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ABSTRACT. We study inviscid limits of invariant measures for the 2D Stochastic Navier-Stokes equations. As
shown in [Kuk04] the noise scaling

p
ν is the only one which leads to non-trivial limiting measures, which are

invariant for the 2D Euler equations. We show that any limiting measure µ0 is in fact supported on bounded
vorticities. Relationships of µ0 to the long term dynamics of Euler in the L∞ with the weak∗ topology are
discussed. In view of the Batchelor-Krainchnan 2D turbulence theory, we also consider inviscid limits for the
weakly damped stochastic Navier-Stokes equation. In this setting we show that only an order zero noise (i.e.
the noise scaling ν0) leads to a nontrivial limiting measure in the inviscid limit.

1. Introduction

We consider incompressible Euler’s equations and the randomly forced incompressible Navier-Stokes
equation on a two-dimensional torus T2 =R2/Λ, where Λ⊂R2 is a lattice.1 The Euler equation will mostly
be considered in the vorticity form

∂tω+u ·∇ω= 0, (1.1)

where we assume that
∫
T2 ω(x, t )d x = 0 and the velocity field u = (u1,u2) is determined by ω from the

equations

curlu =∇⊥ ·u = ∂1u2 −∂2u1 =ω, divu = 0,
∫
T2

u = 0. (1.2)

In terms of the stream function, u =∇⊥ψ, ∆ψ=ω, with the usual notation ∇⊥ψ= (−ψx2 ,ψx1 ). The Navier-
Stokes equation will be written either in the velocity formulation

∂t u +u ·∇u + ∇p

ρ
−ν∆u = f , (1.3)

where ρ is the (constant) density and the forcing term f = f (x, t ) satisfies
∫
T2 f (x, t )d x = 0 for each t , or in

the vorticity formulation
∂tω+u ·∇ω−ν∆ω= curl f , (1.4)

with the relation between u and ω given as above. The particular stochastic form of f will be discussed
below (1.10).

In this paper we study certain classes of invariant measures for (1.1) and related equations. In particular,
we address regularity properties and relations to the long term dynamics of 2D Euler for a particular class of
invariant measures which arise as an inviscid limit of the stochastic Navier-Stokes equations, with a suitable
scaling of the noise coefficients.

Date: February 3, 2013
1The reason why we consider general flat tori, rather then just R2/Z2 is that the geometry of the torus might have some influ-

ence on various predictions concerning the long-time behavior of the solution. This issue will however come up only tangentially,
and it will not be important for the results proved in the paper. The reader can take T2 =R2/Z2 or T2 =R2/2πZ2 most of the time.
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To discuss topics which come up in various accounts of 2D turbulence, we will also use a linear damping
operator Y defined in the Fourier coordinates2 by

Ŷ uk = γk ûk , (1.6)

where γk ≥ 0. Often it is assumed that γk 6= 0 only for a few lowest modes, but other options, such as
Y u = γu for some γ> 0 (corresponding to γk = γ for each k) are also possible. We will denote the operator
Y with γk 6= 0 only for a few low modes by Ylow . Its precise form will not be important for our discussion.

1.1. Two dimensional turbulence. The standard theory of 2D turbulence conjecturally describes the
behavior of solutions of

∂t u +u ·∇u + ∇p

ρ
−ν∆u +Ylow u = f , (1.7)

where f = f (x) is a “sufficiently generic” smooth vector field, which is on the Fourier side supported in
a few relatively low Fourier modes.3 One can expect that for many f the system will become “turbulent”
for sufficiently low ν, although it is important to keep in mind that there are examples where this is not the
case, see [Mar87, CR07]. In the turbulent regime one expects the famous downward cascade of energy
together with an upward cascade of vorticity, as conjectured by Kraichnan [Kra67] and Batchelor [Bat69].
this is why we need the operator Ylow . In dimension n = 3 the operator Ylow should not be needed and we
expect the so-called Kolmogorov-Richardson energy cascade. The striking feature of these phenomena is
that, conjecturally, as ν→ 0+, the velocity field u should satisfy some bounds independent of ν, such as

‖u‖L∞ ≤C , C independent of ν . (1.8)

Moreover, there are conjectures as to how energy will be distributed in the Fourier modes (see, for instance,
the classical works [KM80, MWC92, Fri95, Tsi01, FJMR02, Tab02]). Rigorous treatment of these sce-
narios seem to be our of reach of the present-day techniques and we have nothing new to say in this direction.
Note however that the following 1D model given by the Burgers equation

∂t u +uux −νuxx = f (x), x ∈R/Z,
∫

u(x, t )d x = 0,
∫

f (x)d x = 0, (1.9)

is treatable. The behavior of the solutions for ν→ 0+ can be studied in detail via the Cole-Hopf transforma-
tion. In particular, the bound (1.8) can be established in this case.

Instead of relying on the chaos produced by the presumably complicated dynamics of (1.7) for low ν,
we can input “genericity” into the system by considering a “random” f . This point of view may be traced
back to Novikov [Nov65] (see also, e.g. [BT73, VKF79]). We may take for example

f (x, t ) =α∑
k

bk ek (x)Ẇ k (t ) , (1.10)

where ek (x) is given by (1.5), the sum is finite, over a few relatively low modes, α is a suitable constant
of order 1. The W k are independent copies of the standard Wiener process (Brownian motion) so that
Ẇ k are white noise processes and hence are stationary in time. After a suitable non-dimensionalization, a
representative case of (1.10) is when

∑
k |bk |2 and α are both of order unity.4

2 The Fourier representation in set up in the following way. For scalar functions v on T2 we will write v(x) =∑
k∈2πΛ∗ v̂k ei kx ,

where Λ∗ is the lattice dual to Λ. Our functions v will satisfy
∫
T2 v(x)d x = 0 which is the same as v̂0 = 0 and the above sum will

always be taken over the non-zero elements of 2πΛ∗. If there is no danger of confusion we will write simply v(x) = ∑
k v̂k ei kx .

Divergence-free vector fields f will be written as f (x) =∑
k f̂k ek (x), where

ek (x) =
(−i k2

|k| ,
i k1

|k|
)

ei kx . (1.5)

We note that in our normalization we have 1
|T2|

∫
T2 |v |2 d x =∑

k |vk |2, and 1
|T2|

∫
T2 | f |2 d x =∑

k | fk |2.
3The assumption of “sufficient generiticity” is important, as we need that the system creates enough “chaos” for low ν.
4If we wish to consider dimensions of the various quantities, one natural choice seems to be to take ek dimension-less, bk of

the same dimension as u (which is [length][time]−1), and α of dimension [time]−
1
2 , so that αẆ k (t ) has dimension [time]−1.
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With a random forcing of the form (1.10), the equation (1.7) can then be viewed as a stochastic equation.
With some additional assumptions, there will exist a unique invariant measure µ=µν for the process defined
by (1.7), see e.g. [FM95, DPZ96, Mat99, Mat02, BKL01, KS01, KS02, Mat03, MP06, HM06, Kup10,
HM11, Deb11, KS12] and containing references. Relations conjectured by Kraichnan’s theory would then
be satisfied in a suitable mean value sense. The benefit of working with the random forcing is that even
though we still cannot make much progress on establishing Kraichan’s conjectures in this setup, we now
at least have a quite canonical object for our analysis, the measure µ.5 Indeed, the above mentioned works
establish ergodic or even mixing properties of µ. These properties provide some theoretical justification for
the measurement of the physical quantities described in turbulence theories. In the deterministic case the
measure µ should presumably by replaced by a suitable invariant measure on the attractor, see e.g. [CF88,
FMRT01].

One can of course go through similar considerations in three dimensions, but in that case the lack of
rigorous results concerning the basic existence and uniqueness questions for the Navier-Stokes solutions
prevents obtaining rigorously the measure µ above (or its analogues on the purported attractors in the deter-
ministic case). Note however the recent works [DPD03, FR08, Deb11] on weaker notions of solutions and
associated invariant measures.

1.2. Kuksin measures. Kuksin [Kuk04], see also [KP05, Kuk06b, Kuk06a, Kuk07, Kuk08, Shi11,
KS12], suggested to study of a different limiting regime and put in (1.10)

α= c
p
ν , (1.11)

where c is a constant independent of ν.6 Assume we have this scaling and omit the terms u ·∇u,Ylow from
the equation. Then for each Fourier mode uk we have

E(|uk |2) = |bk |2α2

|k|2ν = |bk |2
c2

|k|2 , (1.12)

a bound independent of ν. In the non-linear case a similar bound can be obtained, see [Kuk04, KS12]
and (1.17). With scaling (1.11) the operator Y is no longer needed7 and the invariant measures µ=µν of the
process generated by the equation

du +
(

u ·∇u + ∇p

ρ
−ν∆u

)
d t = c

p
ν

∑
k

bk ek (x)dW k (t ) (1.13)

have a meaningful limit (perhaps after passing to a suitable subsequence). At the level of the vorticity
ω= curlu we have

dω+ (u ·∇ω−ν∆ω)d t = c
p
ν

∑
k

gk dW k (t )e i kx , gk = |k|bk , (1.14)

which is the form which we will mostly work with.8 A deterministic version of the situation considered by
Kuksin would correspond to setting

f = cν f̃ (1.15)

in (1.3). This situation is relevant for Section 5.
Let µν be an invariant measure on the space of the vorticity functions ω of the process defined by (1.14).

Note that for a sufficiently fast decay in the bk’s in (1.13), these measures µν are supported on smooth

5The case of the Burgers equation (1.9) with stochastic forcing can be analyzed rigorously, see for example [EKMS00].
6If our quantities are not dimensionless and we use the same dimension count as in a previous footnote, then c should have

dimension [length]−1.
7Indeed in this scaling, (1.11), the term Y leads to a trivial limiting measure µ as we establish rigorously in Section 6 below.
8The term −ν∆ω can be replaced by more general dissipation, such as fractional Laplacian ν(−∆)α; see Remark 4.5 below.
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functions, see e.g. [KS12]. Also, under rather general assumptions on these bk’s such a measure is unique,
cf. references above. Applying Ito’s formula

d
∫
T2

1

2
ω2 d x =

∫
T2

(
ωdω+ 1

2 dωdω
)

d x (1.16)

and taking the expectation, we obtain

E

(∫
T2

|∇ω|2 d x

)
=

∫
‖∇ω‖2

L2 dµν(ω) = c2

2

∑
k
|gk |2 . (1.17)

Due to this bound, as ν→ 0+, the family of measures µν has a subsequence converging weakly9 to a limit
µ0, which is a measure supported in the space

H 1 =
{
ω ∈ H 1(T2),

∫
T2
ωd x = 0

}
, (1.18)

with

E(||∇ω||2L2 ) =
∫

‖∇ω‖2
L2 dµ0(ω) ≤ c2

2

∑
k
|gk |2 . (1.19)

Kuksin [Kuk04] proves that this measure invariant for the evolution given by Euler’s equation (1.1). See
also Kuksin and Shirikian [KS12] and references therein for many other interesting properties, such as the
non-triviality of the measure. We will call the measures µ0 constructed in this way Kuksin measures.

1.3. Main Result on Kuksin measures and the dynamical systems approach to 2D Euler. We now
show that the Kuksin measures are closely related to the long-time behavior of solutions of Euler’s equation.
One of our main results in this paper will be the following:

Theorem 1.1 (Kuksin measures are supported on L∞). Let µ be a Kuksin measure as above. Then∫
||ω||L∞ dµ0(ω) <+∞ . (1.20)

We shall discuss the outline of the proof of Theorem 1.1 in Subsection 1.4 below. A detailed statement of
the result and its proof is found in Section 4.

In particular, from (1.20) we see that µ is supported on L∞. This is important, as the space L∞ is prob-
ably the most natural space (for the vorticities) in which to consider the 2D Euler equation when studying
the long-time behavior of the solution. This is due to the following facts:

(i) The initial value problem for (1.1) is well-posed for in L∞, a classical result by Yudovich [Jud63].
(ii) Let R ≥ 0 and let X = XR = {

ω ∈ L∞,
∫
T2 ω= 0, ||ω||L∞ ≤ R

}
. Equipped with the weak∗ topology,

the set X is a compact metric space, which we will denote by (X , w∗). One can check that the
proof of Yudovich’s theorem actually give a stronger result: namely, the Euler equation (1.1) gives
a well-defined dynamical system on X (for any R > 0). A proof of Yudovich’s theorem which
can be easily adapted to prove our statement here can be found for example in [MB02].

From Theorem 1.1 we hence see that Kuksin measures (restricted to X ) give natural invariant measures for
the Euler evolution on X . The functions on which the measures are supported have additional H 1

0−regularity.
Note that one can also construct non-trivial measures on X which are invariant under the Euler equation

directly: we know that the energy functional10

E (ω) = 1

|T2|
∫
T2

1

2
|u|2 d x = 1

|T2|
∫
T2

−1

2
ψωd x (1.21)

is continuous on (X , w∗). Therefore the energy level sets XE = XR,E given by {ω ∈ X ,E (ω) = E } are compact
subsets in X which are invariant under the Euler equation (due to the energy conservation). By the classical

9More precisely we have that
∫

L2 f (ω)dµν j (ω) converges to
∫

L2 f (ω)dµ0(ω) for every continuous, bounded real valued test
function f . In fact the convergence holds also in H1−ε for any ε positive.

10More precisely, energy per unit mass.
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Kryloff-Bogoliouboff procedure, every non-empty XR,E supports an invariant measure. This measure cannot
be trivial when E > 0 i.e. supported at ω= 0. There are additional conserved quantities for the evolution by
Euler’s equation, namely the integrals

IF (ω) = 1

|T2|
∫
T2

F (ω)d x , (1.22)

but these quantities are not continuous on (X , w∗), making their implications for the dynamics on (X , w∗)
more subtle.

In Section 2 we discuss various hypothesis for the long term dynamics of the (1.1) on the phase space
(X , w∗). These hypothesis may illuminate further possible structure of the support of the invariant measures
µ0. Two extreme scenarios present themselves. On, the one hand, taking the view of statistical mechanics,
we may predict long time behavior from the maximization of various notions of “entropy” subject to the
constrains of the Eulerian dynamics. In many cases these “entropy maximizers” may have a fairly simple
shear flow like structure. Thus in this scenario we would expect that the Kuksin measures would be sup-
ported on steady flows with a relatively simple topology. At the other extreme we might suppose that all
of the solution trajectories of the Euler dynamical system are pre-compact in L2. In this case many of the
Casimirs (1.22) must be conserved at the end-states which would suggest that µ0 has a much richer structure.

There is some evidence for both of the above scenarios. On the one hand we do not have a single
example where it is proved that an initial condition yields an orbit which is not precompact in L2. Moreover
a recent result in [Šve12] (which we recall in Theorem 2.1 below) rigorously shows that at least some
such precompact orbits must exist. On the other hand recent numerical result of [BS09] suggest that µ0 is
concentrated on certain laminar states obtained as an “Entropy maximization”. It seems unlikely that either
of these scenarios holds universally and that the structure of µ0 is given by an intermediate situation.

1.4. Moser iteration for SPDE and applications to L∞ estimates for stationary solutions. We now
turn to discuss some aspects of the proof of Theorem 1.1. We will see that the main ingredients involve
a suitable rescaling of the equations and then developing a Moser iteration scheme for SPDEs of drift
diffusion type which evidences a parabolic regularization from L2 to L∞. The detailed proofs are given
below in Section 4.

A natural rescaling of time makes the interpretation of the measures µν and the Kuksin measures µ0

perhaps more transparent. If we replace the function u(x, t ) by ũ(x, t ) = u(x, t/ν) and replace W k (t ) by the
equivalent process W̃ (t ) =p

νW k (t/ν), we obtain, after dropping the tildes we obtain

dω+
(

1

ν
u ·∇ω−∆ω

)
d t = c

∑
k

gk dW k (t ) . (1.23)

Note that the measure µν is also an invariant measure for this process. See Section 2.1 below for some
motivating discussion of analogous finite dimensional situations.

As ν→ 0 in (1.23) the drift velocity ν−1u grows unboundedly. As such to obtain Theorem 1.1 need find
a way estimate L∞ norms of solutions to equations of the form

dω+ (a ·∇ω−∆ω)dτ= c
∑
k

gk dW k , ∇·a = 0 (1.24)

with constants that do not depend on the size of the sufficiently smooth divergence free drift velocity a.11

In the deterministic case, one usually obtains such drift-independent L∞ bounds either by appealing
to maximum principle-type arguments, or by using Lp estimates, with p independent bounds, and passing
p →∞. Neither of these direct approaches appear to be available in the stochastic case. The first approach
seems to fail since one cannot exchange E and supx , and due to the lack of smoothness in time of the

11Since the noise in (1.24) is additive, one could shift the equation by subtracting the solution of an Ornstein-Uhlenbeck
process, but the L∞ bounds one obtains on the resulting random PDE appear to depend essentially on the size of the drift velocity.
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stochastic terms in (1.24). On the other hand, for Lp bounds, a direct application of the Itō lemma to (1.24)
yields

d‖ω‖p
Lp =

(
p〈∆ω,ω|ω|p−2〉+ p(p −1)

2

∑
k
‖gk |ω|(p−2)/2‖2

L2

)
d t +p

∑
k
〈gk ,ω|ω|p−2〉dW k (1.25)

where we have used that a is divergence-free. The Itō correction term in (1.25) grows quadratically in p,
which is too fast. On the other hand, letting X = ‖ω‖p

Lp , one may apply Itō’s lemma to φ(X ) = (1+X )2/p /p
(see e.g. [Kry10, Remark 5.2]) and prove using standard estimates that

sup
p≥2

(
E sup

t∈[0,T ]

‖ω(t )‖2
Lp

p

)
≤C

(
1+ sup

p≥2

(
E
‖ω0‖2

Lp

p

)
+νT ‖σ‖L∞

)

where ω is the solution of (3.2). This however does not yield a bound on E
(
supt∈[0,T ] supp≥2 ‖ω(t )‖2

Lp /p
)
.

Since (1.24) is a parabolic SPDE, in the spirit the classical DeGiorgi-Nash-Moser [DG57, Nas58,
Mos60] theory for deterministic parabolic PDEs, one may expect an instant regularization of the solution.
The difficulty in carrying over this program lies in treating the stochastic forcing term in (1.24) and obtaining
bounds which are independent of the size of drift velocity a. In the deterministic case, for drift velocities
that are divergence free, one obtains the L2 to L∞ regularization of solutions to the parabolic equation, with
bounds that are independent of the drift using e.g. the elegant argument of Nash [Nas58]. Drift indepen-
dent bounds for a deterministic analogue of (1.24) have also been obtained using Moser iteration, see, e.g.
[Kuk99]. Therefore, one may expect that the same result holds for stochastic drift-diffusion equations such
as (1.24).

In order to treat the stochastic term, it turns out that the iteration technique introduced by Moser [Mos60]
is better suited in view of the Lp Itō formula (1.25). This fact was recently observed in the context of
semilinear SPDE in [DMS05, DMS09] where the authors obtain an L∞ maximum principle. We however
cannot appeal to these results since they rely essentially on the fact that the initial data already lies in L∞.
By (1.17) we only have ν-independent H 1 bounds on the statistically steady solutions of (1.14). To overcome
this difficulty we prove in Theorem 4.1 (see also Remark 4.4 below) that the solution ω(t ) of (1.24) lies in
L∞ (in x) for arbitrarily small positive time t :

E sup
t∈[T,2T ]

‖ω(t )‖L∞ ≤C
(
1+T −5/4)E(

‖ω‖L4([0,2T ];L2) ∨ c
∑
k
‖gk‖L∞

)
, (1.26)

for T ≤ 1/8, where the constant C is independent on a. To the best of our knowledge the parabolic regular-
ization estimate (1.26) is new in the context of SPDE. As in [DMS05, DMS09], one of the main differences
between the stochastic Moser iteration (see the proof of Theorem 4.1) and the classical approach for deter-
ministic PDE naturally arises due to the random forcing. In view of the Burkholder-Davis-Gundy inequality
we need to bound quadratic variations of the Martingale on the right side of (1.25), and hence the integra-
bility in time needs to be twice that in space in order to close the iteration scheme (cf. (4.32) below).

In view of the predictions made by Statistical Mechanics arguments regarding the “end states” of the 2D
Euler dynamics, and having already established that the Kuksin measures are supported on H 1(T2)∩L∞(T2),
we believe that:

Conjecture 1.2. Kuksin measures are in fact supported on continuous vorticities.

The immediate difficulty which arises in proving this conjecture is that even in the deterministic case,
for the two-dimensional linear parabolic equation

∂t v +b(x, t ) ·∇v −∆v = f , ∇·b = 0, (1.27)

the size of the smooth drift comes into play for the DeGiorgi-Nash-Moser proof of Hölder regularity. If the
drift is rough, one may even construct solutions that are not continuous functions for all time, although they
obey the L∞ maximum principle (see, e.g. [SVZ12]).
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On the other hand, one of the key ingredients of the proof of Theorem 4.1 was the (statistical) stationarity
of the solution to (1.23). As a deterministic toy problem one may hence consider time-independent solutions
of (1.27), with drift b(x). In this case, following the ideas in [SSŠZ12] and an elliptic Moser iteration we are
indeed able to prove in Theorem 5.1 below that the solution obeys a drift-independent logarithmic modulus
of continuity, and is hence uniformly continuous. The analogy between time-independent solutions to (1.27)
and statistically stationary solutions of (1.24) is however tentative at best.

1.5. Inviscid limits for damped models; different scalings. In view of the foregoing discussion con-
cerning the Batchelor-Kraichnan theory of 2D turbulence, it appears that when working on the periodic box
the stochastic Navier-Stokes equations should be augmented (as in (1.7)) with a suitable damping term Y
to prevent a pile up of energy at large scales. Note that the Y term also frequently appears in geophysical
models closely related to the 2D Navier-Stokes equations to account for friction with boundaries. In these
situations, if the scaling in this damping term is held fixed as ν→ 0, then a different scaling must be in-
troduced for the noise in order to obtain a non-trivial inviscid limit in the class of the associated invariant
measures.

To this end, we consider operators of the form Y = Yτ,γ = τΛ−γ = τ(−∆)−γ/2 and τ > 0, γ ∈ [0,1) and
study weakly damped and driven stochastic Navier-Stokes equations of the form

du + (Y u +u ·∇u +∇π−ν∆u)d t = ναρdW, ∇·u = 0, (1.28)

for different values of α ∈ R.12 As above for the undamped case (1.17) energetic considerations allow us to
deduce the correct scaling with α in (1.28). Consider a collection of invariant measures {µαν }ν>0 for (1.28).
Let uν be stationary solutions of (1.28) corresponding to µαν and denote ων = ∇⊥ ·uν. Applying the Itō
lemma to the vorticity formulation of (1.28) and using stationarity one deduces that:

E
(
ν‖∇ων‖2

L2 +‖Y 1/2ων‖2
L2

)= ν2α

2
‖σ‖2

L2
.

Making use of the above relation, we will show below in Theorem 6.1 that α= 0 is the only relevant scaling
for (1.28). Here stationary solutions of a damped stochastic Euler equation arise. See also [BF12, Bes08].

Organization of the Paper. In Section 2 we review some notions related to the time-asymptotic behav-
ior of the 2D Euler equations. Our discussions in this section allow us to make some hypotheses regarding
the structure of the support of Kuksin measures in this context. Section 3 recalls the mathematical framework
for the Navier-Stokes Equations and its associated Markovian semigroup. We also review some properties
of Kuksin measures established in previous works. Section 4 is devoted to the proof of the main theorem.
Here we detail the Moser iteration scheme which addresses a more general class of drift-diffusion equa-
tions. Section 5 concerns a deterministic toy model for stationary solutions of the stochastic Navier-Stokes
equations. We establish a modulus of continuity for this system. The final Section 6 we consider a weakly
damped stochastic Navier-Stokes equation and establish inviscid limits in the appropriate scaling for this
model.

2. Long term behavior of 2D Euler and related systems; connections to invariant measures

In this section we discuss some aspects of the long time dynamics in (L∞, w∗) of solutions to 2D Euler
and the relation of this behavior to possible properties of the Kuksin measures, which are now accessible
due to Theorem 1.3. We begin with some motivation from finite dimensional Hamiltonian systems.

2.1. Noise scaling limits in finite dimensions. A finite dimensional situation related to the above is
studied in the theory of the small random perturbations of dynamical systems. Let

ẋ = b(x) (2.1)

12As explained above it is of interest to consider Y acting only at the largest scales; cf. (1.6). This situation is more delicate
to analyze rigorously and would seem to require the establishment of suitable “hypocoercivity” properties for (1.7).
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be a dynamical system in Rn . Consider its stochastic perturbation

d x = b(x)d t +p
εQdW , (2.2)

where W = (W 1, . . . ,W n) are normalized independent Wiener processes and Q is a matrix. By setting
x(t ) = x̃(εt ), W (t ) = 1p

ε
W̃ (εt ) and τ= εt and dropping the tildes, we obtain

d x = 1

ε
b(x)dτ+QdW. (2.3)

Such systems have been extensively studied, see e.g. [FW12]. In case of measure-preserving flows, the
behavior of (2.3) as ε→ 0+ can be understood from the following picture: under some assumptions the
equation ẋ = 1

εb(x) takes the trajectories very quickly through “ergodic components”, and hence for ε→ 0+
the system (2.3) should in some sense describe a diffusion in the space of the ergodic components.

Equation (1.13) (or its rescaled version (1.23)) is of a slightly different nature that the perturbation of
Hamiltonian systems considered in [FW12], in that we add not only a small noise, but also small damping.
Such procedure can be illustrated by a simple example of the Langevin oscillator:

Example (The Langevin oscillator). We consider a simple 1d harmonic oscillator with damping and ran-
dom forcing

mq̈ +γq̇ +κq =αẇ , (2.4)

where w is a normalized Wiener process and m,γ,κ > 0. Letting p = mq as usual, it is easy to check that
the (unique) invariant measure of the system

q̇ = p
m

ṗ = −κq − γ
m p +αẇ

(2.5)

is given by the Gibbs measure

dµ= 1

Z
e−βH(q,p) d q d p , (2.6)

where the Hamiltonian H given by

H = p2

2m
+ κq2

2
, β= γ

α2 , (2.7)

and Z = Z (β,κ,m) is a suitable normalizing constant. We see that from the point of view of Statistical
Mechanics the quantity α2

γ corresponds to (a multiple of) temperature. A similar calculation can be done for
a general one dimentional Hamiltonian of the form

H = p2

2m
+V (q) . (2.8)

In higher dimensions one can also calculate further examples; especially when the Hamiltonian is qua-
dratic. The invariant measure does not necessarily have to be the Gibbs canonical measure as in (2.6). If the
damping and the forcing are taken to 0 with the analogue of the ratio α2

γ converging to a limit, the invariant
measure will converge to an invariant measure of the original Hamiltonian system. For example, in the case
of a completely integrable n-dimensional system with the full system of mutually commuting integrals of
motion f1, . . . , fn the limiting invariant measure can be expected to be of the form

dµ= 1

Z
e−φ( f1,..., fn ) d q1 . . .d qn d p1, . . . ,d pn , (2.9)

where the function φ will depend on specific choices of damping/forcing. We see that the vanishing damp-
ing/random forcing method can be viewed as a way of producing suitable statistical “ensembles”, closely
related to those used in Statistical Mechanics. Considerations in this direction in the context of the KdV
equation can be found in [Kuk07]. In the terms of Statistical Mechanics the ensembles produced by this
method are related to “canonical ensembles”. One can also consider the “micro-canonical ensembles”,
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which in the last examples would simply be given (under some “genericity assumptions”) by invariant mea-
sures on the tori

f1 = c1, f2 = c2, . . . , fn = cn . (2.10)
Under suitable assumptions, invariant measures on these tori are the “irreducible components” of the mea-
sures (2.9). By analogy, we see that Kuksin measures should be related to the Statistical Mechanics of
Euler’s equation. Their decomposition into irreducible components should give “ergodic components” of
the Euler evolution. However, this analogy may break down due to infinite dimensional effects. As ν→ 0+,
it is conceivable that fast Euler evolution moves enstrophy to high spatial frequencies (in the Fourier spec-
trum), so that “complexity” is lost (by disappearing to infinity in the Fourier space) and Kuksin measures
may conceivably be supported on some relatively simple sets, perhaps even equilibria. This would be an
infinite-dimensional effect,13 which does not have an analogy for finite dimensional or completely integrable
hamiltonian systems. This is discussed in more details below, but still at a heuristic level. We were not able
to obtain rigorous results in this direction.

2.2. Long-time behavior of solutions of Euler’s equation. Equation (1.23) together with some anal-
ysis of the long-time behavior of solutions of Euler’s equation seems to give some good hints about what
one should expect concerning some of the properties of Kuksin measures. We recall some of the expected
properties of the Euler solutions.

We consider equation (1.1), with the conventions (1.2). We also recall the obvious identity∫
T2
ω(x, t )d x = 0, t ∈R . (2.11)

Let us start with some classical observations about the long-time behavior of the solutions of (1.1) starting
from initial data ω0 ∈ L∞, with ||ω0||L∞ = R. Let X = XR be the ball of radius R in L∞, taken with the
weak∗ topology. In addition, we can impose the constraint

∫
T2 ωd x = 0 on the functions in X . The space

(X , w∗) is a metric space and, as already discussed, the Euler evolution (1.1) gives a well-defined dynamical
system on X . We denote the Ω-limit sets by

Ω+ =Ω+(ω0) =∩t>0{ω(s), s ≥ t ,ω(0) =ω0}
w∗

. (2.12)

We also introduce

Oω0 = {ω0 ◦h, h : T2 →T2 is a volume-preserving C 1-homeomorphism} (2.13)

and
Oω0,E =Oω0 ∩ {ω , E (ω) = E }. (2.14)

It is not hard to see that the weak∗ closure of Oω0 , denoted by O
w∗
ω0

is a closed convex subset of Lp for any
p ≥ 1. Letting E (ω0) = E , we clearly have

Ω+ ⊂O
w∗

ω0,E . (2.15)
There are various conjectures concerning the long-time behavior of Euler solutions motivated by the notion
of “mixing”, see [Mil90, Rob91, Shn93, Šve12]. We can think of the fluid as consisting of fluid particles,
with each fluid particle having a fixed value of vorticity permanently attached to it. The fluid motion mixes
these particles, with the vorticity remaining attached to each particle. The most naive conjecture could be
that for large times the vorticity is everywhere mixed, corresponding to the weak∗ convergence of ω(t ) to 0
as t →∞. This would mean14

Ω+ = {0}. (2.16)
In the Fourier space this would correspond to the movement of all energy15 of the solution ω̂k (t ) towards
larger and larger frequencies as t →∞. If E 6= 0, then (2.15) provides an obstacle to this. The energy cannot

13The effect is closely related to Landau damping, see for example [MV11].
14This presumably happens if we consider the Burgers equation with the scaling (1.13). It should not be hard to verify that for

the Burgers equation the Kuksin measures are trivial.
15It would be more precise to say enstrophy, but in the situation here this does not make a difference.
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all move to high (spatial) frequencies, as the energy functional E is weakly∗ continuous. We can “fix” this
by trying to “move” as much as possible energy to high frequencies which is still compatible with (2.15).
More specifically, we can try to minimize

I (ω) = 1

|T2|
∫
T2

|ω|2 d x =∑
k
|ωk |2 (2.17)

subject to the constraint
ω ∈O

w∗

ω0,E . (2.18)
Note that I (ω) is preserved during the evolution, but it can conceivably drop on the “end-states” Ω+, as it is
not weakly∗ continuous.

Minimizing I (subject to (2.18)) is of course the same as maximizing −I (ω) subject to (2.18). More
generally, we can take a concave function F and maximize IF (ω) given by (1.22), subject to (2.18). The
quantify IF (ω) can be called the entropy of the “configuration” ω and the above principle is then nothing
but the usual entropy maximization under given constraints, as well-known from Statistical Mechanics. The
entropy IF is could be considered as too simple, the usual entropy in Statistical Mechanics is based on
suitable “counting of states”. Closely related to the notion of entropy is A. Shnirelman’s notion of mixing
in [Shn93].

There are indeed more sophisticated notions of entropy, see for example [Mil90, Rob91, Tur99, Šve12],
which can be more “non-local” than the IF above. For example, let ω0 = ∑

l alχAl , where Al is a division
of T2 into disjoint measurable sets with |Al | =κl |T2|, and

∑
l alκl = 0. Then, the closure of Oω0 defined in

(2.13) is

O
w∗
ω0

=
{
ω : ω(x) =∑

l
alρl (x), 0 ≤ ρl ≤ 1,

∑
l
ρl = 1

}
(2.19)

and one can define the entropy (generated by ω0) as

S(ω) = Sω0 (ω) = sup

{
1

|T2|
∫
T2

∑
l
−ρl logρl d x : ω(x) =∑

l
alρl (x), 0 ≤ ρl ≤ 1,

∑
l
ρl = 1

}
. (2.20)

This entropy leads to the theories of Miller and Robert, [Mil90, Rob91]. When the division T2 =∪l Al has
only two sets A1 and A2, then this entropy is of the form IF for a suitable F . For example, when we only
have two sets and a1 =−a2 = 1, then

F (ω) =−
(

1+ω
2

)
log

(
1+ω

2

)
−

(
1−ω

2

)
log

(
1−ω

2

)
. (2.21)

The maximizers of the entropy subject to given constraints are steady-state solutions of Euler’s equations
given by stream functions ψ satisfying

∆ψ= H(ψ) (2.22)
for a suitable function H depending on IF . These should be the “end-states” of the evolution if the actual
evolution and Statistical Mechanics lead to the same conclusions.

As is usually the case with predictions based on Statistical Mechanics considerations, it is difficult to
decide whether the actual dynamics of the equation produces the behavior expected from entropy maxi-
mization, assuming all known the constraints have been taken into account. In fact, we do not have a single
example which in which it would be rigorously established that the trajectory

Ωt =∪{ω(s), s ≥ t } (2.23)

is not pre-compact in L2 (and hence any Lp for p ∈ [1,∞)). On the other hand, it is useful to recall the
following result from [Šve12]:

Theorem 2.1 (Existence of L2 precompact orbits [Šve12]). The omega-limit set Ω+ of any trajectory
always contains an element ω̃0 whose trajectory is pre-compact in L2.16

16The proof of this statement is very simple: maximize some entropy IF with a strictly concave F over Ω+.
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2.3. Possible Consequences for Kuksin Measures. In view of the above discussions concerning the
long term dynamics of 2D Euler we now introduce two extreme scenarios:

Scenario A: Euler solutions weakly∗ approach entropy maximizers. Let us assume that our torus is
T2 =R2/aZ⊕bZ with 0 < a < b. Let us further assume that

(i) All entropy maximizers for Euler solutions (with given constraints) are shear flows independent
of x1. This is in fact not very far-fetched. It has been established rigorously for sufficiently small
energies and local entropies IF with F strictly concave. See [FŠ].

(ii) All solutions weakly∗ approach these shear flows as t →∞. This would of course be a very strong
statement which we do not really expect to be true. However, if (i) is correct, then the Statistical
Mechanics predictions would suggest exactly this conclusion.

If this scenario holds, then one can expect the Kuksin measures to be supported on the steady-state shear
flows. Indeed, from the re-scaled equation (1.23) we see that as ν→ 0, the fast Euler dynamics will drive
the solution towards the shear flows, whereas the term ∆ω will be quickly damping the high frequency
components of ω generated by the Euler evolution. This scenario is genuinely infinite-dimensional: all the
complexity of the Euler dynamics and the initial data will disappear into the high frequencies, and will never
“return”. Such behavior does not have an analogy in finite-dimensional systems or in completely integrable
systems.

Scenario B: all solution orbits are pre-compact. Let us assume that the solution trajectories Ωt

in (2.23) are pre-compact in L2. This may be unlikely, but it has not been ruled out. In this case the
weak closures of these trajectories will be the same as the strong closures and all the functionals IF will
be conserved on the “end-states”. In particular, the mixing envisaged by the statistical mechanics approach
will never take place. In this case the Kuksin measures will have much richer structure. Their “irreducible
components”, similar to the measures on the tori (2.10) in the example leading to (2.9), will be supported
on the closures of the L2−compact trajectories, which will play a role somewhat similar to the ergodic
components in finite-dimensional Hamiltonian systems. In this scenario many features familiar from finite
dimensions or completely integrable systems will still be present.

We conjecture that neither of these scenarios is quite true, but that the real behavior will be intermediate
between these two extremes: non-trivial L2-precompact trajectories will exist, but initial data leading to
them will not be “generic”. The Kuksin measures will be supported on such trajectories. Depending on
our degree of optimism, we can hope that these solutions represent a type of a weak∗ attractor for all Euler
solutions.

3. Some results regarding invariant measures and inviscid limits

In this section we first recall some elements of the mathematical analysis of the stochastic Navier-Stokes
equations and its associated ergodic properties. This allows us then to summarize some of the analyti-
cal properties enjoyed by the Kuksin measures, established in previous works (cf. [KS12] and references
therein).

3.1. Mathematical setting: stochastic 2D NSE and its Markov semigroup. We consider the Sto-
chastic Navier-Stokes Equations on a periodic box T2

du + (u ·∇u +∇π−ν∆u)d t =p
νρdW =p

ν
∑
k
ρk dW k , ∇·u = 0, u(0) = u0. (3.1)

As discussed in the Introduction, in order to consider the inviscid limit ν→ 0, we use the scaling
p
ν for the

noise coefficient. Typically we will use the vorticity formulation of (3.1). Taking ω=∇⊥ ·u we obtain

dω+ (u ·∇ω−ν∆ω)d t =p
νσdW =p

ν
∑
k
σk dW k , ω(0) =ω0. (3.2)

We will assume that
∫
T2 ω0d x = 0 and

∫
T2 σd x = 0, which implies that the solution is always mean zero.

Note that u can be recovered from ω via the Biot-Savart law.
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Let us now set some notation used throughout the rest of the work. We denote the Sobolev spaces

H k =
{
ω ∈ H k

per :
∫
T2
ω0d x = 0

}
,

with H 0 = L2
per and take the usual norms and inner products donated by ‖ ·‖k , (·, ·)k . We will denote the Lp ,

p ≥ 1 by ‖ ·‖Lp .
To emphasize dependence on initial conditions we will write ων(t ,ω0) = ω(t ,ω0) for the solution of

(3.2) with initial condition ω0. Assuming ∑
l
‖σl‖2

L2 <∞, (3.3)

we have ω(·,ω0) ∈C ([0,∞); H 0)∩L2
loc ([0,∞); H 1) for any ω ∈ H 0. For k ≥ 1, assuming that∑

l
‖σl‖2

H k <∞, (3.4)

we also have the higher regularity properties for (3.2). Ifω0 ∈ H 0 then, for any t0 > 0,ω(·,ω0) ∈C ([t0,∞); H k )∩
L2

l oc ([t0,∞); H k+1). Similarly, if ω0 ∈ H k , ω(·,ω0) ∈C ([0,∞); H k )∩L2
loc ([0,∞); H k+1). Note that the general

well-posedness theory for the stochastic Navier-Stokes equations has been extensively developed. See e.g.
[BT72, BT73, Vio76, Cru89, CG94, FG95, MR05, Bre00, BF00, BP00, MR04, GHZ09, DGHT11].

Notational Conventions for the Stochastic Terms: For brevity we will often write e.g.

‖σ‖L2 :=
(∑

l
‖σl‖2

L2

)1/2
(3.5)

when no confusion will arise from this abuse of notation. Similarly, for 2 < p <∞ will also take

‖σ‖Lp :=
(∫
T2

(∑
l
|σl (x)|2

)p/2
d x

)1/p

(3.6)

and, for p =∞,

‖σ‖L∞ := sup
x∈T2

(∑
l
|σl (x)|2

)1/2
. (3.7)

We next recall some aspects of Markovian framework for (3.2). Take B(H k ) to be the Borealian subsets
of H k . We define the transition functions

Pt (ω0,Γ) =P(ω(t ,ω0) ∈ Γ) (3.8)

for any t ≥ 0, ω0 ∈ H and Γ ∈ B(H k ). Let Cb(H k ) and Mb(H k ) be the set of all real valued bounded con-
tinuous respectively Borel measurable functions on H k . For t ≥ 0, define the Markov semigroup according
to

Ptφ(ω0) = Eφ(ω(t ,ω0)) =
∫

H k
φ(ω)Pt (ω0,dω) (3.9)

which maps Mb(H k ) into itself. Since ω(t ,ω0) depends continuously on ω0 ∈ H k , it follows that Pt is Feller
i.e. Pt maps Cb(H k ) into itself. Let Pr (H k ) be the set of Borealian probability measures on H k . Recall that
µ ∈ Pr (Ḣ k ) is an invariant measure for (3.2) if∫

H k
φ(ω0)dµ(ω0) =

∫
H k

Ptφ(ω0)dµ(ω0), for every t ≥ 0. (3.10)

For further generalities of the ergodic theory of stochastic partial differential equations see e.g. [DPZ96,
KS12].
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3.2. Existence and Uniqueness of invariant measures for SNSE. For each ν > 0, there exists an
invariant measure µν in H 0 for (3.2). This can be established using the classical Kryloff-Bogoliouboff
procedure, [KB37] by proving the tightness in H 0 of a sequence of time average measures starting from any
convenient initial condition. Note that if (3.4) holds then it is not hard to show that µν is supported on H k ,
[KS12]. We will denote by ωνS(·) a statistically stationary solution of (3.2) associated to µν. In other words
µν(·) =P(ωνS(t ) ∈ ·).

The invariant measures µν along with the associated stationary solutions ωνS satisfy the balance relation:

E‖ωνS‖2
L2 =

∫
‖ω0‖2

L2 dµν(ω0) = 1

2

∑
k
‖ρk‖2

L2 (3.11)

and

E‖ωνS‖2
H 1 =

∫
‖ω0‖2

H 1 dµν(ω0) = 1

2

∑
k
‖σk‖2

L2 . (3.12)

We derive (3.11), (3.12) by applying the Itō formula to, respectively to (3.1), (3.2) for ωS
ν. For example,

E‖ω(t ,ω0)‖2
L2 +νE

∫ T

0
‖ω(s,ω0)‖2

H 1 d s = E‖ω0‖2
L2 +νT ‖σ‖2

L2 (3.13)

One can also use the Itō formula to prove that

Eexp(δ‖ωνS‖2
L2 ) ≤C <∞ (3.14)

for some δ> 0 and a constant C that is independent of ν. See e.g. [KS12] and containing references. Note
that

E‖ωνS‖2
H k+1 =

∫
‖ω0‖2

H k+1 dµν(ω0) ≤C (ν) (3.15)

where C (ν) is finite. However, it is doubtful that we can bound this quantity C (ν) independently of ν for
k ≥ 1.

Remark 3.1 (Uniqueness of µν for ν> 0). For each ν> 0 the uniqueness of µν is a much deeper question
and requires the imposition of much specific conditions on σ. One needs to establish smoothing properties
of the Markov semigroup Pt (ellipticity or hypoellipticity of the Kolmogorov equation) and that a common
state can be reach by the dynamics regardless of initial conditions (irreducibility). See, e.g. [FM95, DPZ96,
Mat99, Mat02, BKL01, KS01, KS02, Mat03, MP06, HM06, Kup10, HM11, Deb11, KS12]. Since the
results we develop here related to inviscid limits do not require µν to be unique, we do not impose such
additional conditions on σ.

Remark 3.2 (Some explicit stationary solutions). We can identify some very special choices for σ which
allow us to obtain explicit statistically stationary solutions of (3.2). Suppose we have found any ωE :T2 →R

satisfying

uE ·∇ωE = 0, −∆ωE =λωE . (3.16)

Here λ> 0 and uE is obtained from ωE via the Biot-Savart law. For example “laminar states” satisfy (3.16).
Consider the process

ωνS(t , x) =ωE (x)
p
ν

∫ t

−∞
exp(−νλ(t − s))dW 1

s . (3.17)

Let us note that ωνS :=ωE (x)zS(t ), where zS is the unique stationary solution of the 1d Ornstein-Uhlenbeck
(Langevin) process d z +νλzd t =p

νdW 1. Here, zS is normally distributed with mean zero and variance
(2λ)−1, for each ν> 0. Then ωνS is a stationary solution of

dω+ (u ·∇ω−ν∆ω)d t =p
νωE dW 1. (3.18)

This may be checked, for example by using the mild formulation of (3.18). Hence, in this setting the
invariant measure obtained as ν→ 0 is also normally distributed around ωE .
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3.3. Previously established properties of Kuksin measures. The balance relation (3.12) implies that
any collection of invariant measures I = {µν}ν>0 is tight and therefore weakly compact. We denote by
µ0 a limiting point of I , and refer to these measures as Kuksin measures. Let us now recall some known
properties of the measures µ0. We refer to [KS12] for the proofs of all the facts described in this subsection.

Define K =W 1,1(R; H 0)∩L2
loc (R, H 1) and let KE be the set of ω ∈K that satisfy the Euler equation

∂tω+u ·∇ω= 0 (3.19)

in its vorticity form weakly for all t ∈ R. Moreover if ω1,ω2 ∈ KE and ω1(t ) = ω2(t ) for some t ∈ R then
ω1 =ω2. This follows from the methods of Yudovich (see [MB02]). Define π : K → H by π(ω) =ω(0), the
fiber at t = 0. Note that, from uniqueness, it follows that π is injective on K and let

X =π(KE ).

It then holds that µ0(X ) = 1.
The Euler equation is well defined as a dynamical system on X . Indeed, for ω0 ∈ X , there exists a

unique solution ω(·,ω0) ∈ K ⊂ C (R, H 0)∩L2
l oc (R, H 1). Indeed for t ∈ R define St : X → X , via Stω0 =

ω(t ,ω0). We endow X with the topology inherited from K , i.e. we take

dK (ω1
0,ω2

0) = ∑
N≥1

2−N EN (ω1
0,ω2

0)

1+EN (ω1
0,ω2

0)
(3.20)

where

EN (ω1
0,ω2

0) = sup
t∈[−N ,N ]

‖ω(·,ω1
0)−ω(·,ω2

0)‖2
0 +

∫ N

−N
‖ω(·,ω1

0)−ω(·,ω2
0)‖2

1d t . (3.21)

We then have that {St }t∈R is a group of homeomorphisms on X . Moreover µ0 is invariant for {St }t≥0, i.e.
µ0(E) =µ0(S−1(t )E) =µ0(S(−t )E), for all t ∈R and any E ∈B(X ).

Using local time techniques it may be shown that µ0 is “non-trivial” in the sense that it contains no
atoms. In other words, for any ω ∈ X , we have that µ0({ω}) = 0. Further properties such as spacial ho-
mogeneity, and higher moment bounds, and pointwise in space moment bounds for the measures µ0 are
discussed in [KS12].

Remark 3.3 (Vortex patches and µ0). Let us observe that there are no vortex patch solutions in the support
of µ0. Indeed, for any open set O ⊂R2 let χO be the indictor function on O. Define

P = {
χO : O ⊂⊂T2, bounded, simply connected with smooth boundary ∂O

}
.

For any ω0 ∈P , according to e.g. [MB02] there exists t0 > 0 such that ω(t ,ω0) ∈P , for all t ∈ [−t0, t0]. As
such, since H 1 ∩P =;, for any ω0 ∈P , ω0(·,ω0) 6∈ L2

loc (R, Ḣ 1) and hence ω0(·,ω0) 6∈KE . Thus µ0(P ) = 0
since

P ∩X =;. (3.22)

4. Invariant Measure Supported on L∞ and Related Estimates

In this section we establish uniform in ν bounds on E‖ωS
ν‖L∞ , where ωS

ν are stationary solutions of (3.2).
Our approach makes use of the Moser iteration technique and draws on earlier works in this direction in
[DMS05, DMS09]. However we obtain parabolic regularization and time decay for the initial data compo-
nent, which was not addressed in the above works. Let us note that in the deterministic case L∞ bounds may
be obtained without appealing to the Moser iteration: one carries out Lp estimates, which take advantage of
cancellation in the nonlinearity, and then sends p →∞. In the stochastic case, the Itō correction terms arise
and cause the bounds on the Lp norm to grow unboundedly as p →∞.
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Theorem 4.1 (Stochastic Moser). For ν> 0 consider an invariant measure µν and an associated stationary
solution ωS

ν of (3.2), where the stochastic forcing is assumed to be sufficiently smooth, e.g. (3.4) holds. Then
the following bound holds

E‖ωS
ν‖L∞ ≤C <∞ (4.1)

where C =C (σ) is independent on ν.

An immediate consequence of estimate (4.1) is that any limit point µ0 of any sequence of invariant
measures {µν}ν>0 is concentrated on L∞(T2).

Theorem 4.2 (Invariant measure supported on L∞). Under the assumptions of Theorem 4.1, consider
any collection of invariant measures {µν}ν>0 of (3.2). Then there exists a subsequence and a measure µ0

such that µν j *µ0 (weakly) in Pr(H 0) as j →∞ and µ0(L∞) = 1.

Remark 4.3. Let us note that µ0 is an invariant measure for the Euler equation over L∞∩X , where X is the
fiber at t = 0 of KE . See Section 3 for details.

We shall first give the proof of Theorem 4.2, assuming Theorem 4.1 holds, and then return and prove
Theorem 4.1.

PROOF OF THEOREM 4.2. As in [Kuk04] by using (3.12) we have that {µν} is tight, and hence weakly
compact on Pr(H 0). Taking µ0 to be a limit point of {µν}ν>0 in the weak topology of H 0, there exists a
sequence ν j → 0 such that

lim
j→∞

∫
φ(ω0)dµν j (ω0) =

∫
φ(ω0)dµ0(ω0)

for each φ ∈Cb(H 0).
According to Theorem 4.1 we have

sup
ν>0

E‖ωS
ν‖L∞ = sup

ν>0

∫
‖ω0‖L∞dµν(ω0) ≤C <∞. (4.2)

We claim that this implies ∫
‖ω0‖L∞dµ0(ω0) ≤C . (4.3)

Indeed, take ρε to be a standard family of smooth mollifiers on R2. For R > 0, ε > 0 define φR,ε(ω) =
‖ρε∗ω‖L∞ ∧R. Young’s inequality implies the φR,ε ∈Cb(H 0) so that∫

φR,ε(ω0)dµ0(ω0) ≤C .

Now, by Fatou’s Lemma, we have∫
(liminf

ε>0
‖ρε∗ω0‖L∞ ∧R)dµ0(ω0) ≤C .

Since ‖ω0‖L∞ ≤ liminfε>0 ‖ρε∗ω0‖L∞ for each ω0 ∈ L∞ then (4.3) follows, completing the proof. �

PROOF OF THEOREM 4.1. As a first step we rescale the time in (3.2). Taking t̃ = t/ν we obtain

dω̃+
(

1

ν
ũ ·∇ω̃−∆ω̃

)
d t =σdW̃ , ω̃(0) =ωS(0), (4.4)

where we have denoted ω̃(t , x) =ω(t̃ , x), ũ(t , x) = u(t̃ , x), and W̃ (t ) =p
νW (t̃ ). Note that W̃ (t ) has the same

statistical properties as W (t ). For ease of notation for we drop the tildes until (4.41) below.
Fix T > 0, ρ > 1, and define Tk to be an increasing sequence of times with T0 = 0 and Tk as k →∞. Let

Ik = [Tk ,2T ] be a sequence of time intervals approaching [T,2T ].
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To analyze (4.4) we apply the Lp Itō Lemma. This yields

d‖ω‖p
Lp =

(
p

ν
T1,p +pT2,p + p(p −1)

2
T3,p

)
d t +p

∑
m

Sm,p dW m (4.5)

where we have denoted

T1,p (t ) =−
∫
T2

u(t , x) ·∇ω(t , x)ω(t , x)|ω(t , x)|p−2d x = 0

T2,p (t ) =
∫
T2
∆ω(t , x)ω(t , x)|ω(t , x)|p−2d x (4.6)

T3,p (t ) =∑
m

∫
T2

|ω(t , x)|p−2σm(x)2d x (4.7)

Sm,p (t ) =
∫
T2
σm(x)ω(t , x)|ω(t , x)|p−2d x (4.8)

for all p ≥ 2. In the identity for T1,p we have integrated by parts in x and used that ∇·u = 0. Since ν > 0,
we are dealing with spatially smooth solutions of (4.4), and hence the identity (4.5) may be justified by
applying the Itō lemma pointwise in x, integrating over the torus, and using the stochastic Fubini theorem
(see, e.g. [DPZ92]). Note however that (4.5) may be justified for much less spatially regular stochastic
evolution equations, as recently established in [Kry10].

Let s ∈ [Tk ,Tk+1] and t > s. We start with (4.5) for p ≥ 2, integrated from s to t :

‖ω(t )‖p
Lp −p

∫ t

s
T2,p (τ)dτ= ‖ω(s)‖p

Lp + p(p −1)

2

∫ t

s
T3,p (τ)dτ+p

∑
m

∫ t

s
Sm,p (τ)dW m

τ

= ‖ω(s)‖p
Lp + p(p −1)

2

∫ t

s
T3,p (τ)dτ+p

∑
m

∫ t

Tk

Sm,p (τ)dW m
τ

−p
∑
m

∫ s

Tk

Sm,p (τ)dW m
τ (4.9)

where T2,p ,T3,p ,Sm,p are as defined in (4.6)–(4.8). We take the supremum of (4.9) over every t ∈ Ik+1, and
obtain

‖ω‖p
L∞(Ik+1;Lp ) −p

∫
Ik+1

T2,p (τ)dτ

≤‖ω(s)‖p
Lp + p(p −1)

2

∫
Ik

|T3,p (τ)|dτ+p sup
t∈Ik+1

∣∣∣∣∑
m

∫ t

Tk

Sm,p (τ)dW m
τ

∣∣∣∣
+p

∣∣∣∣∑
m

∫ s

Tk

Sm,p (τ)dW m
τ

∣∣∣∣
≤‖ω(s)‖p

Lp + p(p −1)

2

∫
Ik

|T3,p (τ)|dτ+2p sup
t∈Ik

∣∣∣∣∑
m

∫ t

Tk

Sm,p (τ)dW m
τ

∣∣∣∣ (4.10)

where we have used that s ∈ [Tk ,Tk+1), and that T2,p ≤ 0 (cf. (4.18) below). This allowed us to bound from
below the time integration on the left side from [s,2T ] with the smaller one on [Tk+1,2T ].

For the forthcoming computations it will be convenient to introduce the following standard notations for
the stochastic (martingale) terms. For any 0 ≤ r ≤ t , let

M[r,t ],p =∑
m

∫ t

r
Sm,p (τ)dW m

τ (4.11)

and denote the running absolute maximum by

M∗
[r,t ],p := sup

s∈[r,t ]

∣∣∣∣∑
m

∫ s

r
Sm,p (τ)dW m

τ

∣∣∣∣ . (4.12)
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Finally the we define 〈M[r,·]p〉t to be the quadratic variation of M[r,t ],p and recall that (see e.g. [KS91])

〈M[r,·]p〉t =
∫ t

r

∑
m

S2
m,p d s. (4.13)

Recall that by a version of the Burkholder-Davis-Gundy inequality given in [DMS05] (see also [RY99]) we
have that, for any non-negative random variable Z , any r < t and any δ> 0

E(M∗
[r,t ],p ∨Z )δ ≤CBDG (δ) ·E(〈M[r,·]p〉1/2

t ∨Z )δ. (4.14)

Here the constant CBDG (δ) is universal; it depends only on δ and is independent of the form of the Martingale
M∗

[r,t ],p or Z . Also, note carefully that there exists a δ0 > 0 such that

CBDG (δ) ≤ 2δ
1/2

whenever δ< δ0. (4.15)

This observation will be crucial below in estimates (4.33) and (4.37).
We return to (4.10) and take an average of (4.10) for s ∈ [Tk ,Tk+1], and obtain

‖ω‖p
L∞(Ik+1;Lp ) −p

∫
Ik+1

T2,p (τ)dτ

≤ 1

Tk+1 −Tk

∫ Tk+1

Tk

‖ω‖p
Lp (Ik ;Lp ) +

p(p −1)

2

∫
Ik

|T3,p (τ)|dτ+2pM∗
[Tk ,2T ],p

≤ 1

(Tk+1 −Tk )1/2
‖ω‖p

L2p (Ik ;Lp )
+ p(p −1)

2

∫
Ik

|T3,p (τ)|dτ+2pM∗
[Tk ,2T ],p . (4.16)

As usual in Moser iteration arguments, the lower bound on −T2,p is obtained by introducing v = |ω|p/2,

so that ‖ω‖p
Lp = ‖v‖2

L2 , and |∇v |2 = p2

4 |∇ω|2|ω|p−2. Then, upon integrating by parts in T2,p we have, point-
wise in time, that

−pT2,p = p(p −1)
∫
T2

|∇ω|2|ω|p−2d x = 4
p −1

p
‖∇v‖2

L2 ≥ 2‖∇v‖2
L2 (4.17)

for all p ≥ 2. Moreover, since we are in a two dimensional periodic box, the Sobolev embedding gives

1

2Cs
‖v‖2

L2∗ ≤ ‖∇v‖2
L2 +‖v‖2

L2 (4.18)

where 2∗ ∈ [2,∞) is arbitrary, and the constant CS > 0 depends only on the the size of the box and the choice
of 2∗. Note that v is not zero mean in space and hence we need to add here a lower order term in (4.18). Let
us choose 2∗ = 4 for simplicity. Then, in view of (4.17) and (4.18), the left hand side of (4.16) is bounded
from below as

‖v‖2
L∞(Ik+1;L2) +2‖∇v‖2

L2(Ik+1;L2) ≥ ‖v‖2
L∞(Ik+1;L2) −2‖v‖2

L2(Ik+1;L2) +2
(
‖v‖2

L2(Ik+1;L2) +‖∇v‖2
L2(Ik+1;L2)

)
. (4.19)

By assuming that

4|Ik+1| = 4(2T −Tk+1) ≤ 1, (4.20)

which is automatically satisfied for all k ≥ 0 if we ensure that

T ≤ 1

8
, (4.21)

we conclude from (4.19) that

‖v‖2
L∞(Ik+1;L2) +2‖∇v‖2

L2(Ik+1;L2) ≥ ‖v‖2
L∞(Ik+1;L2) (1−2|Ik+1|)+

1

Cs
‖v‖2

L2(Ik+1;L4)

≥ 1

2
‖v‖2

L∞(Ik+1;L2) +
1

Cs
‖v‖2

L2(Ik+1;L4). (4.22)
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Let us now recall the following Lp
t Lq

x interpolation inequality. Suppose we have 1 ≤ p1, p2, q1, q2,r1,r2 ≤
∞ and 0 ≤ γ≤ 1 satisfy

1

r1
= γ

p1
+ 1−γ

q1
,

1

r2
= γ

p2
+ 1−γ

q2
. (4.23)

Then, for any g ∈ Lp1 (I ;Lp2 )∩Lq1 (I ;Lq2 ) we have

‖g‖Lr1 (I ;Lr2 ) ≤ ‖g‖γLp1 (I ;Lp2 )‖g‖1−γ
Lq1 (I ;Lq2 ) (4.24)

with I ⊂ R being some interval. Taking r1 = 5, r2 = 5/2, p1 =∞, p2 = 2, q1 = 2, q2 = 4, and γ= 3/5 in this
inequality we find

1

2C 2/5
S

‖v‖2
L5(Ik+1;L5/2) ≤

1

2C 2/5
S

‖v‖6/5
L∞(Ik+1;L2)‖v‖4/5

L2(Ik+1;L4) ≤
1

2
‖v‖2

L∞(Ik+1;L2) +
1

Cs
‖v‖2

L2(Ik+1;L4) (4.25)

by making use of the ε-Young inequality. In summary, we have shown that the left hand side of (4.16) is
bounded from below by

1

C ′
S

‖v‖2
L5(Ik+1;L5/2) =

1

C ′
S

‖ω‖p
L5p/2(Ik+1;L5p/4)

= 1

C ′
S

‖ω‖p
L2λp (Ik+1;Lλp )

(4.26)

as long as (4.20) holds and for any p ≥ 2. Here have denoted C ′
S = 2C 2/5

S ∨1, and denoted

λ= 5

4
. (4.27)

For the term T3,p-term on the left side of (4.16) we simply use Hölder and obtain (pointwise in time)

p(p −1)

2
T3,p ≤ p(p −1)

2
‖ω‖p−2

Lp ‖σ‖2
Lp .

Integrating the above on Ik and using the Hölder inequality in time we obtain

p(p −1)

2

∫
Ik

T3,p (τ)dτ≤ p(p −1)

2
‖σ‖2

Lp |Ik |
p+2
2p ‖ω‖p−2

L2p (Ik ;Lp )
(4.28)

for all k ≥ 0. Thus from (4.16), (4.26), and (4.28), we obtain
1

C ′
S

(‖ω‖L2λp (Ik+1;Lλp ) ∨‖σ‖L∞
)p ≤ 1

C ′
S

(
‖ω‖p

L2λp (Ik+1;Lλp )
+‖σ‖p

L∞

)
≤ 1

(Tk+1 −Tk )1/2
‖ω‖p

L2p (Ik ;Lp )
+|T2|2/p p2|Ik |

p+2
2p ‖σ‖2

L∞‖ω‖p−2
L2p (Ik ;Lp )

+‖σ‖p
L∞ +2pM∗

[Tk ,2T ],p (4.29)

with M∗
[Tk ,2T ],p as defined in (4.12), and we have used that ‖σ‖Lp ≤ |T2|1/p‖σ‖L∞ .

Let us now define

κ(p,T ) := 4C ′
S

(
1

(Tk+1 −Tk )1/2
+|T2|2/p p2|Ik |

p+2
2p +1+2p|T2| 1

p |Ik |
1

2p

)
(4.30)

After some direct manipulations starting from (4.29), taking p th roots of both sides and then expectations
we find that

E
(‖ω‖L2λp (Ik+1;Lλp ) ∨‖σ‖L∞

)
≤ κ(p,T )

1
p E

((
‖ω‖L2p (Ik ;Lp ) ∨‖σ‖L∞

)p ∨|T2|− 1
p |Ik |−

1
2p M∗

[Tk ,2T ],p

) 1
p

≤ κ(p,T )
1
p CBDG (p−1)E

((
‖ω‖L2p (Ik ;Lp ) ∨‖σ‖L∞

)p ∨|T2|− 1
p |Ik |−

1
2p 〈M[Tk ,·],p〉1/2

2T

) 1
p (4.31)

which holds for all p ≥ 2. Note that for the second inequality we used (4.14).
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We next estimate the quadratic variation term, 〈M[Tk ,·],p〉1/2
2T in (4.31). Starting from (4.8) and (4.13) we

find

〈M[Tk ,·],p〉1/2
2T =

(∫ 2T

Tk

∑
m

S2
m,p d t

) 1
2

≤
(∫

Ik

(∫
T2

(
∑
m
σ2

m)1/2|ω|p−1d x

)2

d t

) 1
2

≤
(∫

Ik

‖σ‖2
Lp‖ω‖2(p−1)

Lp d t

) 1
2 ≤ |Ik |

1
2p ‖σ‖Lp‖ω‖p−1

L2p (Ik ;Lp )

≤|T2| 1
p |Ik |

1
2p ‖σ‖L∞‖ω‖p−1

L2p (Ik ;Lp )
≤ |T2| 1

p |Ik |
1

2p
(‖σ‖L∞ ∨‖ω‖L2p (Ik ;Lp )

)p . (4.32)

Note that the second bound above makes use of the integral Minkowski inequality.
Let us now summarize the estimates obtained, by combining (4.31) with (4.32). We have

E
(‖ω‖L2λp (Ik+1;Lλp ) ∨‖σ‖L∞

)≤κ(p,T )
1
p CBDG (p−1)E

(‖ω‖L2p (Ik ;Lp ) ∨‖σ‖L∞
)

(4.33)

for all p ≥ 2. To set up a recurrence relation, it is hence natural to set p = pk in (4.33), where we define

pk = 2λk

for all k ≥ 0, where we recall that λ= 5/4. Let us now introduce some notation

Ak = E(‖ω‖L2pk (Ik ,Lpk ) ∨‖σ‖L∞
)

(4.34)

ak = κ(pk ,T )
1

pk CBDG (p−1
k ). (4.35)

Then, (4.33) reads

Ak+1 ≤ ak Ak . (4.36)

So that

E sup
t∈[T,2T ]

‖ω(t , ·)‖L∞ ≤ A∞ ≤
(∏

k≥0
ak

)
E
(‖ω‖L4([0,2T ];L2) ∨‖σ‖L∞

)
. (4.37)

In view of (4.15), we have that ∏
k≥0

ak ≤C exp

(∑
k≥0

logκ(pk ,T )

pk

)
(4.38)

where C is a ν- and T -independent constant. We now set

Tk = T (1−λ−k ).

Then, Tk+1−Tk = Tλ−k (1+λ−1) ≥ Tλ−k /2 = T p−1
k . We recall the definition of κ(pk ,T ) from (4.30), which

in view of the above choices may be bounded as

κ(pk ,T ) ≤ 4C ′
S

(
T − 1

2 p
1
2

k +|T2|
2

pk p2
k (2T )

pk+2
2pk +1+2pk |T2|

1
pk (2T )

1
2pk

)
≤C p2

k

(
T − 1

2 +1
)

(4.39)

where we have also used that |Ik | ≤ 2T ≤ 1/4 (cf. (4.21)), and C is a sufficiently large T -independent
constant. Using that

∑
k≥0 p−1

k = 5/2, and
∑

k≥0 p−1
k log pk <∞ we may further obtain that∏

k≥0
ak ≤C (T −1/2 +1)5/2 ≤C (T −5/4 +1) (4.40)

for some sufficiently large ν- and T -independent constant C .
In summary from (4.37), (4.40) and recalling that these estimates were carried out for the rescaled

equation (4.4) above we have in conclusion

E sup
t∈[T,2T ]

‖ω̃(t )‖L∞ ≤C (T −5/4 +1)E
(‖ω̃‖L4([0,2T ];L2) ∨‖σ‖L∞

)
, (4.41)
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for any T ≤ 1/8 and where C is independent of T and ν. Rescaling to the original variable ω(t ) = ω̃(νt ) then
with (4.41) we infer

E sup
t∈[T /ν,2T /ν]

‖ω(t )‖L∞ ≤C (T −5/4 +1)

((∫ T /ν

0
νE(‖ω(s)‖4

L2 )d s

)1/4

+‖σ‖L∞

)
(4.42)

for any T ≤ 1/8.
We can now obtain the desired conclusion by taking ω to be ωνS a stationary solution of (3.2) corre-

sponding to µν. Recalling (3.14) and taking, for example T = 1/8 we have that

E‖ωνS‖L∞ ≤E sup
t∈[1/(8ν),1/(4ν)]

‖ωνS(t )‖L∞

≤C

((∫ 1/(8ν)

0
νE(‖ωνS(s)‖4

L2 )d s

)1/4

+‖σ‖L∞

)

≤C

((∫ 1/(8ν)

0

2ν

δ2 Eexp(δ‖ωνS(s)‖2
L2 )d s

)1/4

+‖σ‖L∞

)
≤Cσ (4.43)

for a constant Cσ independent of ν. This gives (4.1) concluding the proof of Theorem 4.1. �

Remark 4.4 (Linear drift-diffusion). Note that the L∞ bounds obtained in Theorem 4.1 can also be shown
to hold for any drift-diffusion equation

dω+ (a ·∇ω−∆ω)d t =σdW, ∇·a = 0,

with sufficiently regular drift a and stochastic forcing σ. Indeed as in (4.5) one may write the evolution of
the Lp-norm of ω with the analogous drift-term vanishing since a is divergence free. The rest of the proof
follows without any change and one obtains that

E sup
t∈[T,2T ]

‖ω(t )‖L∞ ≤C
(
1+T −5/4)E(‖ω‖L4([0,2T ];L2) ∨‖σ‖L∞

)
,

for any 0 < T ≤ 1/8 and most importantly C is independent a. Note also that this estimate corresponds to
the usual parabolic regularization in the deterministic case: L2 weak-solutions are instantaneously in L∞.

Remark 4.5 (Fractional Navier-Stokes). Note that the Moser iteration technique used to prove Theo-
rem 4.1 may be used to obtain drift-independent L∞ bounds for stationary solutions of the fractional drift-
diffusion equation

dω+ (a ·∇ω+ (−∆)γ/2ω)d t =σdW,

for any power γ ∈ (0,2), where as in Remark 4.4 the drift a is divergence-free and sufficiently smooth. To
see this, we recall the Lp lower bound on the fractional Laplacian given in [CC04]

p
∫
ω|ω|p−2(−∆)γ/2ωd x ≥

∫
|(−∆)γ/4 (|ω|p/2) |2d x

which holds for any p ≥ 2. Using the 2D Sobolev embedding Hγ/2 ⊂ L4/(2−γ), one may repeat the argument
given above in (4.17)–(4.27), and obtain estimate (4.26) with λγ = 1+γ/4. Since for any γ ∈ (0,2) we have
λn
γ →∞ as n →∞ the Moser iteration scheme may be completed mutatis-mutandis. In particular, setting

a = 1
νu, which is divergence-free, in view of (4.4) one may use the above argument to study inviscid limits

of the stochastic fractionally-dissipative Navier-Stokes equation.

5. Modulus of continuity for the deterministic stationary problem

In Section 4 we have proven that the stationary solution ωνS of (4.4) obeys ν-independent bounds in L∞,
that is E‖ωνS‖L∞ is uniformly bounded in ν. The key ingredients used in this argument were

• Two-dimensionality: this ensures that the nonlinear term, whose size blows up (in comparison to
the viscosity) as ν→ 0, vanishes altogether in Lp estimates for the vorticity. To put it differently,
there is no vorticity stretching term.
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• Stationarity: this enables us to measure the L∞ norm of the solution whose initial data is ωνS at
time Tν ≈ ν−1, and hence obtain bounds on ωνS itself.

Once we wish to estimate ωνS in more regular spaces, for example H s with s > 1, or Cγ with γ > 0, the
nonlinear term does not vanish anymore, and since it’s relative size becomes prohibitively large as ν→ 0,
we do not seem to be able to obtain ν-independent bounds on ωνS , in spaces that are better than L∞ (averaged
over the probability space).

In this section we exhibit an drift-independent bound, in a better norm than L∞, of solutions to the
stationary drift-diffusion equation

Lv =−∆v +b ·∇v = f (5.1)

for x ∈T2, where b = b(x) is a divergence free-vector field, but on which we have no bounds. The force is
assumed to be in L∞, with zero-mean, and we consider solutions v such that

∫
T2 vd x = 0. We view equation

(5.1) as a deterministic toy-model describing the stationary solutions of (4.4) – the analogy is given by
letting b = ν−1u, v =ω, and noting that ω(0) equals ω(t ) in law, for all t ≥ 0.

Following the ideas in [SSŠZ12] in the spirit of [Leb07] we show that v obeys a logarithmic modulus
of continuity which does not depend on the size of the drift b. In particular v is a uniformly continuous
function.

Theorem 5.1 (Modulus of continuity for deterministic stationary equation). Let b be divergence free
and smooth, and v be a zero mean weak solution of (5.1), that is, v ∈ H 1 and satisfies (5.1) in the sense of
distributions. Then v obeys a drift-independent logarithmic modulus of continuity

sup
|x−y |≤r

|v(x)− v(y)| ≤ C (‖ f ‖L∞)√
log1/r

(5.2)

for some C > 0 that is independent of b and all r ∈ (0,r∗], for some universal constant r∗. In particular, v is
uniformly continuous.

PROOF OF THEOREM 5.1. Taking the inner product of (5.1), using the Poincaré inequality and the fact
that ∇·b = 0, we obtain

1

C
‖v‖2

L2 + 1

2
‖∇v‖2

L2 ≤ ‖ f ‖L2‖v‖L2

which implies

‖∇v‖2
L2 ≤C1‖ f ‖2

L2 (5.3)

for some C1 > 0 that is independent of b. We as usual denote oscK v = maxK v −minK v to be the oscillation
of v over the set K . Fix x0 = 0, r0 = diam(T2)/4∧1/2, and let Br = Br (x0) for any r ≤ r0. Upon integrating in
polar coordinates, dropping the normal derivatives, and using that by the 1D Sobolev embedding H 1(∂Br ) ⊂
Cα(∂Br ) for α ∈ (0,1/2) (see [SSŠZ12, Theorem 4.2]), we obtain

C1‖ f ‖2
L2 ≥

∫ p
r

r

(osc∂Bρ
v)2

ρ
dρ, (5.4)

for any r ∈ (0,r 2
0 ].

If we were able to establish that v is monotone in the sense of Lebesgue, i.e. to show that osc∂Bρ
v is a

monotone function of ρ, the proof of the lemma would directly follow from (5.4). Instead we prove that v
is almost monotone in the sense of Lebesgue, that is, up to an error of size r 2. Let h solve

Lh =− f in Br , h = 0 on ∂Br

so that L(v +h) = 0 in Br , and hence by the maximum principle

oscBr (v +h) = osc∂Br (v +h) = osc∂Br v. (5.5)
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We claim that

oscBr h ≤C‖ f ‖L∞(Br )r
2 (5.6)

for some constant C > 0 that is independent of b. To prove (5.6), we rescale the problem to the unit ball by
letting

x = r y, h̃(y) = h(r y), b̃(y) = b(x), f̃ (y) = f (x).

It follows that

−∆y h̃ + r b̃ ·∇y h̃ =−r 2 f̃ in B1, h̃ = 0 on ∂B1. (5.7)

We obtain the desired estimate by Moser iteration. Multiplying (5.7) by h̃|h̃|p−2 and integrating over B1 we
obtain that for any p ≥ 2

4(p −1)

p2

∫
B1

∣∣∇(|h̃|p/2)
∣∣2

d x = (p −1)
∫

B1

|∇h̃|2|h̃|p−2d x ≤ r 2|B1|1/p‖ f̃ ‖L∞‖h̃‖p−1
Lp

by using that ∇· b̃ = 0, and that h̃ vanishes on ∂B1. Using the Sobolev embedding H 1 ⊂ L4 in 2D, we get

‖h̃‖p
L2p ≤C p|B1|1/p r 2‖ f̃ ‖L∞‖h̃‖p−1

Lp (5.8)

for some C > 0 which is independent of p. Without loss of generality we take this constant C sufficiently
large so that 2C |B1|1/p ≥ 1 for any p ≥ 2. Let

pk = 2k and ak = max
{‖h̃‖Lpk ,r 2‖ f̃ ‖L∞

}
.

It follows from (5.8) that

ak+1 ≤
(
C pk |B1|1/pk

)1/pk ak

and thus

‖h̃‖L∞(B1) ≤C
(
r 2‖ f̃ ‖L∞(B1) +‖h̃‖L2(B1)

)≤Cr 2‖ f̃ ‖L∞(B1) (5.9)

for some C > 0. The last inequality above follows by setting p = 2 in (5.8), and using the Hölder inequality.
Upon rescaling back to x-variables, (5.9) implies (5.6).

Combining (5.5) with (5.6) gives that for any r ≤ ρ < r0 we have

osc∂Bρ
v≥ oscBρ

v −C‖ f ‖L∞ρ2 ≥ oscBr v −C2‖ f ‖L∞ρ2 (5.10)

for some C2 > 0 that is independent of b. Inserting this bound in (5.4) yields

C1‖ f ‖2
L2 ≥

∫ p
r

r

1

ρ

(
oscBr v −C2‖ f ‖L∞ρ2)2

dρ. (5.11)

We distinguish two cases, based on whether oscBr v is larger or smaller than 2C2‖ f ‖L∞r . When oscBr v ≥
2C2‖ f ‖L∞r ≥ 2C2‖ f ‖L∞ρ2, then (5.6) implies that

C1‖ f ‖2
L2 ≥

∫ p
r

r

1

ρ

(oscBr v

2

)2
dρ = (oscBr v)2

8
log

1

r
,

which implies

oscBr v ≤ 4
p

C1‖ f ‖L2√
log1/r

.

On the other hand

oscBr v ≤ 2C2‖ f ‖L∞r ≤ 2C2‖ f ‖L∞√
log1/r

for any r ≤ r 2
0 ≤ 1/2. The above two estimates imply (5.2). One may repeat this argument with x0 being

any point in T2, not just the origin, by periodically extending v and f to one more periodic cell, thereby
concluding the proof. �
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In contrast, the parabolic case is more delicate. If we consider the linear problem

∂t v +b(x, t ) ·∇v −∆v = f ,

even if b is divergence-free, one may construct solutions that are not continuous functions for all time,
although they obey the L∞ maximum principle. See e.g. [SVZ12] for an example with rough drift. For the
nonlinear problem

∂tω+ν−1u ·∇ω−∆ω= f ,

one may hope to prove that in some average sense, the functions on the attractor remain continuous as ν→ 0.
At the moment we do not know how to prove this.

6. The Damped and Driven Navier-Stokes Equations and Other Scaling

In this section we consider the weakly damped and driven stochastic Navier-Stokes equations

du + (Y u +u ·∇u +∇π−ν∆u)d t = ναρdW = να∑
k
ρk dW k , ∇·u = 0, (6.1)

where Y = Yτ,γ = τΛ−γ = τ(−∆)−γ/2 and τ> 0, γ ∈ [0,1). As above for (3.1) it follows immediately from the
Kryloff-Bogoliouboff procedure that there exists an invariant measure µαν for each ν> 0, α ∈R.

We now prove that α= 0 is the only scaling of ν in (6.1) which gives a nontrivial inviscid limit.

Theorem 6.1 (Inviscid limits in different scalings). For α ∈R consider a collection of invariant measures
{µαν }ν>0 of (6.1). Depending on the choice of α we have one of the following three scenarios:

(i) If α> 0, then for any ν j → 0, we have that µαν j
* δ0, i.e. weakly in Pr (H 0), where δ0 is the Dirac

measure concentrated at 0.
(ii) If α< 0, then for any νn → 0 such that the µανn

*µ0 then∫
H 0

‖u‖2
L2 dµ0(u) =∞. (6.2)

(iii) If α= 0, then there exists a sequence νn → 0 and a stationary martingale solution µ0 of

du + (Y u +u ·∇u +∇π)d t = ρdW, ∇·u = 0, (6.3)

such that µ0
νn
* µ0. By a stationary Martingale solution of (6.3) corresponding to µ0 we mean

that there exists a stochastic basis S := (Ω,F , {Ft }t≥0,P,W ) and a predicable process

u ∈Cw ([0,T ]; H 0)∩L2([0,T ], H 1−γ/2) (6.4)

which satisfies (6.3) and is stationary, i.e. the law P(u(t ) ∈ A), A ∈ B(H 0), is independent of t
and identically equal to µ0.

PROOF. Let uν be stationary solutions of (6.1) corresponding to µαν , and define ων =∇⊥ ·uν. Applying
the Itō lemma to (6.1) and using stationarity, we obtain:

E
(
ν‖∇uν‖2

L2 +‖Y 1/2uν‖2
L2

)= ν2α

2
‖ρ‖2

L2 . (6.5)

Additionally, by making use of the vorticity formulation of (6.1),

dω+ (Y ω+u ·∇ω−ν∆ω)d t = νασdW, σ=∇⊥ρ, (6.6)

we also obtain, again with the Itō lemma and stationarity

E
(
ν‖∇ων‖2

L2 +‖Y 1/2ων‖2
L2

)= ν2α

2
‖σ‖2

L2 . (6.7)

PROOF OF (i). We begin with the case α> 0. From (6.7) we have

E‖uν‖2
H 1−γ/2 ≤

ν2α

2τ
‖σ‖2

L2 . (6.8)
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Using Chebyshev and compact embedding we infer that µαν is tight in Pr (H 0).
Consider any weakly convergent subsequence µαν *µα0 . By the Skhorohod embedding theorem we may

find a new probability space (Ω̃,F̃ , P̃) and a sequence of H 0 valued random variables ũν such that ũν is
equal in law to µαν and

ũν→ ũ0 a.s. in H 0,

with ũ0 equal in law to µα0 . Now with (6.8) and Fatou’s Lemma we infer

Ẽ‖ũ0‖2
L2 ≤ liminf

ν>0
Ẽ‖ũν‖2

L2 ≤ liminf
ν>0

ν2α

2τ
‖σ‖2

L2 = 0.

Hence ũ0 = 0 a.s. and therefore µα0 = δ0. This proves the first item.
PROOF OF (ii). Now we consider the case α< 0. For every ν> 0 we obtain

νE‖∇uν‖2
L2 = νE‖ω‖2

L2 ≤CνE

(
‖Y 1/2ων‖

4
2+γ
L2 ‖∇ων‖

2γ
2+γ
L2

)
≤Cν

2
2+γ E

(
ν‖∇ων‖2

L2 +‖Y 1/2ων‖2
L2

)≤ ν 2
2+γ+2αC‖σ‖2

L2 ,

where we have used that Y = τΛ−γ, interpolation and the above balance relation (6.7). Combining (6.5) with
the above estimate we obtain

ν2α

2
‖ρ‖2

L2 ≤ E‖Y 1/2uν‖2
L2 +ν

2
2+γ+2αC‖σ‖2

L2 ,

for constant C > 0 which is independent of ν. This implies

ν2α(‖ρ‖2
L2 /2−ν 2

2+γC‖σ‖2
L2 ) ≤ E‖Y 1/2uν‖2

L2 ≤CE‖uν‖2
L2 . (6.9)

By assumption the assumption that µαν * µα0 as in (i), the Skhorohod embedding theorem yields a new
probability space and ũν which converges almost surely to ũ0, with the same laws as the original sequence.
We infer

limsup
ν→0

ν2α(‖ρ‖2
L2 /2−ν 2

2+γC‖σ‖2
L2 ) ≤C limsup

ν→0
Ẽ‖ũν‖2

L2 ≤C Ẽ‖ũ0‖2
L2 ,

where we have used the Fatou lemma in the last estimate. This proves (6.2).
PROOF OF (iii). Lastly we treat the case α= 0. By applying the Itō lemma to (6.6) we have that

d‖ων‖2
L2 + (2‖Y ων‖2

L2 +2ν‖ων‖2
H 1 )d t = ‖ρ‖2

L2 d t +〈ρ,ων〉dW

Using stationarity we immediately obtain that

uν is uniformly bounded in L2(Ω;L2([0,T ], H 1−γ/2)) (6.10)

and moreover that

uν(0) is uniformly bounded in L2(Ω; H 1−γ/2)) which implies that {µν}ν>0 is tight on H 0. (6.11)

Returning to (6.1) and again making use of the Itō formula,

d‖uν‖2
L2 + (2‖Y uν‖2

L2 +2ν‖uν‖2
H 1 )d t = ‖σ‖2

L2 d t +〈σ,uν〉dW,

we infer with (6.11) that

uν is uniformly bounded in L2(Ω;L∞([0,T ], H 0)). (6.12)

In order to obtain a suitable compactness required to pass to the limit we need some additional uniform
estimates on fractional the time derivatives of uν. We will apply the Aubin-Lions type compact embedding

L2([0,T ], H 1−γ/2)∩W 1/3,2([0,T ]; H−3) ⊂⊂ L2([0,T ], H 0) (6.13)

and the Arzela-Ascoli type compact embedding

W 1/3,4([0,T ]; H−3) ⊂⊂C ([0,T ]; H−4), (6.14)



ON INVISCID LIMITS FOR THE STOCHASTIC NAVIER-STOKES EQUATIONS AND RELATED MODELS 25

(see [FG95]). Define a sequence of measures {µν}ν>0 on the path space C ([0,T ]; H−4) associated to {uν}ν>0

by

µν(A) =P(uν ∈ A), A ∈B(C [0,T ]; H−4). (6.15)

Using the embeddings, (6.13), (6.14), and suitable estimates we will next show that

{µν}ν>0 is tight in L2([0,T ]; H 0)∩C ([0,T ]; H−3). (6.16)

For this propose we write (6.1) in its integral form

uν(t ) =
(

uν(0)−
∫ t

0
(Y u +P (u ·∇u)−ν∆u)d s

)
+σW (t ) := ID (t )+ IS(t ), (6.17)

where P is the Leray projection operator onto L2 divergence-free vector fields. Observe that,

‖ID (t )‖4
W 1/3,4([0,T ];H−3) ≤C

∫ T

0

(‖uν(0)‖4
H−3 +‖Y uν‖4

H−3 +‖ν∆uν‖4
H−3 +‖P (uν ·∇uν)‖4

H−3

)
d t

≤C sup
t∈[0,T ]

(1+‖uν‖4
L2 )2, (6.18)

where C is independent of 1 ≥ ν > 0, but may depend on T . By making use of a suitable version of the
Burkholder-Davis-Gundy (see e.g [FG95]) inequality we have

E‖IS(t )‖4
W 1/3,4([0,T ];H−3) ≤C‖σ‖4

L2 , (6.19)

where again, by the assumption α= 0, C is independent of ν but depends on T . Similar estimates yield

‖ID (t )‖2
W 1/3,2([0,T ];H−3) ≤C sup

t∈[0,T ]
(1+‖uν‖4

L2 ), E‖IS(t )‖2
W 1/3,2([0,T ];H−3) ≤C‖σ‖2

L2 . (6.20)

To establish the first part of the tightness bound, (6.16) we consider the sets

B 1
R := {

u : ‖u‖L2([0,T ],H 1−γ/2) ≤ R
}∩{

u : ‖u‖W 1/3,2([0,T ];H−3) ≤ R
}

so that, according to (6.13) B 1
R is compact in L2([0,T ], H 0) for every R > 1. Observe that, with an appropriate

application of Chebyshev’s inequality and in view of (6.10), (6.12), (6.17), (6.20)

µν((B 1
R )C ) ≤ 1

R2 E‖uν‖2
L2([0,T ],H 1−γ/2) +

2

R
E‖ID (t )‖W 1/3,2([0,T ];H−3) +

4

R2 E‖IS(t )‖2
W 1/3,2([0,T ];H−3)

≤C

R
E
(
‖uν‖2

L2([0,T ],H 1−γ/2) +‖uν‖2
L∞([0,T ],H 0) +‖σ‖2

L2

)
≤ C

R
, (6.21)

where C is independent of ν> 0 and R > 0. For the second half of the tightness bound (6.16) we define

B 2
R := {

u : ‖u‖W 1/3,4([0,T ];H−3) ≤ R
}

,

and observe with (6.18), (6.17) (6.19) that

µν((B 2
R )C ) ≤ 2

R
E‖ID (t )‖W 1/3,4([0,T ];H−3) +

8

R4 E‖IS(t )‖4
W 1/3,4([0,T ];H−3)

≤C

R
E
(
‖uν‖2

L∞([0,T ],H 0) +‖σ‖4
L2

)
≤ C

R
, (6.22)

where, once again, C is independent of ν> 0 and R > 0. With (6.21), (6.22) we may now infer (6.16).
With (6.16) in hand we now invoke the Skorokhod theorem obtain a sequence of processes (ũν,W̃ ν)

defined on a new probability space, (Ω̃,F̃ , P̃) such that

ũν→ũ almost surely in C ([0,T ]; H−3)∩L2([0,T ]; H 0), (6.23)

W̃ ν→W̃ almost surely in C ([0,T ];U0), (6.24)
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ũν is equal in law to uν and each W̃ ν is a cylindrical Brownian motion relative to the filtration F̃ν
t given by

the completion of σ((W̃ ν(s), ũν(s)) : s ≤ t ). Note that the sequence ũν maintains the same uniform bounds
as in (6.10), (6.12) and it follows that

ũν* ũ weakly in L2(Ω;L2([0,T ]; H 1−γ/2)), (6.25)

ũν*∗ ũ weakly* in L∞(Ω;L∞([0,T ]; H 0)). (6.26)

Finally, as in [FG95] that ũ is a stationary process on H 0 with stationary distribution µ0.
An argument from [Ben95] may now be employed to show that, for each ν > 0, ũν solves (6.1), but

relative to the new stochastic basis S̃ = (Ω̃,F̃ , P̃,F̃ν
t ,W̃ ν). Now by using the convergences (6.23)–(6.26)

we may pass to the limit ν→ 0 in (6.17) (with uν,W appropriately replaced with ũν,W̃ ν) and establish that
(ũ,W̃ ) satisfies (6.3) along with the required regularity. As in [FG95] it follows from the stationarity of ũν

and (6.23) that ũ is stationary.
�
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