 0, the solution approaches the steady exact Burgers
solution (2.3), so presumably the field (4.6) becomes increasingly accurate as a solution
of the Navier-Stokes vorticity equation, as time increases.
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Now, just as in §2, we can superpose two solutions. We place a second vortex with circu-
lation −Γ, centre-line on the plane y = −Y (t) and directed along e′ = (− sinβ, 0, cosβ),
and with the same Burgers-type cross-sectional structure; this is in effect the ‘chopsticks
model’ of Kimura & Koikari (2004). For the second vortex, the vorticity field is

ω′(x, t) = −(γΓ/4πν) exp (−γr′p
2
/4ν) e′, (4.7)

with

r′p
2

= (x cosβ(t) + z sinβ(t))2 + (y + Y (t))2. (4.8)

The two vortices are now swept towards each other and overlap in a slicing scissor move-
ment on the plane y = 0. The z-components of vorticity annihilate in an ever-increasing
neighbourhood of z = 0 (actually ∼ e3αt), just as in §2 above, resulting in reconnection of
the vortex tubes. Figure 3 show two views of the vorticity field (in the y and x directions)
given by the combined solution

ω(x, t) + ω′(x, t) =
γΓ

4πν

[
exp

(
−
γr2p
4ν

)
e(t)− exp

(
−
γr′p

2

4ν

)
e′(t)

]
; (4.9)

these views are at the initial instant τ=αt=0 and at a later dimensionless time τ = 0.63.
The value of the dimensionless initial separation ỹ0 = y0/δ = 1.356 is chosen so that
reconnection is just beginning (as indicated by the presence of the ‘bridge’ of vorticity
in the lower view – see Kida & Takaoka 1987, 1994). By the time τ = 0.63, reconnection
is already well advanced.

The neglected vortex-vortex interaction effect is a serious complicating factor, because
each vortex tends to crank the other into a double spiral in the region of closest approach
of the vortices. It seems likely however that, under the persistent action of the ambient
strain, this interactive effect will, if anything, simply accelerate the reconnection process.

5. Helicity evolution during vortex reconnection

We can now address the interesting question of how the helicity of the vorticity dis-
tribution changes during the above type of reconnection process. The linkage helicity is
certainly changed as a result of reconnection (as evident in the experiment of Kleckner
& Irvine 2013), but it is possible that some or all of this linkage helicity is converted
to internal twist helicity during reconnection. For the analogous problem of magnetic
flux-tube reconnection, it has been argued by Wright & Berger (1989) that (magnetic)
helicity is converted in this way during reconnection, the total net helicity remaining
nearly constant; this requires an appropriately ordered reconnection of ‘sub-tubes’, but
it has never been convincingly established that this ordering is favoured by a natural
diffusive process. The issue is important because the idea that magnetic fields relax in
such a way as to minimise energy subject to conserved helicity (Taylor 1974) is one of
the cornerstones of the MHD of turbulent fusion plasmas.

We start from the consideration that, for the two skewed vortices considered above,
even without axial flow in either vortex, there is an interaction (or ‘writhe’) helicity
arising from the fact that the velocity induced by either vortex has a non-zero component
parallel to the other. When the vortices are well-separated, the resulting helicity is easily
calculated: consider a steady Burgers vortex B1 (with vorticity ω1 and associated velocity
u1) as given by (2.3), and a second Burgers vortex B2 (ω2,u2) as described by (4.6).
Suppose that at time t = 0, the vortices are well separated, i.e. y0 � δ, and that the
vortices have circulations ±Γ respectively. With r2 = x2 +y2, for r � δ the velocity field
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due to B1 is just that due to a concentrated line vortex, i.e.

u1(x) = (Γ/2πr2)(−y, x, 0), (5.1)

and this is approximately constant on any cross-section p = cst. on B2. So, on B2,

u1 = (Γ/2π)(p2 sin2 β + y20)−1(−y0, p sinβ, 0). (5.2)

Hence, on B2, with e = (sinβ, 0, cosβ),

u1 · e = (−Γy0 sinβ/2π)(p2 sin2 β + y20)−1, (5.3)

and so, integrating first over the cross-section of the vortex, then along its axis,∫
B2

u1 · ω2 dV =
Γ2y0 sinβ

2π

∫ ∞
−∞

dp

p2 sin2 β + y20
= Γ2/2. (5.4)

By symmetry, we have a similar result for the integral over B2, and hence the total initial
helicity is

H =

∫
u · ω dV = Γ2, (5.5)

the integral now being over all space. Note that this helicity is determined solely by the
instantaneous vorticity distribution and is unaffected by the presence of the background
irrotational strain. It admits interpretation as the writhe helicity (Moffatt & Ricca 1992);
if the two vortices are closed by semi-circles at infinity, then there is an additional helicity
contribution ±Γ2 from these semi-circles, the total being then 2Γ2 or zero according as
the vortices, closed in this way, are linked or unlinked† (Moffatt 1969). If the sign of
circulation of one of the vortices is changed, then of course the helicity changes sign also.

As the vortex B2 is swept towards B1 by the strain field, this helicity remains constant
until the separation Y (t) reduces to O(δ). We may calculate the helicity as a function of
the dimensionless time τ = αt as follows. The velocity u1 induced by the vortex B1 is

u1(x) = (Γ/2πr2)(1− e−r
2/δ2)(−y, x, 0) , (5.6)

(which asymptotes to (5.1) for r � δ) and the vorticity field ω2(x, t) of B2 is (from (4.6)

ω2(x, t) =
γ(t)Γ

4πν
exp

[
−γ(t)r2p(x, t)/4ν

]
e(t), (5.7)

where e(t), γ(t), and rp(x, t) are still given by (4.2), (4.3) and (4.5) respectively. The
helicity is given by

H(τ) =

∫
u · ω dV =

∫
(u1 · ω2 + u2 · ω1) dV = 2

∫
u1 · ω2 dV , (5.8)

so, substituting (5.6) and (5.7) and rearranging, we obtain,

H(τ) =
Γ2

π2
s(τ) sinβ

∫∫∫
y

r2
(1− e−r

2/δ2)e−s(τ)r
2
p/δ

2

dxdy dz , (5.9)

where s(τ) = (3 cos2 β − 1)/2.
It is natural now to introduce dimensionless variables (x̂, ŷ, ẑ, Ŷ , ŷ0) = δ−1(x, y, z, Y, y0);

moreover, let Z = ẑ sinβ (a change of variable indicating that, after the onset of recon-
nection, the scale of the associated region increases in the z-direction like cosecβ ∼ e3αt).

† For every linked configuration, there is a corresponding unlinked configuration obtained by
rotating one of the semi-circles through an angle π about its diameter.
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Figure 4. Dimensionless helicity H/Γ2 as a function of dimensionless time τ = αt for the
skewed vortices B1 and B2 driven together by the strain field (2.1), as evaluated from (5.12)
for β0 = π/6 and six values of the initial dimensionless separation ŷ0 = y0/δ. For ŷ0 � 1, the
helicity remains constant until the vortices overlap, and then decays to zero exponentially in a
time of order α−1.

Then (5.9) becomes

H(τ) =
Γ2

π2
s(τ)

∫∫∫
ŷ

x̂2 + ŷ2
(1− e−(x̂

2+ŷ2))e−s(τ)[(x̂ cos β−Z)2+(ŷ−Ŷ )2] dx̂dŷ dZ . (5.10)

We first integrate with respect to Z (from −∞ to +∞) giving

H(τ) =
s1/2Γ2

π3/2

∫∫
ŷ

x̂2 + ŷ2
(1− e−(x̂

2+ŷ2))e−s(ŷ−Ŷ )2 dx̂dŷ . (5.11)

We may now integrate with respect to x̂ (again from −∞ to +∞) giving after some
simplification†

H(τ) =
s1/2Γ2

π1/2

∫ ∞
0

erf ŷ
(

e−s(ŷ−Ŷ )2 − e−s(ŷ+Ŷ )2
)

dŷ . (5.12)

With Ŷ (τ) = ŷ0e−τ , and s(τ) as defined below (5.9), this integral is now easily evaluated
using Mathematica (note that for large Ŷ , the dominant contribution comes from a
neighbourhood of ŷ = Ŷ ). Figure 4 shows the result for an initial skewness angle β0 = π/6,
and for six values of the initial dimensionless separation ŷ0. As expected, for ŷ0 � 1,H/Γ2

remains equal to 1 (as anticipated in (5.5)) for so long as the vortices are well separated;
however, as Ŷ (τ) decreases to O(1) and smaller, the helicity decays exponentially to zero
in a time of order α−1.

Unfortunately therefore, we find no evidence for helicity conservation during recon-
nection within the framework of our present model. On the contrary, linkage helicity is
indeed destroyed during the reconnection process, but without any compensating gener-
ation of internal twist helicity (and we note that the model is even more reliable in the
magnetic context, in which the magnetic analogue of equation (2.2) is exact in the weak
magnetic field limit when Lorentz forces are negligible).

Again, of course, one may ask ‘what if the vortex-vortex interaction terms are retained
in this model problem?’. To answer this would require a full numerical simulation of the

† Care is needed to treat separately the cases for which ŷ is positive or negative, the latter
being then transformed by the change of variable ŷ → −ŷ.
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3D time-dependent Navier-Stokes equations which would inevitably run into the unsolved
and deeply challenging finite-time singularity problem. We hope nevertheless to address
this in future work. In the meantime all that can be said is that the linearised model
described in this paper provides no evidence for conservation of helicity during viscous
reconnection of vortex tubes.

This work was initiated during the programme Topological Dynamics in the Physical
and Biological Sciences at the Isaac Newton Institute for Mathematical Sciences (July-
December 2012). We thank the Director and Staff of the Institute for hospitality and
support during this programme.
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