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Abstract9

We extend the analysis of the thermodynamics of the climate system by investigating the role10

played by processes taking place at various spatial and temporal scales through a procedure of11

coarse graining. We show that the coarser is the graining of the climatic fields, the lower is12

the resulting estimate of the material entropy production. In other terms, all the spatial and13

temporal scales of variability of the thermodynamic fields provide a positive contribution to the14

material entropy production. This may be interpreted also as that, at all scales, the temperature15

fields and the heating fields resulting from the convergence of turbulent fluxes have a negative16

correlation, while the opposite holds between the temperature fields and the radiative heating17

fields. Moreover, we obtain that the latter correlations are stronger, which confirms that radiation18

acts as primary driver for the climatic processes, while the material fluxes dampen the resulting19

fluctuations through dissipative processes. We also show, using specific coarse-graining procedures,20

how one can separate the various contributions to the material entropy production coming from21

the dissipation of kinetic energy, the vertical sensible and latent heat fluxes, and the large scale22

horizontal fluxes, without resorting to the full three-dimensional time dependent fields. We find that23

most of the entropy production is associated to irreversible exchanges occurring along the vertical24

direction, and that neglecting the horizontal and time variability of the fields has a relatively small25

impact on the estimate of the material entropy production. The approach presented here seems26

promising for testing climate models, for assessing the impact of changing their parametrizations27

and their resolution, as well as for investigating the atmosphere of exoplanets, because it allows for28

evaluating the error in the estimate of their thermodynamical properties due to the lack of high-29

resolution data. The findings on the impact of coarse graining on the thermodynamic fields on30

the estimate of the material entropy production deserve to be explored in a more general context,31

because they provide a way for understanding the relationship between forced fluctuations and32

dissipative processes in continuum systems.33

∗ Email: valerio.lucarini@uni-hamburg.de
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I. INTRODUCTION34

Along the lines of the theoretical construction due to Lorenz [25, 26] of energy cycle of the35

atmosphere, the climate can be seen as a non-equilibrium multi-scale system, which generates36

entropy through a variety of irreversible processes [8, 30, 39–41], and transforms moist37

static energy into mechanical energy, as it features a positive spatio-temporal correlation38

between heating and temperature patterns, so that it can be represented schematically as a39

heat engine with a given efficiency [14, 28]. For a given value of the external and internal40

parameters, the climate system achieves a steady state by balancing the input and output41

of energy and entropy with the surrounding environment [42]. The large scale motions of42

the geophysical fluids are at the same time the result of the mechanical work produced by43

the climatic engine, and contribute to reducing the temperature gradients which make the44

energy conversion possible [41, 48]. Obtaining a closure to this problem would be equivalent45

to developing a self-consistent theory of climate dynamics.46

Developing a comprehensive theory of climate dynamics is one of the grand contemporary47

scientific challenges, also for its obvious environmental, social and economical relevance,48

and it is far from being an accomplished task [11, 45]. In recent years, the extraordinary49

developments of planetary sciences coming from the discovery of extra-solar planets and the50

ensuing need for understanding the properties of atmospheric circulations realized under51

physical and chemical conditions very different from those of the Earth and of the other52

solar planets has provided further stimulation in this direction [46].53

While the thermodynamic interpretation of the baroclinic disturbances, which provide54

the dominant contributions to the low-to-high latitudes heat transport, lies at the core of55

dynamical meteorology [13], and thermodynamics provides indeed the best framework for56

studying strong meteorological features like hurricanes [6], recent results suggest that the57

structural properties of the climate system [44] and in particular its tipping points [23, 35]58

can be effectively analyzed using the thermodynamic indicators developed in [28], with the59

efficiency and the entropy production providing the most interesting indicators [1, 31, 32].60

Moreover, recent studies have underlined that it is instead possible to define generalized61

climate sensitivities able to describe quite accurately the responses of thermodynamic quan-62

tities to changes in CO2 concentration [29].63

Despite its relevance at theoretical level [2, 20], traditionally, entropy production is not64
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one of the first physical quantities climate modelers investigate when assessing the perfor-65

mance of a global climate model (GCM) or the response of the climate system to forcings.66

One should note that the attention towards entropy production in the climate system and67

in climate modeling has been revived when several authors started proposing it as target68

function to maximize when tuning free or empirical parameters of approximate numerical69

models [17, 22, 27] or for getting good first order approximations of the climate state without70

resorting to long integrations [12, 35] This is the weak or pragmatic version of the so-called71

maximum entropy production principle (MEPP) [18], which, in its strong form, proposes72

that any non-equilibrium systems adjust itself in order to maximize the entropy production;73

see [18, 34]. The MEPP theoretical foundations [3, 4] have been criticized both at theoretical74

level [10] and in terms of its geophysical applications [9, 37], so that weaker formulations75

are now mostly preferred [5]. Recently, some authors have turned their attention on testing76

whether it is possible to propose a a variational principle for applies to another index of the77

irreversibility of the system, namely the rate of dissipation of kinetic energy [19, 38].78

In this paper, we wish to investigate the entropy production of a climate model for79

studying, instead of large scale balances, its fluctuations at different temporal and spatial80

scales. Climate is a multi-scale system where dynamics takes place on vast range of inter-81

acting scales. The definition of parametrizations for unresolved scales is a major challenge82

of climate modeling and the proposal of closure theories connecting small and large scale83

properties is a major part of any attempt at formulating approximate theories for climate84

dynamics. The issue of understanding the impact of small scales on large scales and vice-85

versa, and of performing properly the upscaling and downscaling of a model’s output is86

of great relevance also for intercomparing the performances of various versions of a given87

numerical model, or of a set of numerical model simulating the same system, differing for88

the adopted spatial and temporal resolution, and for comparing model data to observations.89

Our goal is manifold. One one side, we want to introduce a way to evaluate how the90

different scales of motion contribute to the overall entropy production of the climate system.91

This investigation, therefore, complements the investigation of how much energy is contained92

in the various scales of motion and of the energy fluxes across these scales. In order to achieve93

this goal, we consider the entropy budget of the FAMOUS GCM [15] in standard, present94

climate configuration, taking advantage of the fact that it is one of the very few climate95

models where the entropy production diagnostics has been implemented and throughly tested96
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[36, 37]. Starting from the output fields at the highest possible resolution given by the97

model (temporal resolution of one time step, and same spatial resolution of the actual98

numerical model), we perform a coarse graining in space and in time to the dynamical and99

thermodynamical fields appearing in the terms describing the entropy production of the100

system, and we test how the estimate of the entropy production changes when different101

coarse graining are applied to the data. We anticipate that we obtain that the coarser is102

the graining procedure, the lower is the estimate of the entropy production one obtains, as103

somehow intuitive. One must note that this is, in fact an obvious result when considering104

simple diffusive system, but not so obvious when fully nonlinear, multiphase systems are105

considered. We also obtain similar results when considering different degrees of longitudinal106

averaging of the fields, up to considering zonally averaged fields only. Our findings provide107

a way to assess how having low-resolution information about the dynamics of turbulent108

systems affects our ability to reconstruct its thermodynamical properties. Moreover, the109

procedure discussed in this paper allows to put on firmer ground the results proposed in110

[30] on the possibility of separating vertical and horizontal exchange processes as far as111

entropy production is concerned. Finally, we can study in detail the relationship between112

two apparently equivalent ways of computing the entropy production proposed in [8].113

This paper is structured as follows. In section II we briefly recapitulate some definitions114

and equations relevant for setting the problem of computing the entropy production of the115

climate system we explain how to perform such a calculation in a climate model. In section116

III we explain what we mean precisely by coarse graining of the data and describe how it117

is actually implemented in the model’s output. We also provide some conjectures what will118

be discussed in later in the paper. In section IV we present our results. We first describe119

the impact of performing coarse graining on time alone, thus exploring the range between120

time step data and long term averaged data, and then we extend our analysis to the space121

domain, showing how performing zonal, horizontal, and mass-weighted averaging over the122

output data impacts the obtained estimate of the entropy production. In section V we123

present our conclusions and perspective for future works. In appendix A we present some124

theoretical arguments on a simple diffusive system for clarifying the meaning of the results125

obtained from the data analysis.126
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II. CLIMATE ENTROPY BUDGET127

Following [2, 20], for any system it is possible to decompose the rate of change of its128

entropy dS/dt as dS/dt = deS/dt + diS/dt, where the first term is called the external and129

the second term is the internal contribution to the entropy budget. The external contribution130

corresponds to the entropy flux through the boundaries of the system whereas the internal131

entropy production is associated with the irreversible processes taking place in the system.132

The second law of thermodynamics imposes that the internal entropy production has to133

be nonnegative at all instants, so that diS/dt ≥ 0. When a statistically steady state is134

achieved, the external and internal entropy production have to balance each other so that135

the total rate of entropy change is zero: we have dS/dt = 0 → diS/dt = −deS/dt ≥ 0, where136

the overline indicates averaging over a long time interval compared to the internal scales of137

the system. The previous expression means that a non-equilibrium system generates on138

the average a positive amount of entropy through irreversible processes, and such excess139

of entropy is expelled at the boundaries. Non-equilibrium is maintained if the system is140

in contact with more than one reservoir with given temperature and/or chemical potential141

[7]. Of course, if the system is at equilibrium, the previous inequality becomes an equality,142

as in the long run the system reaches an homogeneous state of maximum entropy and no143

additional entropy is generated.144

In the climate system two rather different set of processes contribute to the total entropy145

production [8, 41]. The first set of processes are responsible for the irreversible thermali-146

sation of the photons emitted near the Sun’s corona at roughly 5700 K at the much lower147

temperatures, typical of the Earth’s climate. This contributes for about 95% of the total148

average rate of entropy production for our planet, which is about 0.90 W m−2 [8, 41]. The149

remaining contribution is due to the processes responsible for mixing and diffusion inside the150

fluid component of the Earth system, and for the dissipation of kinetic energy due to viscous151

processes. This constitutes the so-called material entropy production, and is considered to152

be the entropy related quantity of main interest as far as the properties of the climate system153

are concerned. See [37] for an extensive discussion of this issue a careful estimate of its value154

in two climate models, including the one used in this study.155

When separating the entropy budget for radiation and for the fluid part of the climate156
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system, and taking long term averages, one can derive the following equation [8, 14]:157 ∫
V

d3x

[(
q̇rad
T

)
+ ṡmat

]
= 0 (1)

where the integral is over the whole volume V of the climate system, q̇rad is the radiative158

heating rate, ṡmat is the instantaneous specific rate of material entropy production due to159

irreversible processes involving the climatic fluid, and T the temperature field. The following160

expression is usually adopted for ṡmat [14, 16, 28, 41]:161

ṡmat =
ϵ2

T
+ FSH · ∇

(
1

T

)
+ FLH · ∇

(
1

T

)
(2)

where ϵ2 the specific dissipation rate of kinetic energy, FSH the turbulent sensible heat162

flux , FLH the turbulent latent heat flux, where by turbulent we mean not related to large163

scale advection due to winds, which is in principle reversible. Romps [43] refers to the164

representation of the entropy production given by Eq. (2) as resulting from the bulk heating165

budget, because water is treated mainly as a passive substance, while processes such as166

irreversible mixing of water vapor are altogether ignored. More detailed description of167

the moist atmosphere have led to a consistent treatment of the entropy generated by the168

various processes accounting for hydrological cycle these processes [8, 39, 40, 43]. Apparently,169

though, the overall effect of hydrological cycle-related entropy production is captured quite170

well using Eq. (2) [8, 30, 36].171

Integrating the term ṡmat in Eq. (1) over the volume V of the climate system and taking172

a long-term average, we obtain the average rate of material entropy production:173

Ṡmat =

∫
V

d3x ṡmat = Ṡdir
mat, (3)

which gives the so called direct formula for the material entropy production. Using Eq. (1),174

we derive an equivalent expression involving radiative heating rates only:175

Ṡmat = −
∫
V

d3x

(
q̇rad
T

)
= Ṡind

mat, (4)

which is the indirect formula for computing the average rate of entropy production, where176

obviously Ṡdir
mat = Ṡind

mat = Ṡmat. Equation (1) provides an intimate link between the radiative177

fields and the material flow properties inside the climate system. Moreover, Eq. (4) is very178

powerful because it permits to work out the average rate of material entropy production179
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by considering only the optical properties of the fluid. Pascale et al. [36] showed using the180

climate model FAMOUS adopted in this study that Ṡdir
mat and Ṡind

mat agree up to an excellent181

degree of precision (within 1%). Since Pascale et al. [36] used the approximate expression182

(2) for the specific material entropy production, they also confirmed that, indeed, at all183

practical purposes using such simplified representation of the irreversibility associated to184

the hydrological cycle is appropriate.185

A. Entropy diagnostics in Climate Models186

In an actual climate model the implementation of entropy diagnostics faces some difficul-187

ties, both at theoretical level and in terms of practical implementation of the entropy-related188

diagnostics. A theoretical difficulty is that, as evidenced in [33], many state-of-the-art cli-189

mate models features an inconsistent energetics, such that when all parameters are held190

fixed and the system reaches a steady state, the long-term average of the energy budget191

at the top of the atmosphere (TOA), which is the only boundary of the climate system, is192

unexpectedly biased with respect to the vanishing long-term average one should expect to193

observe. Interestingly, all biased models feature a positive energy budget at TOA, which194

implies that the time averaged outgoing long wave radiative flux is smaller than the net195

incoming shortwave flux. This fact implies that there must be a positive definite spurious196

sink of energy somewhere inside the system. More specific analyses make clear that such197

spurious sinks are related to the imperfect closure of the hydrological cycle [24] and to the198

inconsistent treatment of the dissipation of kinetic energy, which is not entirely (or at all)199

fed back into the system as thermal energy [33]. Such inconsistencies at smallspatial and200

temporal scales impact large scale, long term climatic properties. As a result, climate models201

are biased cold, taking into consideration that the Earth emits approximately as black body,202

or feature negative biases in the planetary albedo, or both. Moreover, since the biases are203

related to climate processes, they are climate-dependent, and so hard to control a posteriori204

via removal of anomalies. In terms of entropy production, an energy bias of the order of205

1 W m−2 causes a bias in the entropy production of about 4 × 10−3 W m−2 K−1, which206

is comparable with the range of estimates of material entropy production given by various207

climate models [30, 36]. The FAMOUS model we use in this study features minor inconsis-208

tencies in terms of closure of the energy budget (the bias is smaller than 0.1 W m−2, so that209
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the problem exposed here does not affect significantly our results (see discussion later).210

Moreover, in a climate model it is hard to deal directly with Eq. (2) because material211

turbulent fluxes are evaluated through parametrizations of unresolved processes. The cor-212

responding routines in the numerical code do not give as outputs heat fluxes. On the other213

hand the heating rates (i.e. the divergence of the heat fluxes) are easily diagnosed for these214

unresolved processes. Neglecting the geothermal flux from the inner Earth and noting that215

at the top-of-the-atmosphere we have only radiative fields, using Gauss’ theorem, the mate-216

rial entropy production can be worked out by considering all the material diabatic heating217

rates, as shown in [36]:218

Ṡdir
mat =

∫
V

d3x

(
ϵ2

T

)
−
(
∇ · FSH

T

)
−
(
∇ · FLH

T

)
=

∫
V

d3x

(
q̇mat

T

)
(5)

In this paper we refer to the entropy budget of the FAMOUS GCM [15] which has been219

studied in detail by [36, 37]. Lets first focus on the evaluation of Ṡdir
mat. Different pro-220

cesses contribute to the entropy production terms described in Eq.(2): the heating rates221

are calculated as output of many different parametrization routines describing the unre-222

solved processes in the various subdomains of the climate system (atmosphere, ocean, soil,223

cryosphere):224

• Entropy production due to dissipation of kinetic energy, ṠKE, defined as:225

ṠKE =

∫
d3x

(
ϵ2

T

)
. (6)

In FAMOUS and, in general, in most climate models, the kinetic energy is dissipated226

mainly through four parametrized processes: the turbulent stresses occurring at the227

boundary layer, which extract kinetic energy from the free atmosphere, the gravity228

wave drag, which dissipates kinetic energy in the upper atmosphere, atmospheric con-229

vective processes, and small scale turbulence, which is represented by the horizontal230

momentum hyperdiffusion (which serves also the purpose of increasing the numerical231

stability of the model). In FAMOUS only the atmosphere contributes to this part of232

the entropy production. This is a reasonable approximation because the dissipation233

of kinetic energy occurring in the atmosphere is about two orders of magnitude larger234

than that occurring in the ocean [41, 49].235

• Entropy production due to irreversible transfer of sensible and latent heat via turbulent236
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fluxes, Ṡheat = ṠSH + ṠLH , defined as:237

Ṡheat =

∫
d3x

[
−
(
∇ · FSH

T

)
−
(
∇ · FLH

T

)]
= ṠSH + ṠLH (7)

The boundary layer scheme contributes to the entropy production due to irreversible238

sensible and latent heat transfer in the four subdomains of the climate system, as it239

couples them through exchanges of sensible heat and water vapour; other parametrized240

processes contributing to ṠSH and ṠLH are atmospheric convection and the conden-241

sation and evaporation of water in the atmosphere, as determined by the clouds and242

precipitation parametrization schemes. Instead, processes contributing only to ṠSH243

are the oceanic convection, the small scale turbulent mixing of temperature described244

by hyperdiffusion, and the mixing occurring inside the ocean associated to small scale245

eddies and in the mixed layer.246

Table I provides a synthetic outline of which routines describing unresolved processes con-247

tribute to the various terms of the material entropy production in each climatic subdomain.248

Therefore, in practice, we compute Ṡdir
mat as follows:249

Ṡdir
mat =

∑
k

∑
c

∫
Vc

d3x

(
q̇ck
T

)
(8)

where q̇ck is the local instantaneous heating rate occurring in the subdomain Vc due to the250

process k.251

The evaluation of Ṡind
mat is much easier because the heating rates are readily available from252

the radiation scheme, which affects all the subdomains c of the climate system:253

Ṡind
mat = −

∑
c

∫
Vc

d3x

[(
q̇csw
T

)
+

(
q̇clw
T

)]
(9)

where we have divided the contribution q̇sw coming from the shortwave radiation, which254

is only absorbed (and scattered), inside the climate systems, so that q̇sw ≥ 0, from the255

contribution q̇lw coming from the longwave radiation, which instead is scattered, absorbed,256

and emitted, and is the sole responsible for the radiative cooling.257
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III. COARSE-GRAINING OF THE ENTROPY PRODUCTION TERMS: DEFI-258

NITIONS AND SOME CONJECTURES259

The entropy budget is estimated using space and time integrals of the ratio between260

the local heating term and the local temperature. In many cases, either because we need261

to compress data or because climatological database only contain certain time or spatially262

averaged data, we have to deal with coarse grained data for the heating rate ⟨q(x, t)⟩τv , and263

for the temperature ⟨T (x, t)⟩τv , where τ refers to the time scale of the temporal averaging264

operation, and v refers to the set of stencil regions v(x) centered over x over which (mass-265

weighted) spatial averaging is performed:266

⟨X(x, t)⟩τv =
1

τµ(v, t)

∫
v

d3y

∫ τ/2

−τ/2

dσX(x+ y, t+ σ) (10)

where µ(v(x), t) =
∫
v(x)

d3x is the mass contained in the stencil v(x) at time t. Mass-

weighting is the natural choice in climate models as hydrostatic approximation is almost

invariably used and vertical coordinates are expressed to a very good approximation in terms

of pressure levels. Since the integrands in Eqs. (4) and (5) are nonlinear, we obviously have

that for every τ and v:

Ṡdir
mat =

∫
V

d3x

(
q̇mat

T

)
̸=

∫
V

d3x

(
⟨q̇mat⟩τv
⟨T ⟩τv

)
= ⟨Ṡdir

mat⟩τv , (11)

Ṡind
mat = −

∫
V

d3x

(
q̇rad
T

)
̸= −

∫
V

d3x

(
⟨q̇rad⟩τv
⟨T ⟩τv

)
= ⟨Ṡind

mat⟩τv . (12)

Moreover, while as discussed before Ṡdir
mat = Ṡind

mat, there is no a priori reason to expect that

⟨Ṡdir
mat⟩τv and ⟨Ṡind

mat⟩τv have the same value. Finally, we have that up to first order:

Ṡdir
mat − ⟨Ṡdir

mat⟩τv = ∆
[
Sdir
mat

]τ
v
≃ −

∫
V

d3x
∆ [q̇mat]

τ
v ∆ [T ]τv

[⟨T ⟩τv ]
2 (13)

Ṡind
mat − ⟨Ṡind

mat⟩τv = ∆
[
Sind
mat

]τ
v
≃

∫
V

d3x
∆ [q̇rad]

τ
v ∆ [T ]τv

[⟨T ⟩τv ]
2 (14)

where ∆ [X]τv = X − ⟨X⟩τv . It is natural to interpret ⟨Ṡind
mat⟩τv , ⟨Ṡdir

mat⟩τv as the contribution267

to the entropy production due to irreversible processes occurring on scales large than what268

described by τ and v. Consequently, ∆
[
Ṡind
mat

]τ
v
, ∆

[
Ṡdir
mat

]τ
v
in Eqs. (13)-(14) can be inter-269

preted as the contributions to the entropy production given by the material flows (Eq. (13))270

and radiative fluxes (Eq. (14)) with variability confined below the spatial scale given by v271

and by the time scale given by τ .272
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Equations (11)-(14) address practical questions such as: what is the error related to273

remapping the output of a climate model to a new resolution in space and time? How do274

diurnal, seasonal and interannual variability and how different spatial structures (midlatitude275

cyclones, equator-pole contrasts, longitudinal asymmetries due to ocean-land contrasts, etc)276

affect the entropy budget? How should we proceed to compare the estimates of material277

entropy production from models with different resolutions? Moreover, we need to understand278

whether it is more accurate to obtain estimates of the material entropy production from279

coarse grained fields of the radiative heating rates or of the material heating rates, which280

can be used for the indirect or direct formula for the entropy production, respectively. These281

issues may be sequentially investigated by filtering q(x, t) and T (x, t) over the associated282

time- and space- scales.283

When we perform the coarse graining given in Eq. (10) to the thermodynamic variables284

and estimate the entropy production, we discount for the mixing processes occurring below285

the chosen spatial and time scales. Therefore, one expects that ⟨Ṡind
mat⟩τv , ⟨Ṡdir

mat⟩τv ≥ 0 and286

∆
[
Ṡind
mat

]τ
v
,∆

[
Ṡdir
mat

]τ
v
≥ 0 for all choices of τ and v. Moreover, it seems natural to conjecture287

that if, given a model output, we choose a coarser graining, we should obtain a lower estimate288

of the entropy production, because we neglect the impact of a larger set of irreversible289

processes. In other terms, we should have that ∆
[
Ṡdir
mat

]τ1
v1

≥ ∆
[
Ṡdir
mat

]τ2
v2

(or ⟨Ṡdir
mat⟩τ1v1 ≤290

⟨Ṡdir
mat⟩τ2v2) and ∆

[
Ṡind
mat

]τ1
v1

≥ ∆
[
Ṡind
mat

]τ2
v2

(or ⟨Ṡind
mat⟩τ1v1 ≤ ⟨Sind

mat⟩τ2v2) if τ2 ≤ τ1 and v2 ⊂ v1.291

Let’s see how to interpret the inequalities ∆
[
Ṡind
mat

]τ
v
, ∆

[
Ṡdir
mat

]τ
v
≥ 0 using the r.h.s. of Eqs.292

(13)-(14):293

• The inequality ∆
[
Ṡind
mat

]τ
v
≥ 0 can be interpreted as the fact that at all time and space294

scales, there is on the global average a positive correlation between the anomalies of295

radiative heating and the anomalies of temperature. This expresses the basic fact that296

the climate system is driven by radiative forcings, in the first place. Hence, this term297

refers to the response of the system to the external forcing. Note that the inequality298

holds despite the the strong negative correlation between temperature anomalies and299

long wave heating rate anomalies due to the Boltzmann feedback.300

• The other inequality ∆
[
Ṡdir
mat

]τ
v
≥ 0, instead, implies that at all time and space scales301

on the average there is a negative correlation between the anomalies of heating due302

to convergence of material heat fluxes and anomalies of temperatures. This relation,303
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instead, expresses the fact that temperature anomalies are damped by the geophysical304

flows, and this terms refers to the dissipation occurring inside the system at all scales.305

In other terms, these conjectured inequalities correspond to the well-known fact that the306

climate is 1. forced by anomalies in the radiative forcing, and 2. the atmospheric and oceanic307

circulations reduce the resulting temperature gradients. Climate processes are related in308

such a way at all scales, in the average, i.e. when space and time averages are considered.309

Obviously, locally in space and/or in time one can get, e.g. positive temperature fluctuations310

and, at the same time, a positive heating due to latent heat release and sensible heat311

convergence (e.g. tropical troposphere). Such processes can be positively correlated in time312

for some locations, but this must come at the expenses of negative correlations dominating313

elsewhere in the globe.314

As the primary driving of climate is indeed the radiative forcing, while the fluid flows

tend to dampen the resulting temperature gradients through instabilities, Therefore, one

expects that the correlations between temperature and heating fields are stronger when

considering the radiative fields as sources of heating. In other terms, the convergence of

heat due to geophysical flows are neither strong nor fast enough to counter exactly the

radiative forcing at all scales. As an example, one may consider the fact that the radiative-

convective equilibrium is typically baroclinically unstable in the mid-latitudes, and, indeed,

baroclinic disturbances reduce the North-South temperature gradient by transporting heat

from South to North, but cannot reduce it to zero. Taking into consideration Eqs. (13)-(14),

the different role - forcings vs. dampening - of the convergence of the radiative fluxes vs.

material turbulent fluxes leads us to proposing an additional inequality. We conjecture that

∆
[
Sind
mat

]τ
v
≥ ∆

[
Sdir
mat

]τ
v

∀τ, v,

from which, since Sdir
mat = Sind

mat, we derive the following inequality

⟨Sdir
mat⟩τv ≥ ⟨Sind

mat⟩τv , ∀τ, v.

IV. RESULTS315

We first discuss briefly how the coarse graining operation is performed in practice. Let316

us consider a steady-state climate simulation lasting for a time period L (in our case L = 50317
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years), which we divide it in N sub-intervals τ = L/N , where τ = M × dt, where dt is the318

model’s time step (1 h in our case). The horizontal resolution is specified by regular grids319

with angle resolution of 5◦ × 7.5◦ lat-lon), while in the vertical we have 11 levels for the320

atmosphere, 20 oceanic levels, and 3 land surface levels [15]. Therefore, we subdivide the321

domain V of integration into Q subdomains vq, q = 1, . . . , Q, each containing (in the bulk of322

the model’s domain) R grid points. Given an intensive thermodynamic field X(xk, tj), for323

n = 1, . . . , N and q = 1, . . . , Q, we define its coarse grained version as:324

⟨X(q, n)⟩τv =
1

τµ(vq, n)

Rq∑
j=R(q−1)+1

Mn∑
k=M(n−1)+1

dtµ(xj, σk)X(xj, σk), (15)

where µ(xj, σk) = ν(xj)ρ(xj, σk) is the mass contained in the grid box centered around xj of325

volume ν(xj) at time σk and µ(vq, n), correspondingly, is the time averaged (for time ranging326

from tM(n−1)+1 and tMn ) mass contained in the domain vq of volume ν(vq). Therefore, our327

estimate of the coarse grained value of the material entropy production is:328

⟨Ṡdir
mat⟩τv =

1

N

Q∑
i=1

N∑
l=1

ν(vi)
⟨q̇mat(i, l)⟩τv
⟨T (i, l)⟩τv

(16)

for the so-called direct formula, and:329

⟨Ṡind
mat⟩τv = − 1

N

Q∑
i=1

N∑
l=1

ν(vi)
⟨q̇rad(i, l)⟩τv
⟨T (i, l)⟩τv

(17)

for the so-called indirect formula. These formulas are the discretized versions of Eq. (11)330

and Eq. (12), respectively. Obviously, the discrete versions of the exact formulas for the331

material entropy production Ṡdir
mat and Ṡind

mat are obtained by setting in Eq. (15) R = M = 1,332

i.e., taking the model outputs at the highest possible resolution. The processes occurring333

in the interior of the ocean and below the first soil level, as these contributions have been334

shown to be entirely negligible in terms of entropy production [37], and so are discarded.335

If we choose a given spatial resolution of our data and we consider different values of336

M , we test how applying temporal coarse graining impacts the estimates of the material337

entropy production. Instead, if we change the shape of the stencil v and/or the number of338

points R while keeping M fixed, we investigate the impact of changing the spatial coarse339

graining scheme. Obviously, we cannot capture the contributions to the material entropy340

production due to irreversible processes taking place over timescale shorter than the model341

timestep and over space scales smaller than the model resolution. It is not clear, given a342
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specific model’s settings, how relevant these could be, and, indeed, the only way to find this343

out is to alter the model’s resolution. This procedure may have relevance in terms of model344

tuning, as one could decide to change a model’s parameter when altering its resolution in345

such a way to keep the entropy production constant.346

A. Temporal coarse graining347

We start our investigation by performing coarse graining exclusively on time. We then348

analyze a long, steady state model’s run lasting 50 years with a model’s timestep of 1 hour,349

and consider 1 year as long-term averaging time. We use the following values for τ : 1 hour350

(model timestep, N = 1), 6 hours (N = 6) , 12 hours (N = 12), 1 day (N = 24), 2 days351

(N = 48), 5 days (N = 120), 10 days (N = 240), 15 (N = 360) days, 1 month (N = 720),352

3 months (N = 2160), 6 months (N = 4320), 1 year (N = 8640). We then collect the353

50 1-year averaged value of the coarse grained material entropy production and compute354

the mean and standard deviation for the 50 data we have. Moreover, we consider longer355

averaging periods - 5 years, 10 years, and 50 years, and take in these cases τ equal to the356

averaging time, so that N = 43200, N = 86400, and N = 432000 in the τ = 5, 10, and357

50 years case, respectively, thus spanning in total more than 5 orders of magnitude for N .358

We then compute for the coarse-grained estimates of the material entropy production the359

ten 5−year averages and the five 10−year averages, and compute the mean and standard360

deviation, plus the unique value referred to the 50− year average. The statistics for such361

large values of τ are extremely stable.362

In Fig.1(a) we report the estimates of the material entropy production obtained through363

the direct formula ⟨Ṡdir
mat⟩τ and the indirect formula ⟨Ṡdir

ind⟩τ , respectively, where we have364

dropped the lower index v because we do not perform any spatial coarse graining. The365

vertical bars indicate the uncertainty due to the long term variability.366

The computed values (worked out at each timestep) of Ṡind
mat ≈ 53.1 mW m−2 K−1

367

(1mW = 10−3W ) and Ṡdir
mat ≈ 53.5 mW m−2 K−1 have a difference of about 0.4 mW368

m−2 K−1, so that Eq. (1) is verified with great accuracy. The discrepancy term between the369

two estimates is due to the extremely small spurious radiative imbalance at TOA of about370

0.1 W m−2 (see [30]) and to numerical inaccuracies. Moreover, as discussed in [30, 37],371

these estimates are in good agreement with what found in climate models of higher degree372
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of complexity.373

As conjectured, we find that the estimates of the coarse grained entropy production374

decrease with increasing τ from these reference values obtained with no temporal coarse375

graining. The bias resulting from the use of the indirect formula is larger for all values of τ .376

In Fig. 1(a) we see that if we consider values of τ up to 6 hours, the impact of coarse graining377

is extremely small. This implies that such small time scales the irreversible processes are378

negligible; this matches well with the fact that convection, which is the dominating fast379

process in the climate system, is parametrized with an instantaneous adjustment. This380

immediately points to an unwelcome spurious effects of climate parametrizations.381

The effect of coarse graining becomes more relevant when τ ≥ 1 day. Figures 1(b) and382

1(c) present the values of ∆
[
Ṡdir
mat

]τ
and ∆

[
Ṡind
mat

]τ
as a function of τ . For τ ∼ 1 day, the383

difference between the true and the coarse grained value of the entropy production is about384

≈ 0.6 mW m−2 K−1 if we use the direct formula, and ≈ 2 mW m−2 K−1 is we use the385

indirect formula. Such biases are due to neglecting the mixing occurring on the time scale386

of the day, mostly due related to the daily cycle of incoming radiation. When considering387

the direct formula, it is interesting to note that ∆
[
Ṡdir
KE

]τ
is basically zero for all values of388

τ (not shown), meaning that there is no time correlation between the dissipation of kinetic389

energy and the temperature field. The coarse graining, instead, impacts the contribution to390

entropy production due to the hydrological cycle. We can substantiate this statement by391

observing that ∆
[
Ṡdir
mat

]τ
∼ ∆

[
Ṡdir
heat

]τ
(see definition of the latter in Eq. 8), as can be seen392

by comparing Figs. 1(c) and 2(a).393

The second timescale worth discussing is the one corresponding to 1 year (∼ 3× 107 s).394

The use of annual means instead of time-step data introduces a bias of about 4 mW m−2 K−1
395

when using the indirect formula, which corresponds to neglecting the correlation between the396

seasonal cycle of the radiation budget and that of the radiation temperature field. Similarly,397

considering the direct formula, we obtain ∆
[
Ṡdir
mat

]τ
∼ 1.5 mW m−2 K−1, which measures398

the effect of neglecting the correlation of the seasonal cycle of the atmospheric and oceanic399

transport and dissipation and of the temperature field. One must note that a considerable400

contribution to the value of ∆
[
Ṡdir
mat

]τ
for τ ≥ 1 year is given by the atmospheric temperature401

hyperdiffusion, which in FAMOUS is implemented as a eight-order laplacian operator and402

applied after the advection to the model prognostic variables. Hyperdiffusion is generally403

introduced in dynamic cores for numerical reasons in order to smooth variables and avoid404
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local divergences. However it may thought as a way to represent turbulent dissipation and405

mixing at subgrid scale. We discover that a traditional numerical trick used in the climate406

modeling community for avoiding computational instabilities impacts a global scale physical407

properties of the system, as observed in [33] when looking at energy budgets.408

We also observe that there is no clear signature emerging in the functions ∆
[
Ṡdir
mat

]τ
and409

∆
[
Ṡind
mat

]τ
for values of τ to weeks (synoptic waves) or monthly (low frequency variability)410

time scales while a relatively smooth transitions is found going from daily to yearly averages.411

This supports the idea that it is possible to look at weather disturbances as parts of a macro-412

turbulent cascade.413

Estimating the entropy production via either the direct or the indirect formula using414

long term averages (but full spatial resolution) leads to underestimate the exact value of415

the entropy production by less than 10%. This suggests that long term averages of the416

climatic fields one can obtain from the climate repositories are enough to get a good idea417

of the properties of the climate system. As we shall see in the next section, things change418

drastically when the coarse graining impacts the spatial features of the climatic fields.419

We conclude this section with a note on the oceanic processes, which we do not treat420

in this paper as they contribute negligibly to the overall entropy production in the climate421

system. in Fig. 2(a) we show the dependence of the entropy production due to the oceanic422

mixing on the temporal coarse graining (dashed) line. We discover that its exact value,423

computed at time step, is about 1 mW m−2 K−1, as in [37], and its coarse grained value424

does not noticeably decrease up to τ ∼ 1 year, above which the coarse grained estimate is425

roughly halved. The dash-dotted line in Fig. 2(a) gives the contribution due to the vertical426

mixing in the interior of the ocean, which is a very slow process and is, in fact, weakly427

affected by the temporal coarse graining. The other contribution to the entropy production428

in the ocean comes from the mixing occurring in the mixed layer. The mixing layer scheme429

[21] parametrizes the convection due to heating at depth and cooling at the surface as well430

as the mechanical stirring due to wind and is introduced in ocean models in order to account431

for the seasonal thermocline variations. The coarse grained value of this term goes virtually432

to zero for τ ≥ 1 because, when considering such an averaging, we discount for the impact433

of the seasonal cycle in the upper portion of the ocean.434
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B. Spatial and Temporal coarse-graining435

In this section we analyze the combined effect of coarse graining the heating rates and436

temperature fields in space and time by using extensively Eqs. 16 and 17. Of course, there437

are many ways to perform coarse graining, boiling down to the selection of the stencil v438

introduced before. Summarizing, we proceed as follows:439

1. longitudinal averaging: the stencils v are given by arcs of varying length in the zonal440

direction;441

2. areal averaging: the stencils v are given by portions of varying size of the spherical442

surface;443

3. mass averaging: the stencils v are given by same-mass portions of the atmospheric444

spherical shell obtained by thickening in the vertical direction the stencils described445

in 2.;446

in all cases we perform also temporal coarse graining by selecting the same averaging times447

τ described in the previous subsection.448

It is important to note that the averaging as in points 1. and 2 is performed at constant x3.449

FAMOUS (and HadCM3) uses hybrid vertical coordinates, i.e. a coordinate system which450

changes smoothly from a terrain-following specification near the lower boundary (σ coords.)451

to a isobaric definition (p coords.) in the medium-upper troposphere and stratosphere. As452

clear from Eqs. 15-17, the result of any coarse graining performed at constant value of453

the vertical coordinates depends on the vertical coordinate considered. In order to avoid454

the spurious effects of remapping the thermodynamic fields to a new coordinate system,455

we choose coarse grained grid boxes that respect as much as possible the original model’s456

resolution.457

We also remark that given the heavy computational burden of the operation, we restrict458

our analysis to only one of the fifty year of available data. We have tested that459

1. Longitudinal Averaging460

We first investigate the effect of coarse graining on the estimate of the material entropy461

production by averaging longitudinally the thermodynamic fields, up to the point of con-462
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sidering zonally averaged only fields, and by degrading their temporal resolution by using463

the averaging times τ described above. The estimates of ⟨Ṡdir
mat⟩τv and ⟨Ṡind

mat⟩τv are given in464

Fig. 3(a) and Fig. 3(c), respectively. The corresponding values of ∆
[
Ṡdir
mat

]τ
v
and ∆

[
Ṡind
mat

]τ
v

465

are reported in Fig. 3(b) and Fig. 3(d), respectively, and some specific results are given in466

Table II.467

In all figures, the value of τ is reported in the abscissae, while in the ordinates the value of468

size of the spatial stencil, ranging from 7.5◦ (no coarse graining) to 360◦ (zonal averaging) is469

shown. In both figures, the lower left corner corresponds to the best estimate of the entropy470

production; the upper left corner corresponds to the material entropy production due to the471

longitudinally averaged, high-temporal resolution fields. the lower right corner corresponds472

to long-time averaged, high-resolution spatial case, and, eventually, the upper right corner473

corresponds to the highest degree of coarse graining: it represent the entropy production due474

to the long-term averaged, longitudinally averaged fields, and features the lowest value of475

⟨Ṡdir
mat⟩τv and ⟨Ṡind

mat⟩τv . We remark that the values reported at the border of the domain given476

by the lowest value of the ordinates coincide, obviously, with what shown in Fig. 1(a). As a477

general fact, we observe that the coarse grained estimates of the entropy production decrease478

(or remain virtually unchanged) as we perform coarser and coarser graining procedure, in479

time or in space, and that ⟨Ṡdir
mat⟩τv ≥ ⟨Ṡind

mat⟩τv .480

The strongest dependence of the ⟨Ṡind
mat⟩τv is on τ : temporal coarse graining appears to481

be the dominating influence, while the effect of spatial coarse graining is apparent only482

for τ ≤ 1 day and for considerable longitudinal averaging, such that features below 60◦483

are smeared out. In other terms, longitudinal averaging starts to matter only when we484

lose information on the alternating pattern continents/oceans. The total effect of removing485

totally the spatial structure is similar to that of performing a time-averaging of one day.486

When considering ⟨Ṡind
mat⟩τv the picture is partially different: first, the influence of the spatial487

averaging is relatively strong at all scales for τ ≤ 1 day. The coupling between the spatial488

and temporal scales indicates that using low pass filter and space and time we remove the489

fast traveling synoptic waves of the mid-latitudes. As opposed to the case of the coarse490

grained indirect estimate of the entropy production, spatial averaging plays a role also for 1491

day ≤ τ ≤ 3 months. This is probably the signature of the relevance of low-frequency, large492

scale features of the tropical circulation, which are sustained by longitudinal gradients (and493

tend to reduce them), which are smeared out when extreme coarse graining is applied.494
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Concluding, we remark that neglecting information on the longitudinal fluctuations and495

temporal fluctuations of the thermodynamic fields does not bias considerably (in the worst496

case, by about 10%) the estimates of the entropy production one would obtain by retaining497

the full information. This agrees with the fact that, in first approximation, in our planet498

longitudinal gradients and longitudinal heat fluxes are relatively small [41]. Moreover, using499

either the direct or indirect formula we obtain rather similar results, with a bias of maximum500

5%. As expected, the direct formula gives more accurate estimates for all considered coarse501

graining procedures.502

2. Areal averaging503

As a second step for understanding the role of spatial and temporal coarse graining of504

the estimate of the material entropy production, we combine time averaging of the ther-505

modynamic fields with areal averaging along horizontal surfaces. This operation allows us506

to explore how the two-dimensional spatial covariance of heating and temperature fields507

contributes to entropy production at all time scales. In order to keep coherence with the508

previous coarse graining procedure, we proceed as follows. We divide the spherical surface in509

coarse grained grid boxes defined by intervals (in degrees in latitude and longitude) (∆λ∆ϕ)510

such that ∆ϕ/∆λ = 1.5, which is consistent with the model’s resolution of 5◦lat× 7.5◦lon.511

We then increase ∆ϕ from 7.5◦ up to 90◦, thus decreasing progressively the number of coarse512

grained grids from 1728 to 12. In order to complete the coarse graining, we select as two513

coarsest resolutions (∆λ; ∆ϕ) = (90◦, 180◦) (four quadrants) and (∆λ; ∆ϕ) = (180◦, 360◦)514

(full spherical surface).515

The estimates of ⟨Ṡdir
mat⟩τv and ⟨Ṡind

mat⟩τv are given in Fig. 4(a) and Fig. 4(c), respectively. The516

corresponding values of ∆
[
Ṡdir
mat

]τ
v
and ∆

[
Ṡind
mat

]τ
v
are reported in Fig. 4(b) and Fig. 4(d),517

respectively, and some specific results are given in Table II. We discover that, as opposed518

to the previous case, the impact of selecting coarser and coarser graining in space reduces519

considerably the value of ⟨Ṡdir
mat⟩τv for all values of τ , because such an averaging progressively520

removes the strong meridional dependence of the thermodynamic fields, up to the extreme521

case of v being the whole Earth’s surface. In this case, the estimate of the entropy production522

⟨Ṡdir
mat⟩τv ∼ 47.2 mWm−2K−1. Note that when considering very strong spatial averaging the523

effect of changing τ is negligible, because the spatial averaging alone reduces the temporal524
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correlations by mixing areas of the planet experiencing, e.g., different seasons. The τ -525

dependence of ⟨Ṡdir
mat⟩τv is relevant only for τ ≤ 1 day and spatial scales smaller than ∼526

3 − 4 × 106 m, which is, like in the previous case, hints at the fact that when averaging527

over large spatial and temporal scales, we remove the variability corresponding to synoptic528

waves.529

The function ⟨Ṡind
mat⟩τv has a qualitatively similar but quantitatively stronger dependence530

on ∆ϕ and τ with respect to ⟨Ṡdid
mat⟩τv : the bias in the estimate production is larger for all531

the considered coarse graining. Additionally, the indirect formula is more strongly affected532

by averaging over long time scales τ , similar to what seen in Fig. 3(c), because the coupling533

between the seasonal cycle of the radiative budget and the temperature fields is very strong.534

Note that when we consider global or quasi-global spatial coarse graining, such effect disap-535

pears, because averaging such large scales already removes a large part of the season cycle536

signal. This is different from what reported in Fig. 3(c), because zonal averaging, obviously,537

cannot remove the asymmetry between northern and southern hemisphere.538

3. Mass Averaging539

Finally, we perform spatial averaging along the horizontal and vertical direction and540

for different values of τ for the direct and indirect formula of entropy production. In this541

way, we are able to ascertain the relevance of the processes involving irreversible fluxes542

across temperature gradients along the vertical direction. Results are reported in Fig. 5543

and Fig. 6, respectively, , and some specific results are given in Table III. Since we are544

now dealing with three variables describing the coarse graining - the amplitude in latitude545

∆ϕ, the number of levels n, and τ , we present two cross sections obtained for τ = 1 day546

(virtually indistinguishable from τ = 1 hour) and τ = 1 year, reported as panels (a) and (c),547

respectively, in both Figs. 5 and 6. In panels (b) and (d) of these two figures, we report,548

instead, ∆
[
Ṡdir
mat

]τ
v
and ∆

[
Ṡind
mat

]τ
v
, respectively. The inequality ∆

[
Ṡdir
mat

]τ
v
< ∆

[
Ṡind
mat

]τ
v
is549

clearly obeyed.550

As we know from the previous discussions, the function ⟨Ṡdir
mat⟩τv is relatively weakly af-551

fected by coarse graining along the horizontal directions and along the time axis. The modest552

importance of time averaging is confirmed in this more complete analysis, as Figs. 5(a), and553

5(c) are hard to distinguish. Instead, we find that averaging the thermodynamic fields along554
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the vertical reduces very severely the correlation between the temperature and heating fields,555

so that the estimate of the entropy production obtained from the coarse grained fields is556

much smaller than its true value Ṡmat. The results emphasize that vertical mixing is the557

dominant effect contributing to the material entropy production.558

When considering the indirect formula, we can draw roughly the same conclusions as559

above, with the difference that ⟨Ṡind
mat⟩τv is more strongly affected by averaging along the560

horizontal surface and along the time axis. Therefore, Figs. 6(a) and 6(c) feature clear561

differences in terms of mean values, and, in each of them, the impact of performing very562

coarse graining along the horizontal direction is more pronounced with respect to what563

reported in Fig. 5. The effect of horizontal coarse graining become noticeable already when564

grid boxes with side of (∆λ,∆ϕ) ∼ (20◦, 30◦) are considered. This implies that the spatial-565

temporal correlation between radiative heating and temperature fields is relevant for larger566

range of scales than in the case of described above. These results put in firmer ground the567

results given in [30].568

Comparing Figs. 5 and 6, one can verify that in all cases ∆
[
Ṡind
mat

]τ
v
> ∆

[
Ṡdir
mat

]τ
v
.569

Moreover, one discovers that when considering the coarse possible graining, one obtains570

that ⟨Ṡdir
mat⟩τMvM,v,h ∼ 16mWm−2K−1 > ⟨Ṡind

mat⟩τMvM,v,h ∼ 0. In order to interpret some these571

results, we shall consider some limiting cases for Eqs. (11)-(12). We first take as averaging572

volume at each point at surface v = vM,v the vertical column ranging from the bottom of573

the fluid component of the climate system to the top of the atmosphere, and we consider a574

long averaging time τ = τM ≫ 1 y, so that all temporal dependencies are removed. In other575

terms, we look at the thermodynamic properties of the climatological fields.576

We start with the expression relevant for the indirect formula for estimating the material577

entropy production:578

⟨Ṡind
mat⟩τMvM,v = −

∫
V

d3x

(
⟨q̇rad⟩τv
⟨T ⟩τv

)
= −

∫
Σ

dx1dx2
FTOA(x1, x2)

Tcli(x1, x2)
. (18)

where given the choice of τ , the time averaging operation given by the overbar in Eq. 18579

is immaterial. In Eq. 18 FTOA(x1, x2) = F SW
TOA(x1, x2) − FLW

TOA(x1, x2) is the climatological580

average of the net radiative wave flux at the top of the atmosphere (positive when there is581

net incoming radiation towards the planet), while the lower indices LW and SW indicate582

the long wave and shortwave components, respectively. Tcli(x1, x2) is the long term mean583

of the vertical average of the fluid temperature. Such quantity can be closely approximated584
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by the emission temperature TE(x1, x2) = (FLW
TOA(x1, x2)/σ)

1/4, where σ is the Boltzmann’s585

constant. Note that since FTOA and TE are positively correlated (regions having a net posi-586

tive incoming radiation are warmer), we have that FTOA and 1/TE are negatively correlated.587

Since
∫
Σ
dx1dx2FTOA = 0, we derive that ⟨Ṡind

mat⟩τv in Eq. (18) is positive, as expected.588

Equation (18) can also be given a different interpretation. We have that FTOA(x1, x2)

is equal to the divergence of enthalpy transport due to the large scale climatological atmo-

spheric and oceanic flow, so that

FTOA(x1, x2) = ∇2 ·
∫ TOA

zsurf

dx3[Jlat(x) + Jdry(x)]

= ∇2 · [J̃lat(x1, x2) + J̃dry(x1, x2)]. (19)

In the previous equation, we have indicated with Jlat(x) = Lwq(x) {v1(x), v2(x)} and589

Jdry(x) = [CpT (x) + gx3] {v1(x), v2(x)} the large scale, advective horizontal fluxes of la-590

tent heat and of dry static energy, respectively, where Lw is the latent heat of evaporation591

of water (taken as a constant for simplicity), q is the specific humidity, and Cp is the heat592

capacity of air at constant pressure, and v1 and v2 indicate the two components of the hor-593

izontal velocity field. Finally, the˜sign refers to the vertically integrated fluxes. Inserting594

the right hand side of Eq. (19) in Eq. (18), we conclude that Eq. (18) gives the entropy595

produced by the large scale horizontal transport of the geophysical flows and approximates596

the climate system as a purely 2D system featuring irreversible heat transport from warm597

to cold regions. Looking in the bottom right corner of Fig. 6(c) (which corresponds to the598

last entry in Table III), we obtain a value of ∼ 6.5 mWm−2K−1 (note that the result is599

virtually unaltered when averaging over any τ ≥ 1y).600

We can bring the previous example to a more extreme case. If the spatial stencil v is the601

whole climate domain vM,h,v, it is easy to derive that:602

⟨Ṡind
mat⟩τMv=V = µ(v)

⟨q̇rad⟩τv
⟨T ⟩τv

= −µ(v)

∫
Σ
dx1dx2FTOA(x1, x2)

⟨T ⟩τv
= 0, (20)

because we have reduced the climate to a zero-dimensional system with a unique temperature603

where absorbed and emitted radiation are equal. Such a system is at equilibrium, cannot do604

any work, and cannot sustain any irreversible process. See Fig. 6(c) and penultimate entry605

in Table III.606

Let’s now repeat the same coarse graining operations for the direct formula. We first con-

sider v = vM,v. In each location, when integrating vertically, the surface sensible heat fluxes

23



cancel out with the heating rates associated to sensible heat fluxes in the atmosphere, so

that for this choice of coarse graining their contribution to the entropy production vanishes.

We obtain:

⟨Ṡdir
mat⟩τMvM,v =

∫
V

d3x

(
⟨q̇mat⟩τv
⟨T ⟩τv

)
=

∫
Σ

dx1dx2

[
Lw[P (x1, x2)− E(x1, x2)]

Tcli(x1, x2)
+

ϵ̃2(x1, x2)

Tcli(x1, x2)

]
=

∫
Σ

dx1dx2

[
−∇2 · J̃lat(x1, x2)

Tcli(x1, x2)
+

ϵ̃2(x1, x2)

Tcli(x1, x2)

]
. (21)

where Lw[P (x1, x2) − E(x1, x2)] = −∇2 · J̃lat(x1, x2) as imposed by conservation of water607

mass, with P (x1, x2) and E(x1, x2) time-averaged values of precipitation and evaporation,608

respectively [41]. Furthermore, we indicate with ϵ̃2(x1, x2) the vertically integrated kinetic609

energy dissipation rate, and we choose, as a first approximation Tcli(x1, x2) as characteristic610

temperature defined as before. Therefore, Eq. (21) suggests that the bottom right corner611

of Fig. 5(c) corresponds to the sum of entropy produced by large scale transport of latent612

heat plus the entropy produced by the dissipation of kinetic energy. We find a value of613

∼ 18 mWm−2K−1. Considering that the entropy production due to large scale transport614

of sensible heat is much smaller than the corresponding contribution due to latent heat615

transport (from the precise calculation we get a factor of about 5 as ratio between the616

two terms) we can derive that the dissipation of kinetic energy contributes for about ∼ 13617

mWm−2K−1 to the total material entropy.618

Interestingly, if we compute ⟨Ṡdir
mat⟩τMvM,h,v , we do not obtain a vanishing result. While the619

contribution to entropy production due to heat fluxes is eliminated, the contribution coming620

from the dissipation of kinetic energy is not removed by the operation of coarse graining:621

⟨Ṡdir
mat⟩τv=V = µ(v)

⟨q̇mat⟩τv
⟨T ⟩τv

= µ(v)

∫
Σ
dx1dx2ϵ̃

2(x1, x2)

⟨T ⟩τv
> 0. (22)

Equation (22) gives, to a good degree of approximation, the minimum value of the entropy622

production compatible with the presence of a total dissipation
∫
V
d3xϵ2(x, t) [28, 30]. The623

second entry of Table III reports for the contribution given in Eq. 22 a value of about 16624

mWm−2K−1. This value agrees well with what derived using Eqs. 20-21 and with what625

obtained by direct estimate of ṠKE ∼ 13.5 mWm−2K−1.626

These results imply that we can obtain an extremely good estimate of the true value627

of the material entropy production even using climatological, horizontally global averages628

of the thermodynamics fields: in such a worst case scenario, we get a bias of about 10%.629
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Using few selected coarse grained estimates for the entropy production, one can derive that630

it is possible to split the total value of 52.5 mWm−2K−1 as follows: ∼ 6 mWm−2K−1
631

can be attributed to large scale transports of latent and sensible heat; ∼ 13 mWm−2K−1
632

can be attributed to the entropy produced by dissipation of kinetic energy; the remaining633

∼ 33.5 mWm−2K−1 can be attributed to vertical transports of sensible and latent heat634

(basically, convection). These estimates agree quite accurately with what obtained in [30]635

using scaling analysis. Also, one obtains, in agreement with the inequality proposed in [30],636

that the entropy produced by dissipation of kinetic energy is larger than that due to large637

scale energy transport.638

V. CONCLUSIONS639

The investigation of the climate system using tools borrowed from non-equilibrium ther-640

modynamics [2, 20] is a very active interdisciplinary research, which allows for connecting641

concepts of great relevance for climate dynamics, such as large scale heat transports and642

the Lorenz energy cycle [42], to basic thermodynamical concepts used in the investigation643

of general non-equilibrium systems [16, 28]. Such a theoretical framework seems relevant644

especially in the context of the growing field focusing on the study of the atmospheres of645

exoplanets [1, 32], for which detailed measurements are hardly available. In fact, ther-646

modynamical methods allow for defining inequalities and deducing apparently unexpected647

relations between different physical quantities [30].648

In this paper we have focused on understanding where, in the Fourier space, dissipative649

and irreversible processes are dominant. This has been accomplished by computing how650

different spatial and temporal scales contribute to the material entropy production in the651

climate system. We have considered the output coming from a 50 y run under steady state652

conditions performed with the FAMOUS climate model [15], and have used the entropy653

diagnostics developed and tested in [36]. We have considered both the direct and the indirect654

formulas for material entropy production [8]: the former estimates the material entropy655

production using the heating rates associated to the dissipation of kinetic energy and the656

convergence of material heat fluxes, the latter uses, instead, the heating rates associated to657

radiative fluxes.658

Our strategy has been the following: we have considered the estimates of the entropy659
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production coming from the coarse grained outputs of the heating and temperature fields.660

The coarse-graining has been performed both in time and in space. The temporal coarse661

graining ranges from hourly (timestep of the model) to yearly time scale, while the spatial662

coarse grained has been performed in three different modalities: 1) performing longitudinal663

averages; 2) performing averages along horizontal surfaces; 3) performing mass-weighted664

averages along the horizontal and vertical directions. We have conjectured and then verified665

numerically that the coarser the graining of the data, the lower is the resulting estimate of666

the material entropy production, both in the case of the direct and of the indirect formula667

for estimating the material entropy production. This implies that at all scales there is a668

negative correlation between heating rates related to flow (kinetic energy dissipation, sensible669

and latent heat fluxes) and the temperature field, and a positive correlation between the670

heating rate due to radiation and the temperature field. In other terms, at all scales, the671

climate systems results to be forced by radiation, while the resulting forced fluctuations are672

dissipated by the material fluxes. In agreement with this interpretation, we have conjectured673

that at all scales the correlation between the radiative heating and the temperature field is674

stronger than the correlation between the temperature field and the material heating rates.675

If the two correlation were equal, the climate system would be able to adjust, instantly and676

locally, to (spatial and temporal) variations in the radiative heating. The numerical results677

have provided support for this conjecture.678

Considering various special cases of coarse graining, and using the basic thermodynamic679

equations, we have been able to estimate in a consistent way the contributions to material680

entropy productions coming from large scale horizontal heat transport (∼ 6 mWm2−K−1),681

dissipation of kinetic energy (∼ 13 mWm2−K−1), and vertical processes of sensible and682

latent heat exchanges (i.e. convection, ∼ 33.5 mWm2−K−1). This suggest that, as first683

approximation, the climate system can be seen in terms of dissipative processes as a collection684

of weakly coupled vertical columns featuring turbulent exchanges and dissipation. This685

confirms the ideas presented in [30].686

Note that one could use the quantitative information on the various contributions to the687

material entropy production to derive some basic properties of the climate system without688

resorting to the full three dimensional, time dependent fields, In particular, one can derive a689

good estimate of the intensity of the Lorenz energy cycle by multiplying the estimated value690

of the contribution of the dissipation to the kinetic energy to the material entropy production691
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times a characteristic temperature of the system, obtaining an estimate of ∼ 3 Wm−2, which692

is in good agreement with what obtained after processing of the high-resolution data [36].693

The fact that the estimate of the material entropy production of the climate system694

decreases when a coarser gaining is considered is in qualitative agreement with what derived695

in the Appendix A for the simple case of continuum systems featuring generalized flux-696

gradient relations. This obviously does not imply that the climate system behaves as a697

diffusive system, yet share with a diffusive system this interesting property. The fact that at698

all spatial and temporal scales the system has a positive definite value of material entropy699

production, when global averages are considered. This is not in contradiction with the well-700

known phenomena of so-called negative diffusion, first noted by Starr [47], who observed701

that in certain portions of the atmosphere - namely, near the storm track - the fluxes of702

momentum transport momentum from low to high momentum regions. While this process703

- a crucial element of the general circulation of the atmosphere, observed in our model704

runs as well - seems to oppose the second law of thermodynamics, it is instead a local but705

macroscopic phenomenon, where the creation of organized structures (thanks to long-range706

correlations due to wave propagation), is, as we understand in this paper, over-compensated707

by large entropy production at the same scales elsewhere in the atmosphere.708

Apart from providing insights on the properties of forced fluctuations and irreversible709

dissipative processes in the climate system at various spatial and temporal scales, this paper710

deals with the relationship between a model, its output, and the chosen observables, by711

providing information on what is the impact of being able to access data at lower resolution712

with respect to the model which has generated them. We have learnt that this lack of713

information always biases negatively our estimate of the entropy production, and that the714

bias is serious only if we miss information describing the vertical structure of thermodynamic715

fields.716

Since performing time averages up to the yearly time scale does not bias substantially717

the estimates of the material entropy production, we have that it is possible to intercom-718

pare robustly the state-of-the-art climate models and assess on each of them the impact of719

climate change on the entropy production by resorting to the output data provided in the720

freely accessible PCMDI/CMIP3 (http://www-pcmdi.llnl.gov/ipcc/about ipcc.php)721

and PCMDI/CMIP5 (http://cmip-pcmdi.llnl.gov/cmip5/) repositories, where long cli-722

mate runs outputs are typically stored in the form of monthly averaged data.723
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On a different note, the approach presented here seems promising specifically for the724

investigation of the atmosphere of exoplanets, because it allows for evaluating the error in725

the estimate of their thermodynamical properties due to the lack of high-resolution data.726

In this paper, we have worked on the post-processing of data. The analysis presented727

here should be complemented with an additional investigation of how changing the reso-728

lution of a model impacts the estimate of its material entropy production, in total, and729

process by process. Using the material entropy production as cost function for addressing730

the interplay between the respective role of changes in the resolution of a model and of731

changes in the coarse graining of the post-processed data seems promising in the tantalizing732

quest for understanding what is a good model of a geophysical fluid and what is a robust733

parametrization. The results obtained here seem to have a much more general validity than734

for the specific case of the present Earth’s climate. Therefore, we plan to extend the present735

analysis, by studying the combined effect of changes in the resolution of the model and in736

the effective resolution of the post-processed in a simpler geophysical fluid dynamical system737

like an Aquaplanet. We believe that the conjectures presented on the effect of coarse grain-738

ing thermodynamic fields on the estimate of the material entropy production is of general739

validity for a vast range of systems that can be described by continuum mechanics.740
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Appendix A: Spectral Analysis of the Impact of Coarse Graining on the Entropy749

Production for Diffusive Systems750

We wish to provide a simple outlook on how to interpret the results shown in this paper751

taking a spectral point of view. This is relevant in practical terms because many numerical752

models of geophysical fluids are actually implemented in spectral coordinates. We restrict753

ourselves to the contributions to the material entropy production coming from the presence754

of material fluxes transporting heat across temperature gradients. So, we do not consider755

here the term responsible for the dissipation of kinetic energy (which is weakly affected by756

coarse graining) nor the radiative terms contributing to the indirect formula. We consider757

the case of a much simpler simpler 3D continuum physical system, where heat transport758

obeys a generalized diffusive behavior. We make this choice not because we believe that759

the climate system is, in any real sense, diffusive, but because we wish to show that the ob-760

served dependence of the material entropy production on the coarse graining is in qualitative761

agreement with what would be obtained for a diffusive system.762

Let’s assume that the contribution to the average rate of entropy production coming from763

the transport of heat due to the flow J across the temperature field T can be computed as:764

Ṡ
J

mat =
1

V

1

T

∫
V

d3x

∫ T

0

dtJ⃗ · ∇⃗ 1

T
= − 1

V

1

T

∫
V

d3x

∫ T

0

dt
J⃗ · ∇⃗T

T 2
= − 1

V

1

T

∫
V

d3x

∫ T

0

dt
∇⃗ · J⃗
T
(A1)

Let’s now make the simplifying diffusive-like assumption that J⃗ = −∇⃗G(T ), where dG/dT >765

0, so that the flux is always opposed in verse to the temperature gradient; in the usual linear766

flux-gradient approximation we have G(T ) = κT , κ > 0. We derive:767

Ṡ
J

mat =
1

V

1

T

∫
V

d3x

∫ T

0

dt
G′(T )

T 2
|∇⃗T |2 = 1

V

1

T

∫
V

d3x

∫ T

0

dt |∇⃗Ψ(T )|2 > 0 (A2)

where Ψ(T ) =
∫
dT

√
G′(T )/T 2. For sake of simplicity - but without loss of generality -768

we assume that our domain Σ is a parallelepiped of sides Lx, Ly, and Lz. Using Parseval’s769

theorem, we derive that the rate of entropy production can be written as:770

Ṡ
J

mat =
∑
p,q,r,s

(k2
p + k2

q + k2
r)|Ψp,q,r,s|2 =

∑
p,q,r,s

SJ,mat
p,q,r,s (A3)

where771

Ψp,q,r,s =
1

V

1

T

∫
V

d3x

∫ T

0

dt Ψexp[2πi(p/Lxx+ q/Lyy + r/Lzz − s/T t)]. (A4)
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Performing a spatio-temporal coarse graining to the field Ψ → Ψ̃ can be reframed as applying772

a linear filter in Fourier space, as Ψp,q,r,s → Ψ̃p,q,r,s = Φp,q,r,sΨp,q,r,s, where |Φp,q,r,s| ≤ 1773

∀p, q, r, s plus the usual complex conjugacy properties. Note that in our case we would like774

to able to apply the filtering to the T field and to the heating field −∇⃗ · J⃗ and not to the775

function Ψ constructed here. Nonetheless, assuming that the relative change of T across the776

domain (see also Eq. (13)) is small, the conclusions are virtually unaltered.777

Equation A3 has the remarkable property that all of terms of the summation SJ,mat
p,q,r,s are778

positive. We can interpret SJ,mat
p,q,r,s as the entropy produced by processes occurring at the779

scales described by the indices, in this case λx = Lx/p, λy = Ly/q, λz = Lz/r, and τ = T/s.780

Therefore, indicating as
˜̇
SJ
mat the value of the entropy production for the coarse grained781

fields, we obtain:782

˜̇
SJ
mat =

∑
p,q,r,s

(k2
p + k2

q + k2
r)|Φp,q,r,s|2|Ψp,q,r,s|2 =

∑
p,q,r,s

|Φp,q,r,s|2SJ,mat
p,q,r,s ≤ Ṡ

J

mat. (A5)

In particular, we can associate a coarse graining on the scales Λx, Λy, Λz, and τ (referred to783

the x-, y-, z-directions and time, respectively) to a filter of the form Φp,q,r,s = 0 if p > Lx/Λx,784

or q > Ly/Λy, or r > Lz/Λz, or s > T/τ and Φp,q,r,s = 1 otherwise. Slightly different ways785

of doing the coarse graining will result into different filters, which will be, nonetheless,786

asymptotically equivalent if the involved scales are the same.787

The main conceptual point behind this result is independent of the shape of the of the788

domain of integration: the natural orthogonal expansion for atmospheric fields defined in789

an (approximately) spherical thin shell is given by spherical harmonics in for the latitudinal790

and longitudinal dependence and the usual Fourier expansion for the vertical direction. In791

the case of a thin spherical shell of thickness Lz situated at distance R from the center of792

the sphere, Eq. A3 can be rewritten as:793

Ṡ
J

mat =
∑
n

∑
l≥0

l∑
m=−l

∑
s

(k2
n + l(l + 1)/R2)|Ψn,l,m,s|2 (A6)

with794

Ψn,l,m,s =
1

Lz

1

4π

1

T

∫
Ω

dΩ

∫ T

0

Ψ(z, θ, ϕ, t) exp[2πi(n/Lzz − s/T t)] ∗ Y (θ, ϕ)m∗
n . (A7)

where Y (θ, ϕ)mn are the usual spherical harmonics and Ω refers to the solid angle. In this795

case, performing a spatio-temporal coarse graining to the field Ψ → Ψ̃ results in reduced796
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value of the estimate of the entropy production:797

˜̇
SJ
mat =

∑
n

∑
l≥0

l∑
m=−l

∑
s

(k2
n + l(l + 1)/R2)|Φn,l,m,s|2|Ψn,l,m,s|2 ≤ Ṡ

J

mat. (A8)

It is now easy to relate the expression of |Φn,l,m,s|2 to common averaging operation performed798

on climate data. A coarse graining on the vertical scale Λz, on a temporal scale τ and on a799

horizontal surface area σ (or angular resolution σ/R2) amounts to setting |Φn,l,m,s|2 = 0 if800

l ≥
√

8πR2/σ (corresponding approximately to a triangular truncation T (K), where K is801

the integer closest to
√

8πR2/σ), or n > Lz/Λz, or s > T/τ , and |Φn,l,m,s|2 = 1 otherwise.802

Instead, performing zonal averages corresponds to setting, |Φn,l,m,s|2 = 0 if m ̸= 0.803

The bottom line of the previous considerations is that adopting a coarser graining cor-804

responds to increasing the involved scales determining the spectral cutoff. if we assume a805

flux-gradient relationship which is consistent with the second law of thermodynamics (even806

if it is not the usual Fickian, linear relation), Eqs. A5 and A8 imply that as the graining807

becomes coarser, the estimate of the entropy production becomes smaller, because we the808

summation is performed over fewer terms, all of them positive. This behavior is independent809

of the physical domain under consideration. Moreover, the previous considerations qualita-810

tively apply - even if results are somewhat more cumbersome - if the relationship between flux811

and gradient is more general than what previously assumed, e.g. if Ji = −∂iGi(T ) (where812

the Einstein summation convention is not taken), under the condition that dGi/dT < 0 ∀i.813
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TABLE I. List of the main FAMOUS’ parametrization routines for unresolved processes and

their impact in term of heating rates q̇ck on the various terms contributing to ṡmat. Codes:

BL=Boundary Layer; AC=Atmospheric Convection: HD=Hyperdiffusion; OC=Oceanic Convec-

tion; D=Diffusion; GW=Gravity Waves; C/E=Condensation/Evaporation: ML=Mixed Layer

Contribution to ṡmat Atmosphere Ocean Soil Cryosphere

ϵ2

T BL, C, GW, HD

−∇·FLH
T BL, AC, C/E, BL BL BL

−∇·FSH
T BL, AC, HD BL, ML, OC, D BL BL

TABLE II. Values of ∆
[
Ṡdir
mat

]τ
v
and ∆

[
Ṡind
mat

]τ
v
obtained when considering the coarsest resolution

in space (lower index: vM ), in time (lower index: τM ), or both. Only 2D horizontal averagings

are considered here. Reference values for highest resolution data: Ṡdir
mat = 52.5 mWm−2K−1 and

Ṡind
mat = 52.1 mWm−2K−1. All values are in units of mWm−2K−1.

Averaging ∆
[
Ṡdir
mat

]
vM

∆
[
Ṡdir
mat

]τM
vM

∆
[
Ṡdir
mat

]τM
∆

[
Ṡind
mat

]
vM

∆
[
Ṡind
mat

]τM
vM

∆
[
Ṡind
mat

]τM
Longitudinal 2.1 2.2 2.1 2.2 5.0 5.0

Surface 5.3 5.3 2.2 12.3 12.8 5.0

TABLE III. Values of ∆
[
Ṡdir
mat

]τ
v
and ∆

[
Ṡind
mat

]τ
v
obtained when considering the coarsest resolution

either in horizontal direction (lower index: vM,h or vertical direction (lower index: vM,v), or in both

(lower index: vM,h,v). τ is set to 1 y. Reference values for highest resolution data: Ṡdir
mat = 52.5

mWm−2K−1 and Ṡind
mat = 52.1 mWm−2K−1. All values are in units of mWm−2K−1.

Averaging ∆
[
Ṡdir
mat

]τM
vM,h

∆
[
Ṡdir
mat

]τM
vM,h,v

∆
[
Ṡdir
mat

]τM
vM,v

∆
[
Ṡind
mat

]τM
vM,h

∆
[
Ṡind
mat

]τM
vM,h,v

∆
[
Ṡind
mat

]τM
vM,v

Mass weighted 5.3 36.5 34.5 12.8 52.1 45.6
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FIG. 1. (a) Time-scale dependence of the total material entropy production (direct and indirect

estimates); τ ranges between 3600 s (model timestep) to 1.5 × 109 s (50 years); (b) Differences

between the exact and timeocrase grained material entropy production ∆
[
Ṡdir
mat

]τ
for 3600 s ≤ τ ≤

1 year (c); as in (b) but for ∆
[
Ṡind
mat

]τM
. The dashed lines represent the correlation terms given in

Eqs (14)-(15). 37



hydr.+sens.  entropy production
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FIG. 2. (a) Material entropy production due to hydrological cycle and heat diffusion. Here L =

50 years. (b) Material entropy production due to atmospheric small-scale temperature diffusion

(continuous line). The material entropy production due to ocean turbulence (vertical and horizontal

diffusion, mixed layer physics and convection is also reported, see [36] for details). We also show

the vertical diffusion contribution (dotted-dashed line) to the total turbulent material entropy

production. Note that the oceanic processes have a 12-hour timestep and have not been considered

in the total entropy budget .
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FIG. 3. Estimates of ⟨Ṡdid
mat⟩τv (a), ∆

[
Ṡdir
mat

]τ
v
(b), ⟨Ṡind

mat⟩τv (c), and ∆
[
Ṡind
mat

]τ
v
(d). The spatial

averaging considered here is given by longitudinal averages on horizontal surface. The x-axis

reports τ , the y-axis describes the extent ∆ϕ of the averaging in ◦.
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FIG. 4. Estimates of ⟨Ṡdid
mat⟩τv (a), ∆

[
Ṡdir
mat

]τ
v
(b), ⟨Ṡind

mat⟩τv (c), and ∆
[
Ṡind
mat

]τ
v
(d). The spatial

averaging considered here is given by areal averages along horizontal surfaces. The x-axis reports

τ , the y-axis describes the longitudinal extent ∆ϕ of the coarse grained grid boxes. Details are

given in the text.
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FIG. 5. Estimates of ⟨Ṡdir
mat⟩τv (a), and ∆

[
Ṡdir
mat

]τ
v
(b) for τ = 1 day, and of ⟨Ṡdir

mat⟩τv (c), and

∆
[
Ṡdir
mat

]τ
v
(d) for τ = 1 year. The spatial averaging considered here is given by areal averages

along horizontal surfaces and vertical averages along columns. The x-axis reports the numbers

of vertical levels involved in the averaging, the y-axis describes the longitudinal extent ∆ϕ of the

coarse grained grid boxes. Details are given in the text.
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FIG. 6. Estimates of ⟨Ṡind
mat⟩τv (a), and ∆

[
Ṡind
mat

]τ
v
(b) for τ = 1 day, and of ⟨Ṡind

mat⟩τv (c), and

∆
[
Ṡind
mat

]τ
v
(d) for τ = 1 year. The spatial averaging considered here is given by areal averages

along horizontal surfaces and vertical averages along columns. The x-axis reports the numbers

of vertical levels involved in the averaging, the y-axis describes the longitudinal extent ∆ϕ of the

coarse grained grid boxes. Details are given in the text.
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