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Abstract We present an algorithmic framework for global optimization prob-
lems in which the non-convexity is manifested as indefinite quadratic functions.
Our solution approach consists of applying a spatial branch-and-bound algo-
rithm, exploiting convexity as much as possible, not only convexity in given
convex functions, but also extracted from the indefinite quadratics. A prepro-
cessing stage is proposed to split the indefinite quadratics and rewrite them as
a difference of convex quadratic functions, leading to a more efficient spatial
branch-and-bound focused on the isolated non-convexity. We investigate sev-
eral possibilities for splitting quadratics at the preprocessing stage, and prove
the equivalence of some of them. Through computational experiments with
different categories of test-beds, we analyze how the splitting strategies affect
the performance of our algorithm, and find guidelines for choosing amongst
them. Numerical comparisons with Couenne shows the competitiveness of our
approach.
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1 Introduction

We have developed a global-optimization framework aimed at optimization
problems (possibly including some integer variables) in which all of the non-
convexity is on indefinite quadratic functions. This is a broad framework,
within the space of mixed-integer nonlinear programming (MINLP), simulta-
neously generalizing convex MINLP and (indefinite) quadratically-constrained
quadratic programming (QCQP). Application areas range across areas such as
combinatorial optimization, manufacturing optimization, and sensor-network
optimization.

Our approach involves applying a spatial branch-and-bound framework,
but taking as much advantage of any convexity as possible — in given convex
functions but also in convexity extracted from indefinite quadratics. This is
in contrast to approaches that (i) ignore any global convexity (at the peril of
accumulating bounds across many low-dimensional convexifications) or that
(ii) globally convexify (at the peril of treating any convexity non-optimally).

Our approach for treating indefinite quadratics is by splitting at a prepro-
cessing stage, in a few different natural ways, as a difference of convex (DC)
quadratic functions. In this manner, we isolate some inherent non-convexity
for focusing our spatial branch-and-bound. There are several different meth-
ods for splitting quadratics. We proved the equivalence of some of them, and
through computational experiments, we find guidelines for choosing amongst
the inequivalent ones.

We have instantiated our methodology as the software iquad which can be
accessed via the AMPL system. As such, iquad can receive any nonlinear func-
tions that AMPL can receive, and the burden is on the modeler to insure that the
nonlinear functions that are not quadratic are convex. Users can choose either
Mosek or CSDP for SDP preprocessing used for some of the splitting strategies.
Users can choose any of the convex MIQCP solvers: Cplex, Gurobi and Mosek

for solving convex quadratic relaxations (possibly with integer variables) and
any of the NLP solvers: Mosek and Ipopt for solving convex nonlinear relax-
ations. Moreover, iquad supports parallel branch-and-bound, taking advan-
tage of multiple processors in the machine to solve several branch-and-bound
subproblems simultaneously.

Our methodology applies to optimization problems of the form

z := min f0(x) + q0(x) ,

fi(x) + qi(x) ≤ 0 , i = 1, 2, . . . ,m ;

x ∈ X ,

where the fi : Rn → R are convex, the qi(x) = 1
2x
′Qix are pure quadratic,

and X is described in a tractable manner by convex functions and possibly
integrality restrictions, but no apparent indefinite quadratics. Note that any
affineness in the objective or constraint functions is absorbed by the fi . If all
Qi are the zero matrix, then we have the case of convex MINLP. If all of the
fi are affine, and X is all of Rn, we have the case of (indefinite) QCQP.
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As for the set X , it might be a mixed-integer linear set:

Ax = b ,

lx ≤ x ≤ ux ,
xj ∈ Z , for j ∈ I ,

or a mixed-integer convex quadratic set, or a continuous, smooth, convex set,
or perhaps just a mixed-integer, smooth, convex set. The only requirement
that we really have is that X be bounded, and optimizing linear as well as
convex quadratic functions on X (or possibly on a continuous relaxation of X )
should be significantly easier than calculating z . In particular, for these four
cases, we have MILP solvers (e.g., Cplex and Gurobi), smooth-NLP solvers
(e.g., Ipopt), convex MIQCP solvers (e.g., Cplex, Gurobi and Mosek), and
convex MINLP solvers (e.g., Bonmin). We emphasize that in our approach, we
do not restrict our attention to methods that linearly relax convex sets and
functions. Rather, we fully exploit convexity by employing appropriate solvers.
In such a way, any improvements in the underlying solvers can give us a strong
positive impact for iquad.

For ease of exposition and to make testing more manageable, we confine
our attention to the optimization problem

z := min f(x) + q(x) , (I)

x ∈ X ,

where f : Rn → R is convex, q(x) := 1
2x
′Qx , the symmetric matrix Q is

not positive semidefinite, and X is a bounded subset of Rn . That is, we
focus on the case in which the only (quadratic) non-convexity manifests itself
as the objective function. But we emphasize that our method is well suited
for situations in which there are indefinite quadratic functions present in the
constraints as well.

Our first step is to split Q as Q = P − R , where P and R are positive
semidefinite. Our goal is to decompose q into a convex part p(x) = 1

2x
′Px and

a concave part r(x) = − 1
2x
′Rx . We will further treat the concave part by

transforming variables, as needed, to make it implicitly separable. Then, we
will apply a spatial branch-and-bound (see [35], for example), on this implicit
separable concavity, and take full advantage of the convexity extracted from
q(x) as p(x). There are several natural ways to do this, and we investigate the
possibilities.

Before continuing with the technical development, we will survey some rel-
evant literature. Indefinite quadratic models have broad application in com-
binatorial optimization. In particular, the Max-Cut problem in edge-weighted
graphs is easily modeled this way, and the best-known solution methods ex-
ploit such a model (see [32], for example). For example, the state-of-the-art
for computing exact ground states of hard Ising spin-glass problems (from
statistical physics) relies on such an approach1. Moreover, the quadratic as-
signment problem (which has been used to model many other structured

1http://www.informatik.uni-koeln.de/spinglass/

http://www.informatik.uni-koeln.de/spinglass/
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combinatorial-optimization problems) is directly and profitably modeled using
an indefinite quadratic model (see [15]). On the purely continuous side, con-
cave minimization occurs naturally when we have economies of scale, and so
global-optimization techniques have a clear role. In the big space between the
purely discrete and purely continuous (i.e., mixed integer nonlinear program-
ming), there are bilinear indefinite quadratic models arising in the full global
optimization of cutting stock problems (see [29], for example).

Generally, the approach of spatial branch-and-bound is well known in
global optimization (see [1,2], for example), and in mixed integer nonlinear
programming (see [18,22,30], for example). The devil is in the details though,
and how the general method handles various kinds of functions can vary con-
siderably and with substantial effect. For quadratics in particular, there is con-
siderable literature (see, for example, the surveys [13,22], and the references
therein). Of important relevance to our approach are incites gained from [33,
34], where quadratic non-convexity is dynamically identified and combined
with disjunctive methodology in a rather sophisticated manner.

In §2, we describe our preprocessing strategy via splitting. In §3, we de-
scribe how to apply spatial branch-and-bound to handle the concavity isolated
via splitting, by explicitly or implicitly inducing separability. In §4, we describe
natural diagonal splitting strategies, whereupon no variable transformation is
needed to induce separability. In §5, we describe how the Real Schur De-
composition can be used for splitting. In §6, using semidefinite programming,
we describe a family of natural non-diagonal splittings based on minimizing
weighted sums of eigenvalues. Although the computational cost would ap-
pear to be substantial, we demonstrate that the splitting from the Real Schur
Decomposition optimizes all splittings of this type. In §7, we describe our
computational experiments. In §8, we describe future work.

2 Preprocessing via Splitting

Consider a splitting of Q as Q = P −R , where P and R are positive semidef-
inite.

We can calculate the real Schur decomposition of R, namely

R =
∑
i∈N

λiviv
′
i , where λi > 0 for i ∈ N ,

using say LAPACK. Now, defining

yi :=
√
λiv
′
ix , for i ∈ N,
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we reformulate our problem as

z = min f(x) +
1

2
x′Px− 1

2

∑
i∈N

y2
i , (̃I)

x ∈ X ,

yi =
√
λiv
′
ix , for i ∈ N ,

ly ≤ y ≤ uy ,

where we calculate the bounds on y by solving the auxiliary programs, for
i ∈ N :

lyi :=
√
λi min v′ix , (Lyi)

x ∈ X ,

and

uyi :=
√
λi max v′ix , (Uyi)

x ∈ X ,

using an appropriate solver. Note that we really only need valid bounds on the
yi, so we can relax these bounding problems, and simply use a lower bound
on lyi and an upper bound on uyi . For example, we can partially relax any
integrality restrictions (present in X ) on x by doing a truncated branch-and-
bound search. However, to limit the spatial branch-and-bound search, it is
beneficial to have as strong bounds as is practical.

3 Spatial Branch-and-Bound

Our spatial branch-and-bound subproblems will be relaxations of (̃I). Every
concave term has exactly the same form:

ωi(yi) := −1

2
y2
i

lyi ≤ yi ≤ uyi .

So we can give a very explicit formula for the secant under-estimators. We
simply replace − 1

2y
2
i by a new variable wi , which we constrain to satisfy the

(linear and univariate) secant inequality

−1

2

(
(yi − lyi)

u2
yi − l

2
yi

uyi − lyi
+ l2yi

)
≤ wi .
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So, we have the following relaxation of (̃I).

z := min c′x+
1

2
x′Px+

∑
i∈N

wi , (̃I)

x ∈ X ,

yi =
√
λiv
′
ix , for i ∈ N ,

− 1

2

(
(yi − lyi)

u2
yi − l

2
yi

uyi − lyi
+ l2yi

)
≤ wi , for i ∈ N ,

ly ≤ y ≤ uy .

If we like, we can rewrite this without the y variables as:

z = min c′x+
1

2
x′Px+

∑
i∈N

wi , (I)

x ∈ X ,

− 1

2

((√
λiv
′
ix− lyi

) u2
yi − l

2
yi

uyi − lyi
+ l2yi

)
≤ wi , for i ∈ N ,

lyi ≤
√
λiv
′
ix ≤ uyi , for i ∈ N .

In applying spatial branch-and-bound to (I), using the relaxation (I), sub-
problems will have exactly the same form as (I), but with adjusted values of
the bounds lyi and uyi , for i ∈ N . Once the branching index and branching
point are selected, we create two new problems, one where the upper bound
uyi is replaced with ψi , and one where the lower bound lyi is replaced with
ψi .

Once a branching index is selected, there are many reasonable choices for
selecting the branching point ψi . For example, if (x̃, w̃) is the solution to (I) (or
to a further relaxation of (I)), then we can set ψi :=

√
λiv
′
ix̃ . However, this can

be a poor choice if the point ψi :=
√
λiv
′
ix̃ is too close to one of the endpoints

of the interval [lyi , uyi ]. Alternatively, ψi can be chosen at the midpoint of
the interval [lyi , uyi ]. In our earlier computational studies on spatial branch-
and-bound, we found it to be effective to use a weighted combination of these
two possibilities. That is, setting ψi := α

√
λiv
′
ix̃ + (1 − α)(lyi + uyi)/2, with

0 ≤ α ≤ 1 fairly large (e.g., α = 0.8).
Regarding choosing the branching index i ∈ N , it can make sense to con-

sider the discrepancy between − 1
2 (
√
λiv
′
ix̃)2 and w̃i. Alternatively, a possible

choice of priorities on the i ∈ N for spatial branch-and-bound could be to
choose the i corresponding to the greatest value of λi(lyi − uyi).

There is a legitimate concern regarding the density of the secant con-
straints, which are likely to be fully dense (when written in the x variables).
However, for cases in which |N | is small (corresponding to nearly convex q(x)),
this may be quite tolerable. As the degree of non-convexity grows, we expect
that the overall dimension n would have to be more modest anyway as we get
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closer to applying classical spatial branch-and-bound. So this may not be a
significant issue.

4 Some Diagonal Splitting Strategies

Splittings for which R is diagonal have the advantage of not needing any
reformulation for inducing separability. For diagonal splittings, there is no
separability to explicitly or implicitly induce, so we do not carry the burden
of dealing with the dense inequalities:

lyi ≤
√
λiv
′
ix ≤ uyi , for i ∈ N .

There are a few natural diagonal splitting strategies.

Diagonally Dominant: A very simple approach is to let

ri := max

0, − qii +
∑
j:j 6=i

|qij |

 ,

for i = 1, 2, . . . , n . Then let R := Diag(r1, r2, . . . , rn), so that P := Q + R is
diagonally dominant.

Identity: Another possibility, more aggressive in taking convexity into p(x)
from q(x) is to let R := −min{0, λn} I , where λn is the least eigenvalue of
Q , in which case P := Q+R is positive semidefinite.

Diagonal SDP: A heavier approach is to let r := (r1, r2, . . . , rn), take Diag(r)
as a diagonal matrix variable, and solve the semidefinite program

min

n∑
i=1

ri , (D)

P := Q+ Diag(r) � 0 ,

r ∈ Rn+ ,

minimizing the trace of R := Diag(r) .

This splitting seeks, in some sense, to minimize the separable strict con-
vexity needed to be added to q(x) to render it convex.
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5 Splitting via the Real Schur Decomposition

Departing from the realm of diagonal splittings, a very natural approach is to
calculate the Real Schur Decomposition of Q. That is,

Q =

n∑
i=1

λiviv
′
i .

Splitting this into the parts corresponding to positive and negative eigenvalues,
we have Q = P −R , where

P :=
∑
i∈P

λiviv
′
i , where λi > 0 for i ∈ P ,

R :=
∑
i∈N

(−λi)viv′i , where λi < 0 for i ∈ N .

Example 1 Although we are thinking in terms of unstructured matrices Q and
determining our splitting computationally, it is instructive to consider a highly
structured and common case. If we had

Q =

(
0 I
I 0

)
,

with x′ = (x′1, x
′
2), where x1 and x2 are in Rn/2, then 1

2x
′Qx is simply the in-

definite bilinear function x′1x2. Then Q has an n/2-dimensional eigenspace V+1

belonging to its eigenvalue 1 and an n/2-dimensional eigenspace V−1 belonging
to its eigenvalue −1. A basis for V+1 is the set of n/2 vectors vi := (e′i, e

′
i)
′,

i = 1, . . . , n/2, and a basis for V−1 is the set of n/2 vectors vn
2 +i := (e′i,−e′i)′,

i = 1, . . . , n/2. Then we have Q = P −R, with

P :=

n
2∑
i=1

viv
′
i =

(
I 0
0 I

)
,

R :=

n∑
i= n

2 +1

viv
′
i =

(
I −I
−I I

)
.

If we choose to explicitly reformulate the concave part separably, then corre-
sponding to the eigenvectors vn

2 +i := (e′i,−e′i)′, i = 1, . . . , n/2, we define

yi := v′n
2 +ix = xi − xn

2 +i = x1,i − x2,i , for i = 1, . . . , n/2.

This is precisely the well-known method of “inducing separability” of products
as a prelude to performing a piecewise-linear approximation, which can be
found for example in [11, p. 579].
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6 Minimizing weighted sums of eigenvalues

There is another very interesting and natural class of splittings with non-
diagonal R. We consider splittings Q = P −R that solve

min

k∑
i=1

miλi(R) , (WESDP)

P := Q+R � 0 ;

R � 0 ,

where m1 ≥ m2 ≥ · · ·mk > 0 =: mk+1.
Of course if we set k := n and mi := 1 , for i = 1, 2, . . . , n , we are

minimizing the trace of R . Because we allow non-diagonal R, as compared to
the ‘Diagonal SDP’ option of §4, we should expect to find better splittings,
but at an apparently higher computational cost.

Alternatively, if we set k := 1 and m1 := 1 , we are simply minimizing the
maximum eigenvalue of R , whereupon (WESDP) can be recast as

min z ,

zI −R � 0 ;

P := Q+R � 0 ;

R � 0 .

But we can apparently do better than this by choosing m1 >> m2 >> · · · >>
mn > 0 . In such a case, we are finding an R having a lexically minimum list
of eigenvalues.

In this section, we demonstrate that all of these weighted-eigenvalue mini-
mization problems (WESDP) are actually solved, and very efficiently, by using
the splitting determined by the Real Schur Decomposition of §5. So in fact,
the splitting determined by the Real Schur Decomposition is fundamental.

Theorem 1 For any given parameters mi, i = 1, . . . , k, such that m1 ≥ m2 ≥
· · ·mk > 0 =: mk+1, the splitting determined by the Real Schur Decomposition
solves the weighted-eigenvalue minimization problem (WESDP).

Lemma 1 (WESDP) is equivalent to the SDP:

min

k∑
i=1

izi +

k∑
i=1

Tr(Vi) , (PSDP)

ziI + Vi − (mi −mi+1)R � 0 , i = 1, 2, . . . , k ;

Q+R � 0 ;

R � 0 ;

Vi � 0 , i = 1, 2, . . . , k .
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and its dual can be written as

max Q •X , (DSDP)

Tr(Yi) = i , i = 1, 2, . . . , k ;

k∑
i=1

(mi −mi+1)Yi +X � 0 ;

0 � Yi � I , i = 1, 2, . . . , k ;

X � 0 .

Proof Applying a description in [3], (WESDP) is a convex minimization prob-
lem and can be re-formulated as (PSDP), or, equivalently

min

k∑
i=1

i(z̄i − zi) +

k∑
i=1

Tr(Vi) , (PSDP’)

(z̄i − zi)I + Vi − (mi −mi+1)R−Wi = 0 , i = 1, 2, . . . , k ;

Q+R− S = 0 ;

R,S � 0 ;

Vi,Wi � 0 , i = 1, 2, . . . , k ;

z̄i, zi ≥ 0 , i = 1, 2, . . . , k .

It is convenient to write (PSDP’) as a standard-form SDP

min F0 • Γ , (SPSDP)

Fj • Γ = cj , j = 1, 2, . . . ,m ;

Γ � 0 ,

where “ • ” is the usual inner product of matrices:

A •B :=
∑
i,j

AijBij = Tr(A′B).

Define

Γ := Diag
(
Z̄, Z, S,R,W1,W2, . . . ,Wk, V1, V2, . . . , Vk

)
,

where Z̄ is a diagonal matrix with Z̄ii = z̄i, for i = 1, . . . , k (analogous defini-
tion applies for Z), and

F0 := Diag (G,−G, 0, 0, 0, 0, . . . , 0, I, I, . . . , I) ,

where G is a diagonal matrix, with Gjj = j, for j = 1, . . . , k. The objective
function of problem (PSDP’) can then be written as F0 • Γ .

We now define k + 1 groups of n(n + 1)/2 matrices. Each group is used
to formulate an equality constraint of problem (PSDP’). The first n matrices
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of each group are used to determine the diagonal values of the matrices on
the left hand side of the constraints and the other n(n− 1)/2 matrices of the
group are used to determine the non-diagonal values. The notation Ei is used
in the following to represent the diagonal matrix with element (i, i) equal to
one and all the others equal to zero. Furthermore, Eγβ denotes the symmetric
matrix with elements (γ, β) and (β, γ) equal to one and all the others equal
to zero.

For the first constraint in (PSDP’),

(z̄1 − z1)I + V1 − (m1 −m2)R−W1 = 0 ,

we define

Fj := Diag (E1,−E1, 0,−m̃1Ej ,−Ej , 0, . . . , 0, Ej , 0, . . . , 0) ,

for j = 1, . . . , n, and

Fn+j :=
1

2
Diag (0, 0, 0,−m̃1Eγβ ,−Eγβ , 0, . . . , 0, Eγβ , 0, . . . , 0) ,

for j = 1, . . . , n(n − 1)/2, where m̃1 := m1 − m2. The indexes γ, β satisfy
γ, β ∈ {1, . . . , n}, with γ > β. Each pair (γ, β) uniquely corresponds to an
index j.

The constraint (z̄1−z1)I+V1− (m1−m2)R−W1 = 0 can then be written
as Fj • Γ = 0, for j = 1, . . . , n(n+ 1)/2.

An analogous group of matrices are used to formulate each of the k first
equality constraints of (PSDP’). For the last constraint,

(z̄k − zk)I + Vk − (mk −mk+1)R−Wk = 0 ,

we define

Fν1+j := Diag (Ek,−Ek, 0,−m̃kEj , 0, 0, . . . ,−Ej , 0, 0, . . . , Ej) ,

for j = 1, . . . , n, and

Fν1+n+j :=
1

2
Diag (0, 0, 0,−m̃kEγβ , 0, 0, . . . ,−Eγβ , 0, 0, . . . , Eγβ) ,

for j = 1, . . . , n(n − 1)/2, where m̃k := mk −mk+1 and ν1 is the number of
matrices used to formulate the k − 1 first constraints.

Finally, to formulate the constraint Q+R− S = 0, we define

Fν2+j := Diag (0, 0, Ej ,−Ej , 0, 0, . . . , 0, 0, 0, . . . , 0)

and cν2+j := Qjj , for j = 1, . . . , n, and

Fν2+n+j :=
1

2
Diag (0, 0, Eγβ ,−Eγβ , 0, 0, . . . , 0, 0, 0, . . . , 0)

and cν2+n+j := Qγβ , for j = 1, . . . , n(n − 1)/2, where ν2 is the number of
matrices used to formulate the k first constraints.
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The dual of (SPSDP) is

max c′δ , (SDSDP)

F (δ) � 0 ,

where

F (δ) := F0 −
m∑
i=1

δiFi .

Considering the definitions above for F0 and Fj , j = 1, . . . ,m, where m =
(k + 1)× (n(n+ 1)/2), we have:

F (δ) = Diag
(
U,−U,−X, X̃, Y1, Y2, . . . , Yk, I − Y1, I − Y2, . . . , I − Yk

)
,

where U is a diagonal matrix with Uii = i − Tr(Yi), for i = 1, . . . , k, and

X̃ :=
∑k
i=1(mi −mi+1)Yi +X.

The dual problem (SDSDP) can then be written in the equivalent form
(DSDP). ut

Lemma 2 Let R∗, V ∗i , and z∗i , for i = 1, 2, . . . , k, be a feasible solution to
the primal problem (PSDP). Let X∗ and Y ∗i , for i = 1, . . . , k, be a feasible
solution to the dual problem (DSDP). Then the solutions are primal and dual
optimal, if and only if they satisfy the complementarity constraints(

k∑
i=1

(mi −mi+1)Y ∗i +X∗

)
R∗ = 0 ; (1)

(I − Y ∗i )V ∗i = 0 , i = 1, 2, . . . , k ; (2)

(z∗i I + V ∗i − (mi −mi+1)R∗)Y ∗i = 0 , i = 1, 2, . . . , k ; (3)

(Q+R∗)X∗ = 0 . (4)

Proof The complementarity conditions for the standard primal and dual pair
(SPSDP) and (SDSDP) are given by F (δ)Γ = 0. Using the expressions for
F (δ) and Γ from the proof of the previous lemma, we obtain the optimality
conditions for problems (PSDP) and (DSDP). ut

Lemma 3 Let

n∑
i=1

λiviv
′
i =

∑
i∈P

λiviv
′
i −

∑
i∈N

(−λi)viv′i ,

be the Real Schur Decomposition of Q , where λi > 0 for i ∈ P and λi < 0 for
i ∈ N . So Q = P̃ − R̃ , where P̃ :=

∑
i∈P λiviv

′
i and R̃ :=

∑
i∈N (−λi)viv′i .

Without loss of generality, let N = {1, . . . , n̄} and (−λ1) ≥ (−λ2) ≥ . . . ≥
(−λn̄).
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Let

R̄ = R̃ ;

z̄i = (mi −mi+1)(−λi+1) , i = 1, 2, . . . , n̄− 1 ;

z̄i = 0 , i = n̄, n̄+ 1, . . . , k ;

V̄i =

i∑
j=1

((mi −mi+1)(−λj)− z̄i) vjv′j , i = 1, 2, . . . , k ;

where i = min{i, n̄}, and

Ȳi =

i∑
j=1

vjv
′
j , i = 1, 2, . . . , k ;

X̄ = −
k∑
i=1

(mi −mi+1)Ȳi .

Then R̄, V̄i, and z̄i, for i = 1, 2, . . . , k, is an optimal solution for (PSDP)
and, X̄ and Ȳi, for i = 1, . . . , k, is an optimal solution for (DSDP).

Proof Let us first verify that the solution given by R̄, V̄i, and z̄i, for i =
1, 2, . . . , k, is feasible to problem (PSDP).

Clearly R̄ � 0. The positive semidefinitiness of the matrices V̄i results from
the ordering of the eigenvalues of R̄, (−λ1) ≥ (−λ2) ≥ . . . ≥ (−λn̄) > 0. Since
Q+ R̄ = P̃ , we also have Q+ R̄ � 0.

Concerning the constraints ziI +Vi− (mi−mi+1)R � 0 , i = 1, 2, . . . , k,
we divide the analysis into two cases. For i < n̄, we have

z̄iI + V̄i − (mi −mi+1)R̄

= (mi −mi+1)(−λi+1)I +
∑i
j=1 ((mi −mi+1)(−λj)− z̄i) vjv′j

−(mi −mi+1)
∑n̄
j=1(−λj)vjvj

= (mi −mi+1)(−λi+1)I −
∑i
j=1 z̄ivjv

′
j − (mi −mi+1)

∑n̄
j=i+1(−λj)vjvj

= (mi −mi+1)
(

(−λi+1)I −
∑i
j=1(−λi+1)vjv

′
j −

∑n̄
j=i+1(−λj)vjvj

)
.

(5)
Therefore, the positive semidefinitiness of z̄iI + V̄i − (mi − mi+1)R̄ also

results from the ordering of the eigenvalues of R̄.
When i ≥ n̄, z̄i = 0 and V̄i = (mi − mi+1)R̄. The constraints are then

clearly satisfied.
It is straightforward to verify that the solution given by X̄ and Ȳi, for

i = 1, . . . , k, is feasible to (DSDP).
We finally verify that the solutions satisfy the complementarity constraints.

Constraint (1) is satisfied from the definition of X̄. Constraints (2) are satisfied
because the orthonormality of the eigenvectors of R̄ results in V̄i = ȲiV̄i.

Concerning the constraints (3), we again divide the analysis into two cases.
For i < n̄, using the last expression in (5), we have
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(z̄iI + V̄i − (mi −mi+1)R̄)Ȳi = (mi −mi+1) ((−λi+1)I

−
∑i
j=1(−λi+1)vjv

′
j

−
∑n̄
j=i+1(−λj)vjvj

)(∑i
j=1 vjvj

)
= 0.

The last equality also results from the orthonormality of the eigenvectors of
R̄.

When i ≥ n̄, z̄i = 0 and V̄i = (mi − mi+1)R̄. Constraints (3) are then
clearly satisfied.

The last constraint (4) is satisfied because the eigenvectors of P̃ = Q+ R̄
are orthogonal to the eigenvectors of X̄. ut

Theorem 1 now follows.

7 Computational Experiments

We coded our software iquad in C++. In our numerical experiments, we used
Mosek for solving the convex QP relaxations at the nodes of the branch-and-
bound enumeration tree, and also for solving the SDP program (D), for the
diagonal SDP splitting strategy described in §4. For calculating eigenvalues
and real Schur decompositions, we used LAPACK and BLAS routines from the
Intel Math Kernel Library (Intel MKL).

We present computational results for four problem categories. The tests
were executed on the Flux computing cluster at the University of Michigan.
Flux is a Linux-based HPC cluster based on the Intel platform, consisting
of Intel Xeon processors, operating at 2.6 GHz, each of which can access up
to 48GB of RAM (though mostly we confined ourselves to 4GB). Each run
was executed on a single processor, using a time limit of 2 hours per instance.
The absolute and relative convergence tolerances used for all experiments were
10−4 and 10−3, respectively. It is important to note that the time of prepro-
cessing is not considered in the time limit of 2 hours, because our main goal in
these experiments is to analyze how the different splitting methods affect the
solvability of the problems. Nevertheless, we note that the time to preprocess
the problems, i.e., to compute the positive semidefinite matrix R, such that
Q = P −R, is insignificant for all splitting strategies (� 1 second), except for
Diagonal SDP, where we solve the SDP program (D). More comments about
the preprocessing time for Diagonal SDP will be made later in this section.

The aim of our experiments is to compare the four different splitting meth-
ods proposed in §4 and §5 as preprocessing at the root problem of a spatial
branch-and-bound search, namely:

– Diagonally Dominant (“D-Dom”).
– Identity (“Identity”).
– Diagonal SDP (“D-SDP”).
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– Real Schur Decomposition (“RSD”).

We also compare our methods to the well-known generic spatial branch-
and-bound code Couenne [8,17]. The convergence tolerances for Couenne were
set equal to the ones used for iquad. We also set Cplex as Couenne’s LP solver.

The four categories of the test problems are described as:

– “BoxQP” problems. These are 99 randomly generated box-constrained
quadratic programs with Q of various density and n varying from 20 to
125. They are challenging benchmark problems commonly used to compare
methods in the literature (see [14]).

– “R-BiqMac” problems. These are 343 problems from the Biq Mac (Binary
quadratic and Max-cut ) Library2, where the integrality constraints are
relaxed, i.e. xi ∈ {0, 1} is replaced by xi ∈ [0, 1]. These problems constitute
our second set of box-constrained quadratic programs, with n varying from
30 to 500.

– “GLOBALLib” problems. These are problems from the repository of global
optimization instances GLOBALLib3. Of the 413 problems from GLOB-
ALLib, we selected the 83 problems with non-convex quadratic objective
function and linear constraints. The number of variables on these problems
varies from 2 to 79.

– “Random” problems. These are randomly generated problems with non-
convex quadratic objective function and linear constraints. We used the
technique proposed by Calamai, Vicente and Júdice (see [16]) to generate
instances of five sizes (n = 20, 40, 60, 80, 100) and belonging to the three
following groups:
– Problems where the objective function is a sum of a bilinear and a

convex quadratic function of disjoint subsets of n/2 variables.
– Problems where the objective function is a sum of a concave and a

convex quadratic function of disjoint subsets of n/2 variables.
– Problems where the objective function is a sum of a bilinear, a concave

quadratic and a convex quadratic function of disjoint subsets of about
n/3 variables.

The number of linear constraints in the problems is equal to 1.5n. We
generated four instances of each size and each group totalizing 60 random
instances.

Table 1 presents comparisons among Couenne and the four splitting strate-
gies of iquad. The percentage of problems in each category that were solved
to optimality within different time limits are reported.

From the results presented in Table 1, we conclude that:

– iquad does not succeed on the relaxed BiqMac problems R-BiqMac, for any
splitting strategy. For these instances, Couenne is more successful, although
it only solves less than 50% of the problems in the time limit of 2 hours.

2http://biqmac.uni-klu.ac.at/biqmaclib.html
3http://www.gamsworld.org/global/globallib.htm

http://biqmac.uni-klu.ac.at/biqmaclib.html
http://www.gamsworld.org/global/globallib.htm
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Splitting Strategy
Test-Bed Time(m) RSD D-SDP D-Dom Identity Couenne

R-BiqMac 30 0.29 8.45 4.37 2.62 47.52
60 0.58 10.79 4.37 2.92 48.40
90 0.87 11.95 4.37 3.50 48.40
120 0.87 12.24 4.66 3.50 48.69

BoxQP 30 13.13 61.62 9.09 50.51 30.30
60 14.14 65.66 11.11 51.52 32.32
90 17.17 65.66 12.12 52.53 33.33
120 17.17 68.69 14.14 52.53 33.33

GLOBALLib 30 100.00 100.00 97.59 100.00 75.90
60 100.00 100.00 97.59 100.00 75.90
90 100.00 100.00 97.59 100.00 75.90
120 100.00 100.00 97.59 100.00 75.90

Random 30 76.67 25.00 15.00 3.33 48.33
60 78.33 25.00 18.33 5.00 48.33
90 83.33 25.00 26.67 5.00 51.67
120 83.33 25.00 26.67 5.00 51.67

Table 1 Percentage of problems solved (%)

– iquad with the D-SDP splitting strategy is the best method on BoxQP
problems. Also, for these problems, the times for solving the SDP programs
at preprocessing are not big. The geometric mean of the preprocessing
times is about 3 seconds, corresponding to less than 4% of the geometric
mean of iquad’s running times. Nevertheless, we should mention that the
Identity splitting strategy, which is cheap to compute, may also be a good
alternative for these instances: Identity is better than Couenne and not so
much worse than D-SDP.

– iquad is very good on GLOBALLib problems, for all splitting strategies,
always showing better performance than Couenne.

– iquad with the Real Schur Decomposition splitting strategy, RSD, is the
best method on the Random problems, significantly better than all the
others.

– Overall the problem categories, D-SDP almost always dominates both D-
Dom and Identity. Therefore, if we could find a cheap way to preprocess for
the D-SDP splitting strategy, then we could discard D-Dom and Identity.
However, the solution of the SDP program (D) may be expensive. It is
in fact an impediment for many R-BiqMac instances, leading Identity or
D-Dom to be the best alternative in some cases.

– RSD performs very well on instances with linear constraints, being the best
alternative on both sets of test problems in this category: GLOBALLib and
Random. On the other hand, RSD does not present good results for the
instances with only box constraints, R-BiqMac and BoxQP. In this case,
the diagonal splitting strategies show, in general, better results.

In Table 2, we compare the best lower bounds computed by iquad every
30 minutes up to 2 hours, when each one of the splitting methods is used.
We report average normalized gaps for each category of test problems. The
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Splitting Strategy
Test-Bed Time(m) RSD D-SDP D-Dom Identity
R-BiqMac 30 99.50 0.70 19.22 7.13

60 99.16 0.69 19.86 7.20
90 98.84 0.66 20.16 7.22
120 98.81 0.65 20.54 7.25

BoxQP 30 81.53 0.19 41.03 0.69
60 78.98 0.16 40.91 0.63
90 77.98 0.15 40.48 0.60
120 77.44 0.14 39.87 0.58

GLOBALLib 30 0.00 0.00 2.41 0.00
60 0.00 0.00 2.41 0.00
90 0.00 0.00 2.41 0.00
120 0.00 0.00 2.41 0.00

Random 30 0.03 8.34 26.10 93.33
60 0.03 8.03 25.06 91.67
90 0.02 7.86 23.44 91.67
120 0.02 7.72 23.05 91.67

Table 2 Normalized gap (%)

normalized gap is defined as the percentage of the worst gap computed, con-
sidering the four splitting methods. For example, for the splitting method s,
the normalized gap is given by opt−lbs

opt−lbmin
× 100, where lbs is the lower bound

computed by iquad when using s, lbmin is the worst lower bound given by
all splitting methods, and opt is the optimal solution value of the problem (or
the best known solution value). The average results reported in Table 2 take
into account only instances for which the worst gap amongst the four splitting
strategies is nonzero.

Our conclusions about the results presented in Table 2 are:

– Although iquad does not perform well on R-BiqMac problems for any split-
ting strategy when compared to Couenne, we still can observe that among
the four strategies, D-SDP is the most promising one, when considering
the gap for unsolved problems, and also when considering the percentage
of problems solved, reported in Table 1.

– For BoxQP problems, D-SDP leads to the best method, also from both
points of view (percentage of solved problems and gap for unsolved prob-
lems). However, Identity also presents very good results and is currently
more practical in some cases.

– For GLOBALLib problems, iquad significantly outperforms Couenne, for
all of our splitting strategies. However, we can rule out D-Dom as a good
method for these problems, because of the big gaps left for the small number
of unsolved problems.

– For Random problems, RSD is a strong winner for problems solved, even
over Couenne, and it also leaves small gaps for the unsolved ones.

Our observations about the performance of the methods on the instances
from our test-beds, may be used as guidelines for choosing one of the proposed
splitting strategies. We note that, in general, our non-diagonal splitting strat-
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egy RSD is a good method for the problems with linear constraints (GLOBAL-
Lib and Random), and when RSD is not a good alternative (e.g., for BoxQP),
D-SDP is good, though it may be too expensive. For BoxQP problems, Iden-
tity is a good substitute for D-SDP. For BiqMac, even though D-SDP is the
best splitting strategy for iquad, it is still far worse than Couenne.

Finally, we made a further set of experiments aimed at understanding how
our methods respond across varying amounts of quadratic concavity. We gen-
erated random instances of varying degrees of concavity on the objective func-
tion, which is measured by the number of negative eigenvalues of Q. First, we
generated four basic random instances with n = 50, two of them with only
box constraints (“boxqp1” and “boxqp2”) and the two others with linear con-
straints (“linc1” and “linc2”). Next, we changed the sign of the eigenvalues of
the matrices Q (preserving the eigenvectors), generating 4× 50 matrices with
varying number of negative eigenvalues from 1 to 50. Each matrix defines an
instance of our test-bed. We solved the instances with iquad, using all splitting
strategies. In Figure 1, we report CPU times for both RSD, the non-diagonal
splitting, and D-SDP (the diagonal splitting with best performance on these
instances). The horizontal axis of the graphs indicates the number of negative
eigenvalues of Q, and the vertical axis indicates the fraction of the maximum
CPU time (2 hours) to solve the instance, computed in a logarithmic scale. We
note that the results obtained for both box-constrained instances were very
similar, so we chose to present only one line for these instances indicating their
average CPU times.

An interesting observation about the results presented in Figure 1 is that
for our non-diagonal method (RSD), we see a strong dependence on the number
of negative eigenvalues, matching the intuition that the number of concave
directions for branching is equal to this number. For the diagonal methods, we
have n concave directions, regardless of the number of negative eigenvalues, so
the performance of the algorithm does not worsen when the number of negative
eigenvalues increases. For small number of negative eigenvalues (8 or less), RSD
is always the best strategy, for all instances considered. When the number of
negative eigenvalues increases, the best strategy is dependent on the problem
category. Comparing the two categories, we can clearly observe again the better
performance of the non-diagonal method RSD when the problem has linear
constraints. In this case, even with the increase of the computational effort with
the number of negative eigenvalues, RSD always significantly outperforms all
the diagonal splittings. For the box-constrained problems, D-SDP is the best
strategy, except for the problems with a small number of negative eigenvalues.
Again, we observed with the experiments that Identity’s performance is almost
as good as D-SDP’s on these instances. For the problems with a very small
number of negative eigenvalues, the diagonal methods have a bad performance,
even on the box-constrained problems, especially Identity. The relaxations
given by Identity are too weak in this case.
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Fig. 1 Effect of the degree of concavity in iquad

8 Future Enhancements

At a high level, the most important features to add are efficient exploita-
tion of integer variables and the application of our methodology to indefinite
quadratics in the constraints.

We note that during the spatial branch-and-bound, we may strengthen the
model of X for a subproblem, in particular if there are integer variables. In
such cases, it may be valuable to resolve Lyi and Uyi to compute improved
bounds for the relaxation (I).

Furthermore, as the spatial branch-and-bound proceeds, whenever an xj
variable gets fixed at a subproblem of the branch-and-bound search (which
can be quite likely for integer variables), it may be beneficial to compute a
new splitting for the reduced quadratic form, though we have not tested this.

If there are no integer variables (i.e., I = ∅) and the constraints describing
X are linear, an indefinite QP solver can be used to generate solutions with
correct objective value (that is upper bounds). This could be of significant help
in a spatial branch-and-bound.

In [33,34], different methods were developed for handling quadratics. Qua-
dratics were thought of in the form q(x, Y ) = c′x+ 1

2 〈Q,Y 〉, where Y := xx′.
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So, in the higher dimensional space of both x ∈ Rn and Y ∈ Rn×n, q is lin-
ear, and the quadratic non-convexity is isolated as the equation Y = xx′. As
others have done, this latter equation was relaxed to the convex semidefinite
inequality Y � xx′, which was then treated via a polyhedral outer approxi-
mation (to avoid a method that will be tied to the difficulty of solving many
semidefinite programs). The contribution of [33,34] was to apply disjunctive-
programming methodology to the nonconvex inequality Y � xx′, by seeking
one-dimensional quadratic concavity within this nonconvex inequality. Further
disjunctive cuts are employed related to integer variables and linear comple-
mentarity constraints, when those were present in test instances. Although
our present approach is quite different, we plan to absorb the lessons learned
from [33,34], and we will apply disjunctive-cut techniques wherever we can
efficiently exploit them. Moreover, [33,34] did not incorporate their bound-
ing methodology into a full spatial branch-and-bound for global optimization.
We see advantages in our approach with such a goal in mind. In particular,
our methodology appears to be much less computationally expensive, and it
should be more numerically stable.
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An algorithmic framework for convex mixed integer nonlinear programs. Discrete Op-
timization, 5:186–204, 2008.

10. Pierre Bonami, Jon Lee, Sven Leyffer and Andreas Wächter, On Branching Rules for
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