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Abstract

We study the Celis-Dennis-Tapia (CDT) problem: minimize
a non-convex quadratic function over the intersection of two el-
lipsoids. In contrast to the well-studied trust region problem
where the feasible set is just one ellipsoid, the CDT problem
is not yet fully understood. Our main objective in this paper
is to narrow the difficulty gap that occurs when the Hessian of
the Lagrangian is indefinite at all Karush-Kuhn-Tucker points.
We prove new sufficient and necessary conditions both for local
and global optimality, based on copositivity, giving a complete
characterization in the degenerate case.
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1 Introduction

We study the Celis-Dennis-Tapia (CDT) problem [CDT85]: minimize a non-
convex quadratic function over the intersection of two ellipsoids. This prob-
lem is a natural extension of the well-studied trust region problem [CGT00]
in which there is just one ellipsoidal constraint. Such problems arise quite
naturally in iterative non-linear optimization procedures where in one iter-
ation step, the objective and the constraints are approximated by quadratic
models. However, while any trust region problem can be solved both in
theory and in practice quite efficiently, the additional constraint makes the
CDT problem substantially more challenging. Many articles have treated
the analysis of this and related problems, including [AZ09, BE06, BM13,
BA13, CY99, CY09, GP05, JLL09, JL13, PX97, YB13, Yua90, YZ03].

Our main objective in this paper is to narrow the so-called difficulty gap.
As long as the Hessian of the Lagrangian is positive semidefinite (psd) at
some Karush-Kuhn-Tucker (KKT) point, methods similar to those devel-
oped for the trust region problem can be employed, so these cases are con-
sidered easy. However, it may happen that the Hessian of the Lagrangian is
indefinite (throughout, we use this to mean “not psd”) at all KKT points,
and this phenomenon is what is usually meant by the “difficulty gap”. In this
paper, we prove new sufficient and necessary conditions for both global and
local optimality, based on copositivity, giving a complete characterization in
the degenerate case.

We denote vectors in n-dimensional Euclidean space Rn by bold-faced
letters, the positive orthant by Rn+ and transposition by >. We write In for
the identity matrix of order n and use o and O respectively for the zero
vector and matrix, with their dimensions determined by the context. The
Euclidean norm is denoted by ‖ · ‖.

An important property of symmetric matrices is that of copositivity. For
a given cone Γ ⊂ Rn, recall that a symmetric n × n matrix S is said to be
Γ–copositive if and only if

d>Sd ≥ 0 for all d ∈ Γ , (1)

i.e., if S generates a quadratic form taking no negative values over the cone
Γ. Therefore, any psd matrix S is Γ-copositive, regardless of Γ, but not
conversely. A matrix S is said to be strictly Γ–copositive if and only if

d>Sd > 0 for all d ∈ Γ \ {o} .

Any positive-definite matrix is strictly Γ-copositive, but again, not con-
versely.
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By scaling the constraints and making an affine transformation, we can
reduce any CDT problem to the following form:

z∗ := min
{
f(x) : ‖x‖ ≤ 1 and ‖A>x− a‖ ≤ 1

}
, (2)

with
f(x) = 1

2 x
>Qx + q>x (3)

where Q is a real symmetric matrix, with no assumptions on its inertia, A
is an n×m matrix with full row rank n, and q ∈ Rn, a ∈ Rm. To avoid the
cases where the feasible set is empty or consists only of a single point, we
assume that that Slater’s condition holds: there exists x̂ ∈ Rn such that

max
{
‖x̂‖, ‖A>x̂− a‖

}
< 1 . (4)

This can be checked by solving a convex trust region problem.

Consider the following two trust region problems:

min {f(x) : ‖x‖ ≤ 1} and

min
{
f(x) : ‖A>x− a‖ ≤ 1

}
.

}
(5)

Any global solution to either of the trust region problems (5) that is also fea-
sible for the other one constitutes a global solution to the CDT problem (2).
Moreover, any local solution x̄ to (2) where at most one of the constraints is
binding, i.e. which satisfies

min
{
‖x̄‖, ‖A>x̄− a‖

}
< 1 , (6)

is necessarily a local solution to one of the trust region problems (5), and
we know that there can be at most one local, non-global solution to a trust
region problem [Mar94].

This leaves us with only one problematic region of the feasible set, namely

B =
{
x ∈ Rn : ‖x‖ = 1 and ‖A>x− a‖ = 1

}
(7)

where both constraints are binding. We focus on this case in what follows.

It is convenient to square and scale the constraints in (2), replacing the
CDT problem by

z∗ = min {f(x) : r(x) ≤ 0 and s(x) ≤ 0} , (8)

where
r(x) = 1

2(x>x− 1) ≤ 0 and

s(x) = 1
2(x>AA>x− 2a>A>x + ‖a‖2 − 1) ≤ 0 .

}
(9)
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For later use, observe that the gradients of the objective (3) and constraints
(9), evaluated at a given point x̄, are

ḡ := ∇f(x̄) = Qx̄ + q ,

x̄ = ∇r(x̄) ,
ȳ := ∇s(x̄) = AA>x̄− Aa .

 (10)

We end this section by noting that whenever x̄ ∈ B and the constraint
gradients {x̄, ȳ} are linearly dependent, they necessarily are positively de-
pendent in the sense that ȳ = αx̄ for some α > 0. This follows from the
Slater condition (4), as convexity of the constraints and r(x̄) = s(x̄) = 0
imply that for any strictly feasible point x̂,

max
{

(x̂− x̄)>x̄, (x̂− x̄)>ȳ
}
≤ max {r(x̂)− r(x̄), s(x̂)− s(x̄)} < 0 .

This would be impossible if ȳ = αx̄ with α ≤ 0.

2 Optimality Conditions

2.1 The polyhedral tangent cone and KKT points

Let x̄ ∈ Rn be given, with x̄ feasible for (8). We define the polyhedral tangent
cone associated with x̄ as the set of directions along which the binding
constraints are feasible to first order, i.e.,

Γ(x̄) :=


{
d ∈ Rn : x̄>d ≤ 0 and ȳ>d ≤ 0

}
if x̄ ∈ B{

d ∈ Rn : x̄>d ≤ 0
}

if s(x̄) < r(x̄) = 0{
d ∈ Rn : ȳ>d ≤ 0

}
if r(x̄) < s(x̄) = 0

Rn if max {r(x), s(x̄)} < 0

 .

(11)
This cone is sometimes called the set of linearized feasible directions [NW06,
Def. 12.3]. If x̄ is locally optimal for the CDT problem (8), Slater’s condition
implies the local first-order condition

ḡ>d ≥ 0 for all d ∈ Γ(x̄) (12)

which is equivalent to x̄ being a KKT point, i.e., a feasible point satisfying
the KKT conditions

ḡ + ūx̄ + v̄ȳ = o and ūr(x̄) = v̄s(x̄) = 0 (13)

for some (not necessarily unique) multiplier pair (ū, v̄) ∈ R2
+. We refer

to (x̄; ū, v̄) as a KKT triple. Clearly, the second condition in (13) holds
automatically when x̄ ∈ B.
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2.2 Global optimality criteria via extremal increments

Since f is a quadratic function, it must be either convex or concave along
feasible rays emanating from x̄. If d>Qd ≥ 0, condition (12) prohibits any
feasible value along a ray given by d ∈ Γ(x̄) from falling below the current
value f(x̄). Indeed, we have the general exact second-order expansion which
will be central for the arguments in the sequel:

f(x̄ + td) = f(x̄) + t ḡ>d + t2

2 d>Qd . (14)

So the only chance to improve the locally optimal value is along a feasible
negative-curvature direction d ∈ Γ(x̄) with d>Qd < 0. For these directions,
it is clear that ḡ>d > 0 and that the best improving value (if it exists at all)
must be obtained at the extremal increment given by

td := max {t ≥ 0 : max {r(x̄ + td), s(x̄ + td)} ≤ 0} , (15)

which actually satisfies max {r(x̄ + tdd), s(x̄ + tdd)} = 0. For simplicity, as-
sume that x̄ ∈ B. Then, expanding r and s as we did for f in (14) and
dividing by td > 0, we obtain

td = min

{
−2x̄>d

‖d‖2
,− 2ȳ>d

‖A>d‖2

}
(16)

(observe that by strict convexity of the constraints, we only need to consider
feasible directions d ∈ Γ(x̄) where both x̄>d < 0 and ȳ>d < 0). Thus we
arrive at the following characterization of global optimality of problem (8):

Theorem 2.1 Let x̄ ∈ B be a KKT point of the CDT problem (8). Then
x̄ solves (8) globally if and only if both the following homogeneous cubic
conditions are satisfied:

(x̄>d) d>Qd ≤ (ḡ>d) ‖d‖2 for all d ∈ Γ(r)(x̄) and

(ȳ>d) d>Qd ≤ (ḡ>d) ‖A>d‖2 for all d ∈ Γ(s)(x̄) ,

}
(17)

where

Γ(r)(x̄) :=
{
d ∈ Γ(x̄) : (x̄>d) ‖A>d‖2 ≥ (ȳ>d) ‖d‖2

}
and

Γ(s)(x̄) :=
{
d ∈ Γ(x̄) : (x̄>d) ‖A>d‖2 ≤ (ȳ>d) ‖d‖2

}
.

 (18)

Proof. First note that Γ(r)(x̄) is the set of all feasible directions d with

td = −2x̄>d
‖d‖2 , by (16). Then the first inequality follows from plugging this
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td into the formula (14) and requiring that the extremal increment be non-
negative, i.e., f(x̄ + tdd) − f(x̄) ≥ 0. The second condition follows in the
same way. 2

In some sense, the above result resembles a global optimality condition
for quadratic optimization problems from [Bom92] where as many condi-
tions are needed as there are inactive constraints. However, the conditions
there are homogenous quadratic, and the cones are polyhedral. Here, the
quadraticity of the constraints requires us to employ cubic polynomials both
for the inequalities and the cone constraints in the conditions. A similar op-
timality condition was presented, for the special case of concave f , in [HU01,
Theorem 4] and derived by ε-subdifferential calculus.

This result could easily be extended to the cases where x̄ 6∈ B, but this
would be of little interest. Indeed, it is more concise to assume also that
x̄ + tdd ∈ B. Then we arrive at only one cubic condition:

Theorem 2.2 Let x̄ ∈ B be a KKT point of the CDT problem (8) and
assume that all global solutions of (8) are contained in B. Then x̄ solves (8)
globally if and only if the following condition is satisfied:

(x̄>d) d>Qd ≤ (ḡ>d) ‖d‖2 for all d ∈ Γ(0)(x̄) , (19)

where

Γ(0)(x̄) =
{
d ∈ Rn : x̄>d ≤ 0 and (x̄>d) ‖A>d‖2 = (ȳ>d) ‖d‖2

}
. (20)

Proof. For any d ∈ Γ(x̄) \ {o}, we have x̄ + td ∈ B for some t > 0, i.e.,
r(x̄ + td) = s(x̄ + td) = 0, only if

t = td and td = −2x̄>d

‖d‖2
= − 2ȳ>d

‖A>d‖2
,

by (15) and (16). So we see that d ∈ Γ(r)(x̄) ∩ Γ(s)(x̄) = Γ(0)(x̄) as specified
in (20). By the assumptions of the theorem, we only need to check these
extremal increments f(x̄ + tdd) − f(x̄) ≥ 0 for d ∈ Γ(0)(x̄), where both
inequality conditions in (17) coincide. Hence the result. 2

Notice that both inequalities in (17) and the one in (19) are automatically
satisfied for directions d ∈ Γ(x̄) with non-negative curvature d>Qd ≥ 0 at a
KKT point x̄, by virtue of (12). So, if x̄ is a KKT point, Γ(x̄)-copositivity
of Q is a sufficient condition for global optimality. We will strengthen this
result significantly in the next section.
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2.3 Lagrangian duality

We start with some observations on the well-studied dual problem. Most of
them can be found also in [AZ09, BE06, CY99, CY09, JL13, YZ03, Yua90].
The full Lagrangian function is

L(x;u, v) = f(x) + ur(x) + vs(x)

= 1
2 x
>H(u, v)x + (q− 2vAa)>x + 1

2

[
‖a‖2 − u− v

]
,

(21)

where
H(u, v) = Q + uIn + vAA> for (u, v) ∈ R2

+ (22)

is the Hessian of L w.r.t. x. Denote by

Θ(u, v) = inf {L(x;u, v) : x ∈ Rn}

the Lagrangian dual function which is finite at (u, v) if and only if both
H(u, v) is psd and the equation

∇xL(x;u, v) = H(u, v)x + q− vAa = o (23)

has a solution in x.

Any KKT point x̄ solves (23) w.r.t. at least one multiplier pair (ū, v̄).
Conversely, if there is a feasible solution x̄ to (23) for some (ū, v̄) ∈ R2

+ sat-
isfying ūr(x̄) + v̄s(x̄) = 0, then x̄ is a KKT point. But there are cases where,
even for a KKT multiplier pair (ū, v̄) corresponding to a global solution x̄,
the Hessian H(ū, v̄) is indefinite (recall our convention that this means it is
not psd, and hence has at least one negative eigenvalue).1

The Lagrangian dual problem is

z∗D := sup
{

Θ(u, v) : (u, v) ∈ Rn+
}
. (24)

Note that the optimal dual variables (u∗, v∗) maximizing Θ(u, v), if they
exist at all, cannot coincide with a KKT multiplier pair (ū, v̄) when H(ū, v̄)
is indefinite as then Θ(ū, v̄) = −∞, despite the fact that

H(ū, v̄)x̄ + q− v̄Aa = ḡ + ūx + v̄ȳ = o ,

i.e., that x̄ is a stationary point (but not a minimizer) of L(.; ū, v̄). In fact,
it is shown in [NWY00] that there is a duality gap, i.e., z∗D < z∗, if and only
if, for all KKT triples (x̄; ū, v̄) ∈ Rn × R2

+, the Hessian H(ū, v̄) is indefinite.
Furthermore, it is also shown in [NWY00] that the Lagrangian dual prob-
lem coincides with the semidefinite optimization relaxation of (8). So this
relaxation, too, is tight, if and only if H(ū, v̄) is psd for some multiplier pair
(ū, v̄) ∈ R2

+ at some KKT point x̄, which then must be a global solution.

1[JLL09, Cor.5.4] offers simple sufficient conditions on the problem data (Q, q,A, a)
that rule out this phenomenon, namely that no off-diagonal entry of Q or AA> is strictly
positive and {Aa,−q} ⊆ Rn

+ .
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2.4 Copositivity on the polyhedral tangent cone

From the previous discussion, it is quite understandable that the case of
indefinite H(ū, v̄) has been considered to be difficult. We now propose a
new approach to this case using copositivity, which at first sight may seem
a difficult property to verify. However, while checking Γ-copositivity in the
standard case where Γ = Rn+ is NP-hard [DG13, MK87], there are cones for
which this condition is easy to check. The simplest example is obtained by
taking any halfspace for Γ. Indeed, since (−d)>S(−d) = d>Sd, we see that
any matrix S is Γ-copositive if and only if it is Γ ∪ −Γ-copositive, so if Γ is
a halfspace, Γ-copositivity is equivalent to definiteness.

For the polyhedral tangent cone Γ(x̄) defined in the previous section, the
following holds.

Lemma 2.1 Let x̄ be a feasible point of (8) and define Γ(x̄) as in (11).

(a) If max {r(x̄), s(x̄)} < 0, then Γ(x̄) = Rn;

(b) if r(x̄) < s(x̄) = 0, then Γ(x̄) ∪ −Γ(x̄) = Rn;

(c) if s(x̄) < r(x̄) = 0, then Γ(x̄) ∪ −Γ(x̄) = Rn;

(d) if s(x̄) = r(x̄) = 0, then Γ(x̄) =
{
d ∈ Rn : max

{
x̄>d, ȳ>d

}
≤ 0
}

.

Proof. Immediate from the definition (11). 2

Hence, the only case where Γ(x̄)-copositivity is different from definiteness
is when x̄ ∈ B. We will see in Section 3 that in this case too, checking
copositivity on the “wedge” Γ(x̄) is not difficult.

2.5 Global optimality conditions

Now we can formulate a first condition which narrows the difficulty gap.
Specifically, this result is stronger than the one given by [NWY00], which
states that if H(ū, v̄) is psd for a KKT triple (x̄; ū, v̄) ∈ Rn × R2

+, then x̄ is
globally optimal.

Theorem 2.3 Let (x̄; ū, v̄) ∈ Rn×R2
+ be a KKT triple for the CDT problem

(8). If H(ū, v̄) is Γ(x̄)–copositive, then x̄ is a global solution to (8).
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Proof. Let x 6= x̄ be (8)-feasible. Then, by convexity, d = x − x̄ ∈ Γ(x̄).
Further, as L is a quadratic function underestimating f on the primal-dual
feasible set but coincides with it at x̄, we know

f(x) ≥ L(x; ū, v̄) = L(x̄; ū, v̄) + d>∇xL(x̄; ū, v̄) + 1
2 d
>H(ū, v̄)d

= f(x̄) + 1
2 d
>H(ū, v̄)d ≥ f(x̄) + 0 = f(x̄) ,

by the copositivity assumption, using the property that ∇xL(x̄; ū, v̄) = o.
Hence x̄ is globally optimal. 2

Lemma 2.1 implies that, if x̄ /∈ B, the Γ(x̄)-copositivity condition reduces
to the familiar psd condition on H(ū, v̄), but the new result is stronger if
x̄ ∈ B. Indeed, we shall see in Section 4 that the copositivity condition
sometimes holds when the psd condition does not. Furthermore, the psd
condition does not necessarily hold at a global minimizer x̄ of the CDT
problem even when just one constraint is binding: in such a case x̄ is a
local but not a global minimizer of the associated trust region problem (see
Section 4).

It is well known [Yua90] that at an optimal solution x̄ of (8), the Hessian
H(ū, v̄) can have at most one negative eigenvalue if the corresponding KKT
multiplier pair (ū, v̄) is unique, cf. also [PX97, Thm.3.8]. In any case, H(ū, v̄)
cannot have more than two negative eigenvalues [PX97, Thm.4.3]. We now
show that if the Hessian is both copositive and indefinite, the multiplier pair
must be unique and the Hessian must have exactly one negative eigenvalue.

Theorem 2.4 Suppose (x̄; ū, v̄) ∈ B × R2
+ is a KKT triple for the CDT

problem (8). If H(ū, v̄) is Γ(x̄)-copositive but indefinite, then

(a) the gradients {x̄, ȳ} of the binding constraints are linearly independent;

(b) the multipliers (ū, v̄) are unique;

(c) the Hessian H(ū, v̄) of the Lagrangian has exactly one negative eigen-
value (counting multiplicity).

Proof. Suppose that ȳ = αx̄ for some α ∈ R. We know from the discussion
at the end of Section 1 that α > 0. Then Γ(x̄) =

{
d ∈ Rn : x̄>d ≤ 0

}
is a half

space, rendering H(ū, v̄) psd in contradiction of the assumption. This shows
Assertion (a) which implies, by a standard linear independence constraint
qualification reasoning, Assertion (b). Finally, assume there are orthogonal
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eigenvectors {b, c} of H(ū, v̄) such that (βb + γc)>H(u, v)(βb + γc) < 0 for
all [β, γ]> ∈ R2 \ {o}, and consider the linear system

C

[
β
γ

]
≤
[

0
0

]
where C =

[
b>x̄ c>x̄
b>ȳ c>ȳ

]
.

If C is singular, we can choose [β, γ]> ∈ R2\
{

[0, 0]>
}

such that C[β, γ]> = o;
otherwise, choose [β, γ]> = C−1[−1,−1]>. In either case, we get βb + γc ∈
Γ(x̄), conflicting with the copositivity condition. So H(ū, v̄) can have at
most one negative eigenvalue. On the other hand, we assumed H(ū, v̄) to be
indefinite. Hence Assertion (c) follows. 2

We now turn to the degenerate case. We say that a KKT point x̄ ∈ B
is degenerate if the constraint gradients are linearly dependent, i.e., ȳ = αx̄
for some α > 0, and hence

ḡ = −(ū+ αv̄)x̄. (25)

If ḡ = o, then the KKT multipliers ū and v̄ must both be zero. More
generally,

(ũ, 0) = (‖ḡ‖, 0) and (0, ṽ) = (0,
‖ḡ‖
α

) (26)

are both KKT multiplier pairs for x̄, as are all pairs in their convex hull, a
line segment in R2

+ that we parametrize as follows:

(ū(t), v̄(t)) = ((1− t)ũ, tṽ) : t ∈ [0, 1]. (27)

Because of the nonnegativity condition, no other multiplier pairs for x̄ exist.
We now show that in this degenerate case, x̄ is globally optimal if and only
if

H(ū(t), v̄(t)) = Q + (1− t)ũIn + tṽAA> = (1− t)H(ũ, 0) + tH(0, ṽ) (28)

is psd for some t ∈ [0, 1]. Note that H(ū(t), v̄(t)) is identically H(0, 0) = Q if
ḡ = o.

Theorem 2.5 Suppose x̄ ∈ B is a degenerate KKT point. Then x̄ is globally
optimal for (8) if and only if H(ū(t), v̄(t)) is psd for some t ∈ [0, 1].

Proof. We already know [NWY00] that if H(ū(t), v̄(t)) is psd for some t,
then x̄ is globally optimal. Now suppose x̄ is globally optimal, and apply
Theorem 2.1. Using (26) we have

ḡ = −ũx̄ = − ũ
α
ȳ
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so (17) reduces to

d>Qd ≥ −ũ‖d‖2 for all d with ‖ATd‖2 ≥ α‖d‖2 and
d>Qd ≥ −ũ‖ATd‖2/α for all d with ‖ATd‖2 ≤ α‖d‖2 .

}
(29)

Note that we have dropped the inequality x̄>d < 0: requiring these condi-
tions to hold on a strict half-space is equivalent to requiring them on the
whole space, since they do not depend on the sign of d and the orthogonal
complement of x is dense in Rn. So,

dTH(ũ, 0)d ≥ 0 for all d with ‖ATd‖2 ≥ α‖d‖2 (30)

and
dTH(0, ṽ)d ≥ 0 for all d with ‖ATd‖2 ≤ α‖d‖2 . (31)

Hence,
max

{
dTH(ũ, 0)d, dTH(0, ṽ)d

}
≥ 0 for all d ∈ Rn. (32)

Now we apply a result on matrix pencils due to Yuan [Yua90, Lemma 2.3]
showing that there must therefore exist t ∈ [0, 1] such that H(ū(t), v̄(t))
given in (28) is psd. 2

2.6 Local optimality conditions

We continue by discussing a well-known set of conditions for local optimality.
To this end, we introduce the reduced polyhedral tangent cone comprising
all feasible directions along which no first-order change in the objective is
possible:

Γred(x̄) :=
{
d ∈ Γ(x̄) : ḡ>d = 0

}
. (33)

We first present results on Γred(x̄) that are similar to those given in Lemma 2.1
for Γ(x̄), but now specifically for KKT points x̄, and with a focus on the signs
of the multipliers ū, v̄.

Lemma 2.2 Let (x̄; ū, v̄) ∈ Rn × R2
+ be a KKT triple for (8). Then:

(a) If ū = v̄ = 0, then Γred(x̄) = Γ(x̄)⊃ {x̄, ȳ}⊥;

(b) if ū = 0 < v̄, then Γred(x̄)= ȳ⊥;

(c) if v̄ = 0 < ū, then Γred(x̄)= x̄⊥;

(d) if min {ū, v̄} > 0, then Γred(x̄)= {x̄, ȳ}⊥.
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Proof. The cases now position ḡ in relation to {x̄, ȳ}, since ḡ = −ux̄− vȳ.
The claim follows from the definitions (33) and (11). 2

Using Γred(x̄)-copositivity conditions, in a more or less explicit way, for
second-order necessary conditions is by now fairly standard even for more
general smooth optimization problems; see, e.g. [Bor82, Con80, Maj71], or
for a recent and slightly more general treatment, [Bom13]. However, in the
degenerate case (25) the KKT multipliers are not unique (unless ḡ = o,
which means (a) above applies). In such cases constraint qualifications that
are needed by the standard theory do not hold for our problem and we need
a more careful analysis. When the multipliers are not unique, all of (b), (c)
and (d) above apply for different choices of the multiplier pair (ū, v̄), but
this is not a contradiction as all three equations reduce to

Γred(x̄) = x̄⊥ = ȳ⊥ = ḡ⊥. (34)

Assume that x̄ is a degenerate KKT point and that ḡ 6= o, let t ∈ [0, 1]
be given, defining the KKT multiplier pair (ū(t), v̄(t)) associated with x̄ as
in (27), and define the reduced feasible set

Mt := {x ∈ Rn : r(x) ≤ 0 , s(x) ≤ 0 and ū(t)r(x) + v̄(t)s(x) = 0}

which is strictly contained in the feasible set

M = {x ∈ Rn : r(x) ≤ 0 and s(x) ≤ 0} .

The reduced polyhedral cone Γred(x̄) plays essentially the same role for Mt

as Γ(x̄) does for M . The key difference is that M is convex with non-empty
interior by assumption (4) whereas Mt is non-convex and has no interior
points. Furthermore, even the weakest of the constraint qualifications em-
ployed in the recent paper [Bom13] (specifically, the reflected Abadie con-
straint qualification) need not be satisfied at x̄ for the reduced feasible set
Mt.

Before we give a general analysis, let us look at the planar case n =
2 for illustrative purposes; we will also need this for arguments proving
Theorem 2.6 below which investigate the planar section M ∩ span {x̄, d}
for arbitrary d ∈ Γred(x̄). If n = 2, then the boundary of the first CDT
constraint, C = {x : r(x) = 0}, is a circle and that of the second constraint,
E = {x : s(x) = 0}, is an ellipse, and by definition, we have M0 = C∩M and
M1 = E ∩M . Since ȳ = αx̄ for α > 0, C and E are tangent to each other
at x̄ but they may have different curvatures there. If the curvature of C is
smaller than that of E locally around x̄, then locally, E is contained in M
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so M1 and E coincide locally, but M0 contains only the point x̄. To be more
precise, there is an ε > 0 such that, for the disc Dε = {x : ‖x− x̄‖ < ε}, we
have

M1 ∩Dε = E ∩M ∩Dε = E ∩Dε but M0 ∩Dε = C ∩M ∩Dε = {x̄} .

Similarly, if the curvature of C is larger than that of E locally around x̄,
then

M0 ∩Dε = C ∩M ∩Dε = C ∩Dε but M1 ∩Dε = E ∩M ∩Dε = {x̄} .

So, when the curvatures are not equal, any vector d ∈ Γred(x̄) = x⊥ (actually,
it is unique up to a scalar multiple) is tangent at x̄ to a feasible trajectory
in either M0 or M1.

But what happens if both curvatures coincide, i.e., if C is the circle
osculating E at x̄ ? Only if x̄ is one of the apexes of E, do we have either
of the situations described above. Otherwise, the situation is as depicted in
Figure 1, with

M0∩Dε = C∩M∩Dε = C+∩Dε and M1∩Dε = E∩M∩Dε = E−∩Dε ,

where C+ is a half-circle and D− is a half-ellipse, both emanating from x̄
but in opposite directions. Thus, for d ∈ Γred(x̄), either d is tangent to a
trajectory in M0 at x̄ and and −d is tangent to a trajectory in M1 at x̄, or
vice versa.

So, in the degenerate case with n = 2 we have three different cases: E
is locally inside C, C is locally inside E, or neither (the case depicted in
Figure 1). But in all three cases, for either t = 0 or t = 1, it is the case that
for every vector d ∈ Γred(x̄), either d or −d is a starting tangent vector for a
feasible trajectory {x(τ) : τ ≥ 0} contained in Mt. Hence

f(x(τ)) = L(x(τ); ū(t), v̄(t)) = L(x(τ); ū(t), v̄(t)) + τ2

2 d>H(ū(t), v̄(t))d + o(τ2)
(35)

implying that if x̄ is locally optimal, then d>H(ū(t), v̄(t))d ≥ 0. In summary,
in the degenerate case with n = 2, a necessary condition for x̄ to be locally
optimal is that for either t = 0 or t = 1, H(ū(t), v̄(t)) is Γred(x̄)-copositive.

However, the case n > 2 is different, requiring a more refined reasoning
which exploits the special structure of Γred(x̄) as expressed in Lemma 2.2. To
this end, we need an extension of Yuan’s lemma that we used in Section 2.5:
this is given by [JLL09, Thm.3.3]. See also [PT07] for a thorough survey on
the S-Lemma which is closely related to these results.
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Lemma 2.3 Let C and D be two symmetric n × n matrices and Γ a cone
such that Γ ∪ −Γ is a linear subspace of Rn. If

max
{
x>Cx, x>Dx

}
≥ 0 for all x ∈ Γ , (36)

then there is a t ∈ [0, 1] such that St := tC + (1− t)D is Γ-copositive.

Proof. The assertion is a paraphrase of [JLL09, Thm.3.3]. 2

Remark 2.1 We are not aware of any extension of Lemma 2.3 to cones Γ,
if Γ∪−Γ is not a linear subspace, even if Γ were a polyhedral cone. This is
the reason for emphasizing the structure of Γred(x̄) in Lemma 2.2.

Now we are ready to prove our main result on local optimality conditions.

Theorem 2.6 Let x̄ ∈ B be a KKT point for (8).

(a) If H(ū, v̄) is strictly Γred(x̄)-copositive for some multiplier pair (ū, v̄) ∈
R2

+ satisfying the KKT conditions (13), then x̄ is a local minimizer of
(8);

(b) If x̄ is a local minimizer of (8) then H(ū, v̄) is Γred(x̄)-copositive for some
multiplier pair (ū, v̄) ∈ R2

+ satisfying the KKT conditions (13).

Proof. (a) is standard and can be found, e.g., in [Bor82, Bom13]. In
the nondegenerate case, meaning that either x̄ 6∈ B or x̄ ∈ B with x̄ and ȳ
linearly independent, (b) is also standard: see e.g. [Bom13, Thm.1.1]. When
x is degenerate and ḡ = o, the only possible KKT multiplier pair (ū, v̄) is
(0, 0), so again standard results apply to establish (b). Indeed, Γred(x̄) =
Γ(x̄), cf. Lemma 2.2(a), and the counterpart of M0 = M satisfy Abadie’s
constraint qualification even if {x̄, ȳ} are linearly dependent, so [Bom13,
Thm.1.1] applies, too. So it remains to deal with the degenerate case (25)
with ḡ 6= o. For any given d ∈ Γred(x̄), we may restrict our analysis to
the planar section M ∩ span {x̄, d} and conclude that either d or −d is a
starting tangent vector for a feasible trajectory {x(τ) : τ ≥ 0} contained in
Mt ∩ span {x̄, d} where either t = 0 or t = 1. Hence, using (35), we conclude
that since x̄ is locally optimal, it must be the case that d>H(ū(t), v̄(t))d ≥ 0
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for either t = 0 or t = 1.2 So, we have

max
{
d>H(ũ, 0)d, d>H(0, ṽ)d

}
≥ 0 for all d ∈ Γred(x̄) .

Next recall from (34) that in the degenerate case, Γred(x̄) is a linear subspace
of Rn with codimension one. Hence, applying Lemma 2.3, we conclude that
there exists t ∈ [0, 1] such that H(ū(t), v̄(t)) given in (28) is Γred(x̄)-copositive,
in other words, there is a t such that the condition d>H(ū(t), v̄(t))d ≥ 0 holds
for all d ∈ Γred(x̄). 2

Remark 2.2 Consider again Lemma 2.2. In case (a), Γred(x̄) = Γ(x̄), so
according to Theorem 2.4, Γred(x̄)-copositivity of H(ū, v̄) implies that H(ū, v̄)
has at most one negative eigenvalue in this case. In cases (b),(c) and (d)
of Lemma 2.2, Γred(x̄) is a linear subspace of codimension one or two, so
Γred(x̄)-copositivity of H(ū, v̄) immediately implies that the number of negative
eigenvalues of H(ū, v̄) is at most two, with the number equal to two only
if x̄ is a nondegenerate KKT point with both constraints binding and both
multipliers nonzero.

2.7 Summary: a hierarchy of optimality conditions

It is convenient here to use ψ(M) to denote the number of negative eigenval-
ues of a symmetric matrix M, counting their multiplicities. Let (x̄; ū, v̄) be
a nondegenerate KKT triple for (8). Then the following implications hold:

H(ū, v̄) is positive semidefinite (37)

⇒ H(ū, v̄) is Γ(x̄)-copositive (38)

⇒ x̄ solves CDT globally and ψ(H(ū, v̄)) ≤ 1;

H(ū, v̄) is strictly Γred(x̄)-copositive (39)

⇒ x̄ solves CDT locally

⇒ H(ū, v̄) is Γred(x̄)-copositive (40)

⇒ ψ(H(ū, v̄)) ≤ 2 .

Stronger results hold in the degenerate case. Let x̄ be a degenerate KKT
point for (8), with the line segment of multiplier pairs in R2

+ given in (27).

2We are indebted to W. Schachinger for this observation (personal communication).
Note that when n = 2, this means that H(ū(t), v̄(t)) is Γred(x̄)-copositive for either t = 0
or t = 1, but in higher dimensions the relations between the curvatures vary with d, so
that whether t is 0 or 1 in the condition d>H(ū(t), v̄(t))d ≥ 0 depends on d.
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Then the following equivalence and implications hold:

H(ū(t), v̄(t)) is positive semidefinite for some t ∈ [0, 1]

⇔ x̄ solves CDT globally;

H(ū(t), v̄(t)) is strictly Γred(x̄)-copositive for some t ∈ [0, 1]

⇒ x̄ solves CDT locally

⇒ H(ū(t), v̄(t)) is Γred(x̄)-copositive for some t ∈ [0, 1]

⇒ ψ(H(ū(t), v̄(t))) ≤ 1 for some t ∈ [0, 1] .

3 Verifying the copositivity conditions

In cases (b), (c) and (d) of Lemma 2.2, the reduced polyhedral tangent
cone Γred(x̄) is a linear subspace, say S, with codimension one or two. Let
Z be a matrix whose columns form an orthonormal basis for S. Then S-
copositivity of B is equivalent to positive semidefiniteness of Z>BZ which can
be checked by computing its Cholesky factorization using pivoting [Hig02].
In the case of verifying strict copositivity, pivoting is not required: if the
Cholesky factorization of Z>BZ using exact arithmetic breaks down without
pivoting, Z>BZ is not positive definite. In case (a) of Lemma 2.2, Γred(x̄)
equals Γ(x̄).

Lemma 2.1 characterizes the polyhedral tangent cone Γ(x̄). We have
already mentioned that copositivity on a half-space is equivalent to positive
semidefiniteness on the whole space. So, the only challenging case is when
x̄ ∈ B, in which case Γ(x̄) is the wedge

{
d ∈ Rn : max

{
x̄>d, ȳ>d

}
≤ 0
}

.
First, we characterize copositivity for the canonical quarter-space in Rn.

Theorem 3.1 Let Υ = R2
+ × Rn−2 and partition an n × n matrix B as

follows:

B =

[
R S>

S M

]
where R is a 2× 2-matrix.

Then B is Υ-copositive if and only if the following two conditions hold:

(a) M is positive semidefinite and MM†S = S, i.e., ker M ⊆ ker S;

(b) R− S>M†S is positive semidefinite or has no negative entries.

Here M† is the Moore-Penrose pseudoinverse of M.
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Proof. Suppose B is Υ-copositive. Let y ∈ R2
+ and z ∈ Rn−2 constitute an

arbitrary vector x = [y>, z>]> ∈ Υ and define

hy(z) = x>Bx = y>Ry + 2z>Sy + z>Mz .

Fixing y = o gives 0 ≤ ho(z) = z>Mz for all z ∈ Rn−2 and therefore definite-
ness of M. Now, given any y ∈ R2

+, the function hy must be bounded from
below and therefore attains its minimum at zy = −M†Sy. Further, since
Mzy = −Sy for all y ∈ R2

+, we also have MM†Sy = Sy for all y ∈ R2, so
MM†S = S. Finally, the condition

0 ≤ hy(zy) = y>(R− S>M†S)y for all y ∈ R2
+

establishes R2
+-copositivity of R−S>M†S. But it is well known (and easy to

see) that an R2
+-copositive matrix of order two with a negative entry must

be positive semidefinite. Sufficiency follows by the reverse argument noting
x>Bx = hy(z) ≥ hy(zy) if M is psd with MM†S = S. 2

Finally we need to relate Γ(x̄)-copositivity to Υ-copositivity. Choose any
orthonormal basis {z3, . . . , zn} of {x̄, ȳ}⊥ and complete this by choosing two
unit norm vectors zi, i = 1, 2, satisfying z>1 x̄ < 0 = z>1 ȳ and z>2 ȳ < 0 = z>2 x̄.
Then set Z = [z1, . . . , zn], so

Z>Z =

[
U O>

O In−2

]
where U =

[
1 ρ
ρ 1

]
with ρ = z>1 z2 . (41)

Clearly, H is Γ(x̄)-copositive if and only if B = Z>HZ is Υ-copositive.

Note that checking copositivity of B can always be performed in poly-
nomial time if ψ(B) ≤ 2 or ψ(B) = n− 1 [Din96, Jar13].

4 Numerical experiments

We conducted some numerical experiments to observe how often the various
cases occurred on randomly generated CDT problems. We obtained feasible
problems as follows: the entries of Q, A, q and a were independently gener-
ated from the normal distribution, and Q was replaced by its real symmetric
part; then a vector x̃ was generated in the same way, normalized to have
length one, and then A and a were scaled by 1/‖A>x̃− a‖, guaranteeing the
existence of at least one feasible point and therefore, generically, that the
Slater condition holds. The vector x̃ was then discarded. A candidate x̄ for
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the global solution of each problem was then obtained by a local optimiza-
tion method.3

We then tested the psd condition (37), the Γ(x̄)-copositivity condition
(38) and the Γred(x̄)-copositivity condition (39) listed in the sequence of
implications in Section 2.7 for each of 10,000 randomly generated problems
for each dimension n from 2 to 8. Note that the two-dimensional case n = 2
receives particular attention in the recent theoretical study [YB13].

Specifically, the second, third and fourth columns of Table 1 report the
number of times that each of (37), (38) but not (37), and (39) but not (38)
occurred for the instances where two constraints are binding at x̄. Since
conditions (37) and (38) are mathematically equivalent when just one con-
straint is binding, it is only necessary to count the cases that (37), and
(39) but not (37), hold, while all three conditions (37), (38) and (39) are
equivalent when no constraint is binding so we need only check whether (37)
holds. Thus, there are a total of six different cases counted in each line of
Table 1. No other cases can occur in exact arithmetic, assuming that all
computed solutions x̄ are at least locally optimal, and remarkably, even in
inexact arithmetic, in only one case out of 70,000 was local optimality not
confirmed. Note also that although cases (39) and (40) are mathematically
distinct, they are not distinguishable using inexact arithmetic, and so we
may regard them as numerically equivalent. Since the problems were ran-
domly generated, we need not be concerned about the degenerate case or
cases where strict complementarity does not hold.

We see from Table 1 that when two constraints are binding at x̄, by far
the most common scenario is that H(ū, v̄) is psd, but the case that it is Γ(x̄)-
copositive but not psd occurs with a nonzero probability. Not surprisingly,
this probability decreases as n increases. The second most likely scenario
with two binding constraints is that neither condition holds, indicating that
there is still scope for further theoretical work to close the CDT “difficulty
gap” in characterizing global minima, but as long as the Γred(x̄)-copositivity
condition holds strictly, we are assured that x̄ is at least a local minimizer.

When only one constraint is binding, although the psd condition on
H(ū, v̄) (equivalently, Γ(x̄)-copositivity) usually holds, this is not always the

3 We used BFGS to minimize the exact penalty function p(x) = f(x)+ρmax(r(x), 0)+
ρmax(s(x), 0), for some ρ > 0 that is increased as needed to ensure feasibility. As discussed
in [LO13], BFGS is a surprisingly effective method to find local minimizers of nonsmooth,
nonconvex functions such as p. Since one can expect only to find local minimizers in gen-
eral, we did this repeatedly from 10 randomly generated starting points for each problem
instance, selecting the result x̄ with the lowest value of f as our candidate for the global
minimizer. The results summarized in Table 1 and discussed below show that in by far
the majority of cases, global optimality was confirmed, and in all except one of 70,000
tests at least local optimality was confirmed.
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# binding 2 2 2 1 1 0

condition psd Γ-copos Γred-copos psd Γred-copos psd

n = 2 2591 56 215 6455 488 194
n = 3 3618 50 448 5572 296 16
n = 4 4214 39 418 5151 178 0
n = 5 4396 40 409 5043 112 0
n = 6 4582 26 361 4954 77 0
n = 7 4646 18 291 4985 60 0
n = 8 4688 14 244 5007 47 0

Table 1: Number of times the psd and copositivity conditions on H(ū, v̄)
occur at computed minimizers x̄ of 10,000 randomly generated instances of
feasible CDT problems for each n from 2 to 8, categorized by the number
of binding constraints at x̄.

case. This might seem surprising since H(ū, v̄) is always psd at the global
solution of a trust-region problem, but the explanation is simple: a global
solution to the CDT problem with only one binding constraint must always
be a local solution to the corresponding trust-region problem, but the global
solution of the trust-region problem may be infeasible for the CDT problem.
In these cases, as long as the Γred(x̄)-copositivity condition holds strictly, we
are assured that the computed solution is at least a local minimizer of the
CDT problem.

When no constraint is binding, all three conditions are equivalent and
guarantee that x̄ is a global minimizer. However, the probability that this
case occurs decreases rapidly as n increases, because a necessary condition
is that the randomly generated matrix Q is psd.
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M1 = {s(x) = 0} ∩M

M0 = {r(x) = 0} ∩M

Γred(̄x)

{s(x) = 0} \M

{r(x) = 0} \M

d
•

Figure 1: Osculation of C (orange/blue) and E (red/green) at a non-apex x̄
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