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In this paper we provide a connection between the geometrical properties of a chaotic dynamical
system and the distribution of extreme values. We show that the extremes of so-called physical
observables are distributed according to the classical generalised Pareto distribution and derive
explicit expressions for the scaling and the shape parameter. In particular, we derive that the
shape parameter does not depend on the chosen observables, but only on the partial dimensions
of the invariant measure on the stable, unstable, and neutral manifolds. The shape parameter is
negative and is close to zero when high-dimensional systems are considered. This result agrees with
what was derived recently using the generalized extreme value approach. Combining the results
obtained using such physical observables and the properties of the extremes of distance observables,
it is possible to derive estimates of the partial dimensions of the attractor along the stable and the
unstable directions of the flow. Moreover, by writing the shape parameter in terms of moments of the
extremes of the considered observable and by using linear response theory, we relate the sensitivity
to perturbations of the shape parameter to the sensitivity of the moments, of the partial dimensions,
and of the Kaplan-Yorke dimension of the attractor. Preliminary numerical investigations provide
encouraging results on the applicability of the theory presented here. The results presented here do
not apply for all combinations of Axiom A systems and observables, but the breakdown seems to
be related to very special geometrical configurations.

I. INTRODUCTION

Extreme value theory (EVT) is gaining more and more
prominence in a vast range of scientific fields because
of its theoretical relevance in mathematical and physical
sciences, and because it addresses the problem of under-
standing, modeling, evaluating risk factors such as those
related to instabilities in the financial markets and to nat-
ural hazards related to seismic, climatic and hydrological
extreme events. Even if the probability of extreme events
is very low and decreases quickly with their magnitude,
the associated risks can dominate over those coming from
events belonging to the bulk of the statistics. An exten-
sive account of recent results and relevant applications is
given in [1].

The first comprehensive discussion of EVT dates back
to the fundamental work by Gnedenko [2], who inves-
tigated the distribution of the maxima of a sample of
independent identically distributed (i.i.d) stochastic vari-
ables. He showed that under very general conditions such
maxima are distributed according to the so-called Gen-
eralised Extreme Value (GEV) distribution. The clas-
sic way of dealing with the statistical inference of ex-
tremes actually follows quite precisely the steps of the
Gnedenko’s theorem. One partitions the experimental
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time series into bins of fixed length, extracts the max-
imum of each bin, and fits these data to the GEV dis-
tribution family using, typically, methods such as max-
imum likelihood estimation (MLE) or L-moments. See
[3] for a detailed account of this methodology. It is pos-
sible to deal with extremes by taking a different point of
view, i.e., by defining extremes as the events exceeding
a given threshold. In the limit of very high threshold,
we expect that the extremes are distributed according to
the Generalized Pareto Distribution (GPD) introduced
by Pickands III [4] and Balkema and De Haan [5]. In
the case of i.i.d. variables, it is well known that a strong
connections exists between the two methodologies. As
shown in [6], we have that if block maxima obey the GEV
distribution, then exceedances over some high threshold
obey an associated GPD. Nonetheless, it is apparent that,
whereas the two approaches are equivalent in the asymp-
totic limit, the GPD approach provides more reliable and
more robust results when realistic, finite time series are
considered (see, e.g., [7]).

A. A Brief Recapitulation of Extreme Value
Theory

Gnedenko [2] studied the convergence of maxima of
i.i.d. variables

X0, X1, ..Xm−1

with cumulative distribution function (cdf) Fm(x) =
P{am(Mm − bm) ≤ x} where am and bm are normaliz-
ing sequences and Mm = max{X0, X1, ..., Xm−1}. Under
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general hypothesis on the nature of the parent distribu-
tion of data, Gnedenko [2] showed that the asymptotic
distribution of maxima, up to an affine change of vari-
able, belongs to a single family of generalized distribu-
tion called GEV distribution whose cdf can be written
as:

lim
m→∞

Fm(x) = FGEV (x;µ, α, κ) = e−t(x) (1)

where

t(x) =

{(
1 + κ(x−µα )

)−1/κ
if κ 6= 0

e−(x−µ)/α if κ = 0
. (2)

This expression holds for 1+κ(x−µ)/α > 0, using µ ∈ R
(location parameter) and α > 0 (scale parameter) as scal-
ing constants, and κ ∈ R is the shape parameter (also
called the tail index). When κ→ 0, the distribution cor-
responds to a Gumbel type (Type 1 distribution). When
the index is positive, it corresponds to a Fréchet (Type 2
distribution); when the index is negative, it corresponds
to a Weibull (Type 3 distribution).

We briefly mention the Pareto approach to EVT. We
define an exceedance as z = X − T , which measures by
how much the variable X exceeds a given threshold T . As
discussed above, under the same conditions under which
the block maxima of the i.i.d. stochastic variables X
obey the GEV statistics, the exceedances z are asymp-
totically distributed according to the Generalised Pareto
Distribution. Defining FT (z) = P (X − T < z|X > T ),
we have that limT→∞ FT (z) = FGPD(z; ξ, σ), with [4, 6]:

FGPD(z; ξ, σ) =

1−
(

1 + ξz
σ

)−1/ξ

for ξ 6= 0,

1− exp
(
− z
σ

)
for ξ = 0,

(3)

where the range of z is 0 ≤ z < ∞ if ξ ≥ 0 and 0 ≤ z ≤
−σ/ξ if ξ < 0.

The relation between GEV and GPD parameters has
been already discussed in literature in case of i.i.d vari-
ables [7–10]. It is first interesting to note that

FGPD(z − T ;σ, ξ) = 1 + log (FGEV (z;T, σ, ξ)) (4)

for FGEV (z;µ, α, κ) ≥ exp−1, where the latter condition
implies z ≥ T [11]. If we consider the upper range z � T ,
we have that FGEV (z;T, σ, ξ) is only slightly smaller than
1, so that Eq. 4 implies that

FGPD(z − T ;σ, ξ) ∼ FGEV (z;T, σ, ξ)

+O((1 + ξ(z − T )/σ)
−2/ξ

),

so that the two distributions are asymptotically equiv-
alent. This simple result is actually equivalent to the
rather cumbersome formulas given in Coles [9] and Katz
et al. [8] (and reported also by us in [12] for defining the
correspondence between the parameters of the GPD and
GEV distributions describing the statistics of extreme
events extracted from the same data series.

B. Extreme Value Theory for Dynamical Systems

Recently, a great deal of attention has focused on un-
derstanding to what extent EVT can be applied to study
the extreme of observables of deterministic dynamical
systems. The main applications-driven motivation for
this renewed interest probably comes from the spectacu-
lar development of numerical modeling in a geophysical
fluid dynamical context and from the need to assess the
ability of climate model to reproduce the observed statis-
tical properties of extremes in present climate conditions
and understand how they will change in an altered cli-
mate [13]. Other related applications include the numer-
ical simulation of hydrological risk and of the production
of electric energy from wind. It is clear that the matter is
far from being trivial: numerical experiments on climate
models of various degrees of complexity have shown that
the speed of convergence (if any) of the statistical prop-
erties of the extremes definitely depends strongly on the
chosen climatic variable of interest [3, 14–16].

Apart from these specific albeit very relevant applica-
tions, this problem has been addressed by the mathemat-
ical and statistical physical community. A first important
result is that when a dynamical system has a regular (pe-
riodic of quasi-periodic) behaviour, we do not expect, in
general, to find convergence to GEV distributions for the
extremes of any observable Nicolis et al. [17], Haiman
[18]. Instead, if one chooses specific observables and con-
siders dynamical systems obeying suitable mixing condi-
tions, which guarantee the independence of subsequent
maxima, it is possible to prove that the distribution of
the block maxima of the observables converge to a mem-
ber of the GEV family. The observables are expressed as
g(dist(x, x0)), a function g of the distance of the orbit x
from a point in the attractor x0, usually taken as the ini-
tial condition, such that g(y) has a global maximum for
y = 0. The specific member of the GEV family (which
is determined by the sign of the shape parameter) the
maxima distribution converges to depends on the specific
choice of g. The paper by Collet [19] can be considered
the cornerstone for the subsequent results obtained in the
last few years [20–22]. The resulting parameters of the
GEV distributions can be expressed as simple functions
of the local dimension of the attractor. These results have
been shown to be accurately detectable in numerical ex-
periments when considering finite time series [23–25]. If,
instead, the maxima are clustered, so that they feature
a relative strong short-time correlation, the results have
to be modified by introducing the extremal index [26].

Recently, it has been shown how to obtain results
which are independent on whether the underlying dy-
namics of the system is mixing or, instead, regular . The
key ingredient relies on using the Pareto rather than the
Gnedenko approach. Such a shift in the point of view on
extremes allows to derive results that do not dependent
on whether extremes feature strong time-correlations or
not. Assuming only that the local measures scales with
the local dimension [27], it is possible to obtain by di-
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rect integration a GPD for the threshold exceedances of
the observables g(dist(x, x0)) introduced in [20–22, 26]
when considering a generic orbit of a dynamical sys-
tems. In fact, the Pareto approach entails sampling all
the points of the orbit that are very close to x0, thus sam-
pling the local scaling of the invariant measure. With a
suitable choice of g(dist(x, x0)), the resulting ξ of the
GPD is proportional to the inverse of local dimension
[12]. The results obtained using the Pareto approach
agree exactly with what was derived using the Gnedenko
approach under the assumption of mixing dynamics in
[20–25]. When the underlying system is mixing enough,
the dynamical (Gnedenko approach) and the geometri-
cal (Pareto approach) points of view on extremes give
the same results, whereas differences emerge if the dy-
namics is such that strong time correlations exist between
block-maxima. The selection of the extremes of the g ob-
servables discussed above - using either the Gnedenko or
the Pareto approaches - acts as magnifying lens near the
initial condition, and that’s why one can extract infor-
mation on the local dimension. Therefore, this provides
a potentially viable alternative to e.g. the Grassberger-
Procaccia algorithm [28] for the investigation of the scal-
ing properties of the invariant measure of a chaotic at-
tractor.

The results discussed above feature a major drawback
when considering their relevance in many applications.
Extreme events correspond to close returns of the or-
bit to to its initial condition. While relevant problems
in natural sciences can be set in the framework of this
class of observables (e.g. the classic problem of weather
analoguesin meteorology, already discussed by Lorenz in
connection to the problem of predictability [29]), this is
not the typical structure of the observables encountered
in many applications, such as the case of total energy
or enstrophy of a fluid flow. Recently, this problem has
been addressed in Holland et al. [30], who have stud-
ied, using the GEV approach, whether EVT applies for
physical observables of maps obeying the mixing condi-
tions proposed in Freitas and Freitas [20], Freitas et al.
[21], Gupta et al. [22], Freitas et al. [26]. They consider a
general observable A = A(x) reaching its maximum value
Amax restricted to the support of the invariant measure
in x = x0 (assuming for simplicity that such a point is
unique), and assume that ∇A|x=x0 6= 0. Note that A(x)
is indeed not of the form g(dist(x, x0)) discussed above.
They find that the block maxima of A(x) are asymp-
totically distributed according to a member of the GEV
distributions, where the shape parameter is negative and
can be written as a simple function of the partial di-
mensions along the stable and unstable manifolds at the
point. This seems indeed a very relevant result, as it pro-
vides a universal property of extremes, regardless of the
specific functional form of the observable A.

C. Goals of the Paper

In this paper, we consider a GPD approach to EVT
and try to complement and improve the results presented
in [30] regarding the physical observables and those pre-
sented in [12] regarding the distance observables. We
focus our attention on Axiom A systems [31], which are
a special class of dynamical systems possessing a Sinai-
Ruelle-Bowen (SRB) invariant measure [32] and featuring
hyperbolicity in the attracting set. Such invariant mea-
sure coincides with the Kolmogorov’s physical measure,
i.e. it is robust against infinitesimal stochastic pertur-
bations. Another important property of Axiom A sys-
tems is that it is possible to develop a response theory
for computing the change in the statistical properties of
any observable due to small perturbations to the flow
[33, 34]. Such response theory has recently been the sub-
ject of intense theoretical [35, 36], algorithmic [37] and
numerical investigations [38–41] and is gaining promi-
nence especially for geophysical fluid dynamical appli-
cations. Moreover, the response theory seems to provide
powerful tools for studying multiscale systems and deriv-
ing parametrizations of the impact of the fast variables
on dynamics of the slow [42, 43]. Finally, an important
property of Axiom A systems is that, while the dynamics
of natural or artificial systems is definitely not Axiom A
in general, Axiom A systems can be considered as good
’effective’ models of actual systems with many degrees
of freedom thanks to the so-called chaotic hypothesis,
which is somewhat the equivalent in the non-equilibrium
framework of the classic ergodic hypothesis for equilib-
rium dynamics [44]. Moreover, as discussed in [41], when
we perform numerical simulations we implicitly assume
that the system under investigation is Axiom A or Axiom
A-equivalent. Therefore, considering Axiom A systems
seems a good mathematical framework in view of pro-
viding results useful for a large spectrum of applications.
The choice of considering Axiom A systems is instrumen-
tal in the derivation of various results on the relationship
of EVT parameters to the dynamical and geometrical
properties of the system, and will allow addressing the
problem of the sensitivity of extremes to small perturba-
tions of the system. The dependence of the properties
of extremes of parametric modulations of the underlying
dynamics is an issue of relevant theoretical as well as ap-
plicative interest. The practical interest stems from the
fact that it is relevant to be able to control or predict
variations in extreme events due to small perturbations
to the dynamics. The theoretical interest comes from the
fact that when considering extremes, universal paramet-
ric probability distributions can be defined, as opposed to
the case of the bulk statistical properties. Because of this,
we may hope to reconstruct the parameters descriptive
of the EVT from simple moments of the distributions,
express these in terms of observables of the system, and
use the Ruelle response theory for expressing rigorously
the sensitivity of extremes to small perturbations to the
dynamics.
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In Sec. II we show that by direct integration it is possi-
ble to derive the value of the two GPD parameters ξ and
σ, and, in particular, that the value of ξ agrees with the
GEV shape parameter obtained in [30]. We also show
that, combining the results obtained using such physi-
cal observable A and the distance observables considered
in [12], it is possible to derive the estimates of the par-
tial dimensions of the attractor along the stable and the
unstable directions of the flow. In Sec. III, we develop
a linear response theory describing the impact of small
time-independent ε-perturbations to the flow on the sta-
tistical properties of the extremes of the observable A.
We will first investigate the sensitivity of suitable de-
fined observables describing above-threshold A(x) occur-
rences. We will focus on computing the changes of the
shape parameter ξ. We will find two equivalent expres-
sion for the sensitivity of ξ with respect to ε. First, we
will provide an expression for the sensitivity of ξ in terms
of the first two moments of the probability distribution
of above-threshold A(x) events. Such expression entails
a combination of observables of the Axiom A system,
so that one can use Ruelle’s theory to compute the re-
sponse to ε-perturbations to the dynamics. Nonetheless,
we show that mathematical problems emerge when con-
sidering some limits. We follow the same approach for
defining an expression for the sensitivity of the extremes
of the distance observables considered in [12]. Then, we
will relate the sensitivity of ξ to the sensitivity of the
Kaplan-Yorke dimension of the attractor. We will link
our results to the well-established fact that both the ex-
tremes of observables and quantities like the Lyapunov
exponents feature a good degree of regularity with re-
spect to perturbations when one considers intermediate
complexity to high-dimensional chaotic dynamical sys-
tems. In Sec. IV we present the results of some numeri-
cal experiments performed using simple Hénon maps [45],
aimed at providing support to our results. In Sec. V we
briefly discuss the problems one faces when multiple time
scales are present in the system. In Sec. VI we comment
our findings and present our conclusions.

II. EXTREME VALUE THEORY FOR
PHYSICAL OBSERVABLES OF AXIOM A

SYSTEMS

A. Geometry of the problem

Let us consider a continuous-time mixing Axiom A
dynamical system ẋ = G(x) on a compact manifold
N ⊂ Rd, where x(t) = f t(xin), with x(t = 0) = xin ∈ N
initial condition and f t evolution operator, is defined for
all t ∈ R≥0. Let us define Ω as the attracting invari-
ant set of the dynamical system , so that ν is the asso-
ciated SRB measure with support Ω = supp(ν). Let
us now consider a smooth observable A whose maxi-
mum restricted to the support of ν is unique, so that
max(A)|Ω = A(x0) = Amax, x0 ∈ Ω, and is, moreover,

not a critical point, so that ∇A|x=x0
6= 0, where the gra-

dient is taken in N . Therefore, we have that the the
neutral manifold and the unstable manifold are tangent
to the manifold A(x) = Amax in x = x0. We have that

the intersection between the manifolds A(x) = Ã and Ω is

the empty set if Ã > Amax. We define as Σ̃Tmax the subset
of Rd included between the manifolds A(x) = Amax and
A(x) = T . Furthermore, we define as ΣTmax the subset
of Rd included between the hyperplane βmax tangent to
the manifold A(x) = Amax in x = x0 and the hyperplane
βT , which is obtained by applying the translation given
by the vector (T−Amax)ĝ to the hyperplane βmax, where
ĝ = ∇A|x=x0

/|∇A|x=x0
|2. As T → Amax, which is the

limit of our interest, we have that Ω̃TAmax = Ω ∩ Σ̃TAmax
and ΩTAmax = Ω ∩ ΣTAmax become undistinguishable up
to leading order. See Fig. 1 for a a depiction of this
geometrical construction.

More in general, we denote as ΩUV , with V > U > T ,
the intersection between Ω and the subset of Rd included
between the hyperplane βU and βV , where βX , X = U, V
is obtained from βmax by applying to it the translation
given by the vector (X −Amax)ĝ.

It is now clear that we observe an exceedance of the
observable A(x) above T each time the systems visits
a point belonging to ΩTAmax . In more intuitive terms,
and taking the linear approximation described above, an
exceedance is realized each time the system visit a point
x ∈ Ω whose distance dist(x, βmax) from the hyperplane
βmax is smaller than ymax = (Amax − T )/|∇A|x=x0

|.
We define the exceedances for the points x ∈ ΩTAmax

as z = A(x)− T . An exceedance z corresponds geomet-
rically to a distance y = dist(x, βT ) = z/|∇A|x=x0 | from
βT , and the maximum exceedance Amax−T corresponds
to a distance (Amax−T )/|∇A|x=x0

| between x0 and βT .
Therefore, P (z > Z|z > 0) = P (z > Z)/P (z > 0).

The probability HT (Z) of observing an exceedance of at
least Z given that an exceedance occurs is given by:

HT (Z) ≡
ν(ΩT+Z

Amax
)

ν(ΩTAmax)
. (5)

where we have used the ergodicity of the system. Obvi-
ously, the value of the previous expression is 1 if Z = 0.
The expression contained in Eq. (5) monotonically de-

creases with Z (as ΩT+Z2

Amax
⊂ ΩT+Z1

Amax
if Z1 < Z2) and

vanishes when Z = Amax − T .

B. Derivation of the Generalised Pareto
Distribution Parameters for the Extremes of a

Physical Observable

We now wish to understand how to express the numer-
ator and denominator of Eq. 5 as a function of T , Z, and
Amax. We follow some of the ideas presented in Holland
et al. [30] and use the fact that we are considering Axiom
A systems. We define D as the local dimension around
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FIG. 1. A low-dimensional cartoon of the geometrical con-
struction used for deriving the EVL for exceedances above
the threshold T for the observable A(x) such that max(A)|Ω =
Amax is realized for x = x0. a) The manifolds A(x) = Amax

and A(x) = T are depicted, together with the the attracting
invariant set Ω and the two hyperplanes βmax and βT . βmax

is tangent to A(x) = Amax in x0 and βT is obtained from
βmax via translation along (T −Amax)ĝ. b) The hyperplanes
βmax and βT delimit the region ΣT

max. Its intersection with
Ω is ΩT

max c) The manifolds A(x) = Amax and A(x) = T

delimit the region Σ̃T
max. Its intersection with Ω is Ω̃T

max. As
T → Amax, we have that ΩT

max → Ω̃T
max.

x0, such that

lim
r→0

log(ν(Br(x0)))

log(r)
= D.

In order to proceed with the derivation of an extreme
value law, such an asymptotics is not sufficient. In order
to overcome some of the difficulties discussed in [12, 25],
one needs to assume that

ν(Br(x0))) ∼ fx0
(r)rD,

where fx0(r) is a slowly varying function of r as r →
0, possibly depending on x0. We use the ∼ symbol
as follows. We say that f(x) ∼ g(x) for x → y if
limx→y f(x)/g(x) = c, 0 < |c| < ∞. Taking the as-
sumption above, one can derive the extreme value laws
for the distance observables discussed in [12]. Let’s now
estimate ν(ΩTAmax) as a function of ymax in the case of
generic quadratic tangency between the the hyperplane
A(x) = Amax and the unstable manifold in x = x0

In the case of Axiom A systems, since the invariant
measure is SRB, we have D(x) = dH almost everywhere
on the attractor [46, 47], where dH is the Hausdorff di-
mension. As discussed in [46], we have that in this case all
of the generalized Renyi dimensions have the same value.
Moreover, we can conjecture that D = dKY , where dKY
is the Kaplan-Yorke dimension [48]:

dKY = n+

∑n
k=1 λk
|λn+1|

, (6)

where the λj ’s are the Lyapunov exponents of the sys-
tems, ordered from the largest to the smallest, n is such
that

∑n
k=1 λk is positive and

∑n+1
k=1 λk is negative. Fol-

lowing [46], we can also write dKY = du +dn +ds, where
ds, du and dn are the dimensions of the attractor Ω re-
stricted to the stable, unstable and neutral directions,
respectively, at the point x = x0. We have that du is
equal to the number of positive Lyapunov exponents λ+

j ,

du = #({λj > 0}, j = 1, . . . , d), dn for Axiom A systems
is unitary, while ds is given by ds = dKY −du−dn. Note
that we can also express dKY as follows

dKY = du + dn + [ds] +

∑n
k=1 λk
|λn+1|

= du + dn + ds, (7)

so that {ds} =
∑n
k=1 λk/|λn+1|, because the last term

gives a positive contribution smaller than 1, and du and
dn are both integer.

We follow the construction proposed by Holland et al.
[30] for low dimensional maps. We derive the result by
considering the following heuristic argument. Near x0,
the attractor could be seen as the cartesian product of a
multidimensional paraboloid (of dimension du + dn and
of a fractal set of dimension ds immersed in Rd−du−dn .
Note that this excludes for example conservative chaotic
systems, whose attractor has the same dimension of the
phase space, and systems that can be decomposed into
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a conservative part and a purely contractive part, whose
attractor also has integer dimension. The mass of the
paraboloid ∼ rdu+dn , where r is the distance from the
minimum. Instead, for each point of the paraboloid, the
mass of corresponding fractal set ∼ hx0

(l)lds , where l
is the distance along the the cartesian projection and
hx0

(l) is a slowly varying function of l as l→ 0, possibly
depending on x0. This is where the non-trivial slowly
varying pre-factor is relevant appears.

In our case, l = γymax and r = κ
√
ymax: for the for-

mer relation we assume a generic relation between the
direction of the gradient of A and the stable directions,
while the latter relation results from the functional form
of the paraboloid, see also Fig. 1. Hence, we obtain that
ν(ΩTAmax) ∼ h̃x0

(ymax)yδmax where

δ = ds + (du + dn)/2. (8)

and h̃x0(ymax) = hx0(γymax) is also a slowly varying
function of its argument. This construction can be made
more formal by considering the disintegration of the SRB
measure ν along the stable and unstable directions of the
flow [48].

As a side note, we emphasize that in the case of more
general tangencies between the the unstable and neutral
manifold and the manifold A(x) = Amax , we have that
δ = ds +

∑
j=1 du(2j)/(2j) + dn(2j)/(2j), where du(2j)

(dn(2j) ) gives the number of directions along the unsta-
ble (neutral) manifold where a tangency of order 2j with
the manifold A(x) = Amax is found. We obviously have
that

∑
j=1 du(2j) = du.

We continue our discussion considering the case of
generic tangency. Following the same argument as above,
we have that ν(ΩT+Z

Amax
) ∼ h̃x0

(ymax−y)(ymax−y)δ, where
y = Z//|∇Ax=x0

|. We define

α = 1− y/ymax = 1− Z/(Amax − T ))

and obtain ν(ΩT+Z
Amax

) ∼ h̃x0
(αymax)αδ(ymax−y)δ. Using

the definition of slowly varying function and considering
Eq. 5, we derive that in the limit T → Amax:

HT (Z) = αδ =

(
1− Z

Amax − T

)δ
. (9)

Note that the corresponding cdf is given by FT (Z) =
1 −HT (Z). Comparing Eqs. 3 and Eqs. 9, one obtains
that FT (Z) belongs to the GPD family, and that the
GPD parameters can be expressed as follows:

ξ = −1/δ (10)

σ = (Amax − T )/δ. (11)

These results complement and extend what obtained in
[30] using the GEV approach.

It is important to remark that Eq. 9 has been obtained
in the limit of T → Amax, and under the assumption that
ν(Br(x0) ia a regularly varying function of degree D as
r → 0. When considering a finite range Amax − T , one

should not expect deviations of the empirical distribu-
tions of extremes of A from what prescribed in Eq. 9,
which are intrinsic to the fractal nature of the measure.
See also discussion and Fig. 1 in [12]. When finite ranges
for A are considered, one expects that, in some averaged
sense, Eq. 9 fits well the distributions of extremes of
A and Eqs. 10 and 11 give the value of the two rel-
evant parameters of the GPD, analogously to the idea
that the number of points of the attractor at distance
smaller than a small but finite r from the point xo scales
approximately, on the average as rD.

C. Comments

Equation 10 provides a very valuable information,as
it shows that the shape parameter ξ of the GPD does
not depend on the considered observable, but only on
the dimensions of the stable and of the unstable mani-
fold. Moreover, the shape parameter is always negative,
which is hardly surprising as we are considering com-
pacts attractor and a well-behaved observable, whose val-
ues on the attractor have an upper bound. Note that
for Axiom A systems, ds and du are constant almost
everywhere in the attractor Ω, so that the information
gathered for x = x0 has a global value. Therefore, the
expression for ξ is universal, in the sense that we can
gather fundamental properties of the dynamical system
by looking at the shape parameters of the extremes of a
generic observables with the properties described above.
Note also that δ can be used to put upper and lower
bounds to the Kaplan-Yorke dimension of the system, as
dKY = ds + du + dn > ds + (du + dn)/2 = δ = −1/ξ
and dKY = ds + du + dn < 2ds + du + dn = 2δ = −2/ξ,
so that −1/ξ < dKY < −2/ξ. On the other hand, these
inequalities can be read as constraints to the shape pa-
rameters of the extremes of a general observable for a
system for which we know the Kaplan-Yorke dimension:
dKY /2 < −1/ξ < dKY .

On the other hand, the expression we obtain for σ pro-
vides clear support for calling it the scale parameter. We
derive, as anticipated, that σ > 0 and we observe that
it is proportional to the actual range of values consid-
ered as extremes of the observable A(x), by incorporat-
ing the difference between the absolute maximum of the
observable Amax and the selected threshold T . There-
fore, if we consider as observable A1(x) = αA(x), with
α > 0 and take as threshold for A1(x) the value αT ,
we have that ξA1 = ξA and σA1 = ασA. In phys-
ical terms, σ changes if we change the unit of mea-
sure of the observable, whereas ξ does not. More gen-
erally, we can make the following construction. Let’s
define min(A)|Ω = Amin. If we select an observable
A2(x) = Φ(A(x)), with max(Φ)|[Amin,Amax] = Φ(Amax),
Φ differentiable and dΦ(y)/dy positive in a sufficiently
wide neighbourhood around y = A(xmax) so to ensure
monotonicity of A2(x) near x = xmax, we get ξA2

= ξA
and σA2

= γσA, where γ = dΦ(y)/dy|y=A(xmax).
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D. From the Extremes to the Partial Dimensions
along the Stable and Unstable Directions of the Flow

It is worth considering the following strategy of in-
vestigation of the local properties of the invariant mea-
sure near x = x0, where A(x0) = Amax. By perform-
ing statistical inference of the extremes of A we can de-
duce as a result of the data fitting the best estimate of
ξA = 1/δ. If, following [12], we select as observable,
e.g. B(x) = C − (dist(x, x0))β , β > 0, we have that
the extremes of the observable B feature as shape pa-
rameter ξB = −β/D = −β/dKY and scale parameter
σB = (C − τ)β/D = (C − τ)β/dKY [12], where C is a
constant and τ is the chosen threshold.

We can then easily derive:

2

ξA
− 2β

ξB
= du + dn (12)

β

ξB
− 2

ξA
= ds (13)

where, as discussed above, we can take dn = 1. There-
fore, using rather general classes of observables, we are
able to deduce the partial dimensions along the stable
and unstable manifolds, just by looking at the properties
of extremes related to x = x0. It is to be noted that, as
clear from the results presented in [12], similar conclu-
sions can be drawn choosing powers of dist(x, x0) forms
for B are possible. Note that, more generally, du and ds
can be deduced from the knowledge of any pair of values
(ξA, ξB), (σA, ξB), (ξA, σB), and (σA, σB).

E. Expressing the shape parameter in terms of the
GPD moments and of the invariant measure of the

system

We consider the physical observable A. We denote by

fGPD(z; ξA, σA) =
d

dz
(FGPD(z; ξA, σA))

=
1

σA

(
1 +

ξAz

σA

)−1/ξA−1

(14)

the density corresponding to the cumulative distribution
given in Eq. 3. We can express its first two moments as
follows:∫ −σA/ξA

0

dz z fGPD(z; ξA, σA) =
σA

1− ξA
= µ1 (15)∫ −σA/ξA

0

dz z2 fGPD(z; ξA, σA) =
2σ2

A

(1− ξA)(1− 2ξA)
= µ2.

(16)

It is easy to derive that

ξA =
1

2

(
1− µ2

1

µ2 − µ2
1

)
=

1

2

(
1− 1

idA

)
(17)

and

σA =
µ1µ2

2(µ2 − µ2
1)

(18)

where we indicate explicitly that we refer to the observ-
able A and we have introduced the index of dispersion
idA, the ratio between the variance and the squared first
moment of the considered stochastic variable.

We now try to connect the previous formulas to the
properties of the invariant measure of the dynamical sys-
tem. As we know, the GPD is the exact asymptotic
model for the extremes of the observable A, so that we
can express the results in terms of the conditional invari-
ant measure as follows:

µT1 =

∫
ν(dx)Θ(A(x)− T )(A(x)− T )∫

ν(dx)Θ(A(x)− T )
=
〈ÃT1 〉
〈ÃT0 〉

(19)

µT2 =

∫
ν(dx)Θ(A(x)− T )(A(x)− T )2∫

ν(dx)Θ(A(x)− T )
=
〈ÃT2 〉
〈ÃT0 〉

. (20)

where Θ is the usual Heaviside distribution and, in gen-
eral,

〈ÃTn 〉 =

∫
ν(dx)Θ(A(x)− T )(A(x)− T )n. (21)

We then obtain the following expression for the shape
and dispersion parameters, respectively:

ξTA =
1

2

(
1− (〈ÃT1 〉)2

〈ÃT2 〉〈ÃT0 〉 − (〈ÃT1 〉)2

)
, (22)

and

σTA =
1

2

〈ÃT1 〉〈ÃT2 〉
〈ÃT2 〉〈ÃT0 〉 − 〈ÃT1 〉2

, (23)

where these result are exact in the limit for T → Amax.
As a check, it is useful to verify that the right hand side
of Eq. 22 gives the same general result as given in Eq.
10. By definition we have:

ν(ΩTAmax) = 〈ÃT0 〉 =

∫
ν(dx)Θ(A(x)− T )

∼ h̃x0
(Amax − T )(Amax − T )δ

ε

. (24)

We derive the following expression using repeatedly the
distributional relation x d/dx[Θ(x)] = 0:

〈ÃT0 〉 = − d

dT
〈ÃT1 〉 (25)

〈ÃT1 〉 =
1

2

d

dT
〈ÃT2 〉 (26)

so that

〈ÃT1 〉 ∼
h̃x0

(Amax − T )

(δ + 1)
(Amax − T )δ+1 (27)
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and

〈ÃT2 〉 ∼
2h̃x0

(Amax − T )

(δ + 1)(δ + 2)
(Amax − T )δ+2. (28)

By plugging these expression into Eq. 22, we indeed ob-
tain ξ = −1/δ, which agrees with Eq. 10.

We also note that it is possible to generalize the results
given in Eqs. 25-28. Using the fundamental theorem of
calculus, it is possible to derive that:

〈ÃTn 〉 =

∫ Amax

T

dz n(z − T )n−1〈Ãz0〉

.
Moreover, it is notable that what presented in this sub-

section can be replicated step by step for the distance
observables observable B(x, x0) = C − dist(x, x0)β dis-
cussed above. We obtain:

ξTB =
1

2

(
1− (〈B̃T1 〉)2

〈B̃T2 〉〈B̃T0 〉 − (〈B̃T1 〉)2

)
(29)

and

σTB =
1

2

〈B̃T1 〉〈B̃T2 〉
〈B̃T2 〉〈B̃T0 〉 − 〈B̃T1 〉2

, (30)

where the quantities 〈B̃Tj 〉, j = 0, 1, 2 are constructed
analogously to how described in Eq. 21.

We wish to remark that Eqs. 22-23 and Eqs. 29-30
could in fact provide a very viable method for estimating
the GPD parameters from data, since moments estima-
tor are in general more stable than maximal likelihood
methods, and then deriving the value of du and ds using
Eqs. 12-13.

III. RESPONSE THEORY FOR THE
EXTREMES OF GENERAL OBSERVABLES

We wish to present some ideas on how to use response
theory and the specific expressions given in Eqs 10-11 to
derive a response theory for extremes of physical and dis-
tance observables in Axiom A dynamical systems. Let’s
assume that we alter the Axiom A dynamical system un-
der consideration as ẋ = G(x) → ẋ = G(x) + εX(x),
where ε is a small parameter and X(x) is a smooth vec-
tor field, so that the evolution operator is transformed
as f t → f tε and the invariant measure is transformed
as ν → νε. Ruelle’s response theory allows to ex-
press the change in the expectation value of a general
measurable observable Ψ(x) as a perturbative series as
〈Ψ〉ε = 〈Ψ〉0 +

∑∞
j=1 ε

j〈Ψ(j)〉0, with j indicating the or-
der of perturbative expansion, where

〈Ψ〉ε =

∫
νε(dx)Ψ(x)

is the expectation value of Ψ over the perturbed invariant
measure and

〈Ψ〉0 =

∫
ν(dx)Ψ(x)

defines the unperturbed expectation value of Ψ. The
term corresponding to the perturbative order of expan-
sion j is given by 〈Ψ(j)〉0, where Ψ(j) can be expressed
in terms of the time-integral of a suitably defined Green
function [33]. At this stage, we limit ourselves to the
linear response of the system. We consider the following
useful formula:

dn〈Ψ〉ε

dεn

∣∣∣∣
ε=0

= n!〈Ψ(n)〉0.

and take into account the n = 1 case.

A. Sensitivity of shape parameter as determined
by the changes in the moments of the distribution

We wish to propose a linear response formula for the
parameter ξA using Eqs. 19-22. We start by considering
that in Eq. 22 the shape parameter is expressed for every
T < Amax as a function of actual observables of the sys-
tem. Unfortunately, in order to apply Ruelle’s response
theory, we need the observables to be smooth, which is
in contrast with the presence of the Θ in the definition
of the terms 〈ÃTj 〉ε. Nonetheless, replacing the Θ’s with
a smooth approximation ΘS , the Ruelle response theory
can be rigorously applied. We now consider a sequence
of approximating Θm

S such that the measure of the sup-
port of Θ − Θm

S is smaller than δm = (Amax − T )/m.
It is reasonable to expect that as δm → 0, the effect
of the smoothing becomes negligible, because a smaller
and smaller portion of the extremes is affected, and the
response of the smoothed observable approaches that of
〈ÃTj 〉ε. Therefore, we can retain the Θ in the definition

of the 〈ÃTj 〉ε and define rigorously for every T < Amax:

dξT,εA

dε

∣∣∣∣
ε=0

= −1

2

d

dε

{
(〈ÃT1 〉ε)2

〈ÃT2 〉ε〈ÃT0 〉ε − (〈ÃT1 〉ε)2

}∣∣∣∣
ε=0

(31)
and

dσT,εA

dε

∣∣∣∣
ε=0

=
1

2

d

dε

{
〈ÃT1 〉ε〈ÃT2 〉ε

〈ÃT2 〉ε〈ÃT0 〉ε − (〈ÃT1 〉ε)2

}∣∣∣∣
ε=0

,

(32)
By expanding the derivative in Eq. 31, the previous

expression can be decomposed in various contributions
entailing the linear response of the system to the ε per-
turbation for the observables 〈ÃT0 〉ε, 〈ÃT1 〉ε, 〈ÃT2 〉ε and
their values in the unperturbed case for ε = 0.

We wish to remark the special relevance of the ob-
servable 〈ÃT0 〉ε, which is normalizing factor in Eqs. 19-
20, and, in practice, measures the fraction of above-T -
threshold events. Therefore, once T is chosen, the sensi-
tivity of 〈ÃT0 〉ε with respect to ε informs on whether the
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ε-perturbation to the vector flow leads to an increase or
decrease in the number of extremes. We obtain:

d〈AT0 〉ε

dε

∣∣∣∣
ε=0

=

∫
dτ 〈Xk(x)∂kΘ (A(x(τ)− T )〉0

=

∫
dτ 〈Xk(x)∂kA(x(τ)δ (A(x(τ)− T )〉0

=

∫
dτ〈Xk(x)∂kxi(τ)∂xi(t)A(x(t))

× δ (A(x(τ)− T )〉0
(33)

where δ is the derivative of the Θ function with all the
caveats discussed above. The formula can be interpreted
as follows. In the last formula, ∂kxi(τ) is the adjoint of
the tangent linear of the unperturbed flow, and ∂xi(t) in-
dicates the partial derivative with respect to the variable
xi(t). At each instant τ we consider, in the unperturbed
system, all the trajectories starting in the infinite past
from points distributed according to the invariant mea-
sure such that the observable A has value equal to T .
For each of these trajectories, we can measure whether
the presence of the perturbation field X(x) would lead
to a decrease or increase in A at time τ . Summing over
all trajectories, we get whether there is a net positive or
negative change in the above threshold events at time τ .
We integrate over τ and get the final result. Considering
the geometrical construction given in Fig. 1, the previous
formula can also be approximated as follows:

d〈AT0 〉ε

dε

∣∣∣∣
ε=0

≈
∫
dτ〈Xk(x)∂kxi(τ)∂iA|x=x0

× δ (A(x(τ)− T )〉0 (34)

Therefore, Eqs. 31-32 provides recipes for computing

the sensitivity of ξT,εA and σT,εA at ε = 0 for any case of
practical interest, where Amax − T is indeed finite, be-
cause in order to collect experimental data or process
the output of numerical simulations we need to select a
threshold which is high enough for discriminating true
extremes and low enough for allowing a sufficient num-
ber of samples to be collected for robust data processing.
Note that all statistical procedures used in estimating
GPD parameters from data are actually based on find-
ing a reasonable value for T such that both conditions
described above apply by testing that parameters’ esti-
mates do not vary appreciably when changing T [4]. So, if
when investigating the extremes of A for the unperturbed
and ε−perturbed dynamics we find a common value of T
such that the GPD statistical inference of extremes is
satisfactory, Eqs. 31-32 provide correct formulas for the
sensitivities..

We wish to underline that apparently formal problems
emerge when taking the limit in Eqs.31-32 for higher and
higher values of T . It is indeed not clear at this stage
whether

lim
T→Amax

dξT,εA

dε

∣∣∣∣
ε=0

= lim
T→Amax

lim
ε→0

ξT,εA − ξT,0A

ε
(35)

exists, because we cannot apply the smoothing argument
presented above in the limit of vanishing Amax−T . More-
over, it is not clear whether such limit is equal to

lim
ε→0

lim
T→Amax

ξT,εA − ξT,0A

ε
, (36)

which seems at least as well suited for describing the
change of the shape observable given in Eq. 22 due to an
ε−perturbation in the dynamics. Obviously, if the two
limits given in Eqs. 35 and 36 exist and are equal, then a
rigorous response theory for ξA can be established. Same

applies when considering the properties of σT,εA .
The same derivation and discussion can be repeated

for the B observables introduced above and we can
derive the corresponding formulas for dξT,εB /dε|ε=0 and

dσT,εB /dε|ε=0, where the relevant limit for T is T → C.
Let’s try to give a more intuitive interpretation to the

results given above. Let’s consider Eq. 17 and assume
that, indeed, ξ is differentiable with respect to ε. We
have:

dξεA
dε

∣∣∣∣
ε=0

= −1

2

d

dε

{
1

idεA

} ∣∣∣∣
ε=0

=
1

2idεA
2

d

dε
{idεA}

∣∣∣∣
ε=0

.

(37)
which implies that the sensitivity of the shape parameter
is half of the opposite of the sensitivity of the inverse of
the index of dispersion idA. Therefore, a positive sensi-
tivity of the index of dispersion (larger relative variability
of the extremes of the observable A with positive values
of ε) implies a larger value (closer to 0) of ξA, and so the
possibility that larger and larger extremes are realized.
Same interpretation applies for the B observables.

B. Sensitivity of the shape parameter as
determined by the modification of the geometry

In the previous subsection we have shown that the Ru-
elle response theory supports the idea that the shape pa-
rameters descriptive of the extremes of both the physi-
cal observables A and the distance observables B change
with a certain degree of regularity when considering
ε−perturbations to the dynamics.

In this subsection, we wish to look at the sensitivity
of extremes with respect to perturbation from another
angle, i.e. through the relationship between the shape
parameters ξA and ξB and the partial dimension of the at-
tractor along the stable, neutral and unstable manifolds
of the underlying dynamical system, see Eqs. 12-13. As
long as the ε-perturbation is small, the modified dynam-
ical system belongs to the Axiom A family, so that the
results presented above apply. Therefore, we can write
in more general terms:

ξεA = −1/δε = −1/(dεs + dεu/2 + dεn/2) (38)

ξεB = −β/dεKY = −β/(dεs + dεu + dεn). (39)

In the following, we introduce somewhat carelessly
derivatives with respect to ε of quantities that are not, a
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priori, differentiable. The main point we want to make
is that if ξA and ξB are differentiable with respect to ε,
then various quantities describing the structure of the at-
tractor are also differentiable. Therefore, the existence of
the limits given in Eqs. 35 and 36 (and their equivalent
for the B observables) would have far-reaching conse-
quences. We will discuss the obtained results at the end
of the calculations. Another caveat we need to mention
is that Eqs. 38-39 are in general true almost anywhere,
so that we may have to interpret the derivatives in this
section in some suitable weak form.

It seems relevant to add the additional hypothesis of
strong transversality for the unperturbed flow, which is
equivalent to invoking structural stability [48]. We take
such pragmatic point of view and proceed assuming that
derivatives with respect to ε are well defined. Linearizing
the dependence of ξA on ε around ε = 0 in Eq. 38, we
obtain:

dξεA
dε

∣∣∣∣
ε=0

=

{
dξεA

d(dεs)

d(dεs)

dε

} ∣∣∣∣
ε=0

+

{
dξεA

d(dεu)

d(dεu)

dε

} ∣∣∣∣
ε=0

+

{
dξεA

d(dεn)

d(dεn)

dε

} ∣∣∣∣
ε=0

.

(40)

We have that d(dεu)/dε|ε=0 = d(dεn)/dε|ε=0 = 0, as,
thanks to structural stability, small perturbations do not
alter the qualitative properties of the dynamics, and can-
not change in a step-wise way the number of expanding or
neutral directions. We now separate the quantity ds into
its integer component and the rest, which is generically
non vanishing:

dξεA
dε

∣∣∣∣
ε=0

=

{
dξεA

d(dεs)

d([dεs])

dε

} ∣∣∣∣
ε=0

+

{
dξεA

d(dεs)

d({dεs})
dε

} ∣∣∣∣
ε=0

.

(41)
Only the last term is different from zero, because, thanks
to structural stability, d([dεu])/dε|ε=0 = 0. Using Eq. 7,
we obtain:

dξεA
dε

∣∣∣∣
ε=0

=

 dξεA
d(dεs)

d
∑n
k=1 λ

ε
k

|λεn+1|

dε


∣∣∣∣
ε=0

(42)

where n is defined as in Eq. 6. Since n is not altered for
infinitesimal ε perturbations to the dynamical system, we
have that, using Eq. 6:

d
∑n
k=1 λ

ε
k

|λεn+1|

dε

∣∣∣∣
ε=0

=
d(dεKY )

dε

∣∣∣∣
ε=0

. (43)

Expanding the previous expressions, the final formula
reads as follows:

dξεA
dε

∣∣∣∣
ε=0

=

{
1

(dεs + dεu/2 + dεn/2)2

d(dεKY )

dε

} ∣∣∣∣
ε=0

. (44)

This implies that the shape parameter ξ increases, thus
attaining a value closer to zero (ξA is always negative)

when the perturbation increases the Kaplan-Yorke di-
mension of the attractor, so, in qualitative sense, if it
favors ”forcing” over ”dissipation”. This matches quite
well, at least qualitatively, with the discussion following
Eq. 37.

We have that, when considering a distance observable
of the form B(x) = −dist(x, x0)β , following the same
steps described above one gets the following result:

dξεB
dε

∣∣∣∣
ε=0

=

{
β

dεKY
2

d(dεKY )

dε

} ∣∣∣∣
ε=0

; (45)

such result can be easily generalized by considering the
class of observables described in [12].

Combining Eq. 31 with Eq. 44, and the derivative
with respect to ε of Eq. 29 with Eq. 45, we can derive
two expressions for the derivative of the sensitivity of the
Kaplan Yorke dimension at ε = 0:

d(dεKY )

dε

∣∣∣∣
ε=0

= −
{

(dεs + dεu/2 + dεn/2)2

2

} ∣∣∣∣
ε=0

×

×

{
d

dε

(〈ÃT1 〉ε)2

〈ÃT2 〉ε〈ÃT0 〉ε − (〈ÃT1 〉ε)2

}∣∣∣∣
ε=0

(46)

= −
{
dεKY

2

2β

} ∣∣∣∣
ε=0

×

×

{
d

dε

(〈B̃T1 〉ε)2

〈B̃T2 〉ε〈B̃T0 〉ε − (〈B̃T1 〉ε)2

}∣∣∣∣
ε=0

(47)

where we take the limit for T → Amax in Eq. 46 and
T → 0 in Eq. 47.

The previous results imply that if one of ξA, ξB or
the Kaplan-Yorke dimension of the underlying Axiom A
system change smoothly with ε−perturbations to the dy-
namics, so do the other two quantities. This may sug-
gest ways to study the regularity of the Kaplan-Yorke
dimension by resorting to the analysis of the regularity
of a much simpler expressions involving moments of given
observables.

This result provides useful insight also not considering
the problematic limits discussed above. Taking a more
qualitative point of view, this suggests that when con-
sidering small perturbation in the dynamics of chaotic
systems behaving like Axiom A systems there is a link be-
tween the presence (or lack) of regularity of the parame-
ters describing the extremes of a wide class of observables
and of the regularity of the Kaplan-Yorke dimension.
This matches with the fact that numerical practice with
moderate to high dimensional strongly chaotic systems
shows that, actually, the parameters describing extremes
of energy like observables and the Lyapunov exponents
both have - within numerical precision - a smooth depen-
dence on the parameters of the system. See [3, 49] for
an extensive discussion in a simplified yet relevant fluid
dynamical model. A detailed investigation of the appar-
ent regularity for all practical purposes of the Lyapunov
exponents with respect to small perturbations in the dy-
namics of intermediate complexity to high-dimensional
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models has been presented in [50]. We also wish to re-
mark that if these regularity hypotheses were not satis-
fied, the very widespread (and practically successful) pro-
cedure of parametric tuning of high-dimensional models
of natural, engineered or social phenomena would be ab-
solutely hopeless, and delicate numerical procedures such
as those involved in data assimilation of high-dimensional
dynamical systems would lack any sort of robustness,
contrary to the accumulated experience.

IV. NUMERICAL EXPERIMENTS

As thoroughly discussed in [23–25], it is far from trivial
to devise suitable numerical experiments for studying to
what extent the theoretically derived asymptotic extreme
value laws for dynamical systems can be detected in fi-
nite datasets obtained as outputs of simulations. In this
Section we would like to present simple numerical exper-
iments providing some heuristic and preliminary support
to the fact that the universal properties for the extremes
can be observed when considering specific observables
for dynamical systems. More detailed numerical stud-
ies, where inference of the geometrical properties of the
attractor is performed using the statistics of extremes of
suitable observables will be reported elsewhere. Hence,
we consider as toy model the smooth R2 → R2 map in-
troduced by Hénon [45]:

xn+1 = 1− ax2
n + yn (48)

yn+1 = bxn. (49)

As well known, depending on the value of the two pa-
rameters a and b, the Hénon map can exhibit either
regular or chaotic behaviour, where, in the latter case,
the invariant measure is supported on a strange attrac-
tor [51]. We consider two sets of parameter values for
which chaotic behavior is observed, (a, b) = (1.4, 0.3) and
(a, b) = (1.2, 0.3). In the first case, the largest Lyapunov
exponent λ1 ∼ 0.416 and the Kaplan-Yorke dimension is
estimated as dKY = 1 +λ1/|λ2| = 1 +λ1/| log(b)−λ1| ∼
1.26, where du = 1 and ds = λ1/| log(b) − λ1| ∼ 0.26.
In the second case, the largest Lyapunov exponent λ1 ∼
0.305 and the Kaplan-Yorke dimension is estimated as
dKY = 1 + λ1/|λ2| = 1 + λ1/| log(b) − λ1| ∼ 1.20. Note
that it is reasonable to expect that the Hénon maps con-
sidered here do not possess an SRB measure, because
the considered pair of values of a and b do not seem to
belong to the Benedicks-Carleson set of parameters. As
a consequence, these systems are not exact dimensional
and the local dimension does not have the same value al-
most everywhere on the attractor, so, in rigorous terms,
we have no a-priori reasons to expect that our results
should necessarily apply. Nonetheless, in order to assess
the robustness of our findings, it is interesting to check to
what extent our theoretical predictions are met, at least
qualitatively, in such a basic model of chaotic dynamics.

We proceed as follows for both pairs of parameters
(a, b) = (1.4, 0.3) and (a, b) = (1.2, 0.3). We first choose,

for sake of simplicity, the observable A(~x) = x, where
~x = (x, y). The initial conditions are selected in the
basin of attraction of the strange attractors. We perform
long integrations (order of 1010 iterations) and select the
maximum value of A, which we denote as Amax, and de-
fine as ~x0 the unique point belonging to the attractor
such that A(~x0) = Amax. We then construct the observ-
able B(~x) = −dist(~x, ~x0), which measures the distance
between the orbit and the point ~x0. As discussed in [12],
the asymptotic properties of the extremes (maxima) of
the B observable allow to derive easily the local dimen-
sion D(~x0). We then repeat the investigation using, in-
stead, the observable A(~x) = −x. In all the analyses pre-
sented below, we have chosen extremely high thresholds
T for studying the statistical properties of the extremes
of the A and B observables, in such a way to include only
about a fraction of about 10−5 or less of the total num-
ber of points of the orbit. All the results are insensitive
to choice of T , which suggests that we are well into the
asymptotic regime.

The results obtained for the Hénon system featuring
(a, b) = (1.4, 0.3) are shown in Fig. 2, where we present
the complementary cumulative distribution of excesses
HT (Z) (see Eqs. 5 and 9) for A(~x) = x (A(~x) = −x)
and for the corresponding B(~x) = −dist(~x, ~x0) in panel
a) (panel b)). The empirical values of HT (Z) for the A
and B observables are shown by the blue and red curves,
respectively, and the power law behavior HT (Z) = (1 −
Z/(Amax−T ))α given by the theory (assuming Axiom A
properties!) are shown by the black and magenta lines,
respectively.

The error bars on the empirical HT (Z) (estimated by
varying the initial conditions of the simulation) are for
almost all values of Z so small that they cannot be graph-
ically reproduced. Instead, the flat region obtained for
very low values of HT (Z) results from the finiteness of the
sampling and gives the baseline uncertainty. Note that
the straight lines are obtained out of the theoretical pre-
dictions, without any procedure of optimization or of fit,
so that no uncertainties are involved. The empirical and
theoretical distributions obey the same normalization.

We first observe that the local dimension in the vicin-
ity of both ~x0’s is extremely close to the dKY ∼ 1.26,
as HT (Z) scales to a very good approximation with an
exponent α ∼ dKY ; compare the red curves and the ma-
genta lines. Note that, considering that the local dimen-
sion has rather large variations across the attractor of
the Hénon system, such a correspondence was not inten-
tionally pursued. However, these are favorable circum-
stances to check the theory. We find that the distribu-
tionsHT (Z) for the observables A(~x) = x and A(~x) = −x
also obey accurately the power law scaling with expo-
nent α ∼ δ = du/2 + ds ∼ 0.76 introduced in Eq. 8,
compare the blue curves and the black lines. In panel
c) we present a simple description of the geometry of
the problem, by showing an approximation to the map’s
attractor with blow-ups of the portions of the invariant
measure corresponding to the extremes of the A observ-
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FIG. 2. Results of numerical simulations performed on the
Hénon map with parameters’ value a = 1.4 and b = 0.3. a)
Blue curve: empirical HT (Z) for the observable A = x, with
Amax = A(x0) ∼ 1.2730. Black line: power law behavior
deduced from the theory. Red curve: empirical HT (Z) for the
observable B = −dist(x, x0), with Bmax = 0. Magenta line:
power law deduced from the theory. b) Same as a), for the
observable A = −x, with Amax ∼ 1.2847 and Bmax = 0. c)
Approximation to the attractor with blow-ups of the portions
of the invariant measure corresponding to the extremes of the
A observables (ΩT

Amax regions); the vertical lines indicate the
thresholds. In both inserts, we consider Amax − T = 10−4.
See also Fig. 1.

ables (the regions ΩTmax introduced in Fig. 1). Even if
the geometrical properties of the regions of the attractor
around the two x0’s seem indeed different, when zooming
in, the two ΩTmax regions look similar. The presence of
many parabolas-like smooth curves stacked according to
what looks qualitatively like a Cantor set fits with the
comments and calculations given in Sec. II.

In Fig. 3 we report the corresponding results obtained
for the Hénon system featuring (a, b) = (1.2, 0.3). By
looking at the empirical HT (Z) of the B observables, we
note that also in this case the local dimension is close
to the value of dKY ∼ 1.20 for both extremal points
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FIG. 3. Same as in Fig. 2, but for parameters’ value a = 1.2
and b = 0.3. In this case in a) Amax ∼ 1.2950 and Bmax = 0,
and in b) Amax ∼ 1.0328 and Bmax = 0.

x0’s (compare the red curves and the magenta lines in
panels a and b). Nonetheless, the slope of the empirical
data is slightly steeper than the theoretical value. The
agreement between the predicted value of the power law
scaling for the HT (Z) of the A observables is not as good
as in the case reported in Fig. 2. The predicted scaling
exponent δ = du/2+ds ∼ 0.70 seems to overestimate the
very large extremes. Nonetheless, a power law scaling is
apparent for the empirical HT (Z). Note that the bias
between the theoretical and empirical scalings is of the
same sign for both the A and B observables, suggesting
that also for the A observables part of the disagreement
is due to the discrepancy between the local dimension
and the Kaplan-Yorke dimension (there is a shift in the
values of the slopes). Also here, panel c) provides an ap-
proximate representation of the attractor of the system,
and, in particular of the ΩTmax regions: by comparing it
with panel c) of Fig. 3, and considering that they contain
the same number of points, one can intuitively grasp that
the local dimension is lower in this case.

We would like to emphasize that in panels a) and b) for
Figs. 2 and 3, we observe deviations of the empirically
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obtained HT (Z) from the power law behaviour, in the
form of fluctuations above and below a straight line in a
log-log plot (this is quite clear in Fig. 3). As discussed
in Sect. II B, the presence of such modulations across
scales result from the fact that gaps are present along
the stable manifold containing x0, with a Cantor set-like
structure. See the inserts in Figs. 2c) and 3c), where the
stable manifold (not shown) is, as opposed to the unsta-
ble manifold, not orthogonal to the gradient of A (the x
direction, in this case). So, when we integrate the density
of states along the direction of the gradient of the A ob-
servable starting in ~x0 in order to obtain ν(ΩT+Z

Amax
) and

ν(ΩTAmax), we get a factor (Amax − T − Z)du/2 (du = 1)
coming from the (local) paraboloidal form of the unsta-
ble manifold discussed in Sec. 2, times a devil’s staircase
which can, on the average, be approximated by the power
law (Amax − T − Z)ds . The same geometric arguments
apply when considering integrations along the spherical
shells centered in ~x0 for constructing the extreme value
laws for B observables. Smooth approximation to devil’s
staircases, appear in a closely related context when using
the GEV approach for studying extreme values laws in
random dynamical systems whose attractor is the actual
Cantor set [25].

Such preliminary results suggest that it is indeed
promising to use the combined statistical properties of
the extremes of physical and distance observables for
determining the geometry of the attractor in terms of
its partial dimensions along the stable and the unstable
manifold.

V. MULTIPLE TIME SCALES

We briefly wish to mention here some additional fea-
tures which may appear and be extremely relevant at
finite time in practical cases, where the dynamics can
deviate from Axiom A when certain time scales are con-
sidered. Let’s assume that one can to a first approxi-
mation partition the (unique) attractor of a chaotic dy-
namical system into, say, two pieces, so that the system
has two time scales, a short one related to the transi-
tive dynamics within each of the two pieces, and a long
one corresponding to intermittent jumps from one to the
other piece. In this case, if we observe the system for
a time scale intermediate between the two, the proper-
ties of the extremes will depend only on the properties of
the visited portion of the attractor and we will observe
a Weibull distribution, as discussed here, as the dynam-
ics may be Axiom A-like. When our observation time
nears the long time scale, we might observe extraordi-
nary large events, corresponding to excursions directed
towards the other piece of the attractor, until a jump,
corresponding to an irreversible (on the short time scale)
transition will take place. Such extraordinary events will
not fit the Weibull law found on smaller time scales, be-
cause they result from the global properties of the at-
tractor, which have not been sampled yet. Therefore, in

these intermediate scale, the results proposed here will
not be valid. Instead, one may interpret such extraordi-
nary events as Dragon Kings [55], which will manifest as
outliers spoiling the Weibull statistics and pushing the
statistics of extremes towards an (apparently) unphysi-
cal Frechét distribution. Observing extremes over even
longer time scales, so that the orbit visits many times
both parts of the attractor, we shall recover a Weibull
law, which reflects the global properties of the attractor.
In a system with these properties, small perturbations to
the dynamics might impact substantially the long time
scale discussed above, with the result of having a high
sensitivity of the statistics of extremes when a fixed time
window of observation is considered. The presence of
such strong sensitivity has been proposed as a method
for detecting precursors of global stability thresholds re-
lated to critical transitions [56].

VI. CONCLUSIONS

This paper has addressed the problem of studying the
EVT for general observables of mixing Axiom A dynam-
ical system. We have set in a common framework the
investigation of general properties of distance observables
B, for which we had derived some basic results in [12],
and of physical observables, first discussed in [30]. By
physical observables we mean rather general classes of
smooth observables A (e.g. quadratic, energy-like quan-
tities) which achieve an absolute maximum Amax at a
specific, non-critical point x = x0 (the gradient ∇A does
not vanish) of the attractor of the system.

We have built up from the recent results of Holland
et al. [30], who have studied accurately this problem on
discrete maps with specific mixing properties using the
GEV framework and have derived, as fundamental result,
that the extremes of A indeed obey a GEV extreme value
law and that ξA, the shape parameter of the distribution,
is equal to −1/δ, with δ = ds + du/2, where ds is the
partial dimension along the stable manifold and du is the
partial dimension along the unstable manifold.

In this paper, using the GDP approach, thus consid-
ering exceedances above a given threshold T , and con-
sidering the physically relevant case of mixing Axiom A
systems, we derive through direct integration that the
shape parameter ξA can also be expressed as ξA = −1/δ.
We have framed our results for continuous flows, so
δ = ds+du/2+dn/2, where dn is the dimension along the
neutral direction and is unitary. In the case of discrete
maps, we obtain the same results as in [30]. We have also
been able to derive the explicit expression for the scale
parameter σ = (Amax − T )/δ.

It is clear that the ξA parameter is always negative (so
that the distribution of extremes is upper limited), re-
flecting the fact that the observable is smooth and the
attractor is a compact set. Moreover, measuring ξA al-
lows us to provide an upper and lower bound for dKY
and vice versa, because −1/ξA < dKY < −2/ξA, or, con-
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versely dKY /2 < −1/ξA < dKY . In particular, we have
that ξA is small and negative if and only if the Kaplan-
Yorke dimension of the attractor is large. If we consider
a chaotic system with a high dimensional attractor (e.g.
in the case of an extensive chaotic system with many de-
grees of freedom), we derive that ξA ≈ 0. This may well
explain why in a multitude of applications in natural sci-
ences such as hydrology, meteorology, oceanography the
special ξ = 0 member of the GPD family - the exponen-
tial model - given in Eq. 3 usually gives a good first guess
of the statistics of observed extremes [9].

Alternatively, this result suggests that if we perform
a statistical analysis using the POT method (using
an empirical threshold T ) of the extremes for a high-
dimensional chaotic system and obtain as a result of the
statistical inference of the collected data for the GPD
model a shape parameter ξA � 0 or ξA ≥ 0, we should
conclude that our sample is not yet suited for an EVT
statistical fit. This may depend on the fact that we have
selected an insufficiently stringent value for T . Obviously,
choosing higher values for T implies that we need to have
longer time series of the observable under investigations.

Interestingly, by combining the expression for ξA ob-
tained in this paper for a physical observable A and the
expression for ξB of the GPD describing the extremes of
observable of the form B(x) = C − dist(x, x0)β , where
dist is the distance function [12], we can express the par-
tial dimension of the attractor on the stable and unsta-
ble dimension as simple functions of ξA and ξB . The
straightforward result is that 2/ξA − 2β/ξB = du + dn
and β/ξB − 2/ξA = ds. The same can be obtained us-
ing, instead, the parameters σA and σB . This provides
further support to the idea that extremes can be used as
excellent diagnostic indicators for the detailed dynamical
properties of a system. The message seems to be that one
can construct observables whose large fluctuations give
precise information on the dynamics. While considering
various sorts of anisotropic scalings of the neighborhood
of a point of the attractor allows to derive its partial di-
mensions [52], the specific result we obtain here is that
choosing an arbitrary physical observable and studying
its extremes, we automatically select a special, non el-
lipsoidal neighborhood, where the degree of anisotropy
between the stable and unstable (and neutral) directions
is generically universal and given by the factor 1/2.

We wish to make an additional remark. Let’s assume,
instead, that the gradient of A is vanishing in x0 and that
at leading order near x0 A(x) ∼ Amax + [x − x0, H(x −
x0)], where H is a negative definite symmetric matrix
and the square brackets indicate the scalar product. It is
clear that, apart from a linear change in the coordinates
and rescaling, the statistical properties of the extremes
of A(x) will match those of B(x) = C − dist(x, x0)2.

In the second part of the paper we have tackled the
problem of studying how the properties of extremes of
the observable A change when an ε-perturbation is added
to the system. As theoretical framework, we have taken
the point of view of Ruelle [33, 34], who has shown that

the SRB measure of Axiom A systems is differentiable
with respect to ε-perturbations to the dynamics and has
provided explicit formulas for studying how the expec-
tation values of generic observables of Axiom A systems
change when the system is subjected to perturbations.

We have used the fact that the GPD is an exact asymp-
totic model for extreme events in order to find a simple
functional relation between ξA and ξB (as well as σA
and σB) and the first two moments of the probability
of above-threshold exceedance expressed in terms of the
invariant measure of the system. These expressions are
amenable to direct treatment with Ruelle’s response the-
ory, at least when we do not consider the limit T → Amax
but stick to the practical situation where we need to con-
sider a finite range for the extremes. The differentiability
properties of ξA and ξB are hard to ascertain in the limit.
We have also found an explicit expression for the sensi-
tivity of the number of extremes - seen an over threshold
events - to the ε-perturbation.

We have then taken into consideration our results on
the relationship between ξA and ξB and the partial di-
mensions of the attractor. Interestingly, it seems that
there is an intimate connection between the differentiabil-
ity with respect to ε of ξA, ξB and dKY , so that either all
of them or none of them is differentiable with respect to
ε. Under the hypothesis of differentiability, we have been
able to derive that the sensitivity of ξA and ξB with re-
spect to ε is proportional to the sensitivity of the Kaplan-
York dimension dKY with respect to ε. Specifically, we
obtain that if the perturbation tends to increase the di-
mensionality of the attractor (thus, in physical terms,
favoring forcing over dissipation), the value of ξ becomes
closer to zero, so that the occurrence of very large ex-
treme events becomes more likely. The system, in this
case, has more freedom to perform large fluctuations.

Taking a more pragmatic point of view, these results at
least provide a rationale for the well-known fact that in
moderate to high-dimensional strongly chaotic systems
the Kaplan-Yorke dimension (and, actually, all the Lya-
punov exponents) change smoothly with the intensity of
the perturbating vector field, as discussed in [49, 50], and
similar behavior is found for the parameters describing
the extremes of energy-like quantities [3].

Since it has been shown in [36] that the linear response
vanishes for any observable in the case of stochastic forc-
ing of rather general nature, whereas the second order
response gives the leading order of perturbation, we ex-
pect that adding a moderate noise to a chaotic dynamical
system will not alter significantly the shape parameter ξ
describing the EVT of both physical and distance observ-
ables.

Finally, we have performed a set of simple numerical
experiments using the celebrated Hénon map for two dif-
ferent pairs of parameters - (a,b)=(1.4,0.3) and (1.2,0.3).
While these maps are definitely not Axiom A, it seemed
to us worthwhile to test the robustness of the theory
in more general classes of systems and to have an in-
dication of whether the asymptotic properties discussed
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here are practically observable. One has to keep in mind
that, when considering extremes, the approach to asymp-
totic behavior is far from being trivial to detect in finite
datasets [24, 25]. We find encouraging agreement be-
tween our theory and the outputs of numerical experi-
ments for both sets of parameters, which suggests that
it is worthwhile to study accurately more comprehensive
models in order to see whether one can practically de-
rive the geometrical properties of the attractor from the
statistics of extremes of distance and physical observ-
ables. Further numerical investigations are needed for
studying whether it is possible to find satisfactory nu-
merical evidence for the response theory for the extremes
developed here and in particular for the relationship be-
tween the sensitivity of the EVT’s parameters of physical
and distance observables and the sensitivity of the Ka-
plan Yorke dimension to perturbations to the underlying
dynamical system.

In this work we have considered the case where the
observable A has a unique maximum restricted to Ω in
x = x0 ∈ Ω. If Ω and A share some symmetries, x0

is not unique, and instead there is a set of points x0’s
belonging to Ω, finite or infinite, depending of the kind
of symmetries involved, where A reaches its maximum
value restricted to Ω. Let’s consider the relevant case
where A and Ω share a discrete symmetry, so that χ0,
the set of the maximal point x0’s, has finite cardinal-
ity. The results discussed here for the extremes of A will
nonetheless apply, because we can perform an equivalent
geometrical construction as in Fig. 1 for each element
of χ0. When we consider an ε-perturbation to the dy-
namics which respects the discrete symmetry, it is clear
that all the results of the response presented here apply.
Finally, one can deduce that if the considered perturba-
tion, instead, breaks the discrete symmetry, the results
presented here will still be valid as the break of the de-
generacy will make sure that only one of the x0’s (or a
subset of χ0, if the corresponding perturbed vector flow
obeys to a a subgroup of the original symmetry group)
still accounts for the extreme events of A.

This work may constitute a new theoretical viewpoint
for studying extremes in a rather general setting and un-
derstanding how they change when the dynamical system
is slightly perturbed. The results on how to express the
sensitivity of the Kaplan-Yorke dimension with respect
to an ε−perturbation to the dynamics seems also use-
ful. Our findings might find applications in many sectors
of physical, engineering and social sciences, and, just to
provide a basic example of crucial relevance, in the in-
vestigation of the impact of climate change on climate
extremes.

Obviously, as in the case of all results pertaining to

EVT, it is important to test numerically the practical
verification of the findings presented here. In this paper
we have extensively discussed the relevance of finite-time
effects in the selection of the extremes of physical observ-
ables and in the definition of the relevant sensitivities.
We need to mention that, recently, some renormalization
group methods have been applied for deriving system-
atic finite size corrections to extreme value laws [53, 54].
These results seem extremely promising and might lead
to improved methods for fitting extreme value statistics
to given datasets.

We need to remark that such results have been de-
rived using some intuitive geometrical construction and
assuming generic relations between the direction of the
gradient of A at x = x0 and the stable directions. It is
possible to devise special pair of Axiom A systems and
observables such that the strange attractors do not ful-
fill such generic conditions. One can easily construct a
situation where the gradient of A is orthogonal also to
stable manifold by immersing the attractor in a higher
dimensional space and taking observables defined on such
a space. In this case, the factor 1/2 appearing in Eq. 8
will affect also the stable dimensions. Nonetheless, the
results that for high-dimensional systems the distribu-
tion of extremes is indistinguishable from the Gumbel as
the shape parameters tends to zero from below is not be
affected by this correction.

We believe that typical combinations of Axiom A sys-
tems and observable functions allow for the generic con-
ditions to be obeyed. We still need to understand how
to frame consistently such a concept of genericity, which
obviously differs from the traditional one, which focuses
either on the observables, or on the systems. This should
be the subject of theoretical investigation and accurate
numerical testing.
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