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Abstract

We study non-convex quadratic minimization problems under
(possibly non-convex) quadratic and linear constraints, and char-
acterize both Lagrangian and Semi-Lagrangian dual bounds in
terms of conic optimization. While the Lagrangian dual is equiv-
alent to the SDP relaxation, the Semi-Lagrangian dual we study
is equivalent to a natural copositive relaxation. This way, we ar-
rive at a full hierarchy of tractable conic bounds tighter than the
usual Lagrangian dual (and thus than the SDP) bounds. In par-
ticular, the usual zero-order approximation by doubly nonnega-
tive matrices improves upon the Lagrangian dual bounds. We
also relate the new relaxation with an alternative, still tighter
one which was earlier introduced by Burer who showed that his
formulation is indeed tight in an important subclass of the prob-
lem type studied here. Further we specify sufficient conditions
for tightness of the Semi-Lagrangian relaxation and show that
copositivity of the slack matrix guarantees global optimality for
KKT points of this problem. Motivated by these observations,
we propose a seemingly new approximation hierarchy based on
LMIs on matrices of basically the original order plus additional
linear constraints, in contrast to more familiar sum-of-squares
or moment approximation hierarchies. This approach may have
merits in particular for large instances where it is important to
employ only a few inequality constraints for the conic problems.
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1 Introduction and basic concepts

As is well known, the effectiveness of Lagrangian relaxation – and optimiza-
tion methods in general – heavily depends on the formulation of the problem,
and of the treatment of constraints. For instance, if the ground set is not
the full space but rather incorporates some (simpler) constraints, we arrive
at Semi-Lagrangian relaxation yielding tighter bounds than the classic La-
grangian relaxation which uses the full Euclidean space Rn as the ground
set. However, Semi-Lagrangian dual bounds cannot always be calculated
efficiently.

Here we study non-convex quadratic minimization problems under (pos-
sibly non-convex) quadratic and linear constraints, and characterize both
duals in terms of conic optimization. Due to their pivotal role for applica-
tions, bounds for such type of problems receive currently much interest in
the optimization community, a for sure non-exhaustive list is [2, 12, 13, 19,
20, 21, 22].

In absence of linear constraints, the full Lagrangian dual problem is
equivalent to the direct semidefinite relaxation. Under additional linear
constraints, we arrive at an LMI description of the Lagrangian dual which is
an extension thereof, while the Semi-Lagrangian dual can be shown to result
from a natural copositive relaxation. This way, we arrive at a full hierarchy
of tractable conic bounds tighter than the usual Lagrangian dual (and thus
than the SDP) bounds. In particular, the usual zero-order approximation
by doubly nonnegative matrices improves upon the Lagrangian dual bounds.
Therefore we manage a tractable approximation tightening towards Semi-
Lagrangian dual bounds.

The resulting approximation hierarchy is apparently new, and based on
LMIs on matrices of basically the original order plus relatively few additional
linear constraints, in contrast to more familiar sum-of-squares hierarchies
or moment approximation hierarchies. We also relate the new relaxation
with an alternative, still tighter, relaxation earlier introduced by Burer who
showed that his formulation is indeed tight in an important subclass of the
problem type studied here, including all mixed-binary QPs satisfying the
so-called key condition. Further we study strong duality of the resulting
conic problems, and also specify sufficient conditions for tightness of the
Semi-Lagrangian (i.e. copositive) relaxation. We also show that copositivity
of the slack matrix guarantees global optimality for KKT points of this
problem. Finally, we address an alternative to replace all linear constraints
by one convex quadratic. Similar approaches have been tried recently along
different roads [2, 16, 20].
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The paper is organized as follows: first, after recapitulating shortly the
principles of copositive optimization, we introduce a new approximation hi-
erarchy in Section 2, which may be of particular interest in large instances,
i.e., in regimes where every additional linear inequality constraint “hurts”
in the conic problem, so the focus is to employ as few of them as possible.
Then we discuss several variants of (Semi-)Lagrangian relaxations in Sec-
tion 3. Section 4 presents a new perspective on the full Lagrangian duals as
SDPs, first for all-quadratic problems without any linear constraints, and
then with explicit treatment of linear constraints. Thereafter we incorpo-
rate, in the central Section 5, the sign constraints into the ground set, and
show that the resulting Semi-Lagrangian bounds exactly lead to the natural
copositive relaxation of the all-quadratic problem with linear constraints. In
this section, we also briefly explain how to tighten Lagrangian bounds by
the approximation hierarchies previously developed, and thereafter relate
our construction to Burer’s [10].

Further, under widely used strict feasibility conditions, we establish full
strong duality of the primal-dual pair of copositive problems in Section 6.
Section 7 contains conditions which guarantee that the Semi-Lagrangian
relaxation (and thus the copositive relaxation) is tight, and discusses global
optimality conditions for a KKT point of the original problem. Finally we
address an alternative formulation which replaces all linear constraints by
one convex quadratic, and add some observations on the relation to the
previous findings, including Burer’s relaxation.

1.1 Notation and terminology

We abbreviate by [m : n] := {m,m+ 1, . . . , n} the integer range between
two integers m,n with m ≤ n. By bold-faced lower-case letters we denote
vectors in n-dimensional Euclidean space Rn, by bold-faced upper case let-
ters matrices, and by > transposition. The positive orthant is denoted by
Rn+ := {x ∈ Rn : xi ≥ 0 for all i∈ [1 :n]}. In is the n×n identity matrix with

columns ei, i∈ [1 :n], while e :=
n∑
i=1

ei = [1, . . . , 1] ∈ Rn and the compact

standard simplex is

∆ :=
{
y ∈ Rn+ : e>x = 1

}
,

which of course satisfies R+∆ = Rn+. The letters o and O stand for zero
vectors, and zero matrices, respectively, of appropriate orders.

For a given symmetric matrix H = H>, we denote the fact that H is
positive-semidefinite by H � O. Sometimes we write instead ”H is psd.”
Linear forms in symmetric matrices X will play an important role in this
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paper; they are expressed by Frobenius duality 〈S,X〉 = trace(SX), where
S = S> is another symmetric matrix of the same order as X.

Given any cone C of symmetric n× n matrices,

C? :=
{
S = S> n× n : 〈S,X〉 ≥ 0 for all X ∈ C

}
denotes the dual cone of C. For instance, if C =

{
X = X> n× n : X � O

}
,

then C? = C itself, an example of a self-dual cone. Trusting the sharp eyes of
my readers, I chose a notation with subtle differences between the five-star
denoting a dual cone, e.g., C?, and the six-star, e.g. z∗, denoting optimality.

The key notion used below is that of copositivity. Given a symmetric
n× n matrix Q, we say that

Q is copositive if v>Qv ≥ 0 for all v ∈ Rn+ , and that

Q is strictly copositive if v>Qv > 0 for all v ∈ Rn+ \ {o} .

Strict copositivity generalizes positive-definiteness (all eigenvalues strictly
positive) and copositivity generalizes positive-semidefiniteness (no eigen-
value strictly negative) of a symmetric matrix. Contrasting to positive-
semidefiniteness, checking copositivity is NP-hard, see [15, 23].

The set of all copositive matrices form a closed, convex cone, the copos-
itive cone

C? =
{
Q = Q> n× n : Q is copositive

}
with non-empty interior which exactly consists of all strictly copositive ma-
trices. However, the cone C? is not self-dual. Rather one can show that it is
the dual cone of

C =
{
X = FF> : F has n(n+1)−8

2 columns in Rn+
}
,

the cone of completely positive matrices. Note that the factor matrix F has
many more columns than rows. The quadratic upper bound on the necessary
number of columns was recently established by [25], reducing an old bound
by 3. It is not assumed to be tight, however; a lower bound for the largest
minimal number of columns required to describe C, is bn2

4 c for all n, which
is exact for n = 5 [26]. Anyhow, a probably more amenable representation
is

C = conv
{
xx> : x ∈ Rn+

}
,

where conv S stands for the convex hull of a set S ⊂ Rn. Caratheodory’s
theorem then elucidates the quadratic character of above discussed bound.
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2 Basics of Copositive Optimization

2.1 A key lemma and its consequences

We start with a key observation which involves bordering of n× n matrices
(in which context we always address the first row/column as the zeroth one).
To this end, we denote by e0 = [1, 0, . . . , 0]> ∈ Rn+1, and by

J0 := e0e
>
0 =

[
1 o>

o O

]
.

Lemma 2.1 Consider a quadratic function q(x) = x>Hx− 2d>x+γ defined
on Rn, with q(o) = γ, ∇q(o) = −2d and D2q(o) = 2H (the factors 2 being
here just for ease of later notation). Define the Shor relaxation matrix [27]

M(q) :=

[
γ −d>
−d H

]
. (1)

Then for any µ ∈ R, we have

(a) q(x) ≥ µ for all x ∈ Rn if and only if M(q − µ) = M(q)− µJ0 � O.

(b) q(x) ≥ µ for all x ∈ Rn+ if and only if M(q − µ) = M(q)− µJ0 ∈ C?.

Proof. The identity M(q − µ) = M(q) − µJ0 is evident. Assertion (a) is
proved, e.g., in [19, Lemma 1]. The argument for claim (b) is completely
analogous, but for the readers’ convenience we provide a proof. Suppose
that q(x) ≥ µ for all x ∈ Rn+. Then H must be copositive. Indeed, otherwise
consider a y ∈ Rn+ such that y>Hy < 0 and look at x = ty. For large enough
t > 0, we get

q(x) = q(ty) = t2y>Hy − 2tdy + γ < µ ,

contradicting the hypothesis. So we have [0, x>]M(q−µ)[0, x>]> = x>Hx ≥ 0
for all x ∈ Rn+. On the other hand, we get

[1, x>]M(q − µ)

[
1
x

]
= [1, x>]

[
γ − µ −d>
−d H

] [
1
x

]
= q(x)− µ , (2)

and the latter is nonnegative for all x ∈ Rn+, by hypothesis. By homogeneity,
we arrive at z>M(q−µ)z ≥ 0 for all z ∈ Rn+1 and one implication is shown.
The converse follows readily from (2). 2

This observation implies the following identities with a duality flavor:
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Corollary 2.1 For a quadratic function q(x) = x>Hx− 2d>x + γ,

(a) inf {q(x) : x ∈ Rn} = sup {µ ∈ R : M(q)− µJ0 � O}; and

(b) inf
{
q(x) : x ∈ Rn+

}
= sup {µ ∈ R : M(q)− µJ0 ∈ C?}.

Note that above equalities hold, by the usual convention (sup ∅ = −∞), also
if q(x) is unbounded from below on Rn or Rn+.

So quite naturally we are led to our first SDP, in (a), or copositive
optimization problem, in (b): optimize a linear function of a variable µ
under the constraint that a matrix affine-linear in µ is either psd or copos-
itive. More generally, in a copositive optimization problem, for surveys see,
e.g. [4, 6, 11, 17], we are given r ∈ Rm as well as m+ 1 symmetric matrices
{M0, . . .Mm} of same order, and we have to maximize a linear function of
m variables yi ≥ 0 such that the affine combination M0 +

∑m
i=1 yiMi ∈ C?:

z∗CD := sup

{
r>y : y ∈ Rm+ , M0 +

m∑
i=1

yiMi ∈ C?
}
. (3)

This convex program has no local, non-global solutions, and the formulation
shifts complexity from global optimization towards sheer feasibility questions
(is S ∈ C? ?). On the other hand, there are several hard non-convex programs
which can be formulated as copositive problems, among them mixed-binary
QPs or Standard QPs. The copositive formulation offers a unified view on
some key classes of (mixed) continuous and discrete optimization problems.
Applications range from machine learning to several combinatorial problems,
including the maximum-clique problem or the maximum-cut problem.

Unlike the more popular SDP case, problem (3) is the conic dual of a
problem involving a different matrix cone C. Here we have to minimize a
linear function 〈M0,X〉 in a completely positive matrix variable X subject to
linear constraints 〈Mi,X〉 ≤ ri, i∈ [1 :m]:

z∗CP := inf {〈M0,X〉 : 〈Mi,X〉 ≤ ri , i∈ [1 :m] , X ∈ C} . (4)

The reason why we consider (4) as the primal problem will be clear imme-
diately.

Consider, for ease of exposition only, an all-quadratic optimization prob-
lem over the positive orthant,

z∗+ := inf
{
q0(x) : qi(x) ≤ 0 , i∈ [1 :m] , x ∈ Rn+

}
, (5)

where all qi are quadratic functions. Then z = [1, x>]> ∈ Rn+1
+ and X = zz>

is completely positive. Further, for Mi = M(qi) as defined in (1), we get
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qi(x) = z>Miz for all i∈ [0 :m] by (2). Therefore, and by weak conic duality,
we get

z∗CD ≤ z∗CP ≤ z∗+ .

Dropping the sign constraints, we arrive at the problem

z∗ := inf {q0(x) : qi(x) ≤ 0 , i∈ [1 :m] , x ∈ Rn} , (6)

with its familiar SDP relaxation [27, 24]

z∗SD ≤ z∗SP ≤ z∗ ,

where

z∗SD := sup

{
y0 : (y0, u) ∈ R× Rm+ , M0 − y0J0 +

m∑
i=1

uiMi � O

}
(7)

which is very similar to (3), and which is the dual of the SDP

z∗SP := inf {〈M0,X〉 : 〈J0,X〉 = 1, 〈Mi,X〉 ≤ 0, i∈ [1 :m] , X � O} , (8)

the counterpart of (4). In [24] it is also shown (for the first time to the
author’s belief), that z∗SD coincides with the Lagrangian dual for z∗.

2.2 Duality and approximation hierarchies

Strong duality for the pair (3) and (4) follow in a way standard for convex
problems: strict feasibility of (4) implies attainability of z∗CD, and strict
feasibility of (3) implies attainability of z∗CP . In either of these cases we have
zero duality gap, z∗CD = z∗CP . We will investigate, and formally define, strict
feasibility of these conic problems in more detail in Section 6 below. Here
let us assume, for brevity of exposition, that the duality gap is zero. Both
cones C and C? involved in this primal-dual pair are intractable. So we need
to approximate them by so-called hierarchies, i.e., a sequence of tractable
cones D?d such that D?d ⊂ D?d+1 ⊂ C? where d is the level of the hierarchy,
and

⋃∞
d=0D?d = [C?]◦, i.e., every strictly copositive matrix is contained in

D?d for some d. On the dual side, Dd are also tractable, Dd+1 ⊂ Dd, and⋂∞
d=0Dd = C contains no matrix which is not completely positive. Again for

brevity, assume that strong duality also holds for the approximation:

z∗D,d := min {〈M0,X〉 : 〈Mi,X〉 ≤ ri , i∈ [1 :m] , X ∈ Dd}
= max

{
r>y : y ∈ Rm+ , M0 +

∑m
i=1 yiMi ∈ D?d

}
.

Then by above we get z∗D,d → z∗CD = z∗CP as d → ∞. By now, there are
many possibilities explored for hierarchies (Dd)d, for a concise survey see [6].
Many of these involve linear or psd constraints of matrices of order nd+2,
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which in particular for LMIs pose a serious memory problem for algorithmic
implementations even for moderate d if n is large. LP-based hierarchies
suffer less from this curse of dimensionality, and therefore we will follow a
compromise between LP-based and SDP-based hierarchies. We start with
the usual zero-order approximation by the cone of doubly nonnegative (DNN)
matrices

D0 = {X is psd : X has no negative entries} . (9)

For the dual cone

D?0 = {P + N : P is psd. and N has no negative entries} (10)

Florian Jarre (personal communication) very recently has coined the term
nonnegative decomposable (NND) for matrices in D?0, using the duality cal-
culus pun (DNN)? = NND. Anyhow, based upon this construct, we may
add valid linear inequalities, e.g., as done in [8, 9], yielding polyhedral inner
approximations L?d of the copositive cone, and, on the dual side, polyhedral
outer approximations Ld for the completely positive cone, and finally define

Dd := D0 ∩ Ld , d ∈ {0, 1, 2, . . .} , (11)

or, by duality, D?d := D?0 + L?d using the Minkowski sum. Of course, this
approximation satisfies above properties of exhaustivity, and involves LMIs
only for matrices of order linear in n; in fact, we only employ the matrices
Mi = M(qi) of order n+ 1.

A similar yet different approach is taken in [21] where a conic exact
reformulation of problem (6) is proposed, using another untractable cone,
and constructing tractable approximation hierarchies for this cone. The
examples specified in [21] reduce again to the NND cone D?0 or its dual, the
DNN cone D0. However for large n, even D0 may involve too many (namely
(n+1)n

2 ) linear inequalities to allow for efficient computation. This problem
can be overcome by warmstarting as in [18], identifying or separating valid
linear inequalities on the fly, or by the recently proposed tightening and
acceleration method in [20].

The following proposal is an alternative: suppose that we only employ,
say, n inequalities, e.g., by forbidding negative entries only in the first row
of a matrix, to proxy for complete positivity:

D� := {X is psd : X0j ≥ 0 for all j∈ [1 :n]} .

This cone can be seen as a sub-zero level approximation of C in light of above
discussion. Its dual cone is given by

D?� :=

{
P +

[
0 v>

v O

]
: P is psd , v ∈ Rn+

}
, (12)

and both will play a prominent role in Section 4 below.
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3 Lagrangian duality for quadratic problems

3.1 Different problems and different formulations

Consider two problems with quadratic constraints:

z∗ := inf {q0(x) : x ∈ F} with F := {x ∈ Rn : qi(x) ≤ 0 , i∈ [1 :m]} (13)

where all qi(x) = x>Qix−2b>i x+ ci are quadratic functions (we may assume
c0 = 0) for i∈ [0 :m]; and

z∗+ := inf {q0(x) : x ∈ F ∩ P} with P :=
{
x ∈ Rn+ : Ax = a

}
. (14)

where a ∈ Rp and A is a p×n matrix of full row rank p. We further assume
that

for all j∈ [1 :n] there is an x(j) ∈ P such that x
(j)
j > 0 . (15)

This is no restriction of generality, since we can test this condition by solving,
in a preprocessing step, for all j∈ [1 :n], the n LPs z∗j := sup {xj : x ∈ P},
and discard the variable xj if z∗j = 0.

Neither of the optimal values z∗ of (13), or z∗+ of (14) need be attained,
and they could also equal to −∞ (in the unbounded case) or to +∞ (in
the infeasible case). Of course, we have z∗ ≤ z∗+ due to the additional sign
constraints. Considering Qi = O would also allow for linear inequalities in
the constraints. However, it is often advisable to discriminate the functional
form of constraints, and we will adhere to this principle in what follows.
Structural linear inequality constraints, however, are cast into above form
by use of slack variables.

Note that defining Qm+1 = A>A, bm+1 = A>a and cm+1 = a>a, we may
rephrase the m linear constraints Ax = a into one homogeneous quadratic
constraint z>Mm+1z = ‖Ax− a‖2 = 0. We will return later to this formula-
tion. Still, the resulting feasible set is not of the form of F , the difference
being the sign constraints xj ≥ 0.

Finally note that binarity constraints xj ∈ {0, 1} can be recast into two
inequality constraints of the form xj ≤ 1 (this constraint would ensure Bu-
rer’s key condition [7, 10]) and xj−x2

j ≤ 0. This fits into above formulation,
but then one has to be careful with strict feasibility assumptions; also, in-
troducing slacks for xj ≤ 1 will double the number of variables. We will
address an alternative later in Subsection 5.2.
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3.2 The Lagrangian (dual) functions

Now consider multipliers u ∈ Rm+ of the inequality constraints qi(x) ≤ 0,
2v ∈ Rn+ for the sign constraints x ∈ Rn+, and 2w ∈ Rp for the linear equality
constraints Ax = a (again, the factors two are introduced for notational
convenience only). Then the full Lagrangian function

L(x; u, v,w) := q0(x) +
∑
i

uiqi(x)− 2v>x + 2w>(a− Ax)

and its first two derivatives w.r.t. x are given by

L(x; u, v,w) = x>Hux− 2(du + v + A>w)>x + c>u + 2w>a ,

∇xL(x; u,w) = 2[Hux− (du + v + A>w)] and

D2
xL(x; u,w) = 2Hu for all (x; u, v,w) ∈ Rn × Rm+ × Rp × Rn+ .

Here we denote by Hu = Q0 +
m∑
i=1

uiQi, by du = b0 +
m∑
i=1

uibi and by c =

[c1, . . . , cm]>. Abbreviating L0(x; u) = L(x; u, o, o), the Lagrangian dual
function for problem (13) reads

Θ0(u) := inf {L0(x; u) : x ∈ Rn} , (16)

and the dual optimal value is

z∗LD := sup
{

Θ0(u) : u ∈ Rm+
}
. (17)

Standard weak duality implies z∗LD ≤ z∗.

The full Lagrangian dual for problem (14) with additional linear con-
straints reads instead

Θ(u, v,w) := inf {L(x; u, v,w) : x ∈ Rn} , (18)

with dual optimal value

z∗LD,+ := sup
{

Θ(u, v,w) : (u, v,w) ∈ Rm+ × Rn+ × Rp
}
. (19)

The idea to incorporate some of the constraints defining F ∩ P into the
ground set, or equivalently, to relax only some of the constraints, leads to the
corresponding Semi-Lagrangian (sometimes also called partial Lagrangian)
dual and is not new, see, e.g. [19] and references therein. However, previous
work has concentrated to do this with linear equality constraints, which then
leads to an SDP formulation similar to those treated in the previous section.
Here, we take an alternative path, incorporating the sign (i.e., inequality)
constraints into the ground set, and relax all other constraints.
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So we arrive at the Semi-Lagrangian variant

Θsemi(u,w) := inf
{
L(x; u, o,w)) : x ∈ Rn+

}
, (20)

with dual optimal value

z∗semi := sup
{

Θsemi(u,w) : (u,w) ∈ Rm+ × Rp
}
. (21)

The relation between full and Semi-Lagrangian bounds is a general principle.
For ease of reference, we repeat the argument here: for any v ∈ Rn+,

Θ(u, v,w) = inf {L(x; u, v,w) : x ∈ Rn}
≤ inf

{
L(x; u, v,w) : x ∈ Rn+

}
= inf

{
L(x; u, o,w)− 2v>x : x ∈ Rn+

}
≤ inf

{
L(x; u, o,w) : x ∈ Rn+

}
= Θsemi(u,w) ,

as v>x ≥ 0 for all x ∈ Rn+. So we arrive at the following chain of inequalities

z∗LD,+ ≤ z∗semi ≤ z∗+ ,

where the last inequality above follows, again, from standard weak duality.

We also have z∗LD ≤ z∗LD,+ as Θ0(u) = Θ(u, o, o), but as z∗LD and z∗LD,+
refer to different problems, their relation cannot be seen as a tightening, but
rather as a reflection of the relation z∗ ≤ z∗+ of the optimal (primal) values
of (13) and (14), respectively.

4 A new perspective on SDP relaxations

4.1 SDP and Lagrangian dual in absence of linear constraints

We have Θ0(u) > −∞ if and only if (a) Hu � O; and (b) the linear equation
system Hux = du has a solution. In this case Θ0(u) = L0(x; u) for any x with
Hux = du, or

Θ0(u) = L0(x; u) = x>du − 2d>u x + c>u = c>u− d>u x .

So the Lagrangian dual problem can be written as a Wolfe dual with an
additional psd constraint, namely as

z∗LD = sup
{
L0(x; u) : (x, u) ∈ Rn × Rm+ ,Hu � O , Hux = du

}
.

Unfortunately, the condition Θsemi(u,w) > −∞ does not allow for nice con-
ditions similar to requiring Hu � O and solvability of Hux = du + v + A>w,
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which would now be the first-order condition ∇L(x; u, v,w) = o. How-
ever, for Θ0(u) these conditions played a key role for the equivalence result
z∗LD = z∗SD, established in [24]. Here we will pass, also in light of the difficul-
ties with Θsemi(u,w), to a different formulation of this semidefinite relaxation
for the problem (13) which immediately follows from Corollary 2.1:

Theorem 4.1 Consider problem (13) and its Lagrangian dual function as
defined in (16). Then

Θ0(u) = sup {µ : µ ∈ R , M(L0(·; u))− µJ0 � O}

and

z∗LD = sup
{
µ : (µ, u) ∈ R× Rm+ , M(L0(·; u))− µJ0J0 � O

}
.

Further, we have z∗LD = z∗SD as defined in (7); so a zero duality gap z∗LD = z∗

occurs if and only if (a) the SDP relaxation has itself no positive duality gap,
and (b) the SDP relaxation is tight.

Proof. The first equation follows directly from Corollary 2.1(a), and the
second equation is then immediate. But obviously

M(L0(·; u))− µJ0 = M(q0)− y0J0 +
m∑
i=1

uiM(qi)

when y0 = µ. Now, considering the equality constraint 〈J0,X〉 = 1 with mul-
tiplier y0 ∈ R and the inequality constraints 〈M(qi),X〉 ≤ 0 with multiplier
ui ≥ 0, all i∈ [1 :m], we arrive at the dual SDP (7), exactly as required. So
we arrive at

z∗LD = z∗SD ≤ z∗SP ≤ z∗

wherefrom the last assertion follows. 2

Thus the slack matrix of the conic relaxation for (13) is

Z(y) := M0 − y0J0 +
m∑
i=1

uiMi =

[
c>u− y0 −d>u
−du Hu

]
, (22)

where y = (y0, u) ∈ R × Rm+ collects all dual variables. We will encounter
updates of these slack matrices in the sequel.
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4.2 Full Lagrangian dual with linear constraints

Now consider the full Lagrangian function; perhaps somewhat unexpectedly,
we are lead to a conic constraint where the sub-zero level approximation cone
D� occurs:

Theorem 4.2 Consider problem (14) and its Lagrangian dual function as
defined in (18). Then for all (u, v,w) ∈ Rm+ × Rn+ × Rp

Θ(u, v,w) = sup {µ : µ ∈ R , M(L(·; u, v,w))− µJ0 � O}

and the full Lagrangian dual problem of (14) can be written as

z∗LD,+ = sup
{
µ : (µ, u,w) ∈ R× Rm+ × Rp, M(L(·; u, o,w))− µJ0 ∈ D?�

}
.

(23)

Proof. The first equation is again a direct consequence of Corollary 2.1(a).
For the second, observe that

M(L(·; u, v,w))− µJ0 = M(L(·; u, o,w))− µJ0 −
[

0 −v>
−v O

]
,

so that M(L(·; u, o,w)) − µJ0 ∈ D?� if and only if M(L(·; u, v,w)) − µJ0 � O
for some v ∈ Rn+, by (12). The result follows. 2

Hence we can characterize also the full Lagrangian dual for (14) as an
SDP, namely the dual of the natural SDP relaxation of (14): to this end, let
us express the p linear equality constraints as r>k x = ak with rk ∈ Rn for all
k∈ [1 :p]. So A> = [r1, . . . , rp]

> with r>k the kth row of A. For all k∈ [1 :p],
we define the symmetric matrices of order n+ 1

Ak :=

[
2ak −r>k
−rk O

]
. (24)

Theorem 4.3 Consider the full Lagrangian dual z∗LD,+ as defined in (19)
and expressed in Theorem 4.2. Then this is the conic dual of the SDP

zSP,+ := inf

{
〈M0,X〉 : X=

[
1 x>

x Y

]
�O, x ∈ P, 〈Mi,X〉 ≤ 0, i∈ [1 :m]

}
,

(25)
which can be easily seen as the natural SDP relaxation of (14). Therefore
we have

z∗LD,+ = z∗SD,+ ≤ z∗SP,+ ≤ z∗+ ,
and the full Lagrangian relaxation is tight, z∗LD,+ = z∗+, if and only if (a)
the SDP relaxation has zero duality gap, z∗SD,+ = z∗SP,+, and (b) the primal
SDP relaxation (25) is tight.
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Proof. Whenever the top (zeroth) row of X reads z> = [1, x>], we have, due
to (24), 2(r>k x− ak) = z>Akz = 〈Ak,X〉. Hence the constraint 〈Ak,X〉 = 0 is
equivalent to r>k x = ak. So x ∈ P is equivalent to x ∈ Rn+ and 〈Ak,X〉 = 0 for
all k∈ [1 :p]. Now choose multipliers wk ∈ R for these equality constraints.
Then, if we dualize the SPD (25) by the standard procedure, we arrive at
the new slack matrix

Z+(y,w) := Z(y) +

p∑
k=1

wkAk =

[
c>u− y0 + 2w>a −d>u − w>A
−du − A>w Hu

]
, (26)

where Z(y) is defined as in (22). Now notice that for y0 = µ, we have

M(L(·, u, o,w))− µJ0 = Z+(y,w) if y = (µ, u) .

Hence the result follows by (23). 2

There are several, a priori different, SDP formulations for the full La-
grangian dual of (14), some adapted to special subclasses; see, e.g. [19] and
references therein.

5 Semi-Lagrangian dual and copositive relaxation

5.1 A two-fold characterization of Semi-Lagrangian dual

Before we proceed to the Semi-Lagrangian case, we introduce the natural
copositive relaxation of (14), in analogy to (25). Consider therefore Ak as
in (24) and form the problem

z∗CP := inf
X∈C

〈M0,X〉 :
〈Mi,X〉 ≤ 0 , i∈ [1 :m],
〈Ak,X〉 = 0 , k∈ [1 :p],
〈J0,X〉 = 1

 (27)

and its dual

z∗CD := sup
{
y0 : Z+(y,w) ∈ C?, (y,w) = (y0, u,w) ∈ R× Rm+ × Rp

}
(28)

with the slack matrix Z+(y,w) as defined in (26).

Theorem 5.1 Consider problem (14) and its Semi-Lagrangian dual func-
tion as defined in (20), the dual z∗semi as defined in (21), as well as the
copositive relaxation (27) and (28). Then

Θsemi(u,w) = sup {µ : µ ∈ R , M(L(·; u, o,w))− µJ0 ∈ C?}
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and the Semi-Lagrangian dual problem of (14) can be written as

z∗semi = sup
{
µ : (µ, u,w) ∈ R× Rm+ × Rp, M(L(·; u, o,w))− µJ0 ∈ C?

}
.

Further, we have

z∗LD,+ ≤ z∗semi = z∗CD ≤ z∗CP ≤ z∗+ , (29)

and the Semi-Lagrangian relaxation is tight, z∗semi = z∗, if and only if if and
only if (a) the copositive relaxation has no positive duality gap, z∗CD = z∗CP ,
and (b) the copositive primal relaxation (27) is tight.

Proof. The first equation is now a direct consequence of Corollary 2.1(b).
The remainder is as an immediate generalization of Theorem 4.3. 2

So we have characterized the Semi-Lagrangian dual in two ways: (a) as
the dual of the natural (primal) copositive relaxation for the problem (14);
and (b) as the natural extension of the (dual) SDP relaxation for the same
problem. But we can say more, in particular regarding computational con-
sequences, see the next subsection.

5.2 Approximate copositive bounds dominate Lagrangian dual
bounds even at (sub)zero level

The fact that every positive-semidefinite matrix lies in D?� is another reflec-
tion of the relation z∗LD ≤ z∗LD,+. On the other side, we by now can easily
see that even at zero level of approximation, the resulting tractable bound
tightens the Lagrangian bound:

Theorem 5.2 Consider any approximation hierarchy Dd starting with D0

as defined in (9), e.g. the one defined in (11), together with their bounds
z∗D,d. Then

z∗LD,+ ≤ z∗D,d for all d ∈ {0, 1, . . .} ,

and z∗D,d → z∗semi as d→∞.

Proof. Follows from D?� ⊂ D?0 ⊂ D?d ⊂ C? for all d ≥ 0; cf. (10) and (12).2

At the end of this section, we pass to an even tighter copositive relaxation
put forward by Burer in his seminal paper [10], although this is not made
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explicit there in full generality; but see the more recent papers [12, 13].
Basically, he proposed in [10] to complement the condition 〈Ak,X〉 = 0 by
another one resulting from squaring the linear constraint r>k x = ak: again,
with X = [1, x>]>[1, x>], we have

〈rkr>k , xx>〉 = (r>k x)
2 = a2

k ⇐⇒ 〈Bk,X〉 = 0 with Bk :=

[
−a2

k o>

o rkr
>
k

]
.

So we arrive at another copositive relaxation for (14),

z∗Burer,P := inf
X∈C

〈M0,X〉 :

〈Mi,X〉 ≤ 0 , i∈ [1 :m],
〈Ak,X〉 = 0 , k∈ [1 :p],
〈Bk,X〉 = 0 , k∈ [1 :p],
〈J0,X〉 = 1

 and

z∗Burer,D := sup

y0 :
y = (y0, u) ∈ R× Rm+ ,
(w, z) ∈ Rp × Rp ,
ZBurer(y,w, z) ∈ C?




(30)

with ZBurer(y,w, z) = Z+(y,w) +
p∑

k=1

zkBk. Since ZBurer(y,w, o) = Z+(y,w),

we get
z∗semi = z∗CD ≤ z∗Burer,D ≤ z∗Burer,P ≤ z∗+

and similarly z∗CP ≤ z∗Burer,P ≤ z∗+.

For linearly constrained quadratic problems with binarity constraints
which are formulated as qj(x) = xj − x2

j = 0 (and relaxed as 〈M(qj),X〉 = 0
with multipliers uj ∈ R), the duality gap is zero. Indeed, for u = te and
y = (y0, u),

ZBurer(y, o, o) =

[
y0 (te> − b0)>

(te− b0) −2tIn + Q0

]
can always be made strictly copositive in light of Lemma 6.1 below, e.g. for
t = min {3λmin(Q0),−1}. Observe that in this case, no sign restrictions to
u apply.

Burer showed in [10] that under a mild condition, this relaxation is always
tight, z∗Burer,D = z∗Burer,P = z∗+. He also extended this result for problems
with additional quadratic equality constraints, e.g., complementarity con-
straints, but did focus on reformulation rather than on relaxation (and the
problem (14) with inequality constraints was not treated there).

The same strategy as before, replacing C with Dd or C? with D?d, would
therefore tighten the approximative bounds even beyond the Semi-Lagrangian
dual, at the cost of dealing with additional constraints. See Subsection 7.3
for further discussion.
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6 Strict feasibility and strong duality

It can easily be shown that strict feasibility of (13) implies strict feasibility
of (8). Moreover, if Qi is (strictly) positive-definite for at least one i∈ [1 :m],
then also (7) is strictly feasible, so that full strong duality holds for the
primal-dual SDP pair; see [1, 24]. Under these assumptions, we arrive at

z∗LD = z∗SD = z∗SP ≤ z∗ .

Now we pass to the problem (14) with linear constraints. By analogous
reasons, if one Qi is positive-definite and if there is a x̂ ∈ P with qi(x̂) < 0
for all i∈ [1 :m], then strong duality for the SDP pair (25) and its dual (19)
holds: both optimal objective values are attained and equal the dual full
Lagrangian bound, z∗LD,+ = z∗SD,+ = z∗SP,+.

We proceed to develop a similar theory for the copositive formulation.
This is not as straightforward as it may seem at first sight, as not all re-
lations carry over directly from the (self-dual) psd cone to the pair of dual
cones (C, C?). But before we show that the employed conditions on Qi also
guarantee attainability of (14).

6.1 Sufficient conditions for attainability of original problem

We first need the following auxiliary result:

Lemma 6.1 Given arbitrary d ∈ Rn and a symmetric n × n matrix H,
consider q(x) = x>Hx− 2d>x. For any µ ∈ R define via (1)

Sµ := M(q) + µJ0 = M(q + µ) .

If H is strictly copositive, then

(a) there is a µ̄ ≥ 0 such that Sµ are strictly copositive for all µ ≥ µ̄;

(b) q is bounded from below over Rn+.

Proof. (a) Since H is strictly copositive, σ := min
{
y>Hy : y ∈ ∆

}
> 0.

Further define

µ̄ :=
2

σ
max

{
(d>y)2 + 1 : y ∈ ∆

}
> 0 .

Now pick an arbitrary z = [x0, x
>]> ∈ Rn+1

+ \ {o}. If x = o, then x0 > 0 and
z>Sµ̄z = µ̄x2

0 > 0. If x 6= o, then y := 1
e>x

x ∈ ∆ and y0 := 1
e>x

x0 ≥ 0. We
conclude

z>Sµ̄z = (e>x)2[µ̄y2
0 − 2y0d

>y + y>Hy] ≥ (e>x)2[µ̄y2
0 − 2y0d

>y + σ] .
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Now the strictly convex function ψ(t) = µ̄t2 − 2(d>y)t + σ attains its
minimum over the positive half-ray (t ≥ 0) either at t = 0 with value

ψ(0) = σ, or else at t̄ = d>y
µ̄ with value ψ(t̄) = σ − (d>y)2

µ̄ ≥ σ
2 > 0. Hence

z>Sµ̄z ≥ (e>x)2 σ
2 > 0, and claim (a) follows. Assertion (b) then is a conse-

quence of (a) and Corollary 2.1(b). 2

One may wonder whether there is a ”weak” version of Lemma 6.1(a).
However, the example H = O and d = e shows that Sµ is never copositive,
although H is. The corresponding observation and the ”strict” result for
positive-(semi)definiteness is folklore, but by passing from positive-definite
matrices to strictly copositive matrices, we will strengthen these findings,
and also derive a stronger version of (29) in case of linear constraints.

So let us next consider primal attainability of the original problem (14).
By Lemma 6.1(b), strict copositivity of the objective Hessian matrix 2Q0

implies z∗+ > −∞. Further, if F ∩ P 6= ∅, we therefore have a finite optimal
value z∗+ ∈ R.

Theorem 6.1 Suppose that for at least one i∈ [0 :m], the matrix Qi is strictly
copositive. If F ∩ P 6= ∅, then z∗+ is attained: there is an x∗ ∈ F ∩ P such
that q0(x∗) = z∗+. Further, if above i satisfies i ≥ 1, then F ∩ P is compact.

Proof. Let Qi be strictly copositive, and define

ρi := max

{
b>i y

y>Qiy
: y ∈ ∆

}
as well as τi := max {2ρi − ci, 2ρi, 1}. Suppose now x = ty with t := e>x ≥ 1
and y ∈ ∆. We deduce from qi(x) = t2y>Qiy − 2tb>i y + ci that

qi(x) ≤ 0 implies t ≤ τi . (31)

If i = 0, we redefine c0 := −z∗+ − 1 (thus τ0 = max {2ρ0 + z∗ + 1, 2ρ0, 1})
and infer that q0(x) > z∗+ + 1 whenever e>x > τ0, by (31). Therefore

z∗+ = inf {q0(x) : x ∈ F ∩ P} = min
{
q0(x) : x ∈ F ∩ P , e>x ≤ τ0

}
.

The latter minimum is attained since
{
x ∈ Rn+ : e>x ≤ τi

}
is compact. For

i∈ [1 :m], we deduce in the same way directly from (31)

F ∩ P ⊆
{
x ∈ Rn+ : qi(x) ≤ 0

}
⊆
{
x ∈ Rn+ : e>x ≤ τi

}
and thus z∗+ must be attained as a minimum of the continuous function q0

over the compact set F ∩ P . 2
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6.2 Strong duality in the copositive relaxation

Now we turn to strong duality of the copositive problem.

Theorem 6.2 Consider the copositive relaxation (27) and (28) of (14).

(a) Suppose that Qi is strictly copositive for at least one i∈ [0 :m]. Then
there is a y = (y0, u) ∈ R × Rm+ such that uj > 0 for all j∈ [1 :m] and
such that the matrix Z(y) = Z+(y, o) is strictly copositive.

(b) Suppose that there is an x̂ ∈ Rn+ such that Ax̂ = a and qi(x̂) < 0 for
all i∈ [1 :m]. Then there is a matrix X in the interior of C such that
〈J0,X〉 = 1 and 〈Mi,X〉 < 0 for all i∈ [1 :m].

(c) Under the assumptions of (a) and (b), full strong duality for the primal-
dual conic pair (27),(28) holds: both optimal values are attained at
certain X∗ ∈ C and (y∗,w∗) ∈ R × Rm+ × Rp, and there is no duality
gap:

z∗CD = y∗0 = 〈M0,X
∗〉 = z∗CP and 〈X∗,Z+(y∗,w∗)〉 = 0 .

Proof. (a) By assumption on Qi, the bound σ := min
{
x>Qix : x ∈ ∆

}
> 0.

Further define

α := min

∑
j 6=i

x>Qjx : x ∈ ∆

 ∈ R

and put ui = max
{

1,−2α
σ

}
> 0. Then for all x ∈ ∆ we get by construction

x>(uiQi +
∑
j 6=i

Qj)x ≥ uiσ + α = max {−α, σ + α} > 0 .

By positive homogeneity, we arrive at strict copositivity of the matrix 2Hu =

Q0+
m∑
j=1

uiQi by setting uj := 1 > 0 for all j 6= i if i ≥ 1, and else uj := 1
u0
> 0

if i = 0. By Lemma 6.1(a) and D2L0(x; u) = Hu, we infer that the slack
matrix Z+(y, o) = Z(y) = M(L0(·; u)) + t̄J0 as defined in (22) is strictly
copositive for y0 = c>u− t̄ if t̄ > 0 is large enough.
(b) Given x̂ as in the assumption, select x(j) ∈ P as in (15) for all j∈ [1 :n],
and define

x := (1− ε)x̂+ ε
n

n∑
j=1

x(j)

where ε > 0 is chosen so small that still qi(x) < 0 holds for all i. This is
possible by continuity of all qi. Then xj > 0 for all j∈ [1 :n] by construction
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and also x ∈ F ∩ P . Next put z = [1, x>]> and X = (1 − ε)zz> + εIn+1. If
necessary, decrease ε > 0 further such that still 〈Mi,X〉 < 0 holds; again,
this is possible by continuity and because

〈Mi, zz
>〉 = z>Miz = qi(x) < 0 for all i .

Hence we can write X = [f|B][f|B]> where f =
√

1− ε z has all coordinates
strictly positive and B =

√
ε In+1 has full rank, and therefore X lies in

the interior of C due to the improved characterization in [14]. Of course,
〈J0,X〉 = 1 by construction.
(c) follows from Slater’s theorem for convex optimization. 2

7 Tightness and second-order optimality conditions

When is the Semi-Lagrangian/copositive bound tight ?

A first answer is given by Theorem 5.1. But how is this reflected in
terms of the original problem (14), i.e., of the (bordered) Hessian of the
Lagrangian? Below, we will give an answer which also reveals a second-
order condition sufficient for global optimality, which is weaker than the
conditions derived from tightness of the Lagrangian relaxation. Note that
neither F nor F ∩ P are, in general, convex, so strict feasibility would not
imply the KKT conditions at a (local) solution, as Slater’s theorem does
not apply. However, tightness of the relaxations basically enforces the KKT
conditions without any further constraint qualifications on (13) or on (14);
in the latter case with the Semi-Lagrangian dual in a moderately generalized
form though.

7.1 Recap: the full Lagrangian case

Let us shortly go back to the problem (13) without linear constraints. Con-
sider again the conditions guaranteeing strong duality for its SDP relaxation,
namely (a) at least one of the Qi is (strictly) positive-definite; and (b) there
is an x̄ ∈ Rn such that qi(x̄) < 0 for all i. Under these conditions, [1] proved
that tightness of the semidefinite relaxation for problem (13), i.e. the equal-
ity z∗SP = z∗, is equivalent to Z(q0(x∗), u∗) � O for some u∗ ∈ Rm+ which
satisfies the KKT conditions at a global solution x∗ of (13).

We can say even more: if (x̄, ū) is a KKT pair of (13) such that Hū � O,
then x̄ is a global solution to (13). In case of the trust region problem where
m = 1 or a co-centered problem with two constraints where m = 2 and
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all bi = o, also the converse is true, so that we have always z∗SP = z∗ in
these cases, or, equivalently, for any global solution x∗ there is a multiplier
u∗ ∈ Rm+ satisfying the KKT conditions such that Hu∗ � O. However, for
the CDT problem (inhomogeneous case of m = 2), Hu can be indefinite at
the global optimum [3] for all KKT multipliers u at x∗ (generically but not
always u is unique), and then there is a positive gap, z∗SP < z∗Q. So the
converse does not hold in general, not even for problem (13) without linear
constraints.

With minimal effort, one can translate above results to the full La-
grangian dual of (14), and arrive at a similar sufficient global optimality
condition: if at a KKT pair (x̄; ū, v̄, w̄), the slack matrix Z+(q0(x̄), ū, w̄) ∈ D?�,
then x̄ is a global solution to (14). The next subsection will present a much
stronger result.

7.2 Second-order optimality condition and Semi-Lagrangian
tightness

Here, we go a step further and prove a counterpart of above findings for
the Semi-Lagrangian relaxation of problem (14). As this is, again, not a
straightforward generalization from positive-semidefiniteness to copositivity,
we need to relax the KKT conditions, too: let us say that the pair (x; u,w) ∈
(F ∩ P )× Rm+ × Rp is a generalized KKT pair for (14) if and only if

xj(Hux− du − A>w)j = 0 for all j∈ [1 :n] ,

uiqi(x) = 0 for all j∈ [1 :n] and

wk(ak − z>k x) = 0 for all k∈ [1 :p] .

 (32)

Let v := Hux − du − A>w; then (32) is equivalent to stipulating equation
∇L(x; u, v,w) = o under the conditions vjxj = 0, wk(ak − z>k x) = 0 and
uiqi(x) = 0 for all i, j, k, but without requiring vj ≥ 0 now.

Theorem 7.1 Under the assumptions of Theorem 6.2(c), the following as-
sertions are equivalent:

(a) The Semi-Lagrangian relaxation is tight, z∗semi = z∗+;

(b) for all global solutions x∗ to (14), there is a (u∗,w∗) ∈ Rm+ × Rp such
that (x∗; u∗,w∗) is a generalized KKT pair and such that

Z+(y∗,w∗) ∈ C? for y∗ = (q0(x∗), u∗) ;
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(c) there is a global solution x∗ to (14) and a (u∗,w∗) ∈ Rm+ ×Rp such that
(x∗; u∗,w∗) is a generalized KKT pair and such that

Z+(y∗,w∗) ∈ C∗ for y∗ = (q0(x∗), u∗) ;

(d) there is a generalized KKT pair (x̄; ū, w̄) ∈ (F ∩P )×Rm+ ×Rp such that

Z+(ȳ, w̄) ∈ C? for ȳ = (q0(x̄), ū) .

Proof. Under the assumption, there exists an optimal solution x∗ to (14)
by Theorem 6.2(a). So only (a) ⇒ (b) and (d) ⇒ (a) need a proof. For
the first implication, form again X∗ = zz> ∈ C with z> = [1, (x∗)>] ∈ Rn+1

+ .
Then 〈Mi,X

∗〉 = qi(x
∗) ≤ 0 for all i∈ [1 :m] and 〈J0,X

∗〉 = 1, so that X∗ is
feasible for (28). The (in)equality chain

z∗+ = z∗semi = z∗CD = z∗CP ≤ 〈M0,X
∗〉 = q0(x∗) = z∗+

establishes optimality of X∗. By strong duality due to Theorem 6.2(c),
there is a dually optimal (y∗,w∗) = (y∗0, u

∗,w∗) ∈ R × Rm+ × Rp such that
Z+(y∗,w∗) ∈ C? and 〈Z+(y∗,w∗),X∗〉 = 0. This complementary slackness
implies, at first, that

u∗i qi(x
∗) = u∗i 〈Mi,X

∗〉 = 0 for all i∈ [1 :m] and

w∗k(ak − z>k x
∗) = w∗k〈Ak,X∗〉 = 0 for all k∈ [1 :p] .

}
(33)

In particular, we get (a− Ax∗)>w∗ =
p∑

k=1

w∗k(ak − z>k x
∗) = 0, so that

Z+(y∗,w∗)X∗ =

[
c>u∗ − y∗0 − d>u∗x

∗ + a>w∗ [c>u∗ − y∗0 − d>u∗x
∗](x∗)>

Hu∗x
∗ − du∗ − A>w∗ [Hu∗x

∗ − du∗ − A>w∗](x∗)>

]
.

(34)
But by [25, Thm.2.1(a)] we know that 〈Z+(y∗,w∗),X∗〉 = 0 also implies
diag (Z+(y∗,w∗)X∗) = o, since X∗ ∈ C and Z+(y∗,w∗) ∈ C?, so we infer
y∗0 = c>u∗ − d>u∗x

∗ + a>w∗ and

x∗j (Hu∗x
∗ − du∗ − A>w∗)j = 0 for all j∈ [1 :n] . (35)

(note that [25, Thm.2.1(b)] says that the j-th row of Z+(y∗,w∗)X∗ vanishes
if j = 0 or else x∗j > 0, which, by (34), exactly amounts to the same). Hence
(x∗; u∗,w∗) ∈ (F ∩ P ) × Rm+ × Rp form a generalized KKT pair for (14).
Now (35) also implies (x∗)>Hu∗x

∗ = (du∗ + A>w∗)>x∗ and therefore

y∗0 = c>u∗ − d>u∗x
∗ + a>w∗

= c>u∗ + a>w∗ − d>u∗x
∗ + (a− Ax∗)>w∗

= c>u∗ + 2a>w∗ − (du∗ + A>w∗)>x∗

= c>u∗ + 2a>w∗ − 2(du∗ + A>w∗)>x∗ + (x∗)>Hu∗x
∗

= L(x∗; u∗, o,w∗) = q0(x∗)
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by (33), and assertion (b) is established.
To show (d) ⇒ (a), put ȳ0 := q0(x̄), ȳ = [ȳ0, ū

>], and z̄> = [1, x̄>] as well as
X̄ = z̄z̄> ∈ C. By (35), we infer again (dū + A>w̄)>x̄ = x̄>Hūx̄, so that

ȳ0 = q0(x̄) +
∑

i=1 ūiqi(x̄) + 2
∑p

k=1 w̄k(ak − z>k x̄)

= c>ū + 2a>w̄ − 2(dū + A>w̄)>x̄ + x̄>Hūx̄ ,

and therefore

0 = (c>ū− ȳ0 + 2a>w̄)− 2(dū + A>w̄)>x̄ + x̄>Hūx̄ = z̄>Z+(ȳ, w̄)z̄ .

Hence 〈X̄,Z+(ȳ, w̄)〉 = z̄>Z+(ȳ, w̄)z̄ = 0, so that (X̄,Z+(ȳ, w̄)) form an op-
timal primal-dual pair for the copositive problem (27) and (28) with zero
duality gap. We conclude

z∗+ ≤ q0(x̄) = ȳ0 = z∗CD = z∗CP = z∗semi ≤ z∗+

which shows tightness of the Semi-Lagrangian relaxation. 2

In fact, we have obtained the following sufficient second-order global
optimality condition; for the role of copositivity in second-order optimality
conditions for general smooth optimization problems, refer to [5].

Corollary 7.1 Let (x̄; ū, w̄) ∈ (F ∩P )×Rm+ ×Rp be a generalized KKT pair
for (14). If the matrix[

c>ū− q0(x̄) + 2a>w̄ −(dū + A>w̄)>

−(dū + A>w̄) Hū

]
(36)

is copositive, then x̄ is a global solution to (14).

Proof. Observe that in the proof of (d) ⇒ (a) of Theorem 7.1 above, we
never used one of the conditions in Theorem 6.2. So regardless of these,
global optimality of x̄ holds, along with tightness and zero duality gap,
z∗semi = z∗+ = z∗CP = z∗CD = q0(x̄). 2

Problem (14) may have many (generalized) KKT points x̄, some of which
can be detected with not too much effort by local optimization procedures;
cf. [28]. Next, we may solve the linear equations for (ū, w̄), and then test a
sufficient copositivity criterion for the matrix in (36), to get a certificate for
global optimality of x̄. The condition is weaker than that addressed at the
end of Subsection 7.1 in two aspects: it deals with generalized KKT pairs,
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and it requires only Z+(ȳ, w̄) ∈ C? rather than Z+(ȳ, w̄) ∈ D?�. Recall that
the sub-zero level approximation cone D?� is much smaller than C?.

The difference can also be expressed in properties of the Hessian Hū of
the Lagrangian: indeed, the condition Z+(ȳ, w̄) ∈ D?� implies that its lower
right principal submatrix Hū has to be psd, and we know this is too strong
in some cases, whereas Z+(ȳ, w̄) ∈ C?, by the same argument, only yields
copositivity of Hū.

Violation of the assumption in Theorem 6.2(b) will play a role in the
following subsection.

7.3 Replacing all linear constraints by one quadratic

Finally, let us deal with the approach to replace the p linear constraints Ax =
a by one quadratic constraint qm+1(x) = ‖Ax − a‖2. Of course, we cannot
expect full strong duality for the original copositive formulation (27), and
neither for the more accurate version, namely the copositive representation
of the Semi-Lagrangian dual of this alternative:

z∗CP,lin := inf {〈M0,X〉 :〈Mi,X〉 ≤ 0, 〈J0,X〉 = 1, 〈Mm+1,X〉 = 0,X ∈ C}

z∗CD,lin := sup
{
y0 :Z(y) ∈ C?, y = [y0, u

>, um+1]>∈ R× Rm+ × R
}
,

}
(37)

Obviously, we have

z∗LD,+ ≤ z∗CD,lin ≤ z∗CP,lin ≤ z∗+ .

Theorem 7.2 Consider the case qm+1(x) = ‖Ax−a‖2. Suppose that at least
one Qi is strictly copositive for i∈ [0 :m+ 1] (note that Qm+1 = A>A is so
if and only if ker A∩Rn+ = {o}). Then both (28) and (37) have zero duality
gap and the primal optimal value is attained if there is an x̄ ∈ F ∩ P :
for some X∗ ∈ C such that 〈Mi,X

∗〉 ≤ 0 for all i∈ [1 :m] as well as 〈J0,X
∗〉 = 1

and 〈Mm+1,X
∗〉 = 0, we have

z∗CD,lin = z∗CP,lin = 〈M0,X
∗〉 .

Proof. We construct a strictly feasible Z(y) as in Theorem 6.2(a) and infer
the result from Slater’s principle. Indeed, the primal problem in (37) is
feasible as X = zz> with z> = [1, x̄>] satisfies all constraints. 2

We have seen in Subsection 5.2 above that Burer’s relaxation (30) is
tighter, but for large instances this problem may have too many constraints.
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So one may replace both constraints 〈Ak,X〉 = 0 and 〈Bk,X〉 = 0 by a linear
combination of them, e.g., by looking at

Ck := akAk + Bk =

[
a2
k −akr>k

−akrk rkr
>
k

]
= [ak, r

>
k ]>[ak, r

>
k ] � O .

Now all Ck are psd., so for any X ∈ D?�, the conditions 〈Ck,X〉 = 0 for all
k∈ [1 :p] are equivalent to

p∑
k=1

〈Ck,X〉 = 0 ,

i.e., to a single homogeneous linear constraint. Now

p∑
k=1

Ck =

[
a>a −a>A
−A>a A>A

]
= Mm+1 ,

so we exactly arrive again at z∗CD,lin or z∗CP,lin this way. Interestingly, the
idea to aggregate constraints in copositive optimization formulations re-
cently emerged almost simultaneously and independently by the different
approaches in [2, 16].

8 Conclusion and outlook

This paper deals with problems to optimize a quadratic function subject
to quadratic and linear constraints, where the linear ones are treated sep-
arately. By relaxing everything except the sign constraints, we arrive at a
Semi-Lagrangian dual which apparently has not been analyzed before in the
literature. Here we have reformulated both the Lagrangian dual and the
Semi-Lagrangian dual as conic optimization problems. While the latter is
a copositive problem, the former can be seen as a natural relaxation of the
latter, namely arising from an approximation of the copositive problem at a
sub-zero level. This low level is important in regimes where every additional
linear inequality constraint severely slows down algorithmic performance,
which is typical in very large problems.

The development lead us to propose us a new approximation hierar-
chy which may avoid above drawbacks, so that a significant tightening of
the bounds becomes tractable. Furthermore, we studied properties of the
problem which ensure strong duality of the conic relaxations; specified neces-
sary and sufficient copositivity-based conditions to guarantee that the Semi-
Lagrangian relaxation is exact; and proposed a hierarchy of seemingly new,
sufficient, second-order global optimality conditions for a KKT point of the
original problem which can be tested in polynomial time, demanding much
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less than the familiar ones which require positive-semidefiniteness of the
Hessian of the Lagrangian.

Burer’s famous copositive relaxation is shown to be even tighter than
the Semi-Lagrangian relaxation; however, this alternative may require too
much effort in large instances. We also discuss the alternative to replace all
linear equality constraints by a single convex quadratic one.

Building upon this findings, there are several directions of future re-
search, among them:

• to tighten other variants of SDP formulations of the full Lagrangian
relaxation [19], and to interpret them in terms of properties of the
Lagrangian function of the original problem (in some formulation);

• to define a strategy which balances computational effort identifying
and using additional linear constraints (i.e., other than those defining
D�), against efficient strengthening of the resulting bounds;

• to clarify the relation between z∗CD and z∗CD,lin;

• to explore the quality of the relaxation if the Ak constraints are simply
replaced by the Bk constraints, and to relate the result with above dual
bounds.
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