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Abstract

We establish the existence, uniqueness and attraction properties of an ergodic invariant measure for
the Boussinesq Equations in the presence of a degenerate stochastic forcing acting only in the temperature
equation and only at the largest spatial scales. The central challenge is to establish time asymptotic
smoothing properties of the Markovian dynamics corresponding to this system. Towards this aim we
encounter a Lie bracket structure in the associated vector fields with a complicated dependence on
solutions. This leads us to develop a novel Hörmander-type condition for infinite-dimensional systems.
Demonstrating the sufficiency of this condition requires new techniques for the spectral analysis of the
Malliavin covariance matrix.
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1 Introduction

In this work we analyze the stochastically forced Boussinesq equations for the velocity field u = (u1, u2),
(density-normalized) pressure p, and temperature θ of a viscous incompressible fluid. These equations take
the form

du + (u · ∇u)dt = (−∇p+ ν1∆u + gθ)dt, ∇ · u = 0, (1.1)

dθ + (u · ∇θ)dt = ν2∆θdt+ σθdW, (1.2)

where the parameters ν1, ν2 > 0 are respectively the kinematic viscosity and thermal diffusivity of the
fluid and g = (0, g)T with g 6= 0 is the product of the gravitational constant and the thermal expansion
coefficient. The spatial variable x = (x1, x2) belongs to a two-dimensional torus T2. That is, we impose
periodic boundary conditions in space. We consider a degenerate stochastic forcing σθdW , which acts only
on a few Fourier modes and exclusively through the temperature equation.

We prove that there exists a unique statistically invariant state of the system (1.1)–(1.2). More precisely,
we establish:

Theorem 1.1. With white noise acting only on the two largest standard modes of the temperature equation
(1.2),

σθdW = α1 cosx1dW
1 + α2 sinx1dW

2 + α3 cosx2dW
3 + α4 sinx2dW

4,

the Markov semigroup corresponding to (1.1)–(1.2) possesses a unique ergodic invariant measure. Moreover
this measure is mixing, and it obeys a law of large numbers and a central limit theorem.

The interaction between the nonlinear and stochastic terms in (1.1)–(1.2) is delicate, and leads us to
develop a novel infinite-dimensional form of the Hörmander bracket condition. Our analysis generalizes
techniques developed in the recent works [MP06, HM06, HM08, HM11], and we believe it has broader
interest for systems of SPDEs.

1.1 Historical Background and Motivations

Going back to the early 1900’s Rayleigh [LR16] proposed the study of buoyancy driven fluid convection
problems using the equations of Boussinesq [Bou97] in order to explain the experimental work of Bénard
[B0́1]. Today this system of equations plays a fundamental role in a wide variety of physical settings
including climate and weather, the study of plate tectonics, and the internal dynamical structure of stars,
see e.g. [Ped82, Bus89, Get98, DG95, BPA00] and references therein for further background.

Physically speaking, the system (1.1)–(1.2) (with σθ = 0) arises as follows. Consider a fluid with velocity
u confined between two horizontal plates, where one fixes the temperature θ of the fluid on the top θt,
and bottom θb, with θt ≤ θb (i.e. heating from below). It is typical to assume a linear relationship between
density and temperature, and to impose the Boussinesq approximation, which posits that the only significant
role played by density variations in the fluid arise through the gravitational terms, so that the fluid velocity
u and temperature θ evolve according to (1.1)–(1.2). Due to the presence of viscosity, the fluid is not moving
at the plates and one assumes no-slip boundary conditions u = 0.1

The form of the Boussinesq equations we consider in this work, that is (1.1)–(1.2) supplemented with peri-
odic boundary conditions, is sometimes referred to in the physics community as the ‘homogeneous Rayleigh-
Bénard’ or ‘HRB’ system. It is derived as follows: One transforms the governing equations we have just
described into an equivalent homogenous system by subtracting off a linear temperature profile. This in-
troduces an additional excitation term in the temperature equation, and makes the temperature vanish at
the plates. As a numerical simplification, one then replaces these boundary conditions with periodic ones

1One can consider consider the equations posed on an infinite channel, or assume periodic boundary conditions in the
horizontal direction for both the velocity field and temperature.
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(see [LT03, CLTT05]). This periodic setting is controversial in the physics community since it can produce
unbounded (‘grow-up’) solutions, as has been observed both numerically and through explicit solutions,
[CRG+06]. We will consider (1.1)–(1.2) in situations with no temperature differential (θt = θb, i.e. zero
Rayleigh number), so that the additional excitation term is not present and such unbounded solutions do
not exist. Extensions to more physically realistic boundary conditions for (1.1)–(1.2) will be addressed in
forthcoming works.

In the mathematical community the deterministic Boussinesq equations with various boundary conditions
on bounded and unbounded domains have attracted considerable attention. In one line of work the 2D system
has been interpreted as an analogue of 3D axisymmetric flow where ‘vortex stretching’ terms appear in the
‘vorticity formulation’, see e.g. [CD80, CI99, CFdlL04, HL05, Cha06, DP08, DP09, HK09, ACW10, LLT10,
ACW10, DP11, CW12, CW13]. Other authors have sought to provide a rigorous mathematical framework
for various physical and numerical observations in fluid convection problems, see e.g. [CD96, CD99, DC01,
MW04, Wan04a, Wan04b, Wan05, Wan07, MW07, Wan08a, Wan08b, SW13].

Let us briefly motivate the stochastic forcing appearing in (1.1)–(1.2). Due to sensitivity with respect to
initial data and parameters, individual solutions of the basic equations of fluid mechanics are unpredictable
and seemingly chaotic. However, some of their statistical properties of solutions are robust. As early as the
19th century J.V. Boussinesq conjectured that turbulent flow cannot be solely described by deterministic
methods, and indicated that a stochastic framework should be used, see [Sta88]. More recently the study
of the Navier-Stokes equations with degenerate white noise forcing has been proposed a proxy for the large-
scale ‘generic’ stirring which is assumed in the basic theories of turbulence; this setting is ubiquitous in the
turbulence literature, see e.g. [Nov65, VKF79, Eyi96] and containing references. In this view, invariant
measures of the stochastic equations of fluid dynamics would presumably contain the statistics posited by
these theories.2 The closely related question of unique ergodicity and mixing provides rigorous justification
for the explicit and implicit measurement assumptions invoked by physicists and engineers when measuring
statistical properties of turbulent systems.

The existence of invariant measures for forced-dissipative systems is often easy to prove with classical
tools, namely by making use of the Krylov-Bogoliubov averaging procedure with energy (compactness)
estimates, but the uniqueness of these measures is a deep and subtle issue. To establish this uniqueness one
can follow the path laid out by the Doob-Khasminskii Theorem [Doo48, Km60, DPZ96], and more recently
expanded upon in [HM06, HM08]. This strategy requires the proof of certain smoothing properties of the
associated Markov semigroup, and to show that a common state can be reached by the dynamics regardless of
initial conditions (irreducibility). Without stochastic forcing, solutions of our system converge to the trivial
equilibrium, so that the proof of irreducibility is straightforward in our context. Thus the main challenge of
this work is to establish sufficient smoothing properties for the Markov semigroup associated to (1.1)–(1.2).

1.2 Smoothing and Hypoellipticity in Infinite Dimensional Systems

In order to discuss the difficulties in establishing smoothing properties for the Markov semigroup it is useful
to recall the canonical relationship between stochastic evolution equations and their corresponding Fokker-
Planck (Kolmogorov) equations. Consider an abstract equation on a Hilbert space H,

dU = F (U)dt+ σdW (t); U(0) = U0 , (1.3)

where σdW (t) :=
∑N
k=1 σkdW

k(t), and {Wk}Nk=1 is a (finite or infinite) collection of independent 1D Brow-
nian motions. We denote solutions U with the initial condition U0 at time t ≥ 0 by U(t, U0), and define

2In our context the 2D Batchelor-Krichanan theory [Kra67, Bat69] is probably the most relevant statistical theory. Note
that its applicability would presumably require the imposition of a large scale damping term in the momentum equation as
explained in [GHSV13] and see also e.g. [KM80, Tab02, FJMR02, Kup10]. Such a damping operator would not affect any of
the conclusions drawn in the main results below. We also mention recent work on the statistics of turbulence in axisymmetric
3D flows [TDB13, NTC+10]. The governing equations for these systems bare a strong structural resemblance to (1.1)–(1.2) as
has been pointed out in e.g. [HL05].
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the Markov semigroup associated to (1.3) according to PtΦ(U0) = EΦ(U(t, U0)), where Φ : H → R is any
‘observable’. Then Ψ(t) := PtΦ solves the Fokker-Planck equation corresponding to (1.3) given by

∂tΨ =
1

2
Tr[(σσ∗)D2Ψ] + 〈F (U), DΨ〉, Ψ(0) := Φ (1.4)

where we view σ as an element in L(RN , H). The interested reader should consult [Cer01, DPZ02] for more
on the general theory of second order PDEs posed on a Hilbert space.

There is a wide literature devoted to proving uniqueness and associated mixing properties of invariant
measures for nonlinear stochastic PDEs when σσ∗ is non-degenerate or mildly degenerate. See e.g. [VKF79,
Cru89, FM95, DPZ96, Fer97, Mat99, Mat02, E01, EMS01, BKL01, EH01, MY02, KS01, KS02, Mat02, Mat03,
LW04, GM05, DPRRW06, AFS08, Deb11, KS12, CGHV13] and references therein. Roughly speaking, the
fewer the number of driving stochastic terms in (1.3), the more degenerate the diffusion in (1.4), and the more
difficult it becomes to establish smoothing properties for the Markov semigroup {Pt}t≥0.3 Moreover, while
even the non-degenerate setting poses many interesting mathematical challenges, such stochastic forcing
regimes are highly unsatisfactory from the point of view of turbulence where one typically assumes a clear
separation between the forced and dissipative scales of motion.

Going back to the seminal work of Hörmander [H6̈7] (and cf. [Kol34]), a theory of parabolic regularity
for finite dimensional PDEs of the general form (1.4) with degenerate diffusion terms was developed. This
theory of ‘hypoellipticity’ can be interpreted in terms of finite-dimensional stochastic ODEs for which these
degenerate parabolic PDEs are the corresponding Kolmogorov equations. This connection suggested the
potential for a more probabilistic approach, initiating the development of the so-called Malliavin calculus;
see [Mal78] and subsequent authors [Shi80, Bis81a, Bis81b, Str81, IW89, KS84, KS85, Nor86, KS87]. In any
case, the work of Hörmander and Malliavin has led to an extensive theory of unique ergodicity and mixing
properties for finite-dimensional stochastic ODEs.

By comparison, for stochastic PDEs (which correspond to the situation when (1.4) is posed on an infinite
dimensional space) this theory of hypoellipticity remains in its infancy. Recently, however, in a series of
groundbreaking works [MP06, HM06, HM08, HM11], a theory of unique ergodicity for degenerately forced
infinite-dimensional stochastic systems has emerged. These works produced two fundamental contributions:
Firstly the authors demonstrated that to establish the uniqueness of the invariant measure it suffices to
prove time asymptotic smoothing (asymptotic strong Feller property) instead of ‘instantaneous’ smoothing
(strong Feller property). This is an abstract result from probability and it applies to very general settings
including ours. Secondly the authors generalize the methods of Malliavin (and subsequent authors) in order
to prove the asymptotic strong Feller property for certain infinite-dimensional stochastic systems. These
works resulted in an infinite-dimensional analogue of the Hörmander bracket condition.

For the second point the application of the methods in [HM11] is more delicate and must be considered
on a case-by-case basis; it requires a careful analysis of the interaction of the nonlinear and stochastic terms
of the system. In our situation the bracket condition in [HM11] is not satisfied and needs to be replaced by
a weaker notion. This required us to rework and generalize many basic elements of their approach.

1.3 The Hörmander bracket condition in Infinite Dimensions

To explain our contributions at a more technical level, let us recall what is meant by a ‘Hörmander bracket
condition’ in the context of systems of the general form (1.3). Define

V0 := span{σk : k = 1, . . . d},

and for m > 0 take

Vm := span{[E,F ], [E, σk], E : E ∈ Vm−1, k = 1, . . . , d} , (1.5)

3On the other hand with more driving terms in (1.3), the well-posedness theory may become more difficult. For example
this was the primary mathematical challenge in the pioneering work [FM95].
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where F = F (U) is the drift term in (1.3), and for any Fréchet differentiable E1, E2 : H → H,

[E1, E2](U) := ∇E2(U)E1(U)−∇E1(U)E2(U). (1.6)

This operation [E1, E2] is referred to as the Lie bracket of the two ‘vector fields’ E1, E2. In finite dimensions,
that is when H = RN , the classical Hörmander condition is satisfied if ∪k≥0Vk = H for all U ∈ H.

This condition is not suitable for infinite-dimensional settings since the effect of randomness from the
directly forced modes seems to weaken as it propagates out in infinite dimensional space. In [HM06, HM11]
it was shown that, due to contractive properties of the flow on high modes, it is enough to require that the
Lie brackets span all the unstable directions of the system. More precisely, the following non-degeneracy
assumption is required: For every N > 0, there is an M > 0 and a finite set B ⊂ VM such that the quadratic
form

〈Q(U)φ, φ〉 :=
∑

b(U)∈B

〈φ, b(U)〉2 (1.7)

satisfies, for each α > 0,

〈Q(U)φ, φ〉 ≥ αC‖φ‖2, for every φ ∈ Sα,N := {φ ∈ H : ‖PNφ‖2 > α‖φ‖2}, (1.8)

where U solves (1.1)-(1.2), C > 0 is a constant independent of α, and {PN} is a sequence of projection
operators onto successively larger spaces.4

It was suggested in [HM11] that for many equations with polynomial nonlinearities brackets of the type
[· · · [[F (U), σk1 ], · · · ], σkm ] (where σk1 , · · · , σkm are previously generated constant vector fields) suffice to
build quadratic forms satisfying (1.8). Indeed, this approach has now been successfully employed for several
important examples, including the 2D and 3D Navier-Stokes equations and the Ginzburg-Landau equations;
see [EM01, Rom04, HM06, HM11]. In these works algebraic conditions on the set of stochastically forced
modes have been derived which guarantee that any finite-dimensional space HN can be generated from these
types of brackets; one obtains a collection of U -independent elements B which form an orthonormal basis
for HN . This strategy has proven effective for certain scalar equations, but its limitations are evident in
slightly more complicated situations. We believe that (1.1)–(1.2) provides an illuminating case study of these
difficulties which has lead us to generalize (1.8).

Observe that our model is distinguished by two key structural properties. Firstly, the buoyancy term gθ
is the only means of spreading the effect of the stochastic forcing from the temperature equation, (1.1), to
the momentum equations, (1.2). In particular note that this buoyancy term is linear, and therefore vanishes
after two Lie bracket operations with constant vector fields. Secondly, the advective structure in (1.1)–(1.2)
leads to a delicate ‘asymmetry’ in the nonlinear terms. For example this means that a more refined analysis
is needed to address the spread of noise in the temperature equation (1.2) alone.5 Concretely we find that,
by combining these observations, one obtains [[F (U), σk1 ], σk2 ] = 0 for any constant vector fields σk1 , σk2
concentrated in the temperature component of the phase space. In view of these discussions it is worth
emphasizing that our chosen forcing - that is, noise acting only through the temperature equations - is the
most interesting situation to consider from the point of view of ergodicity.

To get around these difficulties we make careful use of the interaction between the nonlinear, buoyancy
and noise terms in (1.1)–(1.2) as follows: We see that noise activated through the temperature equation
is spread to the momentum equations. It is then advected in the temperature equations and combines
again with the noise terms to produce new directions in the temperature component of the phase space.
These loose observations find concrete expressions in a series of Lie brackets of the form [[[[F, σk1 ], F ], σk2 ]
for constant vector fields σk1 and σk2 which belong to the θ-component. Remarkably, we found that this

4In fact the condition given in [HM11] is slightly more general than this. They also allow for the case when C might
dependent on U (subject to suitable moment bounds) but they require that C be almost everywhere positive which is not
sufficient for our purposes.

5In simple language this ‘advective structure’ means that u · ∇θ is the only second order term in the temperature equation
(1.2).
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chain of admissible brackets leads to new constant vector fields exclusively in the θ-component of the phase
space. This surprising observation requires a series of detailed computations but is perhaps anticipated by
the advective structure of the nonlinear terms.

It is in addressing the spread of noise in the momentum components of the phase space that the con-
dition (1.8) breaks down. Forced directions in the temperature component are pushed to the momentum
components through the buoyancy term. However, due to the presence of the nonlinearity, they are ‘mixed’
with terms which have an unavoidable and complicated directional (non-frequency-localized) dependence
on U . Crucially, due to the advective structure in (1.1)–(1.2), these ‘error terms’ are concentrated only in
the temperature component of the phase space. We are therefore able to push these error terms to small
scales by using the ‘pure’ θ directions already generated (following the procedure described in the previous
paragraph). More precisely, in the language of (1.5), (1.7), we are able to show that for every N, Ñ we can

find M > 0 and sets B ⊂ VM consisting of elements of the form Ψk + J Ñk (U), where the sequence {Ψk}
(which are essentially vectors consisting of trigonometric functions) forms an orthonormal basis for the phase

space and J Ñk are functions taking values in H with a complicated dependence on U but which are supported

on ‘high’ frequencies, i.e. wavenumbers larger than Ñ .

These structural observations for (1.1)–(1.2) lead us to formulate the following generalization of (1.8).

Definition 1.2. Let H and H̃ be Hilbert spaces with H̃ compactly embedded in H. We say that (1.3) satisfies
the generalized Hörmander condition if for every N > 0 and every ε > 0 there exist M = M(ε,N) > 0,
p ≥ 1, and a finite set B ⊂ VM (where VM is defined according to (1.5)) such that

〈Q(U)φ, φ〉 ≥ C
(
α− ε(1 + ‖U‖p

H̃
)
)
‖φ‖2 for every φ ∈ Sα,N , (1.9)

where C is independent of α and ε, and Q = QN,ε, Sα,N are defined in (1.7), (1.8) respectively.

Below we demonstrate that the condition (1.9) is sufficient to establish suitable time asymptotic smooth-
ing properties for the Markov semigroup associated to (1.3)6 This allows us to apply the abstract results
from [HM06, HM08, KW12] to complete the proof of Theorem 1.1. The main technical challenge arising
from the modified condition (1.9) is that it requires us to significantly rework the spectral analysis of the
Malliavin matrix appearing in [MP06, HM06, HM11]. The technically oriented reader can skip immediately
to Section 4 for further details.

1.4 Organization of the Manuscript

The manuscript is organized as follows: In Section 2 we restate our problem in an abstract functional setting
and introduce some general definitions and notations. Then we reduce the question of uniqueness of the
invariant measure to establishing a time asymptotic gradient estimate on the Markov semigroup. Next,
in Section 3 we explain how, using the machinery of Malliavin calculus, this gradient bound reduces to a
control problem for a linearization of (1.1)–(1.2). In turn we show that this control problem may be solved
by establishing appropriate spectral bounds for the Malliavin covariance matrix M. Section 4 is devoted to
proving that our new form of the Hörmander condition, (1.9), implies these spectral bounds, modulo some
technical estimates postponed for Section 6. Section 5 provides detailed Lie bracket computations leading
to the modified condition (1.9). Finally in Section 7 we establish mixing properties, a law of large numbers
and a central limit theorem for the invariant measure by making careful use of recent abstract results from
[Shi06, HM08, KW12]. Appendices A.1 and A.2 collect respectively statistical moment bounds for (1.1)–
(1.2) (and associated linearizations) and a brief review of some elements of the Malliavin calculus used in
our analysis.

6For clarity and simplicity we present all the arguments in the context of the Boussinesq system but the implications for the
Markov semigroup for systems satisfying Definition 1.2 could be shown to hold in a more general setting with essentially the
same analysis.
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2 Mathematical Setting and Background

In this section we formulate (1.1)–(1.2) as an abstract evolution equation on a Hilbert space and define its
associated Markovian framework. Then we formulate our main result in Theorem 2.3 and give an outline of
the proof, which sets the agenda for the work below.

In the rest of the paper, we consider (1.1) in the equivalent, vorticity formulation. Namely, if we denote
ω := ∇⊥ · u = ∂xu2 − ∂yu1, then by a standard calculation we obtain

dω + (u · ∇ω − ν1∆ω)dt = g∂xθdt, (2.1)

dθ + (u · ∇θ − ν2∆θ)dt = σθdW . (2.2)

The system (2.1)–(2.2) is posed on T2 × (0,∞), where T2 is the square torus T2 = [−π, π]2 = R2/(2πZ2).7

To close the system (2.1)–(2.2), we, as usual, calculate u from ω by Biot-Savart law, that is u = K ∗ ω,
where K is the Biot-Savart kernel, so that ∇⊥ · u = ω and ∇ · u = 0, see e.g. [Tem01, MB02] for further
details. As mentioned in the introduction, the physically interesting case of non-periodic domains will be
the subject of a future work.

We next introduce a functional setting for the system (2.1)–(2.2). The phase space is composed of mean
zero, square integrable functions

H :=

{
U := (ω, θ)T ∈ (L2(T2))2 :

∫
T2

ωdx =

∫
T2

θdx = 0

}
(2.3)

equipped with the norm

‖U‖2 :=
λ1ν1ν2

g2
‖ω‖2L2 + ‖θ‖2L2 , (2.4)

where λ1 = 1 (we omit λ1 below) is the principal eigenvalue of −∆ on H. Observe that this norm is
equivalent to the standard norm on the space (L2(T2))2.8 Our choice of the norm is natural as both terms
on the right hand side of (2.4) have been suitably non-dimensionalized. The associated inner product on H
is denoted by 〈·, ·〉. Note furthermore that the zero mean property embodied in the definition of H, (2.3) is
to be maintained by the flow (2.1)–(2.2). The higher order Sobolev spaces are denoted

Hs :=

{
U := (ω, θ)T ∈ (W s,2(T2))2 :

∫
T2

ωdx =

∫
T2

θdx = 0

}
for any s ≥ 0,

where W s,2(T2) is classical Sobolev-Slobodeckii space, and Hs is equipped with the norm

‖U‖2Hs :=
ν1ν2

g2
‖ω‖2W s,2 + ‖θ‖2W s,2 .

For s > 0, we also denote H−s := (Hs)∗, the dual space to Hs.
Since we need to estimates for linearizations of (2.1)–(2.2) around initial conditions and noise paths,

we encounter elements in L(H) and L(H,L(H)) (where L(X) = L(X,X), L(X,Y ) is the space of linear
operators from X to Y ). See, for example (3.4), below. We will sometimes abuse notation and donate

‖J ‖ := ‖J ‖L(H), ‖J (2)‖ := ‖J (2)‖L(H,L(H)), (2.5)

for any J ∈ L(H), J (2) ∈ L(H,L(H)).
We also frequently work with finite dimensional subspaces of H along with the projection operators onto

these spaces. Fix the trigonometric basis:

σ0
k(x) := (0, cos(k · x))

T
, σ1

k(x) := (0, sin(k · x))
T
, (2.6)

7Of course, by rescaling we obtain our results for any square torus R2/(LZ2) and at the cost of more complicated notation
and expressions below, one can also prove our results for non-square tori.

8Here and below we drop the dependence of various function spaces on T2.
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and

ψ0
k(x) := (cos(k · x), 0)

T
, ψ1

k(x) := (sin(k · x), 0)
T
. (2.7)

We denote

Z2
+ :=

{
j = (j1, j2) ∈ Z2

0 : j1 > 0 or j1 = 0, j2 > 0
}

and for any N ≥ 1 define

HN := span{σlk, ψlk : |k| ≤ N, l ∈ {0, 1}}, (2.8)

along with the associated projection operators

PN : H → HN the orthogonal projection onto HN , QN := I − PN . (2.9)

Note that QN maps H onto span{σlk, ψlk : |k| > N, l ∈ {0, 1}}.
In order to rewrite (2.1)–(2.2) in a functional form we introduce the following abstract operators associated

to the various terms in the equation. For U := (ω, θ) and Ũ = (ω̃, θ̃), let A : D(A) ⊂ H → H be the linear
symmetric positive definite operator defined by

AU := (−ν1∆ω,−ν2∆θ)T ,

for any U ∈ D(A). Note that the scale of spaces Hs, s ∈ R coincides with the interpolation spaces between
D(A) and H and A is a bounded operator from Hs+2 to Hs.

For the inertial (non-linear) terms define B : H1 ×H1 → H by

B(U, Ũ) := ((K ∗ ω) · ∇ω̃, (K ∗ ω) · ∇θ̃)T , (2.10)

for U, Ũ ∈ H1. It is well known that ‖K ∗ ω‖Hs ≤ C‖ω‖Hs−1 , and since H2 ↪→ L∞, we indeed obtain that
B(U, Ũ) ∈ H. Also set B(U) := B(U,U). Finally, for the ‘buoyancy term’ define G : H1 → H by

GU = (g∂xθ, 0)T , (2.11)

for U ∈ H1.
Next we focus on the stochastic forcing terms appearing in (2.2). We introduce a finite set Z ⊂ Z2

+

which represents the forced directions in Fourier space. The driving noise process W := (W k,l)k∈Z,l=0,1 is a
d := 2 · |Z|-dimensional Brownian motion defined relative to a filtered probability space (Ω,F , {Ft}t≥0,P)
and we refer to the resulting tuple S = (Ω,F , {Ft}t≥0,P,W ) as a stochastic basis.9 Let {elk}k∈Z,l=0,1 be the
standard basis of R2|Z| and let {αlk}k∈Z,l=0,1 be a sequence of non-zero numbers. We define a linear map
σθ : R2|Z| → H such that

σθe
l
k := αlkσ

l
k for any k ∈ Z, l ∈ {0, 1} . (2.12)

where, σlk are the basis elements defined in (2.6). Denote the Hilbert-Schmidt norm of σθ by

‖σθ‖2 := ‖σ∗θσθ‖ =
∑
k∈Z
l∈{0,1}

(αlk)2 .

9We may take the stochastic basis to be the standard ‘Wiener space’. Here we let Ω = {ω ∈ C([0,∞);R2|Z|) : ω(0) = 0}
with its Borelian σ-algebra and take P to be the Wiener measure. On this space the stochastic process defined by the evaluation
map W (t, ω) = ω(t) produces the statistics of Brownian motion. The filtration Ft is then defined by the (completion) of the
σ-algebra generated by W (s) for s ≤ t. See e.g. [KS91] for further details.
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We consider a stochastic forcing of the form10

σθdW :=
∑
k∈Z
l∈{0,1}

αlkσ
l
kdW

k,l. (2.13)

The index θ of σθ indicates that σθ attains nontrivial values only in the second component, in other words
only the θ component is directly forced.

Remark 2.1.

(i) For the rest of the manuscript we fix the physical constants ν1, ν2 > 0, g 6= 0 and non-zero noise
coefficients (αlk)k∈Z,l∈{0,1}. Below constants C, C0, C∗ etc. may change line by line and they implicitly

depend on ν1, ν2 > 0, g 6= 0, and αlk 6= 0. All other parameter dependencies are indicated explicitly.

(ii) Here and below d will always denote the number of driving Brownian motions 2 · |Z|. Since the use of
double indices in e.g. (2.12)–(2.13) can become notationally involved we sometimes simply denote the
basis for Rd as {e1 . . . ed}.

With these preliminaries in hand, the equations (2.1)–(2.2) may be written as an abstract stochastic
evolution equation on H

dU + (AU +B(U))dt = GUdt+ σθdW, U(0) = U0 , (2.14)

where U0 ∈ H. We say that U = U(t, U0) is a solution of (2.14) if it is Ft-adapted,

U ∈ C([0,∞);H) ∩ L2
loc([0,∞);H1) a.s., (2.15)

and U satisfies (2.14) in the mild sense, that is,

U(t) = e−AtU0 −
∫ t

0

e−A(t−s)(B(U(s))−GU(s))ds+

∫ t

0

e−A(t−s)σθdW (s). (2.16)

Note that B,G : H1 → H and the semigroup e−tA maps H to H2 ↪→ H1.
The following proposition summarizes the basic well-posedness, regularity, and smoothness with respect

to data for (2.14).

Proposition 2.2 (Existence/Uniqueness/Continuous Dependence on Data). Fix ν1, ν2 > 0, g ∈ R, and a
stochastic basis S. Given any U0 ∈ H, there exists a unique solution U : [0,∞)×Ω→ H of (2.16) which is
an Ft-adapted process on H with the regularity (2.15).

For any t ≥ 0 and any realization of the noise W (·, ω), the map U0 7→ U(t, U0) is Fréchet differentiable
on H. On the other hand, for every fixed U0 ∈ H and t ≥ 0, W 7→ U(t,W ) is Fréchet differentiable from
C((0, t),R2|Z|) to H. Moreover, U is (spatially) smooth for all positive times, that is, for any t0 > 0 and
any m ≥ 0,

U ∈ C([t0,∞);Hm) a.s.

Finally, U satisfy certain moment bounds as detailed below in Lemma A.1.

The well-posedness theory for (2.14) is standard and follows along the line of classical proofs for the
stochastic 2D Navier-Stokes equations, particularly since we are considering the case of a spatially smooth,
additive noise. See e.g. [KS12] for a detailed recent account close to our setting and e.g. [Roz90, DPZ92,

10Although we assume that |Z| is finite, our results also hold true if we consider random stirring in all of the Fourier directions
(Z = Z2

+) provided that we posit sufficient decay in the αlk’s so that the resulting solutions are sufficiently spatially smooth.
Note that it is for small values of |Z| (and in particular when |Z| is independent of ν1, ν2, g) that makes proof of ergodicity for
(2.1)–(2.2) difficult. As such we focus on our attention on the ‘smallest’ possible Z.
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PR07, HM11] and [CF88, Tem01, MB02] for more general background on the theory of infinite dimensional
stochastic systems and mathematical fluids respectively. Some moment estimates are less standard, but can
be found in a similar setting to ours in [HM06, Deb11, KS12]. For the purpose of completeness and in order
to carefully track dependencies on parameters we include some details in Appendix A.1.

For simplicity we set

F (U) := −AU −B(U) +GU (2.17)

and rewrite (2.14) in a more compact notation

dU = F (U)dt+ σdW, U(0) = U0,

which is particularly useful for the Hörmander type Lie bracket computations in Section 5.

2.1 The Markovian Framework and the Main Result

With the basic well-posedness of (2.14) in hand we next describe its associated Markovian semigroup. Let us
first recall some further spaces. Denote by Mb(H) and Cb(H) respectively the spaces of bounded measurable
and bounded continuous real valued functions on H equipped with the supremum norm. We also define

Oς := {Φ ∈ C1(H) : ‖Φ‖ς <∞}, where ‖Φ‖ς := sup
U0∈H

(exp(−ς‖U0‖)(|Φ(U0)|+ ‖∇Φ(U0)‖)) , (2.18)

for any ς > 0. Finally take Pr(H) to be the collection of Borelian probability measures on H.
Fix U = U(t, U0) = U(t, U0,W ) and define the Markovian transition function associated to (2.14) by

Pt(U0, E) = P(U(t, U0) ∈ E) for any U0 ∈ H,E ∈ B(H), t ≥ 0 , (2.19)

where P is defined relative to the fixed stochastic basis (cf. Proposition 2.2) and B(H) is the collection of
Borel sets on H. We define the Markov semigroup {Pt}t≥0 with Pt : Mb(H)→ Mb(H) associated to (2.14)
by

PtΦ(U0) := EΦ(U(t, U0)) =

∫
H

Φ(U)Pt(U0, dU) for any Φ ∈Mb(H), t ≥ 0. (2.20)

By Proposition 2.2 and the dominated convergence theorem, {Pt}t≥0 is Feller meaning that Pt : Cb(H) →
Cb(H) for every t ≥ 0. The dual operator P ∗t of Pt, which maps Pr(H) to itself, is given by

P ∗t µ(A) :=

∫
H

Pt(U0, A)dµ(U0), (2.21)

over µ ∈ Pr(H). Recall that µ ∈ Pr(H) is an invariant measure if it is a fixed point of P ∗t for every t ≥ 0,
that is, P ∗t µ = µ. Such a measure µ is ergodic if Pt is an ergodic map relative to µ for every t ≥ 0. In other
words PtχA = χA, µ a.e. implies µ(A) ∈ {0, 1}.

We now formulate our main result, which asserts that statistically invariant states of (2.1)–(2.2) are
unique and have strong attraction properties.

Theorem 2.3. If Z = {(1, 0), (0, 1)}, then there exists a unique invariant measure µ∗ associated to (2.14)
and for each t ≥ 0 the map Pt is ergodic relative to µ∗. Moreover there exists a constant ς∗ such that µ∗
satisfies for each ς ∈ (0, ς∗)

(i) (Mixing) There is γ = γ(ς) > 0 and C = C(ς) such that∣∣∣∣EΦ(U(t, U0))−
∫
H

Φ(Ū)dµ∗(Ū)

∣∣∣∣ ≤ C exp(−γt+ ς‖U0‖)‖Φ‖η . (2.22)

for any Φ ∈ Oς , U0 ∈ H and any t ≥ 0.
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(ii) (Weak law of large numbers) For any Φ ∈ Oς and any U0 ∈ H

lim
T→∞

1

T

∫ T

0

Φ(U(t, U0)) dt =

∫
H

Φ(Ū)dµ∗(Ū) =: mΦ, in probability . (2.23)

(iii) (Central limit theorem) For every Φ ∈ Bη and every U0 ∈ H,

lim
T→∞

P

(
1√
T

∫ T

0

(Φ(U(t, U0))−mΦ) dt < ξ

)
= X (ξ) (2.24)

for any ξ ∈ R where X is the distribution function of a normal random variable with zero mean and
variance equal to

lim
T→∞

1

T
E

(∫ T

0

(Φ(U(t, U0))−mΦ) dt

)2

.

Remark 2.4.

(i) We take Z = {(0, 1), (1, 0)} in the statement of Theorem 2.3 for simplicity and clarity of exposition
only. There are many other choices of finite Z that imply our main results. For example, our approach
applies trivially to any Z with {(0, 1), (1, 0)} ⊂ Z. More generally, using combinatorial arguments as
in [HM06] and straightforward modifications of our proofs, one can show that our results hold if the
integer linear combinations of elements in Z generate Z2, for an easily verifiable criterion see [HM06,
Remark 2.2].

(ii) The most interesting case for the study of ergodicity for the Boussinesq system, is to consider stochastic
forcing acting through the temperature equation only. Indeed, if the random stirring acts exclusively
through the momentum equation (i.e. in (2.1)), then the temperature θ, which is advected by the flow
in (2.2), decays exponentially. Thus, in this case, conditions on the configuration of the forcing and
the associated analysis is very close to [HM06]. On the other hand if the noise acts in both equations
the proof is similar to ours and in many ways easier.11 We remark that the case when the forcing is
non-degenerate (nontrivial on all Fourier modes) in both the momentum and temperature equations,
was addressed in [LW04] via coupling methods closely following the approach in [EMS01]. See also
[Fer97].

(iii) We emphasize that, when the random perturbation acts in the temperature equation only, this leads to
a different geometric criteria for the noise structure compared to [HM06]. To see this difference at a
heuristic level we write (2.1)–(2.2) in the Fourier representation:

dωk
dt

+ ν|k|2ωk +
∑

l+m=k

〈l,m⊥〉
( 1

|l|2
− 1

|m|2
)
ωlωm = −ig · kθk, (2.25)

dθk +

(
η|k|2θk −

∑
l+m=k

〈l,m⊥〉
|m|2

θlωm

)
dt = 11k∈ZdW

k. (2.26)

Observe that at first only Fourier modes of θ in Z are excited. Then, through the buoyancy term on
the right hand side of (2.25), the Fourier modes of ω in Z become excited. This is a purely formal
argument as at the same time many modes in θ become excited. If all elements of Z have the same
norm, such an excitation is not sufficient for the nonlinearity in (2.25), acting on its own, to propagate

11Indeed one observes that [[F (U), σlk], ψl
′
k′ ] ∝ B(ψl

′
k′ , σ

l
k) 6= 0, [[F (U), ψlk], ψl

′
k′ ] ∝ B(ψl

′
k′ , ψ

l
k) 6= 0 which allows us to generate

new pure directions in both the temperature and vorticity components of the phase space; compare with Figure 5.1 in Section 5
and the discussion in Section 1.3.
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the noise to higher Fourier modes.12 However, excitation in the Fourier modes of ω in Z propagates
to higher Fourier modes in θ via the nonlinearity of (2.26); here the norm restriction is clearly absent.
Thus, there is an additional mixing mechanism in the Boussinesq system compared to the Navier-Stokes
equation.

(iv) The class of functions for which the mixing condition (2.22) holds is slightly restrictive. While it does
allow for observables like individual Fourier coefficients of the solution or the total energy of solutions,
a further analysis is required to extend to Φ’s that involve pointwise spatial observations of the flow,
for example ‘structure functions’. We leave these questions for future work.

2.2 Existence and Uniqueness of Invariant Measures and the Asymptotic Smooth-
ing of the Markov Semigroup

Following [HM06] (and cf. [HM08, KW12]), we explain how the proof of Theorem 2.3 can be essentially
reduced to establishing a time asymptotic gradient estimate, (2.29), on the Markov semigroup.

By the Krylov-Bogoliubov averaging method [KB37] it is immediate to prove the existence of an invariant
measure in the present setting. Indeed, fix any U0 ∈ H, T > 0 and define the probability measures
µT ∈ Pr(H) as

µT (A) =
1

T

∫ T

0

P(U(t, U0) ∈ A)dt (A ∈ B(H)) .

From (A.9) and (A.10) it follows that

min{ν1, ν2}
1

T
E
∫ T

0

‖U‖2H1dt ≤
‖U0‖2

T
+ ‖σθ‖2. (2.27)

Thus for any R > 0 the set BH1(R) := {U ∈ H : ‖U‖H1 ≤ R} is compact in H and by the Markov inequality

µT (BH1(0, R)) =
1

T

∫ T

0

P(‖U(t, U0)‖H1 ≤ R)dt ≥ 1− 1

TR2
E
∫ T

0

‖U‖2H1dt

≥ 1− 1

R2 ·min{ν1, ν2}

(
‖U0‖2

T
+ ‖σθ‖2

)
,

and therefore {µT }T≥1 is tight, and hence weakly compact. Making use of the Feller property it then follows
that any weak limit of this sequence is an invariant measure of (2.14).13

We now turn to the question of uniqueness which in contrast to existence is highly non-trivial. The
classical theoretical foundation to our approach is the Doob-Khasminskii theorem, see [DPZ96]. While this
approach has been fruitful for a stochastic perturbations acting on all of the Fourier modes (see e.g. [DPZ96]);
it requires an instantaneous (or at least finite time) smoothing of Pt, known as the strong Feller property.14

This property is not expected to hold in the current hypo-elliptic setting.
In recent works [HM06, HM08, HM11] it has been shown that the strong Feller property can be replaced

by a much weaker notion. The following theorem from is [HM06] is the starting point for all of the work
that follows below.

Theorem 2.5 (Hairer–Mattingly [HM06]). Let {Pt}t≥0 be a Feller Markov semigroup on a Hilbert space H
and assume that the set of invariant measures I of {Pt}t≥0 is compact. Suppose that

12In fact, this structure in the nonlinearity is the reason for the additional condition that two modes of different length need
to be stochastically forced in [HM06]

13 Note that the Feller property and the bound (2.27) also show that the set of invariant measures I for (2.14) is a compact,
convex set. Since the extremal points of I are ergodic invariant measures for (2.14), we therefore infer the existence of an
ergodic invariant measure for (2.14). This also shows that if the invariant measure is unique, it is necessarily ergodic. See e.g.
[DPZ96] for further details.

14More precisely, Pt is said to be strong Feller for some t > 0 if Pt : Mb(H)→ Cb(H).
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(i) the semigroup {Pt}t≥0 is weakly irreducible namely there exists U0 ∈ H such that µ(B(ε, U0)) > 0 for
every ε > 0 and every µ ∈ Pr(H) which is invariant under P ∗t . In other words there exists a point
common to the support of every invariant measure.

(ii) There exists a non-decreasing sequence {tn}n≥0 and a sequence {δn}n≥0, with δn → 0 such that

‖∇PtnΦ(U0)‖ ≤ C (‖Φ‖∞ + δn‖∇Φ‖∞) , (2.28)

for every Φ ∈ C1
b (H) and where the constant C may depend on ‖U0‖ (but not on Φ).15

Then the collection of invariant measures I contains at most one element.

In our situation the proof of (i) is more or less standard and follows precisely as in [EM01, CGHV13].
The main difficulty is to establish the asymptotic smoothing property (ii) of Theorem 2.5. We prove the
following stronger version of (2.28), which is also useful for other parts of Theorem 2.3 the proof of the
mixing (2.22) and pathwise convergence properties (2.23), (2.24). We recall the convention in Remark 2.1.

Proposition 2.6. For every η, γ0 > 0 and every U0 ∈ H, the Markov semigroup {Pt}t≥0 defined by (2.20)
satisfies the estimate

‖∇PtΦ(U0)‖ ≤ C exp(η‖U0‖2)
(√

Pt(|Φ|2)(U0) + e−γ0t
√
Pt(‖∇Φ‖2)(U0)

)
, (2.29)

for every t ≥ 0 and Φ ∈ C1
b (H), where C = C(η, γ0) is independent of t and Φ.

With Proposition 2.6 the uniqueness of the invariant measure follows immediately from Theorem 2.5.
With slightly more work we can also use (2.29) to establish the attraction properties (i)–(iii) in Theorem 2.3.
Since this mainly requires the introduction of some further abstract machinery from [HM08, KW12] we
postpone the rest of the proof of Theorem 2.3 to final part of Section 7.

3 Gradient Estimates for the Markov Semigroup

In this section we explain how the estimate on ∇PtΦ in (2.29) can be translated to a control problem
through the Malliavin integration by parts formula. This lead us to study the so called Malliavin covariance
matrix M, which links the existence of a desirable control to the properties of successive Hörmander-type
Lie brackets of vector fields (on H) associated to (2.14). Suitable spectral bounds for M are given in
Proposition 3.4 and we conclude this section by explaining how these bounds can be used in conjunction
with a control built around M to complete the proof of Proposition 2.6.

The involved proof of Proposition 3.4 is delayed for Sections 4, 5, 6 below. As we already noted in the
introduction, although the statement of Proposition 3.4 looks similar to corresponding results in [MP06,
HM06, BM07, HM11], the proof is significantly different due to the particular nonlinear structure of (2.1)–
(2.2). As such Proposition 3.4 constitutes the main mathematical novelty of this work.

3.1 Deriving the Control Problem

Let U = U(·, U0) be the solution of (2.14) and assume the convention from Remark 2.1 where we let
d := 2 · |Z|. Then for any Φ ∈ C1

b (H), ξ ∈ H we have16

∇PtΦ(U0) · ξ = E(∇Φ(U(t, U0)) · J0,tξ), t ≥ 0 , (3.1)

15 Actually, the ‘gradient estimate’ (2.28) is a sufficient condition for a more general notion of infinite time smoothing referred
to as the asymptotically strong Feller property. A precise topological definition using the Kantorovich-Wasserstein distance can
be found in [HM06].

16For differentiability of U0 7→ U(t, U0) see Proposition 2.2 and [HM11, Section 3.3]
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where for 0 ≤ s ≤ t, Js,tξ denotes the unique solution of

∂tρ+Aρ+∇B(U)ρ = Gρ, ρ(s) = ξ, (3.2)

and ∇B(U)ρ := B(U, ρ) +B(ρ, U).
The crucial step in establishing (2.29) is to ‘approximately remove’ the gradient from Φ in (3.1). As

such we seek to (approximately) identify J0,tξ with a Malliavin derivative of some suitable random process
and integrate by parts, in the Malliavin sense. In Appendix A.2 we recall some elements of this calculus
which are used throughout this section. For an extended treatment of the Malliavin theory we refer to e.g.
[Bel87, Mal97, Nua09, Nua06].

Recall, that in our situation the Malliavin derivative, D : L2(Ω, H)→ L2(Ω;L2(0, t;Rd)⊗H) satisfies

〈DU, v〉L2([0,T ],Rd) = lim
ε→0

1

ε

(
U
(
T,U0,W + ε

·
∫
0
vds
)
− U(T,U0,W )

)
.

We may infer that for v ∈ L2(Ω;L2([0, T ];Rd)) one has (cf. [HM11])

〈DU, v〉L2([0,T ],Rd) =

∫ T

0

Js,Tσθv(s) ds , (3.3)

and hence, by the Riesz representation theorem,

Dj
sU(T ) = Js,Tσθej for any s ≤ T, j = 1, . . . d, (3.4)

where the linearization Jr,tξ is the solution of (3.2), σθ is given by (2.12), and {ej}j=1,...,d is the standard
basis of Rd.17 Here and below, we adopt the standard notation Dj

sF := (DF )j(s), that is, Dj
sF is the jth

component of DF evaluated at time s.
Motivated by (3.3), we define the random operator As,t : L2([s, t];Rd)→ H by

As,tv :=

∫ t

s

Jr,tσθv(r)dr. (3.5)

Notice that, by the Duhamel formula, for any 0 ≤ s < t the function ρ(t) := As,tv satisfies

∂tρ+Aρ+∇B(U)ρ = Gρ+ σθv, ρ(s) = 0 .

With these preliminaries we now continue the computation started in (3.1). Using the Malliavin chain
rule and integration by parts formula, as recalled in (A.31), (A.34), we infer that for any t ≥ 0 and any
suitable (Skorokhod integrable) v ∈ L2(Ω× [0, t],Rd)18

∇PtΦ(U0) · ξ = E(∇Φ(U) · (A0,tv + J0,tξ −A0,tv))

= E(∇Φ(U) · 〈DU, v〉) + E(∇Φ(U) · (J0,tξ −A0,tv))

= E(〈DΦ(U), v〉L2([0,t],Rd)) + E(∇Φ(U) · (J0,tξ −A0,tv))

= E
(

Φ(U)

∫ t

0

v · dW
)

+ E(∇Φ(U) · (J0,tξ −A0,tv)), (3.6)

17Using the Malliavin chain rule and (A.30) we apply D to (2.14) and observe, at least formally that

DjsU(T ) +

∫ T

s

(
ADjsU(r) +∇B(U(r))DjsU(r)−GDjsU(r)

)
dr = σθej ,

for s < T and j = 1, . . . , d.
18Note that for non-adapted v,

∫ t
0 v ·dW in (3.6) is understood as a stochastic integral in a generalized sense; see Appendix A.2

below or e.g. [Nua06] for further details.
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where for brevity we have denoted U = U(t, U0). Observe that ρ(t) := J0,tξ −A0,tv satisfies:

∂tρ+Aρ+∇B(U)ρ = Gρ− σθv, ρ(0) = ξ. (3.7)

Directly from (3.6) we obtain (recalling the notation (2.20))

|∇PtΦ(U0) · ξ| ≤

(
E
∣∣∣∣∫ t

0

v · dW
∣∣∣∣2
)1/2√

Pt|Φ|2(U0) +
(
E‖ρ(t, ξ, v)‖2

)1/2√
Pt‖∇Φ‖2(U0),

for any t ≥ 0 and ξ ∈ H. As such, (2.29) has been translated to the following control problem: For
each γ0, η > 0 and each unit length element ξ ∈ H, find a (locally Skorokhod integrable) v = v(ξ) ∈
L2(Ω;L2

loc([0,∞),Rd)) such that

sup
‖ξ‖=1

E‖ρ(t, ξ, v)‖2 ≤ Ce−γ0t exp(η‖U0‖2) (3.8)

and

sup
‖ξ‖=1,t≥0

E
∣∣∣∣∫ t

0

v · dW
∣∣∣∣2 ≤ C exp(η‖U0‖2) , (3.9)

where C = C(γ0, η) is independent of t.

3.2 Choosing the Control

In the case when sufficiently many directions in Fourier space are forced or if ν1, ν2 are sufficiently large, we
can choose the control v in (3.7) from the use of determining modes. See [FP67] or more recently [FMRT01].
Specifically, we might choose σθv = λPNρ in (3.7), where PN is the projection onto the subspace HN defined
in (2.8) and λ > 0 is a sufficiently large constant. The construction of such a control relies on the assumption
that all of the modes with wave-numbers less N are directly forced, that is, they are in the range of σθ.
We remark, moreover, that N is a function of ν1, ν2 > 0 and it diverges to infinity as ν1 and ν2 approach
zero. The idea of using determining modes in the context of the ergodic theory of mathematical fluids
equations (and other nonlinear SPDEs) has played a central role in a number of recent works. See e.g.
[Mat02, Mat03, HM06, KS12, CGHV13].

If the range of σθ is not sufficiently large, we are hindered by the fact that we cannot ‘directly control’
all the low (unstable) modes that are not dissipated by the diffusion. A different approach inspired by the
finite dimensional case (cf. [Hai11]) would be to try to find an exact control. To achieve this we would seek
for each ξ ∈ H a corresponding v such J0,tξ = A0,tv. With the ansatz that v has the form v = A∗0,tη for
some η ∈ H (where A∗0,t the adjoint of A0,t defined below in (3.11)) we could choose the control

v := A∗0,t(A0,tA∗0,t)−1J0,tξ. (3.10)

The object M0,t := A0,tA∗0,t, referred to as the Malliavin covariance matrix, plays an important role in the
theory of stochastic analysis. If one can establish the invertibility ofM0,t one finds an exact control in (3.7)
and with suitable bounds on v one shows that the Markov semigroup is smoothing in finite time (i.e. it is
strongly Feller).

Sufficient conditions for the invertibility of the Malliavin matrix are well understood for finite dimensional
problems. However, this invertibility is much harder to deduce in infinite dimensions and may not hold in
general.19 Instead, following the insights in [HM06], we now combine the strategy identified in (3.10) with
the use of determining modes [FP67], and use a Tikhonov regularization of the Malliavin matrix to construct
a control v, and corresponding ρ, which satisfy (3.8)–(3.9).

19Although M0,t is a linear, non-negative definite, self adjoint operator on a Hilbert space, which can be shown to be non-
degenerate it is difficult to quantify the range of M0,t, or equivalently we are unable to characterize the domain of (M0,t)−1.
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To make this more precise we first define several random operators. For any s < t, let A∗s,t : H →
L2([s, t];Rd) be the adjoint of As,t defined in (3.5). We observe that

(A∗s,tξ)(r) = σ∗θJ ∗r,tξ =: σ∗θKr,tξ for any ξ ∈ H, r ∈ [s, t], (3.11)

where σ∗θ : H → Rd is the adjoint of σθ defined in (2.12). Here, for s < t, Ks,tξ = J ∗s,tξ is the solution of the
‘backward’ system (see [HM11])

∂sρ
∗ = Aρ∗ + (∇B(U(s)))∗ρ∗ −G∗ρ∗ = −(∇F (U))∗ρ∗, ρ∗(t) = ξ . (3.12)

We then define the Malliavin Matrix

Ms,t := As,tA∗s,t : H → H. (3.13)

We now build the control v and derive the associated ρ in (3.7) using the following iterative construction.
Denote by vs,t the control v restricted to the time interval [s, t] and let ρn := ρ(n). Observe that ρ0 = ξ ∈ H
by definition. For each even non-negative integer n ∈ 2N, having determined ρn and v0,n, we set

vn,n+1(r) = (A∗n,n+1(Mn,n+1 + Iβ)−1Jn,n+1ρn)(r), vn+1,n+2(r) = 0 , (3.14)

for r ∈ [n, n+ 2]. If we denote

Rβn,n+1 := β(Mn,n+1 + Iβ)−1 ,

then using (3.7) we determine ρn+2 according to

ρn+2 := Jn+1,n+2ρn+1

= Jn+1,n+2(An,n+1A∗n,n+1(Mn,n+1 + Iβ)−1Jn,n+1 + Jn,n+1)ρn

= Jn+1,n+2Rβn,n+1Jn,n+1ρn. (3.15)

3.3 Spectral Properties of M and Decay

Having defined the control v, and the associated error ρ, by (3.14) and (3.15) respectively, we now state and
prove (modulo a spectral bound on Mn,n+1, Proposition 3.4) the key decay estimate on ρ. This estimate is
used in Section 3.4 to complete the proof of Proposition 2.6.

Lemma 3.1. For any $, δ > 0, there exists β = β($, δ) > 0 which determines ρ in (3.15) so that for every
even n ≥ 0,

E(‖ρn+2‖8|Fn) ≤ δ exp($‖U(n)‖2)‖ρn‖8. (3.16)

Moreover, we have the block adapted structure

ρ(t), v(t) are Fϑ(t) measurable (3.17)

where ϑ : R+ → R+

ϑ(t) :=

{
dte when dte is odd,

t when dte is even,
(3.18)

and dte is the smallest integer greater than or equal to t.

Remark 3.2. We choose the exponent 8 as it is sufficient for the estimates on v; similar estimates are valid
for any power greater or equal to two.
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To prove Lemma 3.1, we show that the control v, when it is active, is effective in pushing energy into
small scales where it is dissipated by diffusion. To make this precise recall the definition of PN , QN , and HN

from (2.9) and (2.8). Fix N = N(δ,$) specified below and for n ∈ 2N split ρn+2 = ρLn+2 + ρHn+2, defining

ρHn+2 := Jn+1,n+2QNRβn,n+1Jn,n+1ρn, (3.19)

ρLn+2 := Jn+1,n+2PNRβn,n+1Jn,n+1ρn. (3.20)

While for large N estimates for ρHn+2 essentially make use of the parabolic character of (3.2), establishing

suitable bounds on ρLn+2 requires a detailed understanding of the operator Rβn,n+1. We need to show, for

sufficiently small β, that Rβn,n+1 indeed pushes energy into small scales, that is, ‖PNRβn,n+1‖ is small. The
following lemma from [HM11, Lemma 5.14], shows that this in turn follows from uniform positivity ofMn,n+1

on a cone around HN .

Lemma 3.3. Suppose that M is a positive, self-adjoint linear operator on a separable Hilbert space H.
Suppose that for some α, ε > 0 and N ∈ N we have that

inf
φ∈Sα,N

〈Mφ, φ〉
‖φ‖2

≥ ε, (3.21)

where

Sα,N :=
{
φ ∈ H : ‖PNφ‖2 ≥ α‖φ‖2

}
. (3.22)

Then, for any β > 0,

‖PNβ(M+ Iβ)−1‖ ≤ α ∨
√
β/ε.

The next proposition shows that (3.21) holds true forMn,n+1 on a large subset of the probability space.

Proposition 3.4. Let Mn,n+1 be as in (3.13), relative to U solving (2.14). For any N ≥ 1, α ∈ (0, 1], and
η > 0 there exists a positive constant ε∗ = ε∗(α, η,N) > 0, such that, for any n ≥ 0, and any 0 < ε ≤ ε∗

P
(

inf
φ∈Sα,N

〈Mn,n+1φ, φ〉
‖φ‖2

< ε|Fn
)
≥ r(ε) exp(η‖U(n)‖2), (3.23)

where Sα,N is defined by (3.22) and r = r(α,N, η) : (0, ε∗] → (0,∞) is a non-negative, decreasing function
with r(ε)→ 0 as ε→ 0. We emphasize that r is independent of n.

Proposition 3.4 is a direct consequence of the Markov property and Theorem 4.1 below. While similar
results have appeared in previous works, the proof required us to develop a novel approach due to the
particular nonlinear structure in (2.1)–(2.2).

We are now prepared to prove Lemma 3.1.

Proof of Lemma 3.1. We use the splitting ρn+2 = ρHn+2+ρLn+2 from (3.19), (3.20). The constant N appearing
in the definition of this splitting is fixed in the estimate on ρHn+2 which we address first.

By the positive definiteness ofMn,n+1, it follows that ‖Rβn,n+1‖ ≤ 1 almost surely, for any β > 0. Then,
as ρn is Fn-measurable, from (A.13), (A.17), and (A.2) we infer

E(‖ρHn+2‖8|Fn) ≤‖ρn‖8 · E
(
E(‖Jn+1,n+2QN‖8|Fn+1) · ‖Jn,n+1‖8|Fn

)
≤ δ

28
exp($‖U(n)‖2)‖ρn‖8 , (3.24)

for appropriate N = N($, δ). Fix such an N in (3.19), (3.20). Note that the bound (3.24) holds indepen-
dently of the value of β appearing in (3.14).
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Next, we estimate ρLn+2. By (A.13), we infer

E(‖ρLn+2‖8|Fn) ≤‖ρn‖8 ·
(
E(‖Jn+1,n+2‖24|Fn)

)1/3 (E(‖PNRβn,n+1‖24|Fn)
)1/3 (

E(‖Jn,n+1‖24|Fn)
)1/3

≤C∗‖ρn‖8 exp($/2‖U(n)‖2)
(
E(‖PNRβn,n+1‖24|Fn)

)1/3

, (3.25)

where C∗ = C∗($). For N fixed by (3.24) and for any ε, α > 0, and n ∈ 2N consider the set

Ωnε,α,N :=

{
inf

φ∈Sα,N

〈Mn,n+1φ, φ〉
‖φ‖2

≥ ε
}
,

where Sα,N is defined in (3.22). Using Lemma 3.3, Proposition 3.4 with η replaced by 3$/2, and ‖Rβn,n+1‖ ≤
1 we have

E
(
‖PNRβn,n+1‖24|Fn

)
=E

(
‖PNRβn,n+1‖2411Ωnε,α,N

|Fn
)

+ E
(
‖PNRβn,n+1‖2411(Ωnε,α,N )c |Fn

)
≤
(
α ∨

√
β/ε
)24

+ P
(
(Ωnε,α,N )c|Fn

)
≤
((

α ∨
√
β/ε
)24

+ r(ε)

)
exp(3$/2 · ‖U(n)‖2) , (3.26)

which holds for any α ∈ (0, 1], β > 0, and any ε < ε∗(α,$,N) = ε∗(α,$, δ), and where the function r is
given by (3.23).

Next, we choose α, β, ε > 0, such that ε < ε∗(α,$,N), and so that((
α ∨

√
β/ε
)24

+ r(ε)

)1/3

≤ δ

28C∗
, (3.27)

where C∗ is the constant from (3.25). First choose a sufficiently small α = α($, δ) > 0. This choice of α
fixes ε∗ = ε∗(α,$, δ) = ε∗($, δ) > 0. We then choose a sufficiently small ε < ε∗, ε = ε($, δ) to control the
r(ε) term. Finally, based on this choice of ε, we determine β = β($, δ) > 0. Thus we infer that

E(‖ρLn+2‖8|Fn) ≤ δ

28
exp($‖U(n)‖2)‖ρn‖8 .

Combining this bound with (3.24) and ‖ρn+2‖8 ≤ 27(‖ρHn+2‖8 + ‖ρLn+2‖8) establishes (3.16).
Pursuing the definitions of ρ and v through (3.14), (3.15) the block adapted structure in (3.17) clearly

follows by induction and the definitions of the operators Jn,n+1, An,n+1, A∗n,n+1. The proof of Lemma 3.1
is thus complete.

3.4 Proof of Proposition 2.6

This final section is devoted to the proof of Proposition 2.6 following the strategy identified in Sections 3.1–
3.2: using the machinery of Malliavin calculus the desired estimate on the Markov semigroup (2.29) has been
translated to the control problem (3.8), (3.9), where ρ is a solution of (3.7) with v defined by (3.14). Then,
in Section 3.3, we derived a one time step decay estimate on ρ from Lemma 3.1 which we now use as follows.

Proof of Proposition 2.6. Fix any η, γ0 > 0 and any ρ(0) = ξ ∈ H with ‖ξ‖ = 1. We successively demonstrate
(3.8), (3.9) for v and ρ determined by (3.7), (3.14) and (3.15).

First we prove (3.8), using Lemma 3.1. Define Ψ : R2 → R according to

Ψ(x, y) =

{
x/y for y 6= 0,

0 for y = 0.
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By (3.17), ρn is Fn measurable, and therefore with (3.16) we infer

E
(
Ψ(‖ρn+2‖, ‖ρn‖)8 exp(−$‖U(n)‖2)|Fn

)
= 11‖ρn‖>0

E (‖ρn+2‖|Fn)

‖ρn‖8 exp($‖U(n)‖2)
≤ δ, (3.28)

for every $, δ > 0, and each n ∈ 2N. For any k ≥ 0, let

Xk := Ψ(‖ρ2k+2‖, ‖ρ2k‖)4 exp(−$/2 · ‖U(2k)‖2) , Yk := exp($/2 · ‖U(2k)‖2) .

Repeated use of conditional expectation with (3.28) implies

E

(
n∏
k=0

X2
k

)
=E

(
E

(
n∏
k=0

X2
k |F2n

))
= E

(
n−1∏
k=0

X2
kE
(
X2
n|F2n

))

≤δE

(
n−1∏
k=0

X2
k

)
≤ · · · ≤ δn .

On the other hand, noting that for each n ∈ N, 11‖ρn‖=0ρ(t) = 0 for any t ≥ n and that ‖ρ0‖ = 1 we have

n∏
k=0

XkYk = ‖ρ2n+2‖4
n∏
k=1

11‖ρ2k‖>0 = ‖ρ2n+2‖4.

Consequently, if $ ≤ η∗ (see Lemma A.1), Hölder’s inequality and (A.4) yield

E(‖ρ2n+2‖4) ≤

(
E

n∏
k=0

X2
k

)1/2(
E

n∏
k=0

Y 2
k

)1/2

≤ δn/2
(
E exp

(
$

2n∑
k=0

‖U(k)‖2
))1/2

≤δn/2 exp
(%$

2
‖U0‖2

)
exp(κn) ,

where % and κ are the constants appearing in (A.4). Setting δ := exp(−4(κ + γ0)), $ := min{η∗, 2η/ρ},
β = β(η, γ0) as in Lemma 3.1, we obtain that for each integer n

E(‖ρ2n‖4) ≤ C exp
(
η‖U0‖2 − 2nγ0

)
. (3.29)

In particular we infer (3.8) for t = 2n.
Next, observe that, for each n ∈ N,

ρ(t) =

{
J2n,tρ2n −A2n,tv2n,t for t ∈ [2n, 2n+ 1),

J2n+1,tρ2n+1 for t ∈ [2n+ 1, 2n+ 2].

By (3.14) and (A.19)–(A.21), for any t ∈ [2n, 2n+ 2]

‖v2n,t‖L2([2n,t];Rd) ≤ ‖v2n,2n+1‖L2([2n,2n+1];Rd) ≤ β−1/2‖J2n,2n+1‖‖ρ2n‖ , (3.30)

and consequently for any t ∈ [2n, 2n+ 1)

‖ρ(t)‖ ≤ ‖J2n,tρ2n‖+ ‖A2n,tv2n,t‖ ≤ ‖J2n,tρ2n‖+ ‖A2n,t‖L(L2([2n,t];Rd),H)‖v2n,2n+1‖L2([2n,2n+1];Rd)

≤ Cβ−1/2

(
1 + sup

s∈[2n,t]

‖Js,t‖2
)
‖ρ2n‖,

and for any t ∈ [2n+ 1, 2n+ 2]

‖ρ(t)‖ ≤ sup
s∈[2n+1,t]

‖Js,t‖‖ρ2n+1‖.
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Combining these observations, with (A.13) and (3.29) the desired estimate (3.8) now follows.20

We turn next to the proof of (3.9). Although v is not adapted, it follows from Lemma A.7 and (3.14)
that v0,N ∈ D1,2(L2([0, N ];Rd)) for any N > 0, and we may thus use the generalized Itō isometry, (A.35).
By (3.17), v(t) is Fϑ(t) measurable, where ϑ is defined in (3.18), and consequently by (A.30), Dsv(r) = 0 if
s > ϑ(r). Thus

E

(∫ 2N

0

v · dW

)2

= E
∫ 2N

0

|v(s)|2Rdds+ E
∫ 2N

0

∫ 2N

0

χs≤ϑ(r)χr≤ϑ(s)Tr(Dsv(r)Drv(s))dsdr.

≤
N−1∑
n=0

(
E
∫ 2n+1

2n

|v2n,2n+1(s)|2Rdds+ E
∫ 2n+1

2n

∫ 2n+1

2n

|Dsv2n,2n+1(r)|2Rd×ddsdr
)
. (3.31)

For the first term in (3.31), we make use of (3.30)

N−1∑
n=0

E
∫ 2n+1

2n

|v2n,2n+1(s)|2Rdds ≤ β
−1/2

N−1∑
n=0

(
E‖J2n,2n+1‖4 · E‖ρ2n‖4

)1/2 ≤ C exp(η‖U0‖2) (3.32)

for a constant C = C(η, γ0) independent of N .
To bound the second term in (3.31), we compute an explicit expression for Dsv. By Lemma A.7, each

of J2n,2n+1, A2n,2n+1, A∗2n,2n+1, M2n,2n+1 + βI, and (M2n,2n+1 + βI)−1 are differentiable in the Malliavin
sense and lie in the space D1,p for any p > 1 (see (A.29)). It thus follows from (3.15) that ρ2n ∈ D1,p for any
p > 1 and any n. Moreover, recalling that by (3.17), ρ2n is F2n measurable, (A.30) implies that Dsρ2n = 0
for any s ≥ 2n. Then by the Malliavin product rule (see e.g. [PV, Lemma 3.6]) we compute

Dj
sv2n,2n+1 = A∗2n,2n+1(M2n,2n+1 + Iβ)−1(Dj

sJ2n,2n+1)ρ2n +A∗2n,2n+1(Dj
s(M2n,2n+1 + Iβ)−1)J2n,2n+1ρ2n

+ (Dj
sA∗2n,2n+1)(M2n,2n+1 + Iβ)−1J2n,2n+1ρ2n (3.33)

for any j ∈ {1, . . . , d} and s ∈ [2n, 2n + 1]. Moreover, after differentiating the identity (M2n,2n+1 +
Iβ)−1(M2n,2n+1 + Iβ) = I and recalling that M2n,2n+1 = A2n,2n+1A∗2n,2n+1 we obtain

Dj
s(M2n,2n+1 + Iβ)−1 =

(M2n,2n+1 + Iβ)−1((Dj
sA2n,2n+1)A∗2n,2n+1 +A2n,2n+1(Dj

sA∗2n,2n+1))(M2n,2n+1 + Iβ)−1 . (3.34)

By (3.33), (3.34), and the bounds (A.19)–(A.21), one has for each s ∈ [2n, 2n+ 1]

‖Dj
sv2n,2n+1‖L2([2n,2n+1];Rd)

≤β−1/2‖Dj
sJ2n,2n+1‖‖ρ2n‖+ β−1‖Dj

sA2n,2n+1‖L(L2([2n,2n+1],Rd),H)‖J2n,2n+1‖‖ρ2n‖
+ 2β−1‖Dj

sA∗2n,2n+1‖L(H,L2([2n,2n+1],Rd))‖J2n,2n+1‖‖ρ2n‖ . (3.35)

Finally, we use (3.35), (A.23)–(A.25), (A.13), and (3.29) to conclude

E
N−1∑
n=0

∫ 2n+1

2n

∫ 2n+1

2n

|Dsvn,n+2(r)|2Rd×ddsdr = E
N−1∑
n=0

d∑
j=0

∫ 2n+1

2n

‖Dj
sv2n,2n+1‖L2([2n,2n+1];Rd)ds

≤ Cβ−2 exp(η/2‖U0‖2)

∞∑
n=0

[E‖ρ2n‖4]1/2

≤ Cβ−2 exp(η‖U0‖2) , (3.36)

where C = C(η, γ0). Combining (3.36), (3.32) with (3.31) we now infer (3.9), completing the proof of
Proposition 2.6.

20Note that the constant we obtain for (3.8) grows as β−1/2. This is inconsequential as we obtain a β−2 dependence in the
constant for (3.9) below; see (3.36).



Ergodic and Mixing Properties of the Boussinesq Equations with a Degenerate Random Forcing 21

4 Spectral Bounds for the Malliavin Covariance Matrix

In this section we present the main technical result of this work, Theorem 4.1, which yields a probabilistic
spectral bound on the Malliavin matrix M0,T (see (3.13)). Recall that in Section 2 we established the
uniqueness of the invariant measure associated to (2.1)–(2.2) assuming a gradient estimate on the Markov
semigroup, (2.29). Then, in Section 3, we established this gradient estimate (2.29) modulo Proposition 3.4,
which is a corollary to Theorem 4.1. Hence, we have reduced the proof of the uniqueness in Theorem 2.3 to
the proof of Theorem 4.1.

Theorem 4.1. Let U0 ∈ H and define M0,T according to (3.13), relative to U(·) = U(·, U0) solving (2.14).
Fix any α ∈ (0, 1], N ≥ 1, and η > 0. Then, there exists ε∗ := ε∗(T, α, η,N) > 0 such that for any 0 < ε < ε∗,
there is a measurable set Ωε = Ωε(α,N) ⊂ Ω satisfying

P(Ωcε) ≤ r(ε) exp(η‖U0‖2) ,

where r = r(T, α, η,N) is a nonnegative decreasing function such that r(ε)→ 0 as ε→ 0. On this set Ωε

inf
φ∈Sα,N

〈M0,Tφ, φ〉
‖φ‖2

≥ ε ,

where Sα,N = {φ ∈ H : ‖PNφ‖2 > α‖φ‖2}. In particular,

P
(

inf
φ∈Sα,N

〈M0,Tφ, φ〉
‖φ‖2

≥ ε
)
≥ 1− r(ε) exp(η‖U0‖2). (4.1)

Remark 4.2.

(i) An explicit form for r(ε) is given in (4.12) below. While the decay rate in r(ε) as ε→ 0 is much slower
than in previous works, as observed in Section 3, it is sufficient for the proof of Proposition 2.6.

(ii) Using the Markov property in the general form found in e.g. [DPZ92, Theorem 9.12], Theorem 4.1
immediately implies Proposition 3.4.

(iii) Note that it is not enough to replace Sα,N by HN ⊂ Sα,N in Theorem 4.1, as we made use of (4.1) for
small α > 0 in the proof of Lemma 3.1; see e.g. (3.26), (3.27) above.

Broadly speaking, the proof of Theorem 4.1 involves an ‘iterative proof by contradiction’ following a
strategy apparent even in e.g. [Nor86].21 We show that, on sets of large probability, if the Malliavin matrix
M0,T has a small eigenvalue, then a certain quadratic form Q associated to (2.14) is small when evaluated at
the corresponding eigenfunction. We then show thatQ has a suitable lower bound on Sα,N . This lower bound
may be seen as an infinite-dimensional analogue of the Hörmander bracket condition [H6̈7]. By combining
these upper and lower bounds we conclude that, with large probability, Sα,N cannot contain eigenfunctions
of M0,T corresponding to small eigenvalues.

We refer to proof of Theorem 4.1 as ‘iterative’ because the bounds on Q are obtained by an inductive
argument which yields a chain of quantitative bounds on certain functionals associated to Hörmander type Lie
brackets. Although, we make significant use of a methodology recently developed in [MP06, BM07, HM11]
to carry out this process in infinite dimensions, new and interesting difficulties emerge in our situation which
reflect the interaction between the nonlinear structure of (2.1)–(2.2) and our choice of stochastic forcing (see
Remark 2.4 above). Firstly, with the stochastic forcing in the temperature equation only, it is non-trivial to
determine a sequence of suitable (Hörmander type) Lie brackets associated to (2.14); a completely different

21In [Nor86] as in [Mal78] the goal is to provide a probabilistic proof of Hörmander’s hypoellipticity theorem [H6̈7]. These
works link Hörmander’s bracket condition (associated to a hypo-elliptic evolution equation) to the invertibility of the Malliavin
covariance matrix. In addition to [Nor86] we refer the interested reader to e.g. [Nua06, Hai11] for further details on the
probabilistic approach to hypoellipticity.



22 J. Földes, N. Glatt-Holtz, G. Richards, E. Thomann

methodology must be developed for (2.14) compared to the one used for the stochastic Navier-Stokes equation
in [EM01, Rom04, HM06]. Secondly, the vector fields we obtain are U dependent. This situation forces us to
use an infinite-dimensional analogue of the Hörmander bracket condition, which is weaker than the condition
appearing in previous works.

The rest of this section is devoted to proof of Theorem 4.1 based on the lower and upper bounds on forms
Q associated to Hörmander type brackets involving (2.14). The lower and upper bounds are given below as
Propositions 4.3 and 4.4, respectively. The detailed computations of the Hörmander brackets are postponed
for Sections 5.

4.1 Quadratic Forms; Upper and Lower Bounds

Before precisely stating the lower and upper bounds, we briefly recall the origin of the quadratic forms found
in these propositions. As explained in the introduction, the ‘admissible Hörmander brackets’ are elements
in the sets

Vm := span
{

[E,F ], [E, σjk], E : k ∈ Z, j = {0, 1}, E ∈ Vm−1

}
(4.2)

starting from V0 = span{σjk : k ∈ Z, j = {0, 1}}, where we recall that the Lie brackets are given by

[E1, E2] := ∇E2 · E1 −∇E1 · E2. We show in Section 5, that for each N < Ñ there exists M = M(Ñ) such
that the set

BN,Ñ (U) := {σmj , ψmj + J Ñj,m(U) : m ∈ {0, 1}, j ∈ Z2
+, |j| ≤ N} (4.3)

is contained in VM . Here, recall that σmj and ψmj are basis elements for H defined in (2.6), (2.7) above. The

elements J Ñj,m(U) are U dependent ‘error’ terms, which reside in HÑ := QÑH (see (2.9)) and satisfy the
bound (5.26); the explicit form for these terms is given in (5.23), (5.25) below.

The upshot is that for any (finite) M we are only able to identify U -dependent subsets of VM . Hence, we
need to introduce a new form of the Hörmander described above in (1.9) (in more general terms) satisfied
by

〈QN,Ñ (U)φ, φ〉 :=
∑

b̃∈BN,Ñ (U)

|〈φ, b̃(U)〉|2 (4.4)

for any Ñ > N . We are ready to state the lower bound on QN,Ñ .

Proposition 4.3. Fix any any integers N ≤ Ñ and define BN,Ñ by (4.3). Then, for any U ∈ H2 and any
α ∈ (0, 1] it holds that

〈QN,Ñ (U)φ, φ〉 ≥
(
α

2
− C∗N

8

Ñ
(1 + ‖U‖2H2)

)
‖φ‖2 (4.5)

for every φ ∈ Sα,N = {φ ∈ H : ‖PNφ‖2 > α‖φ‖2}, where C∗ is a universal constant (see Remark 2.1).

Proof. Since {σmj , ψmj }m∈{0,1},|j|≤N form an orthonormal basis of HN = PNH, we obtain for any φ ∈ Sα,N∑
b̃∈BN,Ñ (U)

|〈φ, b̃(U)〉|2 =
∑
|j|≤N
m∈{0,1}

|〈φ, σmj 〉|2 + |〈φ, ψmj + J Ñj,m(U)〉|2

= ‖PNφ‖2 +
∑
|j|≤N
m∈{0,1}

(
2〈φ, ψmj 〉〈φ, J Ñj,m(U)〉+ 〈φ, J Ñj,m(U)〉2

)

≥ 1

2
‖PNφ‖2 −

∑
|j|≤N
m∈{0,1}

〈φ, J Ñj,m(U)〉2 ≥ α

2
‖φ‖2 − ‖φ‖2

∑
|j|≤N
m∈{0,1}

‖J Ñj,m(U)‖2 .
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Now observe that (5.26) with s = 1 yields

‖J Ñj,m(U)‖2 ≤ CN
8

Ñ
(1 + ‖U‖2H2)

and the desired bound, (4.5) follows.

Next we will state the ‘upper bound’ on QN,Ñ , whose proof is long and technical and is postponed to
Section 4. It links the chain of Lie brackets presented in Section 5 (and summarized in Figure 5.1) to
quantitative estimates on QN,Ñ .

Proposition 4.4. Fix T > 0. There are positive constants qi = qi(T ) > 0, i = 0, . . . 5 such that the following
holds. Fix any η > 0, any integer Ñ > 0 and define

E(Ñ) := min

q0,

(
q1

Ñ

)qÑ2  . (4.6)

Then for every ε ∈ (0, E(Ñ)) there is a set Ω∗
ε,Ñ

and a constant C = C(η, T ) such that

P((Ω∗
ε,Ñ

)c) ≤ CÑq3 exp(η‖U0‖2)εq
Ñ
4 (4.7)

and on Ω∗
ε,Ñ

one has (cf. (4.4))

〈M0,Tφ, φ〉 ≤ ε‖φ‖2 ⇒ 〈QN,Ñ (U(T ))φ, φ〉 ≤ εq
Ñ
5 ‖φ‖2 . (4.8)

which is valid for N < Ñ and any φ ∈ H.

Remark 4.5. We may suppose without loss of generality that

q2 > 1, q3 > 1, and q4 < 1.

4.2 Proof of Theorem 4.1

Before turning to precise details, let us outline the proof of Theorem 4.1 using Propositions 4.3, 4.4. Observe
that, on Ω∗

ε,Ñ
given in Proposition 4.4, we can combine (4.5), (4.8) to infer

〈M0,Tφ, φ〉 ≤ ε‖φ‖2 ⇒ εq
Ñ
5 ‖φ‖2 ≥

(
α

2
− C∗N

8

Ñ
(1 + ‖U(T )‖2H2)

)
‖φ‖2, (4.9)

for any φ ∈ Sα,N and for any ε < E(Ñ). If ‖U(T )‖2H2 was bounded above by a deterministic constant,

then we would prove Theorem 4.1 by taking Ωε = Ω?
ε,Ñ

with Ñ = Ñ(α,N) sufficiently large such that the

conclusion of (4.9) produces a contradiction for ε sufficiently small. Of course, since the U appearing in
(4.9) is a solution to (2.14), such an upper bound is not be to expected. Instead, we make a modification of
Ω∗
ε,Ñ

by intersecting with sets Ωε,U,h that quantify ‖U(T )‖H2 in terms of a function h = h(ε), which grows

unboundedly as ε → 0. Returning to (4.9), Ñ now depends on ε through h. As such, care is needed in the
choice of h to avoid a possibly circular argument.

Proof of Theorem 4.1. For each ε ∈ (0, 1/e), let

h(ε) := log(log(log(ε−1))), Ñ(ε) :=

⌈
4C∗N8h(ε)

α

⌉
, (4.10)
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where dxe denotes the smallest integer larger or equal to x and C∗ is the constant from (4.5). Then

α

2
− C∗ N

8

Ñ(ε)
h(ε) ≥ α

4
. (4.11)

Observe that, with these definitions, there exists ε∗1 > 0 such that ε < E(Ñ(ε)) whenever ε < ε∗1, where E is
defined by (4.6).22 For ε < ε∗1, Ω∗

ε,Ñ(ε)
(see Proposition 4.4) is well defined and we set

Ωε := Ω̂ε,U,h ∩ Ω∗
ε,Ñ(ε)

,

where

Ω̂ε,U,h := {1 + ‖U(T )‖2H2 ≤ h(ε)} .

We now show that on the sets Ωε we obtain the desired conclusion (4.1). First observe that by (4.7), the
Markov inequality, and (A.5), there is C = C(η, T ) such that

P(Ωcε) ≤ P(Ω̂cε,U,h) + P((Ω∗
ε,Ñ(ε)

)c) ≤ C
(

1

h(ε)
+ (Ñ(ε))q3εq

Ñ
4

)
exp(η‖U0‖2) =: r(ε) exp(η‖U0‖2) (4.12)

whenever ε < ε∗1. The later quantity r(ε) decays to zero as ε→ 0+; since h(ε)→∞ as ε→ 0+

lim sup
ε→0+

Ñ(ε)q3εq
Ñ(ε)
4 ≤ lim sup

ε→0+

h(ε)2q3εexp(−h(ε)2)

≤ exp

(
lim sup
ε→0+

(2q3 log h(ε) + exp(−h(ε)2) log ε)

)
= exp

(
lim sup
h→∞

(
2q3 log(h)− exp(−h2) exp(exp(h))

))
= 0. (4.13)

On the other hand, on Ωε, Propositions 4.3, 4.4, and (4.11) yield

〈M0,Tφ, φ〉 ≤ ε‖φ‖2

⇒ εq
Ñ(ε)
5 ‖φ‖2 ≥

(
α

2
− C∗N

8

Ñ
(1 + ‖U(T )‖2H2)

)
‖φ‖2 ≥

(
α

2
− C∗N

8

Ñ
h(ε)

)
‖φ‖2 ≥ α

4
‖φ‖2,

for each ε < ε∗1 and any φ ∈ Sα,N . We infer that if ε < ε∗1, then on Ωε,

inf
φ∈Sα,N

〈M0,Tφ, φ〉
‖φ‖2

> ε whenever εq
Ñ(ε)
5 <

α

4
.

From the definition of Ñ(ε) in (4.10), we have εq
Ñ(ε)
5 → 0 as ε→ 0+ (e.g. see (4.13) above), and the proof of

Theorem 4.1 is complete.

22Indeed, one can begin by supposing ε∗1 < min{q0, 1/e} and observe that

lim sup
ε→0+

ε

(
q1

Ñ(ε)

)−qÑ(ε)
2

≤ lim sup
ε→0+

εh(ε)2q
Ñ(ε)
2 = lim sup

ε→0+
ε exp

(
2q
Ñ(ε)
2 log(h(ε))

)
≤ lim sup

ε→0+
ε exp

(
exp(h(ε)2)

)
= lim sup

h→∞
exp(− exp(exp(h))) exp

(
exp(h2)

)
= 0.
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5 Lie Bracket Computations

In this section we present, in functional setting, the chain of Lie brackets that approximately generate
spanning sets for successively larger finite dimensional subspaces HN of the phase space H. More precisely,
we show that the approximate basis BN,Ñ (U) lie in admissible sets VM (see (4.2), (4.3)) for sufficiently large

M = M(Ñ), which allows us to define the quadratic forms QN,Ñ (U) leading to the upper and lower bounds,
Propositions 4.3, 4.4 in Section 4.

As we described above, these computations are motivated by the celebrated Hörmander condition for the
Kolmogorov-Fokker-Planck equations associated to (2.14), cf. (1.4). Our situation is notable in comparison
to previous works in the infinite dimensional setting, [EM01, Rom04, HM06, HM11] as, to the best of our
knowledge, we are the first to analyze a system, where the chain of vector fields and the associated quadratic
forms QN,Ñ = QN,Ñ (U) depend on U , and are therefore random.

For contrast consider the 2D stochastic Navier-Stokes equation written in the vorticity formulation

dω + FNS(ω) = σdW =
∑
k,l

αkψ
l
kdW

k,l, with FNS(ω) := −ν∆ω + (K ∗ ω) · ∇ω, (5.1)

where as in (2.7) we set ψ0
k := cos(k ·x) and ψ1

k := sin(k ·x) for k ∈ Z2
+. Let VNSM , M ≥ 0 be the sequences of

admissible vector fields corresponding to (5.1), defined analogously to (4.2). The following bracket structure
for (5.1) was observed in [EM01]. Suppose that ψmk , ψ

m′

k′ ∈ VNSM for some M ≥ 0. Then, since (K ∗ ω) · ∇ω
is the only nonlinear (quadratic) term in (5.1), we obtain

[[FNS(ω), ψmk ], ψm
′

k′ ] = (K ∗ ψmk ) · ∇ψm
′

k′ + (K ∗ ψm
′

k′ ) · ∇ψmk ∈ VM+2, (5.2)

where the Lie brackets [·, ·] are defined as in (1.6). Using elementary algebra, we obtain that ψm+m′

k+k′ ∈ VM+2

if k and k′ are not parallel and |k| 6= |k′|. Under appropriate algebraic assumptions on the set of directly
forced modes, one therefore obtains that for any N > 0, HN ⊂ VM for large enough M = M(N). As we
already noted in the introduction, this strategy of repeated brackets with constant vector field to generate
exactly HN has been used in all of the previously known examples; see [HM11].

Our situation is completely different. Since the random perturbation appears only in the temperature
equation in (2.1)–(2.2), we immediately see, recalling the notation (2.6), that for any k, k′ ∈ Z2

+, m,m′ ∈
{0, 1}

[[F (U), σmk ], σm
′

k′ ] = B(σmk , σ
m′

k′ ) +B(σm
′

k′ , σ
m
k ) = 0 , (5.3)

and therefore no new modes are generated. The observation in (5.3) suggests that we need to make more
carefully use of the interaction between the buoyancy term G and the advective structure in B.

The strategy which we devised to generate suitable directions is summarized in Figure 5.1 below. Strik-

ingly, a bracket [[[F (U), σlk], F (U)], σl
′

k′ ] = c1B(ψl+1
k , σl

′

k′)+c2B(ψl
′+1
k′ , σlk) produces the desirable cancellation,

where c1, c2 are suitable constant.23 While the computations leading to this cancellation are involved this
‘miracle’ is perhaps anticipated by the advective structure of B.

Having devised a strategy to generate σ-modes, we also have to generate the elements ψlk; that is, suitable
directions in the ω variable. In this case no additional cancellation is evident as we found for the σ-modes.
Instead, we produce functions of the form ψml +Jm,l(U), where Jm,l(U) is an ‘error term’ with a complicated
dependence on U . Again as an artifact of the advective structure in B, these Jm,l(U) are concentrated in the
θ component only, and we can push these errors entirely into large wave-numbers by generating additional
directions in σ. This in turn allows us to make use of the generalized Poincaré inequality to obtain bounds
leading to our form of the Hörmander condition (1.9).

23As we already observed in Remark 2.4 it is precisely at this point that we are able to avoid the condition that the forcing in
(1.1)–(1.2) contain wavenumbers of different magnitudes as is required for the 2D stochastic Navier-Stokes equation in [HM06].
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Y mj (U)σmj

ψm+1
j + Jj,m+1(U)

Zmj (U)

[Zmj (U), σm
′

k ]

[Zmj (U), Y m
′

k (U)]

σm+m′+1
j±k

ψm+m′

j±k + Jj±k,m+m′(U)

(j1 6=0)

[·,F (U)][·,F (U)]

[·,σm
′

k ]

[·,Ym
′

k (U)]

Figure 5.1: The strategy for (approximately) generating HN from Lie brackets. Red and blue text
indicate that the corresponding functions reside exclusively in the ω and θ components, respectively.
Purple text indicates that the element has non-trivial content in both components. Solid arrows mean
that the new function is generated from a Lie bracket, with the type of bracket indicated above the arrow.
Dotted arrows signify that the new element is generated as a linear combination of elements from the
previous position.

5.1 Detailed Bracket Computations

Let us provide more details. In what follows U is arbitrary sufficiently smooth function.24 In the forthcoming
computations we make use of the following simple observations. Recalling that the Lie bracket between C1

vector fields E1, E2 : H → H is given by [E1, E2](U) := ∇E2(U)E1(U) − ∇E1(U)E2(U) we have the
antisymmetry and Jacobi identities

[E1, E2] = −[E2, E1], [[E1, E2], E3] + [[E2, E3], E1] + [[E3, E1], E2] = 0, (5.4)

valid for any E1, E2, E3. From (2.10) and (2.11) we have that for any Ũ ∈ H1,

B(U, Ũ) = 0 if U = (0, θ) , (5.5)

GU = 0 if U = (ω, 0), (5.6)

Gσmj = (−1)m+1gj1ψ
m+1
j . (5.7)

Note also that in what follows the superscripts m appearing in the basis elements σmk , ψmk are understood

modulo 2, for example by σm+m′

k we mean σ
m+m′(mod 2)
k . For any j ∈ Z2 we define j⊥ := (−j2, j1).

We first show how the directions σmk , k ∈ Z2
+,m ∈ {0, 1} can be obtained. Define Y mj (U) := [F (U), σmj ]

and by (5.5), (5.7),

Y mj (U) = Aσmj +B(σmj , U) +B(U, σmj )−Gσmj
= ν2|j|2σmj + (−1)mgj1ψ

m+1
j +B(U, σmj ). (5.8)

Now set

Zmj (U) := [F (U), Y mj (U)] = ∇Y mj (U)F (U)−∇F (U)Y mj (U) (5.9)

24At this stage in the argument, U is not necessarily a solution of (2.14). Of course we will use that U solves (2.14) later on
in Section 6. This causes no problems since U is smooth; cf. Proposition 2.2.
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and after some computations we derive the explicit formula

Zmj (U) = B(F (U), σmj ) + ν2
2 |j|4σmj + (−1)m(ν1 + ν2)gj1|j|2ψm+1

j +A(B(U, σmj )) + (−1)mgj1B(ψm+1
j , U)

−B(U,−ν2|j|2σmj + (−1)m+1gj1ψ
m+1
j ) +B(U,B(U, σmj ))−GB(U, σmj ). (5.10)

Remarkably, as alluded to above, the higher order bracket [Zmj (U), σm
′

k ] is independent of U . To see this

and to derive a formula for [Zmj (U), σm
′

k ] one may proceed by explicit computations. Instead, we argue as

follows: by (5.5), (5.8) we obtain [Y mj (U), Ũ ] = −B(Ũ , σmj ) = 0 for any Ũ = (0, Ũ2), and consequently by
the Jacobi identity, (5.4)

[Zmj (U), σm
′

k ] = [[F (U), Y mj (U)], σm
′

k ] = −[Y mj (U), [F (U), σm
′

k ]] = −[Y mj (U), Y m
′

k (U)] .

Moreover, since (−1)m+1gj1ψ
m+1
j is the only term with non-zero first component in Y mj (U), from (5.8) we

obtain

[Y mj (U), Y m
′

k (U)] = B((−1)mgj1ψ
m+1
j , σm

′

k )−B((−1)m
′
gk1ψ

m′+1
k , σmj ),

and therefore

[Zmj (U), σm
′

k ] = g
(

(−1)m+1j1B(ψm+1
j , σm

′

k ) + (−1)m
′
k1B(ψm

′+1
k , σmj )

)
. (5.11)

Next, note the following observation which is a consequence of simple trigonometric identities.

Lemma 5.1. For any j, k ∈ Z2
+ and m,m′ ∈ {0, 1}

B(ψmj , σ
m′

k ) =
(−1)1+mm′

2

(j⊥ · k)

|j|2
[
σm+m′

j+k + (−1)m
′+1σm+m′

j−k

]
,

B(ψmj , ψ
m′

k ) =
(−1)1+mm′

2

(j⊥ · k)

|j|2
[
ψm+m′

j+k + (−1)m
′+1ψm+m′

j−k

]
.

Using Lemma 5.1 and (5.11) we have

[Zmj (U), σm
′

k ] =g(−1)(m+1)(m′+1) (j⊥ · k)

2

[
(−1)m

′
b(j, k)σm+m′+1

j−k − a(j, k)σm+m′+1
j+k

]
, (5.12)

where

a(j, k) :=
j1
|j|2

+
k1

|k|2
and b(j, k) :=

j1
|j|2
− k1

|k|2
. (5.13)

From these relations, the following proposition follows easily.

Proposition 5.2. Let j, k ∈ Z2
+, a(j, k), b(j, k) be as in (5.13). Then, with Zmj given by (5.9),

g(j⊥ · k)a(j, k)σ0
j+k = −[Z0

j (U), σ1
k]− [Z1

j (U), σ0
k], (5.14)

g(j⊥ · k)a(j, k)σ1
j+k = [Z0

j (U), σ0
k]− [Z1

j (U), σ1
k], (5.15)

g(j⊥ · k)b(j, k)σ0
j−k = [Z1

j (U), σ0
k]− [Z0

j (U), σ1
k], (5.16)

g(j⊥ · k)b(j, k)σ1
j−k = −[Z1

j (U), σ1
k]− [Z0

j (U), σ0
k]. (5.17)

Remark 5.3. The diagram in Figure 5.2 and an induction argument detailed in Section 6.3 and illustrated
in Figure 6.2 show that starting with the forced directions σm(1,0), σ

m
(0,1) for each m ∈ {0, 1}, it is possible

to reach σmk for any k ∈ Z2
+ and m ∈ {0, 1}. If we replaced the vectors (1, 0), (0, 1) in the definition of Z

by other elements in Z2
+, Figure 5.2 would change, namely the segments parallel to axes would be changed

to segments parallel to the new directions in Z. In this case more a complicated algebraic condition as in
[HM06] is needed to demonstrate that Z generates a spanning set for Z2

+.
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σj σj+e1

σj+e2

σj−e1

σj−e2σ(0,j2)

σ(0,j2)−e1

σ(j1,0)+e2

σ(j1,0)

σ(0,j2)+e1

Figure 5.2: New basis elements σmj in the θ components of the phase space (see (2.6)) that can be
generated via the chain of brackets leading to (5.12) with Proposition 5.2 . Recall that we index these
basis elements by Z2

+ so that the points in figure lie on lattice points. Note furthermore that elements
σl correspond to both σ0

l , σ1
l . Grey points represent existing directions and purple points represent new

directions generated via one iteration of the chain of brackets illustrated in the upper part of Figure 5.1.
Perusing (5.14)–(5.17) and the definition of a and b in (5.13) we see why new directions are restricted
along the x and y coordinate axises respectively.

Directions ψmk are different and they include an error term with a component in the θ-direction. First
note that (5.8) can be rewritten as

(−1)mgj1ψ
m+1
j = Y mj (U)− (−1)mgj1J

∗
j,m+1(U) , (5.18)

where J∗j,m+1(U) := (−1)m

gj1
(ν2|j|2σmj + B(U, σmj )). Note that, by (2.10), we see that J∗j,m+1 is concentrated

only in its θ component. Since we can generate Y mj (U), by (5.18), we can also generate ψm+1
j (with an error

term), whenever j1 6= 0. This constitutes the first downward branch in the lower portion of Figure 5.1.
To reach the basis function ψmj along the j2 axis (j1 = 0) we can mimic the approach in [EM01] by

considering brackets of the form [[F (U), ψmj ], ψm
′

k ]; cf. (5.2). Since we did not generate ψmj , ψm
′

k , we instead
use elements Y mj (U), that is, ψmj with error terms and calculate

[[F (U), Y mj (U)], Y m
′

k (U)] = [Zmj (U), Y m
′

k (U)] =
[
[Zmj (U), F (U)], σm

′

k

]
−
[
[Zmj (U), σm

′

k ], F (U)
]
. (5.19)

Notice, that the second identity follows from (5.4) and shows that [[F (U), Y mj (U)], Y m
′

k (U)] can be obtained
from admissible bracket operations. On the other hand, with (5.9)

[[F (U), Y mj (U)], Y m
′

k (U)] = ∇2F (U){Y mj (U), Y m
′

k (U)}+∇F (U){∇Y mj (U){Y m
′

k (U)}}

− ∇(∇Y mj (U){F (U)}){Y m
′

k (U)}+∇Y m
′

k (U){[F (U), Y mj (U)]} ,

where ∇kG(U){X1, · · · , Xk} denotes the kth derivative of G in the directions X1, · · · , Xk. With (5.5),
(5.18), and (2.17) we obtain

∇2F (U){Y mj (U), Y m
′

k (U)} = −B(Y mj (U), Y m
′

k (U))−B(Y m
′

k (U), Y mj (U))

= (−1)m+m′+1g2j1k1

(
B(ψm+1

j , ψm
′+1

k ) +B(ψm
′+1

k , ψm+1
j )

+B(ψmj , J
∗
k,m′(U)) +B(ψm

′

k , J∗j,m(U))
)
.
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Also, since ∇Y mj (U){Y m′k (U)} = −B(Y m
′

k (U), σmj ) = (−1)m
′
gk1B(ψm

′

k , σmj ) has a zero ω component, we
have

∇F (U){∇Y mj (U){Y m
′

k (U)}} = (−1)m
′
gk1GB(ψm

′

k , σmj ) +Dm,m′

j,k (U) ,

where U 7→ Dm,m′

j,k (U) is affine and has a zero ω component. Finally, since ∇Y (U){X} has a zero ω
component for any X (of course the same is true for a derivative of ∇Y (U){X}), we obtain

[Zmj (U), Y m
′

k (U)] =(−1)m+m′+1g2j1k1

(
B(ψm+1

j , ψm
′+1

k ) +B(ψm
′+1

k , ψm+1
j )

)
+ (−1)m

′
gk1GB(ψm

′+1
k , σmj ) +Hm,m′

j,k (U), (5.20)

where U 7→ Hm,m′

j,k (U) is affine and it is concentrated entirely in the θ component.
Using (5.20) we are able to reach basis function that are not accessible by the brackets leading to (5.18).

Note that this second case (j1 = 0) is represented graphically the last lower branch of Figure 5.1.

Proposition 5.4. Let `2 > 0, ` = (0, `2), `′ = (1, `2), and ~e1 = (1, 0). Then

g2 |`|3

|`′|2
ψ0
` = −[Z0

`′(U), Y 0
~e1

(U)]− [Z1
`′(U), Y 1

~e1
(U)] +H0,0

`′,~e1,
(U) +H1,1

`′,~e1,
(U),

and

g2 |`|3

|`′|2
ψ1
` = [Z1

`′(U), Y 0
~e1

(U)]− [Z0
`′(U), Y 1

~e1
(U)] +H0,1

`′,~e1,
(U)−H1,0

`′,~e1
(U).

Proof. From Lemma 5.1 and the fact Gσm` = 0 (see (5.6)) one has

GB(ψm
′+1

e1 , σm`′ ) =(−1)mm
′+m′+1g`2ψ

m+m′

e1+`′ . (5.21)

Combining (5.20), (5.21), and Lemma 5.1, we have

[Zm`′ (U), Y m
′

e1 (U)] = (−1)mm
′+1 g

2`2
2

[2 + `22
1 + `22

ψm+m′

`′+e1
+

`22
1 + `22

(−1)m
′
ψm+m′

`′−e1

]
+Hm,m′

`′,e1
(U). (5.22)

The proposition follows after eliminating the term involving ψm+m′

`′+e1
by considering first the cases (m,m′) =

(0, 0), (m,m′) = (1, 1) to determine ψ0
` and (m,m′) = (0, 1), (m,m′) = (1, 0) to determine ψ1

` .

Combining (5.18) and Proposition 5.4 we now define the error term in the ψ-directions

Jj,m(U) =



(−1)m
µ|j|2

gj1
σm+1
j + (−1)m

1

gj1
B(U, σm+1

j ) if j1 6= 0,

1 + |j|2

g2|j|3
(−H0,0

j+e1,e1
(U)−H1,1

j+e1,e1
(U)) if j1 = 0,m = 0,

1 + |j|2

g2|j|3
(−H0,1

j+e1,e1
(U) +H1,0

j+e1,e1
(U)) if j1 = 0,m = 1 .

(5.23)

By combining (5.8), Proposition 5.4, and (5.23), we have for each j ∈ Z2
+, m ∈ {0, 1},

ψmj + Jj,m(U) =



(−1)m

gj1
Y m+1
j (U) if j1 6= 0,

1 + |j|2

g2|j|3
(−[Z0

j+ ~e1
(U), Y 0

~e1
(U)]− [Z1

j+ ~e1
(U), Y 1

~e1
(U)]) if j1 = 0,m = 0,

1 + |j|2

g2|j|3
([Z1

j+ ~e1
(U), Y 0

~e1
(U)]− [Z0

j+ ~e1
(U), Y 1

~e1
(U)]) if j1 = 0,m = 1 .

(5.24)
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5.2 Estimates and Related Properties for the Error Terms

We next summarize some basic properties of Jj,m(U) in the following lemmata.

Lemma 5.5. Fix any j ∈ Z2
+ with |j| ≤ N , m ∈ {0, 1}, and any U ∈ H1. Then, (Jj,m(U))ω = 0 (the ω

component of Jj,m(U) is zero) and

‖Jj,m(U)‖ ≤ CN3(1 + ‖U‖H1) ,

where the constant C is independent of N . Moreover U 7→ Jj,m(U)−Jj,m(0) is linear, that is, U 7→ Jj,m(U)
is affine.

Proof. The proof is a straightforward consequence of definitions. For example by careful inspection we have
an estimate

‖Hm,m′

j+e1,e1
(U)‖ ≤ C|j|4(1 + ‖U‖H1) ,

of any m,m′ ∈ {0, 1}.

Lemma 5.5 does not provide us with sufficient estimate for Jj,m as it grows both in N and U . However, we
crucially use the fact (Jj,m)ω = 0 as follows. We can generate sufficiently many, and consequently subtract

from Jj,m, pure modes σmk . Hence, we generate all modes σmk with |k| ≤ Ñ but for approximation of HN we

use only those with |k| ≤ N � Ñ , the rest we use for controlling the size of the error Jj,m (for details see
the proof of Lemma 6.12).

To this end we derive estimates for projections of Jj,m(U) into high Fourier modes. Recall that QN is
the orthogonal projection on complement of HN and denote

J Ñj,m(U) := QÑJj,m(U) . (5.25)

Lemma 5.6. For every integers N , Ñ with Ñ ≥ N > 0, and every integer s ≥ 1 and U ∈ Hs+1

‖J Ñj,m(U)‖ ≤CN
s+3

Ñs/2
(1 + ‖U‖Hs+1) (|j| ≤ N,m ∈ {0, 1}) , (5.26)

where C = C(s) is independent of N, Ñ and U .

Proof. Since the Ñ th eigenvalue λÑ ∼ Ñ , cf. [CF88], one has by the generalized Poincaré inequality that

‖J Ñj,m(U)‖ ≤ C 1

λ
s/2

Ñ

‖Jj,m(U)‖Hs ≤
1

Ñs/2
‖J Ñj,m(U)‖Hs .

By careful inspection of (5.23), noting that Jj,m is affine in U , we obtain

‖J Ñj,m(U)‖Hs ≤ C(1 + ‖U‖Hs+1) ,

where C = C(N, s). The exact dependence of the right hand side on N can be inferred from the fact that
each derivative of Jj,m(U) can produce at most one factor of |j| ≤ N .

6 Noise Propagation in the Phase Space: Quantitative Estimates

This section is devoted to the proof of Proposition 4.4. To establish this “upper bound” on the quadratic
forms QN,Ñ defined in Section 4, recall that in Section 5 we showed that BN,Ñ (U) ⊂ VM (see (4.2), (4.3))
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for sufficiently large M = M(Ñ). We thus to translate each of the Lie bracket computations in Section 5
into quantitative bounds. Roughly speaking, we would like to show that

〈M0,Tφ, φ〉 is ‘small’ implies that 〈φ, σlk〉 are all ‘small’ for all k ∈ Z, l ∈ {0, 1} (6.1)

and that, starting from any admissible vector field E ∈ VM , cf. (4.2)

〈φ,E〉 is ‘small’ implies that 〈φ, [E, σlk]〉, 〈φ, [E,F ]〉 are ‘small’ for all k ∈ Z, l ∈ {0, 1}. (6.2)

To achieve (6.1), (6.2) we broadly follow an approach recently developed in [MP06, BM07, HM11].25

Notice that

〈Ms,tφ, φ〉 =
∑
k∈Z
l∈{0,1}

(αlk)2

∫ t

s

〈σlk,Kr,tφ〉2dr (6.3)

and define gφ(t) := 〈Kt,Tφ,E(U(t))〉 over test functions φ and admissible vector fields E. To address the
first case in (6.2) we make use of a change of variable Ū := U − σW . Expanding E(U) in this new variable
we obtain a Wiener polynomial with coefficient similar to [E, σlk] and we infer the ‘smallness’ from time
regularity results for Wiener polynomial derived in [HM11] and recalled here as Theorem 6.4. For the second
case in (6.2) we differentiate gφ, and find that g′φ = 〈Kt,Tφ, [E,F ]〉, at least up to a change of variable. We
then make use of the fact that we can bound the maximum of g′φ in terms of, for example, gφ and Cα norms
of g′φ to deduce the desired implication.

Observe that our quadratic forms QN,Ñ depend on U(T ) and thus have a strong probabilistic dependence.
Indeed the existence of these ‘error’ terms in (4.4) means that we have to carefully track the growth of
constants as a function of the number of Lie brackets we take. We also need to explain, at a quantitative
level, how we are able to push error terms to entirely to high wavenumbers. Neither of these concerns can
be addressed from an ‘obvious inspection’ of the methods in [HM11]. In addition to these mathematical
concerns, we have developed several Lemmata 6.1, 6.2 which we believe streamline the presentation of some
of the arguments in comparison to previous works.

The rest of the section is organized as follows: We begin with some generalities introducing or recalling
some general lemmata that will be used repeatedly in the course of arguments leading to the rigorous form
of (6.1)–(6.2). In Subsection 6.2 we present the series of Lemmas 6.5–6.9 each of which corresponds to
one (or more) of the Lie brackets computed in Section 5. As we proceed we refer to Figure 6.1 to help
guide the reader through some admittedly involved computations. In Subsection 6.3 we piece together the
proved implications in an inductive argument to complete the proof of Proposition 4.4 In all that follows we
maintain the convention from Remark 2.1, that is, all constants are implicitly dependent on given parameters
ν1, ν2, g, α, . . . of the problem. Note also that we carry out our arguments on a general time interval [T/2, T ]
for some T > 0, which makes all constants T dependent; we apply the conclusion only for T = 1 above for
the proof of Theorem 2.3.

6.1 Preliminaries

We begin by introducing some further notational conventions and some general Lemmata 6.1, 6.2, 6.4 which
are be used frequently in the course of the analysis.

For any a < b, β ∈ R and α ∈ (0, 1] define the semi-norms

‖U‖Cα([a,b],Hβ) := sup
t1 6=t2

t1,t2∈[a,b]

‖U(t1)− U(t2)‖Hβ
|t1 − t2|α

.

25As in these works, the more classical methods using the Norris lemma do not apply, since it requires the inversion of the
operators J0,t. See [Nor86] and also e.g. [Nua06, Hai11] for further details.
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Ωε,M

Ωε,j,Y

Ωε,j,σ

Ωε,j,QΩ∗ε,N

Lem 6.5

Lem 6.6

Lem 6.9

Lem 6.8

Ω∗ε,N

Lem 6.12

Lem 6.12

Lem 6.12 Ω∗ε,N

Y mj (U)σmj

ψm+1
j + JNj,m+1(U)

[Zmj (U), σm
′

k ]

[Zmj (U), Y m
′

k (U)]

σm+m′+1
j±k

ψm+m′

j±k + JNj±k,m+m′(U)
M

Figure 6.1: An illustration of the structure of the lemmata in Section 6 that leads to the proof of
Proposition 4.4. The arrows indicate that if one term is ‘small’ then the other one is ‘small’ on a set
of large measure (displayed below the arrow), where the meaning of ’smallness’ is made precise in each
lemma. Above the arrow we indicate in which lemma is this implication proved. The arrow at the top of
the diagram shows that the process is iterative.

If a = T/2 and b = T we will write ‖ · ‖CαHβ instead of ‖ · ‖Cα([T/2,T ],Hβ) and denote ‖U‖C0Hβ :=
supt∈[T/2,T ] ‖U‖Hβ . Similar notations will be employed for the Hölder spaces Cα([a, b]), C1,α([a, b]) etc.
Recalling the notation in (1.6) we will define the ‘generalized Lie bracket’

[E1(U), E2(Ũ)] := ∇E2(Ũ)E1(U)−∇E1(U)E2(Ũ),

for all suitably regular E1, E2 : H → H and U, Ũ ∈ H. Below we often consider Ū = U−σθW which satisfies
the shifted equation (cf. (2.14))

∂tŪ = F (U) = F (Ū + σθW ), Ū(0) = U0. (6.4)

Note that, in contrast to U , Ū is C1,α in time for any α < 1/2.

We next prove two auxiliary lemmata which encapsulates the process of obtaining [E,F ] type brackets
from time differentiation.

Lemma 6.1. Suppose E : H → H is Fréchet differentiable, φ ∈ H, U solves (2.14), and Ū is defined by
(6.4). Then for any p ≥ 1 and any η > 0, we have that

E sup
t∈[T/2,T ]

|∂t〈Kt,Tφ,E(Ū)〉|p ≤ C‖φ‖p exp(η‖U0‖2)
(
E sup
t∈[T/2,T ]

‖[E(Ū), F (U)]‖2p
)1/2

, (6.5)
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where C = C(η, p, T ). Moreover, for any α ∈ (0, 1],

E
(
‖∂t〈Kt,Tφ,E(Ū)〉‖pCα

)
≤ C‖φ‖p exp(η‖U0‖2) ·

[(
E sup
t∈[T/2,T ]

‖[E(Ū), F (U)]‖2pH2

)1/2

+
(
E‖[E(Ū), F (U)]‖2pCαH

)1/2]
, (6.6)

with C = C(η, p, T ).

Proof. Since Kt,Tφ solves (3.12) and Ū satisfies (6.4) we have

∂t〈Kt,Tφ,E(Ū)〉 = 〈∂tKt,Tφ,E(Ū)〉+ 〈Kt,Tφ,∇E(Ū) · ∂tŪ〉
= −〈Kt,Tφ,∇F (U)E(Ū)〉+ 〈Kt,Tφ,∇E(Ū)F (U)〉
= 〈Kt,Tφ, [F (U), E(Ū)]〉. (6.7)

Now, (6.5) immediately follows from Hölder inequality and (A.14). To prove (6.6), we use that for any
α ∈ (0, 1), s, s′ ∈ R, and any suitably regular A, B one has

‖〈A,B〉‖Cα := sup
t 6=s

s,t∈[T/2,T ]

∣∣∣∣ 〈A(t), B(t)〉 − 〈A(s), B(s)〉
|s− t|α

∣∣∣∣ = sup
t 6=s

s,t∈[T/2,T ]

∣∣∣∣ 〈A(t)−A(s), B(t)〉+ 〈A(s), B(t)−B(s)〉
|s− t|α

∣∣∣∣
≤ ‖A‖L∞H−s‖B‖CαHs + ‖A‖CαH−s′‖B‖L∞Hs′ . (6.8)

Combining (6.8) with (6.7) and using Hölder’s inequality,

E
(
‖∂t〈Kt,Tφ,E(Ū)〉‖pCα

)
≤ C

(
E
(

sup
t∈[T/2,T ]

‖Kt,Tφ‖2p
))1/2(

E
(
‖[E(Ū), F (U)]‖2pCαH

))1/2

+ C
(
E
(
‖Kt,Tφ‖2pCαH−2

))1/2(
E
(

sup
t∈[T/2,T ]

‖[E(Ū), F (U)]‖2pH2

))1/2

and (6.6) follows from (A.14) and (A.16).

Lemma 6.2. Fix T > 0, α ∈ (0, 1] and an index set I. Consider a collection of random functions gφ taking
values in C1,α([T/2, T ]) and indexed by φ ∈ I. Define, for each ε > 0,

Λε,α :=
⋃
φ∈I

Λφε,α, where Λφε,α :=

{
sup

t∈[T/2,T ]

|gφ(t)| ≤ ε and sup
t∈[T/2,T ]

|g′φ(t)| > ε
α

2(1+α)

}
. (6.9)

Then, there is ε0 = ε0(α, T ) such that for each ε ∈ (0, ε0)

P(Λε,α) ≤ CεE

(
sup
φ∈I
‖gφ‖2/αC1,α([T/2,T ])

)
. (6.10)

Proof. As observed in [HM11, Lemma 6.14] we have the elementary bound

‖f ′‖L∞ ≤ 4‖f‖L∞ max

{
2

T
, ‖f‖−1/(1+α)

L∞ ‖f ′‖1/(1+α)
Cα

}
, (6.11)

which is valid for any f ∈ C1,α([T/2, T ]). Fix any φ ∈ I. On the set Λφε,α, if gφ attains the maximum in
(6.11) in the first term, then

ε
α

2(1+α) < ‖g′φ‖L∞ ≤ 4‖gφ‖L∞
2

T
≤ ε 8

T
.
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Clearly this cannot happen if ε < ε0(α, T ) (:= (T/8)2(1+α)/(2+α)). Thus for any ε < ε0, on Λφε,α, one has

ε
α

2(1+α) < 4εα/(1+α)‖g′φ‖
1/(1+α)
Cα , i.e. ‖g′φ‖

2/α
Cα ≥ 4−2/α(1+α)ε−1 := C(α)ε−1 .

Since this lower bound is independent of φ ∈ I we infer

Λε,α ⊂

{
sup
φ∈I
‖g′φ‖

2/α
Cα ≥ C(α)ε−1

}
.

With this observation and the Markov inequality we infer (6.10), completing the proof.

Remark 6.3. Observe that

Λcε,α =
⋂
φ∈I

{
sup

t∈[T/2,T ]

|gφ(t)| > ε or sup
t∈[T/2,T ]

|g′φ(t)| ≤ ε
α

2(1+α)

}
.

Thus, on Λcε,α,

sup
t∈[T/2,T ]

|gφ(t)| < ε ⇒ sup
t∈[T/2,T ]

|g′φ(t)| ≤ ε
α

2(1+α) (6.12)

for every φ ∈ I.

Finally, we recall in our notations, a crucial quantitative bound on Wiener polynomials established in
[HM11]. In particular this restatement avoids the language of ‘almost implication’ introduced in [HM11,
Hai11].

Given any multi-index α := (α1, . . . , αd) ∈ Nd recall the standard notation Wα := Wα1
1 · · ·W

αd
d .

Theorem 6.4 (Hairer-Mattingly, [HM11]). Fix M,T > 0. Consider the collection PM of M th degree of
‘Wiener polynomials’ of the form

F = A0 +
∑
|α|≤M

AαW
α,

where for each multi-index α, with |α| ≤ M , Aα : Ω × [0, T ] → R is an arbitrary stochastic process. Then,
for all ε ∈ (0, 1) and β > 0, there exists a measurable set Ωε,M,β with

P(Ωcε,M,β) ≤ Cε,

such that on Ωε,M,β and for every F ∈ PM

sup
t∈[0,T ]

|F (t)| < εβ ⇒


either sup

|α|≤M
sup
t∈[0,T ]

|Aα(t)| ≤ εβ3−M ,

or sup
|α|≤M

sup
s6=t∈[0,T ]

|Aα(t)−Aα(s)|
|t−s| ≥ ε−β3−(M+1)

.

6.2 Implications Starting from Small Eigenvalues

We now start proving the implications depicted in Figure 6.1. Note that throughout what follows we fix a
small constant ε0 = ε0(T ) which gives the range of ε values for which Lemmas 6.5–6.9 hold. The first lemma
explains how a lower bounds bound on the eigenvalues of M0,T initiates the iteration.
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Lemma 6.5. For every 0 < ε < ε0(T ) and every η > 0 there exist a set Ωε,M and C = C(η, T ) with

P(Ωcε,M) ≤ C exp(η‖U0‖2)ε

such that on the set Ωε,M

〈M0,Tφ, φ〉 ≤ ε‖φ‖2 ⇒ sup
t∈[T/2,T ]

|〈Kt,Tφ, σlk〉| ≤ ε1/8‖φ‖,

for each k ∈ Z, l ∈ {0, 1}, and every φ ∈ H. We recall that Z ⊂ Z2
+ is the set of directly forced modes as in

(2.13) and the elements σlk are given by (2.6).

Proof. For any φ ∈ H with ‖φ‖ = 1, define

gφ(t) :=
∑
k∈Z
l∈{0,1}

(αlk)2

∫ t

0

〈σlk,Kr,Tφ〉2dr ≤
∑
k∈Z
l∈{0,1}

(αlk)2

∫ T

0

〈σlk,Kr,Tφ〉2dr = 〈M0,Tφ, φ〉,

see (6.3). Note that

g′φ(t) =
∑
k∈Z
l∈{0,1}

(αlk)2〈σlk,Kt,Tφ〉2, g′′φ(t) = 2
∑
k∈Z
l∈{0,1}

(αlk)2〈σlk,Kt,Tφ〉〈σlk, ∂tKt,Tφ〉.

Let Ωε,M := Λcε,1, where Λε,α is as in (6.9) with I := {φ ∈ H : ‖φ‖ = 1}. Then by Lemma 6.2 with α = 1,
(A.14), and (A.16) one has

P(Ωcε,M) ≤ Cε
∑
k∈Z
l∈{0,1}

(αlk)4E

 sup
t∈[T/2,T ]
‖φ‖=1

∣∣〈σlk,Kt,Tφ〉〈σlk, ∂tKt,Tφ〉∣∣2
 ≤ C exp(η‖U0‖2)ε

for any ε < ε0 = ε0(T ), where C = C(η, T ). Finally, on Ωε,M we have, cf. (6.12), that

〈M0,Tφ, φ〉 ≤ ε‖φ‖2 ⇒ sup
t∈[T/2,T ]

|αk,l||〈Kt,Tφ, σlj〉| ≤ ε1/2‖φ‖,

for each k ∈ Z, l ∈ {0, 1} and any φ ∈ H. Since αlk 6= 0, the assertion of the lemma follows for ε ≤ ε0(T ).

We next turn to implications of the form σ → [F, σ] = Y ; see Figure 6.1.

Lemma 6.6. Fix any j ∈ Z2
+. For each 0 < ε < ε0(T ) and η > 0 there exist a set Ωε,j,Y and C = C(η, T )

with

P(Ωcε,j,Y ) ≤ C|j|8 exp(η‖U0‖2)ε,

such that on the set Ωε,j,Y , for each m ∈ {0, 1}, it holds that

sup
t∈[T/2,T ]

|〈Kt,Tφ, σmj 〉| ≤ ε‖φ‖ ⇒ sup
t∈[T/2,T ]

|〈Kt,Tφ, Y mj (U)〉| ≤ ε1/4‖φ‖. (6.13)

Proof. By expanding U = Ū + σW , and using (5.5), we observe that

Y mj (U) = Y mj (Ū). (6.14)

Then for fixed m ∈ {0, 1} and any φ ∈ I := {φ ∈ H : ‖φ‖ = 1} define gφ(t) := 〈Kt,Tφ, σmj 〉 and observe by

(6.7) and (6.14) that g′φ(t) = 〈Kt,Tφ, [F (U), σmj ]〉 = 〈Kt,Tφ, Y mj (U)〉 = 〈Kt,Tφ, Y mj (Ū)〉. Let Ωε,j,Y := Λcε,1
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with Λε,1 as in (6.9). Once again, with (6.12), we see that (6.13) holds on Ωε,j,Y . On the other hand, by
(6.10), (6.5), (6.14), (5.9), and (A.5), we have

P(Ωcε,j,Y ) ≤ CεE

(
sup
φ∈I

sup
t∈[T/2,T ]

|∂t〈Kt,Tφ, Y mj (Ū)〉|2
)
≤ Cε exp

(η
2
‖U0‖2

)
E sup
t∈[T/2,T ]

‖Zmj (U)‖4

≤ Cε|j|8 exp
(η

2
‖U0‖2

)
E

(
1 + sup

t∈[T/2,T ]

‖U‖8H2

)
≤ Cε|j|8 exp

(
η‖U0‖2

)
for any ε < ε∗(T ), where C = C(η, T ). For the third inequality above we have also used the estimate

sup
t∈[T/2,T ]

‖Zmj (U)‖Hs ≤ C|j|4+s

(
1 + sup

t∈[T/2,T ]

‖U‖2Hs+2

)
, (6.15)

which follows from (5.10) by counting derivatives and applying the Hölder and Poincaré inequalities.

Remark 6.7. The constants in the exponents of |j| and ε in the forthcoming Lemmas 6.8, 6.9 rapidly
become; however, there is nothing special about these numbers. We simply need to track that in the bounds
|j| and ε grow like |j|τ and εκ respectively for some κ, τ > 0.

We next establish implications corresponding the chain of brackets Y → Z → [Z, σ]. We refer again to
the Figure 6.1.

Lemma 6.8. Fix j ∈ Z2
+. For each 0 < ε < ε0(T ), and η > 0 there exist a set Ωε,j,σ and C = C(η, T ) with

P(Ωcε,j,σ) ≤ C|j|90×6 exp(η‖U0‖2)ε, (6.16)

such that on the set Ωε,j,σ, for each m ∈ {0, 1}, it holds that

sup
t∈[T/2,T ]

|〈Kt,Tφ, Y mj (U)〉| ≤ ε‖φ‖ ⇒


sup

t∈[T/2,T ]

|〈Kt,Tφ,Zmj (Ū)〉| ≤ ε1/30‖φ‖,

sup
k∈Z
l∈{0,1}

supt∈[T/2,T ] |〈Kt,Tφ, [Zmj (U), σlk]〉| ≤ ε1/60‖φ‖.

Proof. In the course of the proof we suppress, for the sake of brevity, the subscript σ in the definition of
various sets leading to Ωε,j,σ. For fixed m ∈ {0, 1} and φ ∈ H let gφ(t) := 〈Kt,Tφ, Y mj (U)〉 = 〈Kt,Tφ, Y mj (Ū)〉
(cf. (6.14)) so that g′φ(t) = 〈Kt,Tφ, [Y mj (Ū), F (U)]〉 = −〈Kt,Tφ,Zmj (U)〉 (see (6.7), (5.9)). Let Ω1

ε,j = Λcε,1/4,

where Λcε,α is as in (6.9) over with I := {φ ∈ H : ‖φ‖ = 1}. Then, on Ω1
ε,j one has, in view of (6.12),

sup
t∈[T/2,T ]

|〈Kt,Tφ, Y mj (U)〉| ≤ ε‖φ‖ ⇒ sup
t∈[T/2,T ]

|〈Kt,Tφ,Zmj (U)〉| ≤ ε1/10‖φ‖ . (6.17)

By Lemma 6.2 with α = 1/4 and (6.6), (A.5), (A.6) we have

P((Ω1
ε,j)

c) ≤ CεE

(
sup
φ∈I
‖g′‖8C1/4

)

≤ Cε exp(
η

2
‖U0‖2)

[(
E sup
t∈[T/2,T ]

‖Zmj (U)‖16
H2

)1/2

+
(
E‖Zmj (U)‖16

C1/4H

)1/2]
≤ Cε|j|48 exp(

η

2
‖U0‖2)

[(
E
(
1 + sup

t∈[T/2,T ]

‖U‖32
H4

))1/2

+
(
E
(
‖U‖16

C1/4H2

(
1 + sup

t∈[T/2,T ]

‖U‖16
H2

)))1/2
]

≤ Cε|j|48 exp(η‖U0‖2) , (6.18)
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where C = C(η, T ) and we used the bilinearity of Z with estimates like those leading to (6.15). Next, by
expanding U = Ū + σW we find

Zmj (U) = Zmj (Ū)−
∑
k∈Z
l∈{0,1}

αlk[Zmj (U), σlk]W k,l. (6.19)

In view of (5.11), all of the second order terms in (6.19) of the form [[Z(U), σlk], σl
′

k′ ]W
k,lW k′,l′ are zero and

[Zmj (U), σlk] = [Zmj (Ū), σlk].
To estimate each of the terms in (6.19), we introduce for s ∈ {0, 1}, φ ∈ H

Ns(φ) := max
k∈Z,l∈{0,1}

{∥∥〈Kt,Tφ,Zmj (Ū)〉
∥∥
Cs
, |αk,l|

∥∥〈Kt,Tφ, [Zmj (U), σlk]〉
∥∥
Cs

}
.

By Theorem 6.4, there exists a set Ω]ε such that P((Ω]ε)
c) < Cε, and on Ω]ε

sup
t∈[T/2,T ]

|〈Kt,Tφ,Zmj (U)〉| ≤ ε1/10 =⇒
{

either N0(φ) ≤ ε1/30,
or N1(φ) ≥ ε−1/90.

(6.20)

Recalling that I = {φ ∈ H : ‖φ‖ = 1}, let

Ω2
ε,j :=

⋂
φ∈I

{N0(φ) < ε1/30} ∩ Ω]ε,j .

By (6.17) on the set Ωε,j,σ := Ω1
ε,j∩Ω2

ε,j we obtain the desired conclusion for each ε < ε0(T ). Thus it remains
to estimate the size of Ωcε,j,σ. By (6.20), (6.18), and the Markov inequality we have

P(Ωcε,j,σ) ≤ P((Ω1
ε,j)

c) + P((Ω]ε,j)
c) + P

(
sup
φ∈I
N1(φ) ≥ ε−1/90

)

≤ C|j|48 exp(η‖U0‖2)ε+ CεE

(
sup
φ∈I

(N1(φ))90

)
. (6.21)

However, by (6.5) and (A.5) along with further estimates along the lines leading to (6.15) we have

E
∥∥〈Kt,Tφ,Zmj (Ū)〉

∥∥90

C1([T/2,T ];R)
≤ C exp(η/2‖U0‖2)

(
E sup
t∈[T/2,T ]

‖[Zmj (Ū), F (U)]‖180

)1/2

≤ C exp(η/2‖U0‖2)|j|90×6
(
E(1 + ‖U‖3×180

H4 )
)1/2

≤ C exp(η‖U0‖2)|j|90×6 , (6.22)

where C = C(η, T ). Finally, due to (5.11) and similar applications of (6.5) and (A.5) the estimate

E
∥∥〈Kt,Tφ, [Zmj (U), σlk]〉

∥∥90

C1([T/2,T ];R)
≤ C exp(η‖U0‖2)|j|90×2 (6.23)

follows. By combining (6.21)-(6.23) we obtain (6.16), and the proof is complete.

The final lemma of this section corresponds to brackets of the form Y → Z → [Z, Y ]. For fixed j ∈ Z2
+,

define Zj as the union of j with the set of points in Z2
+ adjacent to j, that is,

Zj := {k ∈ Z2
+ : k = j ±m for some m ∈ {0} ∪ Z}.
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Lemma 6.9. Fix j ∈ Z2
+. For each 0 < ε < ε0(T )|j|−2 and η > 0 there exists C = C(η, T ) and a measurable

set Ωε,j,Q with

P((Ωε,j,Q)c) ≤ C|j|14×5400 exp(η‖U0‖2)ε, (6.24)

such that on the set Ωε,j,Q it holds that, for every φ ∈ H,∑
i∈Zj

m∈{0,1}

sup
t∈[T/2,T ]

|〈Kt,Tφ, Y mi (U)〉| ≤ ε‖φ‖ (6.25)

⇒
∑
k∈Z

m,l∈{0,1}

sup
t∈[T/2,T ]

|〈Kt,Tφ, [Zmj (U), Y lk(U)]〉| ≤ ε1/3600‖φ‖.

Proof. By (5.19) it suffices to find Ωε,j,Q satisfying (6.24) such that, on Ωε,j,Q, assuming (6.25), it follows
that ∑

k∈Z
m,l∈{0,1}

sup
t∈[T/2,T ]

|〈Kt,Tφ, [[Zmj (U), σlk], F (U)]〉| ≤ ε1/2 , (6.26)

∑
k∈Z

m,l∈{0,1}

sup
t∈[T/2,T ]

|〈Kt,Tφ, [[Zmj (U), F (U)], σlk]〉| ≤ ε1/1800 . (6.27)

To obtain (6.26), we have by (5.12) and the definition of Y mj (U), that if (6.25) holds (note j ± k ∈ Zj for
k ∈ Z), then

|〈Kt,Tφ, [[Zmj (U), σlk], F (U)]〉| = |g(j⊥ · k)||〈Kt,Tφ, [a(j, k)σm+l+1
j+k + (−1)l+1b(j, k)σm+l+1

j−k , F (U)]〉|

≤ C|j|(|〈Kt,Tφ, Y m+l+1
j+k (U)〉|+ |〈Kt,Tφ, Y m+l+1

j−k (U)〉|)
≤ C|j|ε‖φ‖ (6.28)

and (6.26) follows for any ε < (C|j|)−2.
It remains to prove that (6.25) implies (6.27) on an appropriate set. By Lemma 6.8, there exists a set

Ω1
ε,j satisfying (6.16) such that on Ω1

ε,j , for each m ∈ {0, 1}, and each φ ∈ I = {φ ∈ H : ‖φ‖ = 1}

sup
t∈[T/2,T ]

|〈Kt,Tφ, Y mj (U)〉| ≤ ε ⇒ sup
t∈[T/2,T ]

|〈Kt,Tφ,Zmj (Ū)〉| ≤ ε1/30 . (6.29)

For fixed m ∈ {0, 1}, and each φ ∈ I, let gφ(t) := 〈Kt,Tφ,Zmj (Ū)〉 so that g′φ(t) = 〈Kt,Tφ, [Zmj (Ū), F (U)]〉
(see (6.7)). Let Ω2

ε,j := Λc
ε1/30,1/4

, where Λε,α is defined in (6.9). Thus on Ω3
ε,j := Ω1

ε,j∩Ω2
ε,j we have (invoking

(6.29)) for each m ∈ {0, 1}, and φ ∈ I

sup
t∈[T/2,T ]

|〈Kt,Tφ, Y mj (U)〉| ≤ ε ⇒ sup
t∈[T/2,T ]

|〈Kt,Tφ, [Zmj (Ū), F (U)]〉| ≤ ε1/300. (6.30)

Similarly as in the proof of Lemma 6.8,

P((Ω2
ε,j)

c) ≤ CεE

(
sup
φ∈I
‖g′‖8×30

C1/4([T/2,T ])

)
≤ Cε|j|240×6 exp(η‖U0‖2) ,

where the last inequality is analogous to estimates in (6.22). Next, we establish (6.30) with Zmj (Ū) replaced
by Zmj (U), for which we use the expansion (6.19). Specifically, as in (6.28)

sup
t∈[T/2,T ]

|〈Kt,Tφ, [[Zmj (Ū), σlk], F (U)]〉||W k,l(t)| ≤ C|j|ε‖φ‖ sup
t∈[T/2,T ]

|W k,l(t)| . (6.31)
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Since E‖W k,l‖L∞ <∞, Markov inequality yields P((Ω4
ε,k,l)

c) ≤ Cε1/2, with Ω4
ε,k,l := {supt∈[T/2,T ] |W k,l(t)| ≤

ε−1/2}. By combining (6.19), (6.30), and (6.31) on Ω5
ε,j := Ω3

ε,j ∩ Ω4
ε,j for any ε < ε0(T )|j|−2 it holds that∑

i∈Zj
m∈{0,1}

sup
t∈[T/2,T ]

|〈Kt,Tφ, Y mi (U)〉| ≤ ε

⇒
∑

m∈{0,1}

sup
t∈[T/2,T ]

|〈Kt,Tφ, [Zmj (U), F (U)]〉| ≤ ε1/600.

Similarly as in Lemma 6.9, we expand [Zmj (U), F (U)] with respect to U = Ū+σW and again we use Theorem
7.1 of [HM11] to establish

sup
t∈[T/2,T ]

|〈Kt,Tφ, [Zmj (U), F (U)]〉| ≤ ε1/600‖φ‖

⇒ sup
l∈{0,1},k∈Z

sup
t∈[T/2,T ]

|〈Kt,Tφ, [[Zmj (Ū), F (Ū)], σlk]〉| ≤ ε1/1800‖φ‖

on a set Ω6
ε satisfying

P((Ω6
ε)
c) ≤ C|j|14×5400 exp(η‖U0‖2)ε. (6.32)

The proof is finished if we set Ωε,j,Q := Ω5
ε,j ∩ Ω6

ε,j , and note by a (5.3) and (5.12) that

[[Zmj (Ū), F (Ū)], σlk] = [[Zmj (U), F (U)], σlk].

6.3 Spanning Sets for HN from Brackets and Associated Tails

With all elements in Figure 6.1 now established, we explain how the lemmata are pieced together to conclude
the proof of Proposition 4.4. To simplify the forthcoming calculations we denote by κ the power of ε, and τ
the power of |j|, appearing in the statement of Lemma 6.9, that is, κ = 1/3600 and τ = 14 × 5400. Then
assertions of Lemmata 6.5 – 6.9 are of the form: for each φ ∈ H with ‖φ‖ ≤ 1 and for any sufficiently small
ε one has

Aj(φ) ≤ ε ⇒ Bj(φ) ≤ εκ

on a set Ωε with P(Ωcε) ≤ Cε|j|τ exp(η‖U0‖2), where C = C(T ) and Aj , Bj are appropriate functionals.
Denote

IN := {j ∈ Z2
+ : |j1|+ |j2| ≤ N + 1} \ {(0, N + 1), (0, N), (N + 1, 0), (N, 0)}

see Figure 6.2. Note that the choice to ‘delete’ the corners of the triangular set IN is to assure that points
in IN \ IN−1 can be reached from points in IN−1 using only moves depicted in Figure 5.2.

Lemma 6.10. Let κ be as above, and for every N ≥ 0 denote

pN := κ2N+2 .

Then there exists

ε0 = ε0(N,T ) := C(T ) min

{
1,
( g

2N2

)2/(κpN−1)
}
,
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BN−1

IN−1

IN \ IN−1

Figure 6.2: An illustration of the sets IN and the associated induction procedure in Lemma (6.10).

such that for each ε ∈ (0, ε0), there is a set Ωε,N and C = C(T ) with

P(Ωcε,N ) ≤ CNτ+2 exp(η‖U0‖2)εpN ,

such that on Ωε,N for any φ ∈ H, j ∈ IN , m ∈ {0, 1}, one has

〈M0,Tφ, φ〉 ≤ ε‖φ‖2

⇒ sup
t∈[T/2,T ]

|〈Kt,Tφ, σmj 〉| ≤ εpNκ‖φ‖ and sup
t∈[T/2,T ]

|〈Kt,Tφ, Y mj (U)〉| ≤ εpNκ‖φ‖ . (6.33)

Remark 6.11. Lemma 6.10 establishes the smallness of |〈Kt,Tφ, σmj 〉| for all j ∈ IN . The smallness of
|〈Kt,Tφ, ψmj 〉| requires more work and it is discussed below in Lemma 6.12.

Proof. We first remark that the function n 7→
(
g
n2

)2/(κpn−1)
decreases, and therefore ε0 ≤

(
g
n2

)2/(κpn−1)
for

each n ≤ N .
We proceed by induction in N ≥ 1. For the first step, N = 1, we show that the result holds on the

set I1 = {(1, 1), (−1, 1)}. To this end we first establish (6.33) for j ∈ Z = {(0, 1), (1, 0)}, which are the
directly forced modes in (2.14). Indeed, Lemma 6.5 and Lemma 6.6 imply that (6.33) holds for each j ∈ Z,
m ∈ {0, 1}, with pN replaced by κ, on the set

Ω1
ε,1 = Ωε,M ∩ Ωεκ,(0,1),Y ∩ Ωεκ,(1,0),Y ,

with P((Ω1
ε,1)c) ≤ C exp(η‖U0‖2)εκ.

We now establish (6.33) for j ∈ I1. By (6.33) with j′ ∈ Z, and Lemma 6.8, one has

〈M0,Tφ, φ〉 ≤ ε‖φ‖2 ⇒ sup
m,l∈{0,1}
j′,k∈Z

sup
t∈[T/2,T ]

|〈Kt,Tφ, [Zmj′ (U), σlk]〉| ≤ εκ
3

‖φ‖,

on a set
Ω2
ε,1 := Ω1

ε,1 ∩ Ωεκ2 ,(0,1),σ ∩ Ωεκ2 ,(1,0),σ

with
P((Ω2

ε,1)c) ≤ C exp(η‖U0‖2)εκ
2

.
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Using Proposition 5.2 with j′ = (0, 1), k = (1, 0), and all combinations of m, l ∈ {0, 1}, we obtain (since

(j′
⊥ · k), a(j′, k), b(j′, k) 6= 0) that on the set Ω2

ε,1, for each j ∈ I1, m ∈ {0, 1},

〈M0,Tφ, φ〉 ≤ ε‖φ‖2 ⇒ sup
t∈[T/2,T ]

|〈Kt,Tφ, σmj 〉| ≤
1

2g
εκ

3

‖φ‖ ≤ ε 1
2κ

3

‖φ‖ ≤ εκ
4

‖φ‖.

Notice we have used the inequality ε ≤ (2g)2/κ3

. The first part of (6.33) follows with p1 = κ3. The second
part of (6.33) with p1 = κ4 follows from the first part and Lemma 6.6 on

Ωε,1 := Ω2
ε,1 ∩ Ωεκ4 ,(−1,1),Y ∩ Ωεκ4 ,(1,1),Y ,

so that P(Ωcε,1) ≤ C exp(η‖U0‖2)εκ
4

. This completes the proof of the base case N = 1.
Next we establish the inductive step. That is, assuming (6.33) holds for each j ∈ IN−1 (with N − 1 ≥ 1)

on a set Ωε,N−1, we will show that (6.33) holds true for j ∈ IN on a set Ωε,N . We introduce the set

BN−1 := {j′ = (j′1, j
′
2) ∈ IN−1 : |j1|′ + |j2|′ = N},

which is the ‘boundary of IN−1 excluding the x and y axes’ as illustrated by the broken line segments in
Figure 6.2. Denote

Ω1
ε,N := Ωε,N−1 ∩

⋂
j′∈BN−1

ΩεpN−1 ,j′,σ,

then the inductive hypothesis and Lemma 6.8 imply

P((Ω1
ε,N )c) ≤ C exp(η‖U0‖2)((N − 1)τ+2εpN−1 + |BN−1|Nτ εpN−1) ≤ CNτ+2 exp(η‖U0‖2)εpN−1 . (6.34)

Then on the set Ω1
ε,N we have

〈M0,Tφ, φ〉 ≤ ε‖φ‖2 ⇒ sup
l,m∈{0,1}

j′∈BN−1,k∈Z

sup
t∈[T/2,T ]

|〈Kt,Tφ, [Zmj′ (U), σlk]〉| ≤ εpN−1κ‖φ‖. (6.35)

To complete the inductive step it is enough to establish (6.33) for any fixed j ∈ IN \IN−1 and m ∈ {0, 1}.
We observe that for each j ∈ IN \ IN−1, there exists j′ ∈ BN−1 such that k := j − j′ ∈ Z ∪ (−Z). In other
words, any point in IN \ IN−1 can be reached from BN−1 via ‘allowable directions’ as shown in Figure 5.2.
Since k is parallel to one of the axes and j′ is not, we have k⊥ · j′ 6= 0 and a(j′, k) 6= 0, b(j′, k) 6= 0, where
a, b are defined by (5.13). Using (6.35) and Proposition 5.2, we infer that on the set Ω1

ε,N , for each fixed

j ∈ IN \ IN−1, m ∈ {0, 1} (for our choice of ε ≤
(

g
2N2

)2/(κpN−1)
)

〈M0,Tφ, φ〉 ≤ ε‖φ‖2 ⇒ sup
t∈[T/2,T ]

|〈Kt,Tφ, σmj 〉| ≤
2N2

g
εpN−1κ‖φ‖ ≤ εpN−1κ/2‖φ‖ , (6.36)

where we used that |(k ⊥ j′)| ≥ 1, |a(k, j′)| ≥ N−2, and |b(k, j′)| ≥ N−2. 26

To complete the induction it remains to establish the second part of (6.33). Define

Ωε,N = Ω1
ε,N ∩

⋂
j′∈BN−1

Ω
εpN−1κ/2,j′,Y

.

26 To see the estimate for b (estimates for a are analogous) we observe that

|b((1, 0), j′)| = 1−
j21

j1(j21 + j22)
≥ 1−

1

|j1|
, |b((0, 1), j′)| =

|j1|
(j21 + j22)

≥
1

1 + (N − 1)2
≥

1

N2
,

and the desired bound follows when |j1| ≥ 2. If |j1| = 1, then b((1, 0), (±1, N − 1)) = 1− 1
1+(N−1)2

≥ 1
2

.
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We then obtain (analogously to (6.34)) that

P(Ωcε,N ) ≤ C exp(η‖U0‖2)(Nτ+2εpN−1κ +Nτ+1εpN−1κ/2) ≤ CNτ+2 exp(η‖U0‖2)εpN .

On Ωε,N , (6.36) and Lemma 6.6 yield that (6.33) holds with the desired pN .

Lemma 6.12. Fix N ≥ 2 and let pN and ε0 be as in Lemma 6.10. There is

ε1 = ε1(N,T ) := C(T ) min

{
1,

(
C(T )

1 +N4

)2/(p2Nκ)
}
.

Then for every ε ∈ (0, ε1) and η > 0 there exists a set Ω∗ε,N with

P((Ω∗ε,N )c) ≤ CNτ+3 exp(η‖U0‖2)εp2Nκ ,

where C = C(η, T ), such that on the set Ω∗ε,N for all φ ∈ H, j with |j| ≤ N , and m ∈ {0, 1}, one has

〈M0,Tφ, φ〉 ≤ ε‖φ‖2 ⇒

{
|〈φ, σmj 〉| ≤ εp2N ‖φ‖ , (6.37)

|〈φ, ψmj + JNj,m(U(T ))〉| ≤ εp2Nκ/2‖φ‖ . (6.38)

For the definition of JNj,m see (5.25) and (5.23).

Proof. Below, without further notice, we use that ε0(2N,T ) ≥ ε1(N,T ) for appropriate C(T ), where ε0 is as
in Lemma 6.10. Observe that |j| ≤ N implies j ∈ I2N , because

N2 ≥ j2
1 + j2

2 ≥
1

2
(|j1|+ |j2|)2 .

Then by Lemma 6.10, for each j such that |j| ≤ N , on the set Ωε,2N , (6.33) with t = T implies

|〈φ, σmj 〉| ≤ εp2N ‖φ‖ (6.39)

and (6.37) follows.
To establish (6.38) we first fix |j| ≤ N with j1 6= 0 and m ∈ {0, 1}. Then, by Lemma 6.10, (5.24), and

(5.25), on the set Ωε,2N ,

εp2Nκ‖φ‖ ≥ |〈φ, Y m+1
j (U(T ))〉| = g|j1||〈φ, ψmj + JNj,m(U(T )) + PNJj,m(U(T ))〉|

≥ g|j1||〈φ, ψmj + JNj,m(U(T ))〉| − g|j1||〈φ, PNJj,m(U(T ))〉| . (6.40)

Next, fix |j| ≤ N with j1 = 0 and set j′ := ~e1 + j. It is easy to check that j′, j′ ± ~e2, j′ ± ~e1 belong to I2N

whenever N ≥ 2, so that, by the second part of (6.33), (6.25) is satisfied (with j replaced by j′) on the set
Ωε,2N . Then by Lemma 6.9 (the smallness conditions on ε required by Lemma 6.9 are satisfied if ε < ε1 for
appropriate C(T )), ∑

k∈Z
m,l∈{0,1}

sup
t∈[T/2,T ]

|〈Kt,Tφ, [Zmj′ (U), Y lk(U)]〉| ≤ εp2Nκ‖φ‖, (6.41)

on the set

Ω∗,1ε,N := Ωε,2N ∩
⋂

|j′|≤N,j1=1

Ωεp2N ,j′,Q,

with P((Ω∗,1ε,N )c) ≤ C(2N)τ+3εp2N exp(η‖U0‖2). Then by (5.24) and (6.41) (with t = T ), on Ω∗,1ε,N one has

2εp2N ‖φ‖ ≥ g2|j|3

1 + |j|2
(
|〈φ, ψmj + JNj,m(U(T ))〉| − |〈φ, PNJj,m(U(T ))〉|

)
. (6.42)
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Combining both cases, (6.40) and (6.42), one has for any |j| ≤ N , on the set Ω∗,1ε,N , that

|〈φ, ψmj + JNj,m(U(T ))〉| ≤ C(εp2N ‖φ‖+ |〈φ, PNJj,m(U(T ))〉|) . (6.43)

Since by Lemma 5.5 the first component of Jj,m(U(T )) vanishes, there exists (βlk)|k|≤N,l∈{0,1} such that

PNJj,m(U(T )) =
∑
|k|≤N
l∈{0,1}

βlkσ
l
k .

Consequently, by (6.39) and Lemma 5.5, on the set Ωε,2N ,

|〈φ, PNJj,m(U(T ))〉| = |
∑
|k|≤N
l∈{0,1}

βlk〈φ, σlk〉| ≤ C sup
|k|≤N
l∈{0,1}

|〈φ, σlk〉|
∑
|k|≤N
l∈{0,1}

|βlk|

≤ CN‖Jj,m(U(T ))‖εp2N ‖φ‖ ≤ CN4(1 + ‖U(T )‖H1)εp2N ‖φ‖ . (6.44)

If we set Ω̂ε,N := {1 + ‖U(T )‖H1 ≤ ε−p2N/2}, then (A.5) and the Markov inequality imply

P(Ω̂cε,N ) ≤ Cεp2N/2 exp(η‖U0‖2) ,

where C = C(T ). Combining (6.43) and (6.44), on Ω∗ε,N := Ω̂ε,N ∩ Ω∗,1ε,N , it holds that

|〈φ, ψmj + JNj,m(U(T ))〉| ≤ C‖φ‖(εp2Nκ +N4εp2N/2) ≤ C‖φ‖(1 +N3)εp2Nκ ≤ εp2Nκ/2‖φ‖ ,

provided ε ≤ ε1. Finally, notice that

P((Ω∗ε,N )c) ≤ P(Ω̂cε,N ) + P(Ωcε,N ) ≤ CNτ+3 exp(η‖U0‖2)εp2Nκ .

Proof of Proposition 4.4. By Lemma 6.12 on a set Ωε,Ñ one has∑
b̃(U)∈BN,Ñ (U)

|〈φ, b̃(U(T ))〉|2 ≤
∑
|j|≤Ñ
m∈{0,1}

|〈φ, σmj 〉|2 + |〈φ, ψmj + J Ñj,m(U(T ))〉|2 ≤ Ñ2εp2Ñκ‖φ‖2 ≤ εp2Ñκ/2‖φ‖2 ,

whenever ε ∈ (0, ε2).

7 Mixing and Other Convergence Properties

In this final section we show how the abstract results developed in [HM08, KW12] (and cf. [Shi06, HMS11,
KS12]) can be applied in our setting to establish mixing and pathwise attraction properties for the unique
invariant measure associated to (2.1)–(2.2) and to thus complete the proof of the main result Theorem 2.3.

We begin by introducing some notations. For any r ∈ (0, 1] and any ς > 0 define

ρr(U1, U2) := inf
γ∈C1([0,1],H),
γ(0)=U1,γ(1)=U2

∫ 1

0

exp(ςr‖γ(%)‖2)‖γ′(%)‖d%. (7.1)

The fixed value of ς is determined in the course of the proof of Theorem 2.3, (i). As shown in [HM08], ρr is
metric on H for any r > 0 and for any U1, U2 ∈ H one has

‖U1 − U2‖ ≤ ρr(U1, U2) ≤ exp(ςrmax{‖U1‖, ‖U2‖})(‖U1 − U2‖). (7.2)
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For brevity of notation we set ρ := ρ1 and for any Φ : H → R define

‖Φ‖Lip := sup
U1 6=U2

|Φ(U1)− Φ(U2)|
ρ(U1, U2)

.

On the other hand, for any µ1, µ2 ∈ Pr(H), the set of Borealian probability measures on H, denote

C(µ1, µ2) := {Γ ∈ Pr(H ×H) : Γ(A×H) = µ1(A),Γ(H ×A) = µ2(A), for any A ∈ B(H)} , (7.3)

where B(H) is a collection of all Borel subsets of H. Elements Γ ∈ C(µ1, µ2) are typically referred to as a
coupling of µ1, µ2. The distance ρ defined by (7.1) can be used to induce a Wasserstein-Kantorovich distance
(see e.g. [GS02, HM08, KS12] for further details) on the set

Pr1(H) :=

{
µ ∈ Pr(H) :

∫
H

ρ(0, u)dµ(u) <∞
}
.

This distance is defined by two equivalent formulas

ρ(µ1, µ2) := sup
‖Φ‖Lip≤1

∣∣∣∣∫
H

Φ(U)dµ1(U)−
∫
H

Φ(U)dµ2(U)

∣∣∣∣ = inf
Γ∈C(µ1,µ2)

∫
H

ρ(U1, U2)dΓ(U1, U2). (7.4)

While the metric defined in (7.4) is a useful for proving contraction properties of {P ∗t }t≥0, it is less transparent
for applications involving observables on H. As such we consider the class of observables Oς defined in (2.18).
By [HM08, Proposition 4.1], ‖Φ‖Lip ≤ C‖Φ‖ς , and therefore ‖Φ‖Lip <∞ for Φ ∈ Oς .

Next, we recall in our setting abstract results from [HM08, Theorem 3.4, Theorem 4.5] and from [KW12]
(and cf. [Shi06, KS12]).

Theorem 7.1 (Hairer-Mattingly, [HM08]). Suppose U = U(t, U0) is a stochastic (semi)flow on a Hilbert
space H with a C1 dependence on U0 ∈ H. Define the Markov semigroups {Pt}t≥0, {P ∗t }t≥0 associated to
U(t, U0) as in (2.20), (2.21) and assume that there exists ς > 0 such that

(a) there exists C > 0 and a decreasing function ξ : [0, 1]→ [0, 1] with ξ(1) < 1 such that27

E
(
exp(rς‖U(t, U0)‖2)(1 + ‖∇U0U(t, U0)‖)

)
≤ C exp(rςξ(t)‖U0‖2)

for every U0 ∈ H, r ∈ [1/4, 3] and t ∈ [0, 1].

(b) a gradient estimate on the Markov semigroup, (2.29), holds for η = ς/2.

(c) given any ג > 0, r ∈ (0, 1), and ε > 0, there exists T ∗ = T ,ג)∗ r, ε, ς) such that for any T > T∗,

inf
‖U1‖,‖U2‖≤ג

sup
Γ∈C(P∗T δU1

,P∗T δU2
)

Γ{(U ′, U ′′) ∈ H ×H : ρr(U
′, U ′′) < ε} > 0. (7.5)

Here, δU is the Dirac measure concentrated at U and C(δU1 , δU2) is defined in (7.3).

Then there exist positive constants C, γ > 0 such that

ρ(P ∗t µ1, P
∗
t µ2) ≤ C exp(−γt)ρ(µ1, µ2), (7.6)

for every µ1, µ2 ∈ Pr1(H) and every t > 0. Moreover, there exists a unique invariant measure µ∗ (that is
P ∗t µ∗ = µ∗ for every t ≥ 0) and∣∣∣∣EΦ(U(t, U0))−

∫
H

Φ(Ū)dµ∗(Ū)

∣∣∣∣ ≤ C exp(−γt+ ς‖U0‖2)‖Φ− ∫ Φdµ∗‖η (7.7)

which holds for every U0 ∈ H and every Φ ∈ Oς (cf. (2.18)).

27The statement of this result in [HM08] is slightly more general and involves the use of Lyapunov functions V . Here we
simply set V (x) = exp(ς|x|2).
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Theorem 7.2 (Komorowski-Walczuk [KW12]). Let {Pt}t≥0 be a Feller Markov semigroup on a metric space
(H, ρ) with the continuity property: limt→0 PtΦ(U0) = Φ(U0) for all Φ ∈ Cb(H), U0 ∈ H. Let Pt(U0, A)
be the associated transition functions (cf. (2.19)). Suppose that for some C, γ > 0 the contraction property
(7.6) holds for every µ1, µ2 ∈ Pr1(H). Assume moreover that, for every R > 028

sup
t≥0

sup
U0∈BR

∫
H

[ρ(0, U)]3Pt(U0, dU) <∞ , (7.8)

where BR := {U0 ∈ H : ρ(0, U0) < R}. Then, there exists a unique invariant probability measure µ∗ ∈
Pr1(H) such that, for any Φ ∈ C1(H) and any U0 ∈ H

1

T

∫ T

0

Φ(U(t, U0))→
∫
H

Φ(U)dµ∗(U) in probability.

Moreover, the limit σ2 = limT→∞
1
T E
(∫ T

0

(
Φ(U(t, U0)) dt−

∫
H

Φ(U)dµ∗(U)
)
dt
)2

exists and

lim
T→∞

P

(
1√
T

∫ T

0

(
Φ(U(t, U0))−

∫
H

Φ(U)dµ∗(U)

)
dt < ξ

)
= Xσ(ξ) ,

where Xσ is the distribution function of a normal random variable with mean zero and variance σ2.

Using Theorem 7.1,7.2 we now establish the attraction properties (i)–(iii) to complete the proof of The-
orem 2.3.

Proof of Theorem 2.3. We begin by establishing the conditions for (a)–(c) of Theorem 7.1. To prove (a),
note that for any ς, r > 0, (A.12) with η = rς κ4 e

−κ/4 implies we have for any t ∈ [0, 1]

‖∇U0
U(t, U0)‖ = ‖J0,t‖ ≤ C exp

(
rς
κ

4
e−κ/4

∫ t

0

‖U(s)‖2H1 ds

)
≤ C exp

(
rς
κ

4
e−κt/4

∫ t

0

‖U(s)‖2H1 ds

)
,

where C = C(r, ς) and κ = min{ν1, ν2}. As such we have established (a) with ξ(t) := exp(−tκ/2) follows
from (A.2) and for any ς < η∗/3. Set ς := η∗/6. Since Proposition 2.6 holds for any η > 0 we infer the
second condition (b) for the given ς.

To establish (c), (7.5), observe that, for any ג > 0 and ε > 0 there exists T∗ = T∗(ג, ε) ≥ 0 such that

inf
‖U0‖≤ג

PT (U0, {U ∈ H; ‖U‖ ≤ ε}) > 0, (7.9)

for every T > T∗. A detailed proof of (7.9) which applies in our setting can be found in [EM01, CGHV13],
here we just briefly sketch the essential ideas. If there is no forcing, that is, if there is no Brownian motion,
then by the dissipativity of (2.1)–(2.2), there is a T ∗ = T ∗(‖U0‖, ε) such that ‖U(T,U0)‖ < ε/2. However,
for any open ball B(δ) := {x ∈ R2|Z| : |x| < δ} there is a non-zero probability that the Brownian motion
remains in B(δ) over the whole interval [0, T ]. Then by the continuous dependence of solutions with respect
to external forcing we conclude (7.9) for sufficiently small δ > 0. More precisely we can use the change of
variable Ū = U − σW and standard estimates to show that ‖U(T,U0)‖ < ε.

We now establish (7.5) from (7.9) as follows. For U1, U2 ∈ H and T > 0 define Γ̃U1,U2
∈ Pr(H ×H) by

Γ̃U1,U2
(A1 ×A2) := PT (U1, A1)PT (U2, A2) for any A1, A2 ∈ B(H).

28The condition (7.8) given here is slightly stronger than the conditions (which appear as H2, H3) given for the results
appearing in [KW12].
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From (7.3) it follows that Γ̃U1,U2
∈ C(P ∗T δU1

, P ∗T δU2
), that is, Γ̃U1,U2

couples P ∗T δU1
and P ∗T δU2

. As such,
using (7.2) and (7.9), we infer that, for any ,ג ε > 0, r ∈ (0, 1), and any T > T min{ε,ג)∗ exp(−3ς)/2, 1})

inf
‖U1‖,‖U2‖≤ג

sup
Γ∈C(P∗T δU1

,P∗T δU2
)

Γ{(U ′, U ′′) ∈ H ×H : ρr(U
′, U ′′) < ε}

≥ inf
‖U1‖,‖U2‖≤ג

Γ̃U1,U2
{(U ′, U ′′) ∈ B1 ×B1 : ‖U ′‖+ ‖U ′′‖ < ε exp(−ςr)}

≥
(

inf
‖U1‖≤ג

PT (U1, {U ′ ∈ H : ‖U ′‖ < min(ε/2 · exp(−3η), 1)})
)2

> 0 ,

where B1 := {U ∈ H : ‖U‖ < 1} and (7.5) follows.
Having established the conditions (a)–(c) in Theorem 7.1 we infer (7.6) and (7.7) for (2.1)–(2.2). To prove

(2.22) it suffices to show that | ∫ Φdµ∗| ≤ C‖Φ‖ς , where µ∗ is the unique invariant measure of (2.1)–(2.2).
However, ∣∣∣∣∫ Φ(U)dµ∗(U)

∣∣∣∣ ≤∫ exp(ς‖U‖2) exp(−ς‖U‖2)|Φ(U)|dµ∗(U)

≤‖Φ‖ς
∫
H

exp(ς‖U‖2)dµ∗(U) ,

and therefore it suffices to show ∫
H

exp(ς‖U‖2)dµ∗(U) ≤ C <∞, (7.10)

where ς = η∗/6. For any R > 0, define

ΦR(U) =

{
exp(ς‖U‖2) for ‖U‖ < R,

exp(ςR2) for ‖U‖ ≥ R,

and note that ΦR ∈ Cb(H). Now using that P ∗t µ∗ = µ∗ and (A.2) we have for any T > 0, ג > 0∣∣∣∣∫ ΦR(U)dµ∗(U)

∣∣∣∣ ≤
∣∣∣∣∣
∫
Bג(H)

PTΦR(U)dµ∗(U)

∣∣∣∣∣+

∣∣∣∣∣
∫
Bג(H)c

PTΦR(U)dµ∗(U)

∣∣∣∣∣
≤

∣∣∣∣∣
∫
Bג(H)

E exp(ς‖U(t, U0)‖2)dµ∗(U0)

∣∣∣∣∣+ exp(ςR2)µ∗(H \Bג(H))

≤C

∣∣∣∣∣
∫
Bג(H)

exp
(
ςe−

T
2 min{ν1,ν2}‖U0‖2

)
dµ∗(U0)

∣∣∣∣∣+ exp(ςR2)µ∗(H \Bג(H))

≤C exp
(
ςe−

T
2 min{ν1,ν2}2ג

)
+ exp(ςR2)µ∗(H \Bג(H)) .

Now since T ≥ 0 is arbitrary we infer that for ,ג R > 0 that∣∣∣∣∫ ΦR(U)dµ∗(U)

∣∣∣∣ ≤ C + exp(ςR2)µ∗(H \Bג(H)) ,

where C is independent of .ג Passing ∞→ג and then R→∞ and using the monotone convergence theorem
we conclude (7.10) and (2.22) follows.

The remaining convergence properties (2.23), (2.24) follow once we show that the conditions for The-
orem 7.2 are met. The Feller property and stochastic continuity of Pt follow immediately from the well-
posedness properties of (2.1)–(2.2) as recalled above in Proposition 2.2. It remains to verify the bound in
(7.8).
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By (7.2) and (A.2) we have for already fixed ς = η∗/6 and for any U0 ∈ H and any t ≥ 0 that∫
[ρ(0, U)]3Pt(U0, dU) ≤

∫
exp(3ς‖U‖2)‖U‖3Pt(U0, dU) ≤ C

∫
exp(η∗‖U‖2)Pt(U0, dU)

= CE(exp(η∗‖U(t, U0)‖2)) ≤ C exp(η∗‖U0‖2) ,

where the constant C is independent of U0 and t ≥ 0. Thus, in view of (7.2), we infer the bound (7.8) and
hence the convergences (2.23), (2.24). This completes the proof of Theorem 2.3.

A Appendix

Section A.1 collects various moment estimates for (2.1)–(2.2). In Section A.2 we briefly review of some
aspects of the Malliavin calculus relevant to our analysis above.

A.1 Moment Estimates

In this section we provide details for the moments bound used throughout the manuscript. As above the
dependence on physical parameter in constants is suppressed in what follows, see Remark 2.1. Denote

ζ∗ :=
ν1ν2

g2
.

Then, cf. (2.4),
‖U‖2 = ζ∗‖ω‖2L2 + ‖θ‖2L2 , ‖U‖2H1 = ζ∗‖∇ω‖2L2 + ‖∇θ‖2L2 , . (A.1)

Also recall, that our domain is T2 = R2/(2πZ2), and therefore the Poincarè inequality takes the form
‖U‖H ≤ ‖U‖H1 .

Most of the forthcoming bounds have previously been obtained in the context of the stochastic Navier-
Stokes equations and some other nonlinear SPDEs with a dissipative (parabolic) structure. In order to
modify them for the Boussinesq system, we need to compensate for the ‘buoyancy’ term g∂xθ when carrying
out energy estimates. This is accomplished by differently weighting the temperature and momentum equa-
tions.29 We illustrate this strategy in the proof of (A.2); proofs of other estimates use the same approach
in combination with a straightforward modification of existing methods for the (stochastic) Navier-Stokes
equation (see e.g. [HM06, Deb11, KS12]) and they are omitted.

In the first lemma we state a priori bounds on U . These estimates reflect parabolic type regularization
properties of (2.1)–(2.2), and are particularly useful for obtaining spectral bounds on the Malliavin matrix
carried out in Section 4–6.

Lemma A.1. Fix any U0 ∈ H and let U(·) = U(·, U0) be the unique solution of (2.1)–(2.2) with U(0) = U0.
Denote κ := min{ν1, ν2}. There exists η∗ > 0 such that:

(i) For any T > 0 and η ∈ (0, η∗],

E exp

(
η‖U(T )‖2 + η

κ

4
e−κT/4

∫ T

0

‖U(t)‖2H1dt

)
≤ C exp

(
ηe−κT/2‖U0‖2

)
, (A.2)

E exp

(
sup

τ∈[0,T ]

η‖U(τ)‖2 + η
κ

2

∫ T

0

‖U(t)‖2H1dt

)
≤ C exp

(
η‖U0‖2 + η‖σθ‖2T

)
, (A.3)

for a constant C independent of T .

29As noted in the introduction, we are considering the so called ‘HRB approximation’ in which the Boussinesq equation
is considered with periodic boundary conditions after subtracting off the temperature differential profile, see [CRG+06]. In
our setup the temperature differential is zero, and therefore the dissipativity properties we derived here do not contradict the
situation illuminated in [CRG+06]; we can exclude the possibility of ‘grow-up’ solutions.
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(ii) For any N > 0 and η ∈ (0, η∗],

E exp

(
η

N∑
k=0

‖U(k)‖2
)
≤ exp

(
%η‖U0‖2 + κN

)
, (A.4)

where %,κ > 0 are positive constants independent of N and U0.

(iii) For any s ≥ 0, p ≥ 2, and η ∈ (0, η∗] there exists C = C(η, s, T, p) such that

E

(
sup

t∈[T/2,T ]

‖U(t)‖pHs

)
≤ C exp(η‖U0‖2) . (A.5)

(iv) For any p ≥ 2, s ≥ 0, η > 0, and T > 0 there is C = C(s, T, p, η) such that

E
(
‖U‖p

C
1
4 ([T/2,T ],Hs)

)
≤ C exp(η‖U0‖2) . (A.6)

Proof. For any f ∈ H1 denote

‖f‖2D(A1/2) := ζ∗ν‖∇f1‖2L2 + µ‖∇f2‖2L2 .

From (2.1)–(2.2) we have

d‖ω‖2L2 + 2ν1‖∇ω‖2L2dt = 2g〈∂xθ, ω〉dt, (A.7)

d‖θ‖2L2 + 2ν2‖∇θ‖2L2dt = ‖σθ‖2dt+ 2〈σθ, θ〉dW . (A.8)

Now we weight differently the equations (note the difference to the Navier-Stokes equation). Multiplying
(A.7) by ζ∗ and adding to (A.8) we obtain (recall (A.1)) for any η > 0

d(η‖U‖2) = η(2gζ∗〈∂xθ, ω〉+ ‖σθ‖2 − 2‖U‖2D(A1/2))dt+ 2η〈σθ, θ〉dW . (A.9)

Since by Poincarè inequality

2ζ∗g|〈∂xθ, ω〉| ≤ ν1ζ
∗‖ω‖2L2 + ν2‖∇θ‖2L2 ≤ ν1ζ

∗‖∇ω‖2L2 + ν2‖∇θ‖2L2 = ‖U‖2D(A1/2) , (A.10)

κ‖U‖2 ≤ ‖U‖2D(A1/2) ,

we have for Z(t) := η
κ‖U(t)‖2

D(A1/2)
and V (t) := η‖U(t)‖2 that V ≤ Z and

η(2gζ∗〈∂xθ, ω〉+ ‖σθ‖2 − 2‖U‖2D(A1/2)) ≤ η‖σθ‖
2 − κZ ,

4η2|〈σθ, θ〉|2 ≤ 4η2‖σθ‖2‖θ‖2L2 ≤ 4η2‖σθ‖2‖U‖2 ≤ 4η‖σθ‖2Z .

Thus, by [HM08, Lemma 5.1], for any η ∈ (0, κ/(4‖σθ‖2)) one has

E exp

(
η‖U(T )‖2 +

κe−κT/4

4

∫ T

0

Z(s) ds

)
≤ C exp

(
ηe−κT/2‖U0‖2

)
.

Now, (A.2) follows from κZ(s) = η‖U(s)‖2
D(A1/2)

≥ ηκ‖U(s)‖2H1 .

The estimates (A.3), (A.4) follow similarly as in [HM06, proof of Lemma 4.10] and (A.5) follows as in
[KS12, Proposition 2.4.12]. Finally, (A.6) follows from (A.5) and the fact that ‖W l

k‖C1/4

[T/2,T ]

has finite p-th

moment for any p ≥ 1, see [BBAK92].
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Remark A.2. In the following estimates η appears only on the right hand side, and therefore they remain
valid if η is increased, thus we do not assume any upper bound on η.

Next lemmata collect estimates on linearizations of (2.1)–(2.2). Recall the definitions of the operators

J0,t and its adjoint K0,t given in (3.2) and (3.12) respectively. Moreover, for any t ≥ s ≥ 0 let J (2)
s,t : H →

L(H,L(H)) be the second derivative of U with respect to an initial condition U0. Observe that for fixed U0

and any ξ, ξ′ ∈ H the function ρ(t) := J (2)
s,t (ξ, ξ′) is the solution of

∂tρ+Aρ+∇B(U)ρ+∇B(Js,tξ)Js,tξ′ = Gρ, ρ(s) = 0. (A.11)

Lemma A.3. For each η > 0 and 0 < s < t, we have the pathwise estimate

‖Js,t‖ ≤ exp

(
η

∫ t

s

‖U(s)‖2H1ds+ C(t− s)
)
, (A.12)

where C = C(η) is independent of s, t. Moreover, for each τ ≤ T , p ≥ 1, and η > 0 there is C = C(η, T−τ, p)
such that

E sup
s<t∈[τ,T ]

‖Js,t‖p ≤ C exp
(
η‖U0‖2

)
, (A.13)

E sup
s<t∈[τ,T ]

‖Ks,t‖p ≤ C exp(η‖U0‖2), (A.14)

E sup
s<t∈[τ,T ]

‖J (2)
s,t ‖p ≤ C exp

(
η‖U0‖2

)
. (A.15)

Proof. Proof of (A.12) follows along the same lines as [HM06, Lemma 4.10.3]. By taking expectation, (A.13)
follows from (A.12), (A.2), and (A.3). Finally, (A.14) follows from (A.13) by duality and (A.15) is similar
to [HM06, Lemma 4.10.4].

The next lemma provides us with estimates to initial time in a weak norm, which allows us to avoid some
technical arguments in Section 6.2 (cf. [HM11]).

Lemma A.4. For any p ≥ 2, T > 0, and η > 0 there is C = C(p, T, η) such that

E sup
t∈[T/2,T ]

‖∂tKt,T ξ‖pH−2 ≤ C exp
(
η‖U0‖2

)
‖ξ‖p . (A.16)

Proof. Recall that ρ∗ = Kt,T ξ solves (3.12) and notice that ‖B(U ′, U ′′)‖ ≤ ‖U ′‖H1‖U ′′‖H1 for any U ′, U ′′ ∈
H1. Since ‖Aρ∗‖H−2 ≤ ‖ρ∗‖ and

‖(∇B(U))∗ρ∗ − (∇G(U))∗ρ∗‖H−2 ≤ sup
‖ψ‖H2≤1

(|〈(∇B(U))∗ρ∗, ψ〉|+ |〈(∇G(U))∗ρ∗, ψ〉|)

≤ sup
‖ψ‖H2≤1

(|〈ρ∗, B(U,ψ)〉|+ |〈ρ∗, B(ψ,U)〉|+ |〈ρ∗,∇G(U)ψ〉|)

≤‖ρ∗‖ sup
‖ψ‖H2≤1

(2‖U‖H1‖ψ‖H1 + |g|‖ψ‖H1)

≤C‖ρ∗‖(‖U‖H1 + 1) ,

then (A.16) follows from (A.14) and (A.5).

The next lemma is a version of the Foias-Prodi estimate, [FP67], used in this work. Specifically the
estimate (A.17) is employed in the decay estimate (3.16).
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Lemma A.5. For every p ≥ 1, T > 0, δ, γ > 0 there exists N∗ = N∗(p, T, δ, γ), such that for any N ≥ N∗
one has (recall that QN was defined in (2.9))

E‖QNJ0,T ‖p ≤ γ exp
(
δ‖U0‖2

)
,

E‖J0,TQN‖p ≤ γ exp
(
δ‖U0‖2

)
. (A.17)

Proof. The proof is analogous to [HM06, Lemma 4.17] and it essentially follows from the fact that A has
compact resolvent (see [HM11, proof of Theorem 8.1]).

We next present estimates on the operators As,t and the inverse of the regularized Malliavin matrix that
are primarily used in Section 3.4.

Lemma A.6. For 0 < s < t define As,t, A∗s,t, and Ms,t by to (3.5), (3.11), and (3.13) respectively. Then

‖As,t‖L(L2([s,t];Rd),H) ≤ C
(∫ t

s

‖Jr,t‖2dr
)1/2

(A.18)

for a constant C independent of s, t. Moreover,

‖A∗s,t(Ms,t + Iβ)−1/2‖L(H,L2([s,t];Rd)) ≤ 1 , (A.19)

‖(Ms,t + Iβ)−1/2As,t‖L(L2([s,t];Rd),H) ≤ 1 , (A.20)

‖(Ms,t + Iβ)−1/2‖L(H,H) ≤ β−1/2 . (A.21)

Here, L(X,Y ) denotes the operator norm of the linear map between the given Hilbert spaces X and Y .

Proof. The first bound (A.18) follows from the definition of As,t and Hölder’s inequality. Next, since Ms,t

is self-adjoint

‖(Ms,t + Iβ)1/2U‖2H = 〈(Ms,t + Iβ)1/2U, (Ms,t + Iβ)1/2U〉 = 〈(Ms,t + Iβ)U,U〉
= β‖U‖2H + 〈As,tA∗s,tU,U〉 = β‖U‖2H + ‖A∗s,tU‖2L2([s,t];Rd)

for any U ∈ H. Setting U = (Ms,t+ Iβ)−1/2V ((Ms,t+ Iβ)−1/2 is invertible) we immediately obtain (A.19)
and (A.21). Finally, (A.20) follows from (A.19) by duality.

For the ‘cost of control’ bounds (3.9) on v is Section 3.4 we also made use of bounds on the Malliavin
derivative of the random operators Js,t, As,t, and A∗s,t for 0 < s < t. Observe that for τ ≤ t (see [HM11])

Dj
τJs,tξ =

{
J (2)
τ,t (σθej ,Js,τξ) if s ≤ τ ,
J (2)
s,t (Jτ,sσθej , ξ) if s > τ .

(A.22)

We refer the reader to Appendix A.2 for further details on the Malliavin derivative operator D and the
associated spaces D1,p on which it acts.

Lemma A.7. For any 0 ≤ s < t the random operators Js,t, As,t, A∗s,t are differentiable in the Malliavin
sense. Moreover, for any η > 0 and p ≥ 1 we have the bounds

E‖Dj
τJs,t‖p ≤ C exp(η‖U0‖2) , (A.23)

E‖Dj
τAs,t‖

p
L(L2([s,t],Rd),H)

≤ C exp(η‖U0‖2) , (A.24)

E‖Dj
τA∗s,t‖

p
L(H,L2([s,t],Rd))

≤ C exp(η‖U0‖2) , (A.25)

where C = C(η, p).

Proof. The proof of (A.23)–(A.25) is based on the observation (A.22) and the bound (A.15). Further details
can be found in [HM06].



Ergodic and Mixing Properties of the Boussinesq Equations with a Degenerate Random Forcing 51

A.2 Some Elements of the Malliavin Calculus

In this section, we recall in our context and notations some elements of the Malliavin calculus used in above.
For further general background on this vast subject see, for example, [Bel87, Mal97, Nua06, Nua09].

Fix a stochastic basis (Ω,F , {Ft}t≥0,P,W ), where W = (W1, . . . ,Wd) is a d-dimensional standard Brow-
nian motion, {Ft}t≥0 is a filtration to which this process W is adapted. In application to (2.1)–(2.2), d = 2|Z|
represents the number of independent noise processes driving the system. Fix any T ∈ (0,∞).

We first recall the definition of the Malliavin derivative D which is defined on a subset of Lp(Ω) for p > 1
(see [Nua09, Nua06] or [Mal97]). We begin by explaining how this operator D acts on ‘smooth random
variables’. For any given n ≥ 1, consider a Schwartz function f : Rn → R, that is, f that satisfies

sup
z∈Rn

|zαDβf(z)| <∞

for any multi-indices α, β. For such functions define F ∈ Lp(Ω), p > 1 by

F = f

(∫ T

0

g1 · dW, . . . ,
∫ T

0

gn · dW

)
,

where g1, · · · , gn are deterministic elements in L2([0, T ],Rd). For such F the Malliavin derivative is defined
as

DF :=

n∑
k=1

∂f

∂xk

(∫ T

0

g1 · dW, . . . ,
∫ T

0

gn · dW

)
gk. (A.26)

Notice that DF ∈ Lp(Ω;L2([0, T ],Rd)). To extend D to a broader class of elements we adopt the norm

‖F‖pD1,p := E|F |p + E‖DF‖p
L2([0,T ];Rd)

,

and denote Dom(D) = D1,p be the closure of the above defined functions F under this norm ‖ · ‖D1,p .
We can repeat the above construction for random variables taking values in a separable Hilbert space H.

In this case start by considering ‘elementary’ functions of the form

F :=
∑
i∈I

fi

(∫ T

0

gi1 · dW, . . . ,
∫ T

0

gini · dW

)
hi =:

∑
i∈I

Fihi , (A.27)

where i ∈ I is a finite index set, ni ∈ N, fi : Rni → R are Schwartz functions, hi elements in H and, as
above, gi1, · · · , gini , i ∈ I are deterministic elements in L2([0, T ],Rd). Define

DF :=
∑
i∈I

D(Fi)hi . (A.28)

Then D is a closeable operator from Lp(Ω,H) to Lp(Ω;L2([0, T ],Rd)⊗H). With a slight abuse of notation
we denote

‖F‖pD1,p := E‖F‖pH + E‖DF‖p
L2([0,T ],Rd)⊗H. (A.29)

As above, we take D1,p = D1,p(H) to be the closure of the functions F of the form (A.28) under the norm
‖ · ‖D1,p .

For F ∈ D1,2, we adopt the notations

DsF := (DF )(s), s ∈ [0, T ], DjF := (DF )j , j = 1, . . . d,
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i.e. (DF )j is the jth component of DF as an element in Rd (or Rd ⊗ H), for fixed ω, t ∈ Ω × [0, T ].
Furthermore, in view of (A.26), we have that if F ∈ D1,2 is Fs measurable for some s ∈ [0, T ], then

DtF = 0, for every t > s. (A.30)

With these basic definitions in place, we now introduce two important elements of Malliavin’s theory, the
chain rule and the integration by part formula. The Malliavin chain rule states that for any φ ∈ C1

b (Rm)
(continuously differentiable functions with bounded derivatives) and F = (F1, · · · , Fm) with Fi ∈ D1,2 one
has that φ(F ) ∈ D1,2 and

Djφ(F ) = ∇φ(F ) ·DjF =

m∑
i=1

∂xiφ(F )DjFi (j ∈ {1, · · · , d}) , (A.31)

see e.g. [Nua06, Proposition 1.2.3]. Note also that this chain rule extends to the Hilbert space setting; if
φ ∈ C1

b (H) and F ∈ D1,2(H) then φ(F ) ∈ D1,2 and Djφ(F ) = ∇φ(F ) ·DjF .30

Next, we introduce the Malliavin integration by part formula which can be understood in terms of the
adjoint operator to D. For D : D1,2 ⊂ L2(Ω) → L2(Ω;L2[0, T ],Rd) define its adjoint D∗ : Dom(D∗) ⊂
L2(Ω;L2[0, T ],Rd)→ L2(Ω) by

E〈DF, v〉L2([0,T ],Rd) = E(FD∗v) , (A.32)

for any F ∈ D1,2 and any v ∈ Dom(D∗). If F has the form (A.27) we define

E〈DF, v〉L2([0,T ],Rd) :=
∑
i∈I

E〈DFi, v〉L2([0,T ],Rd)hi =
∑
i∈I

E(FiD
∗v)hi = E

(∑
i∈I

FihiD
∗v

)
= E(FD∗v) ,

and therefore, after passing to the limit, we see that (A.32) holds true for H valued elements F ∈ D1,2(H)
and v ∈ Dom(D∗) ⊂ L2(Ω;L2([0, T ],Rd)). Note in particular that even in this infinite dimensional setting
the duality in (A.32) remains in L2([0, T ],Rd).

The map D∗ is called the Skorokhod integral (see [Nua06]) and is often written as

D∗v =:

∫ T

0

v · dW, (A.33)

so that (A.32) reads as

E〈DF, v〉L2([0,T ],Rd) = E

(
F

∫ T

0

v · dW

)
. (A.34)

The reason behind this notation is that if v ∈ L2(Ω;L2[0, T ],Rd) and is adapted to Ft, then v ∈ Dom(D∗)

and
∫ T

0
v · dW is the classical Doeblin-Itō integral. In general, interpreting v as an H = L2([0, T ];Rd) valued

random variable, we have that D1,2(L2([0, T ];Rd)) ⊂ Dom(D∗).
In order to make quantitative estimates for (A.33) we finally recall a generalized form of the classical Itō

isometry. If v ∈ D1,2(L2([0, T ];Rd)), then Dv ∈ L2(Ω;L2([0, T ];Rd)⊗L2([0, T ];Rd)) = L2(Ω;L2([0, T ]2;Rd×d))
and the generalized Itō isometry takes the form:

E

(∫ T

0

v · dW

)2

= E‖v‖2L2([0,T ],Rd) + E
∫ T

0

∫ T

0

Tr(Dsv(r)Drv(s))dsdr , (A.35)

see e.g. [Nua09, Chapter 1, (1.54)]. In view of (A.30), the classical Itō isometry is recovered from (A.35)
when v is Ft-adapted. More generally such observations concerning the Ft measurability of v in conjunction
with (A.30), (A.35) are used in a crucial fashion to obtain the bound (3.9).

30For some of the estimates in Section 3.4 (cf. (3.9)) we used a more general form of the product rule that can be found in
e.g. [PV].
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[H6̈7] L. Hörmander, Hypoelliptic second order differential equations, Acta Math. 119 (1967), 147–171. MR 0222474
(36 #5526)
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