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Abstract. Quantum chromodynamics (QCD) is a theory for the strong inter-
action, one of the four fundamental interactions of Nature, based on the color
quantum index. In this article we introduce a color algebra and its mathemat-
ical theory. This theory offers a mathematical foundation for QCD, is used
to resolve a number of difficulties encountered in QCD, provides a good ex-
planation of gluon radiations, and gives detailed structures of mediator clouds
around sub-atomic particles.
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1. Introduction and Motivations

There are four fundamental interactions of Nature: the strong interaction, the
electromagnetic interaction, the weak interaction and the gravity. The current
theory for strong interaction is the quantum chromodynamics (QCD), which is an
SU(3) YangMills gauge theory of colored fermions (the quarks); see among others
[2, 5] and the references therein. QCD theory is based on the color quantum number
which was first introduced by O. Greenberg [1] to solve the inconsistency between
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the Pauli exclusion principle and the constituents of some spin-3/2 baryons such as

△++ = uuu(↑↑↑, ↓↓↓), △− = ddd(↑↑↑, ↓↓↓), Ω− = sss(↑↑↑, ↓↓↓).
With the color quantum number, one important component of QCD is an SU(3)

gauge theory, demonstrating the existence of eight spin-1, massless and electric-
neutral gluons gk (k = 1, · · · , 8).

Basically, each flavor of quarks is endowed with three different colors: red r,
green g, and blue b, and the corresponding antiparticle possesses three anti-colors:
r̄, ḡ and b̄:

(1.1) qr, qg, qb, q̄r, q̄g, q̄b.

These colors obey the following color neutral laws of color group operation:

(1.2) rr̄ = gḡ = bb̄ = w, rgb = w,

where w is white. These color neutral laws are based on the fact that the hadrons
are colorless (white), and the constituents of a baryon are given by

(1.3) baryon = q1rq2qq3b, anti-baryon = q̄1r q̄2q q̄3b

and the constituents of a meson are given by

(1.4) meson = q1r q̄2r, q1g q̄2g, or q1bq̄2b.

As we shall see in the beginning of Section 2, the above color neutral laws lead
quickly that one cannot define the group operation of colors and anti-colors, i.e.

(1.5) cic̄j 6= any of r, g, b, r̄, ḡ, b̄ for i 6= j,

where c1 = r, c2 = g, and c3 = b.
The lack of proper color group operation in (1.5) clearly demonstrates that a

complete and consistent algebraic system for the color quantum number is still not
available. The main objectives of this article are

(1) to introduce a color group CG with two additional colors, which we call
yellow y and anti-yellow ȳ added to the three basic colors r, g, b and their
anti-colors r̄, ḡ, b̄,

(2) to establish a consistent and complete mathematical theory: color algebra,
associated with the new color group CG, and

(3) to study the gluon radiation and the structure of mediator clouds around
sub-atomic particles.

One important remark here is that as we shall later, all the quarks are still having
only the three basic colors and their anti-colors.

Hereafter we examine some difficulties encountered in QCD associated with the
lack of proper group operation of the existing color theory, and point out important
ingredients and physical conclusions of the new color algebra introduced in this
article.

First, the lack of proper definition of group operation in (1.5) leads to many
difficulties in classical QCD theory. These difficulties suggest that the introduction
of a new color algebraic system is crucial for the further development of QCD theory
for strong interactions.

In particular, the inconsistency (1.5) demonstrates that in addition to the six
basic colors r, g, b, r̄, ḡ, b̄, we need to incorporate the following color extensions:

rḡ, r̄g, rb̄, r̄b, gb̄, ḡb.
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It is easy to check that only two of these added colors are independent and are
called yellow y and anti-yellow ȳ:

(1.6)
y

def

= rḡ = br̄ = gb̄,

ȳ
def

= gr̄ = rb̄ = bḡ.

Namely, the new color group CG with the two added color is a commutative group:

(1.7) CG = {r, g, b, y, r̄, ḡ, b̄, ȳ, w}.

Second, with the color group CG, it is then natural to introduce a new color
algebra with quarks and gluons as generators with integer coefficients:

P =

{
19∑

k=1

nkek

∣∣∣ ek are the 18 colored quarks and 1 yellow gluon, nk ∈ Z

}
.

The color index of each element ω =
∑19

k=1 nkek ∈ P can then be naturally defined,
leading to color index formulas for hadrons and explanations of quark radiation.
Elements in the color algebra P represent colored constituents of particle systems,
and the corresponding color index formula provides an easy and comprehensive tool
for QCD.

Third, decay and reaction behavior of subatomic particles offers us a doorway
to the secret of sub-atomic world. Unfortunately, there are many puzzling issues
regarding sub-atomic decays. Nevertheless, sub-atomic decays and reactions show
clearly that there must be interior structure of charged leptons, quarks and medi-
ators. For example, the electron radiations and the electron-positron annihilation
into photons or quark-antiquark pair clearly shows that there must be interior struc-
ture of electrons, and the constituents of an electron contribute to the making of
photon or the quark in the hadrons formed in the process.

Recently in [4, 3], based on the layered structure of strong and weak interaction
potentials, a careful examination of subatomic decays and reactions leads us to pro-
pose six elementary particles, w∗, w1, w2, νe, νµ, ντ , and their anti-particles. Both
w∗ and w̄∗ are the only weaktons carrying strong charge gs and color indices.

The w∗ particle carries the three basic colors r, g, b, and w̄∗ carries their anti-
colors r̄, ḡ, b̄. All other elementary particle does not carry any color. Consequently,
we are able to introduce a new algebra, which we call. It is a triplet (CG,P 3, Indc),
consisting 1) the color group CG, 2) an algebra P 3 on the integer group Z:

(1.8) P 3 = {
∑

k=r,g,b

nkw
∗

k

∣∣∣ nk ∈ Z },

and a homomorphism Indc : P
3 → CG. The color contribution/color index of any

particle system is unique determined by an element in P 3, and its image under the
homomorphism Indc. A complete theory on calculating color index of any particle
system is proved in Theorem 3.1.

Fourth, the layered strong and interaction potentials demonstrate that in the
sub-atomic scale, there is always an attracting shell-region near a naked particle,
such as the electron structure as shown in Figure 4.1; see also [3, 4]. Mediators are
then attracted to this attracting shell-region, forming a cloud of mediators.
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With the color algebra theory, we are able to study more detailed structures of
the mediator clouds of sub-atomic particles. This study offers good explanations of
such phenomena as bremsstrahlung and gluon radiations.

Fifth, QCD is based on the assumption that each quark carries a color quantum
number with three color indices r, g, b and their anti-color indices r̄, ḡ, b̄. Gluons
are also assumed to carry color indices. Different from the color index of quarks,
each gluon carries two color charges: one color charge and one anti-color charge
such as rḡ. Namely, the 8 gluons can be considered as a color octet of the following
irreducible representation of SUc(3)⊗ SUc(3):

(1.9) SUc(3)⊗ SUc(3) = 8⊕ 1.

The color constituents of these color octet states can be given by

(1.10)
g1 = rḡ, g2 = rb̄, g3 = gb̄, g4 = (rr̄ − bb̄)/

√
2,

g5 = gr̄, g6 = br̄, g7 = bḡ, g8 = (rr̄ + bb̄− 2gḡ)/
√
6.

The additional color singlet is

(rr̄ + bb̄+ gḡ)/
√
3.

Here g4, g8 and the color singlet are white, representing different quantum states.
However, the color of any of the other gluons does not equal to any of known color
r, g, b and their anti-colors r̄, ḡ, b̄. Of course it is clear now that they are either
yellow y or anti-yellow ȳ.

Sixth, in the classical QCD theory, gluons are mediators for the strong inter-
action in which the color index plays a crucial role. As both quarks and gluons
carry color indices, strong interaction can only take place between particles carry-
ing color indices, including interactions between quark and quark, between quark
and gluon, or between gluons. In other words, classically, one views color index as a
source of strong interaction. However, this point of view leads to several difficulties.
One such difficulty is that no proper color correspondence of gluons prevents us to
establish any interaction potential of the following form

(1.11) φs =

3∑

i=1

ϕci(r),

where ci are the three colors. In fact, the situation is even worse when considering
strong force between hadrons as hadrons are colorless. It is worth mentioning that
with the unified field theory [3], we derive that the strong charge gs is the main
source of strong interaction, and the layered strong interaction potentials can then
be derived; see also (4.1) and (4.2).

Seventh, in the classical QCD theory, we know that a quark can radiate or
absorb gluons, as an electron can radiate or absorb photons in the quantum electro-
dynamics (QED). However, the lack of color operation (1.5) also leads to difficulties
in the QCD theory on gluon radiation and absorption. For example, a red quark
qr can be transformed to a green quark qg, radiating an rḡ gluon grḡ:

qr → grḡ + qg,

which leads to a correct color operation:

r = (rḡ)g = rḡg = r.
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However, if qr radiates a gbḡ gluon, due to the lack of color algebra, then it is
difficult to determine the type of quark in which qr transform:

qr → gbḡ + qX , X =?.

With the new color algebra theory and in particular with the introduction of the
colors y and ȳ, together with the color index formula developed in Section 2, we
know that

X = rgb̄ = rȳ = g.

Namely, a red quark becomes a blue quark after radiating gbḡ gluon.
The article is organized as follows. Section 2 introduces the color group CG and

the color algebra based on the classical QCD theory, and Section 3 develops w∗

color algebra theory based on the weakton model. The application to the study of
the structure of mediator clouds of sub-atomic particles and the gluon radiations.

2. Color Algebra

The main objective of this section is to introduce a consistent color algebraic
structure, and to establish a color index formula for hadrons and color transforma-
tion exchange for gluon radiation.

The color algebra for quantum chromodynamics (QCD) established in this sec-
tion is based on color neutral principle of hadrons, and is uniquely determined.
Hence it serves as the mathematical foundation of QCD.

2.1. Color algebra of color quantum numbers. First we examine the crucial
problems encountered in the existing theory for color algebra. The color neutral
principle of hadrons requires that the three colors must obey the following laws:

rgb = w, r̄ḡb̄ = w,(2.1)

rr̄ = gḡ = bb̄ = w.(2.2)

Basic physical considerations imply that the product operation of color is com-
mutative and associative, i.e.

rg = gr, rb = br, bg = gb, rgb = (rg)b = r(bg).

Hence we infer from (2.1) and (2.2) that

(2.3)
rg = b̄, rb = ḡ, bg = r̄,

r̄ḡ = b, r̄b̄ = g, b̄ḡ = r.

Notice that the white color w is the unit element, i.e.

wr = r, wg = g, wb = b, wr̄ = r̄, wḡ = ḡ, wb̄ = b̄.

Then again, we infer from (2.1) and (2.2) that

(2.4)
rr = r̄, gg = ḡ, bb = b̄,

r̄r̄ = r, ḡḡ = g, b̄b̄ = b.

Multiplying (2.1) by b and using (2.4), we deduce that

(2.5) r(gb̄) = b,

which leads to inconsistency, no matter what color we assign for gb̄. For example,
if we assign gb̄ = r, then we derive from (2.5) that rr = b, which is inconsistent
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with rr = r̄. If we assume gb̄ = b̄, then rb̄ = b, which, by multiplying by b, leads to
r = bb = b̄, a contradiction again.

The above inconsistency demonstrates that in addition to the six basic colors

r, g, b, r̄, ḡ, b̄,

we need to incorporate the following color extensions:

rḡ, r̄g, rb̄, r̄b, gb̄, ḡb.

Only two of these added colors are independent, and in fact, we derive from (2.3)
that

rḡ = br̄ = gb̄, gr̄ = rb̄ = bḡ.

Hence we define then as yellow y and anti-yellow ȳ as follows:

(2.6)
y = rḡ = br̄ = gb̄,

ȳ = gr̄ = rb̄ = bḡ.

In a nutshell, in order to establish a consistent color algebra, it is necessary to add
two quantum numbers yellow y and anti-yellow ȳ to the six color quantum numbers,
giving rise to a consistent and complete mathematical theory: color algebra.

Definition 2.1. 1. The generators of color algebra consists of quarks and glu-
ons, which possess 9 color indices as

(2.7) r, g, b, y, r̄, ḡ, b̄, ȳ, w,

which form a finite commutative group. Here y and ȳ are given by (2.6),
and the group product operation is defined by
1) w is the unit element, i.e.

cw = c for any color in (2.7);

2) c̄ is the inverse of c:

cc̄ = w for c = r, g, b, y;

3) In addition to the basic operations given in (2.1)-(2.4), we have

(2.8)
yr = b, yg = r, yb = g, yy = ȳ,

ȳr = g, ȳg = b, ȳb = r, ȳȳ = y.

2. Color algebra is an algebra with quarks and gluons as generators with integer
coefficients, and its element space is given by

P =

{
19∑

k=1

nkek

∣∣∣ ek are the 18 colored quarks and 1 yellow gluon, nk ∈ Z

}
,

and −ek represent anti-quarks and gluons with anti-yellow color index ȳ.
3. The color index of ω =

∑19

k=1 nkek ∈ P is defined by

(2.9) Indc(ω) =

19∏

k=1

cnk

k ,

where ck is the color of ek and cnk

k = w if nk = 0.

Two remarks are now in order.
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Remark 2.1. Each element ω =
∑

nkek ∈ P represents a particle system, and nk

is the difference between the number of particles with color index ck and the number
of antiparticles with color index c̄k. In particular, particles with colors r, g, b must
be quarks, particles with colors r̄, ḡ, b̄ must be anti-quarks, and particles with colors
y, ȳ must be gluons.

Remark 2.2. In (2.6), rḡ, br̄ and gb̄ are all yellow. Consequently, the gluons grḡ,
gbr̄ and ggb̄ have the same color. However, they represent different quantum states.
In particular, in the weakton model [3, 4],

grḡ = w∗

rw
∗

ḡ , gbr̄ = w∗

bw
∗

r̄ , ggb̄ = w∗

gw
∗

b̄ ,

which represent different quantum states.

2.2. Color index formula for hadrons. The main objective of this subsection
is to study color neutral problem for hadrons and the radiation and absorption of
gluons for quarks.

We start with color neutral problem for hadrons. Consider the constituents of a
proton

(2.10) p = uc1 + uc2 + dc3 +
∑

nkg
k ∈ P,

∑
nk = N,

whose color index is given by

(2.11) Indc(p) = c1c2c3

8∏

k=1

(Indc(g
k))nk ,

where Indc(g
k) is the color of the gluon gk. The color neutral law requires that

Indc(p) = w, which does not necessarily lead to c1c2c3 = w. For example, for the
following constituents of a proton p:

(2.12) p = ur + ur + dg + 2grḡ + grb̄

we have

Indc(p) = r2gy2ȳ = r̄gy = r̄r = w, c1c2c3 = rrg = r̄g = ȳ 6= w.

In summary, the hadron color quantum numbers based on color algebra is very
different from the classical QCD theory.

For a baryon B with its constituents given by

(2.13) B =

3∑

i=1

qci +

3∑

k=1

(nkg
k +mkḡ

k) +Ng4 +Mḡ4,

its quantum number distribution satisfies the following color index formula:

(2.14) c1c2c3 = ȳN1yN2 , N1 =

3∑

k=1

nk, N2 =

3∑

k=1

mk.

For a meson µ with constituents:

(2.15) µ = qc1 + q̄c2 +
3∑

k=1

(nkg
k +mkḡ

k) +Ng4 +Mḡ4,

its neutral color requires that

(2.16) c1c̄2 = ȳN1yN2 ,
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where N1 and N2 are given as in (2.14). In (2.13) and (2.15),

g1 = grḡ, g2 = gbr̄, g3 = ggb̄, g4 = combination of neutral gluons,

ḡ1 = gr̄g, ḡ2 = gb̄r, ḡ3 = gḡb, ḡ4 = the anti-gluon of g4.

2.3. Color transformation of gluon radiation. Consider the transformation of
a quark qc with color c to another quark qc3 after emitting a gluon gc1c̄2 :

(2.17) qc → gc1c̄2 + qc3 ,

then the color c3 of the transformed quark qc3 is given by

(2.18) c3 = cc2c̄1.

Also, for the transformation of a quark qc to another quark qc4 after absorbing a
gluon gc1c̄2 :

(2.19) qc + gc1c̄2 → qc4 ,

then the color c4 of the transformed quark qc4 is given by

(2.20) c4 = cc1c̄2.

3. w∗-Color Algebra

3.1. Weakton model. We first recall the weakton model introduced in [3]. The
starting point of the model is the puzzling decay and reaction behavior of subatomic
particles. For example, the electron radiations and the electron-positron annihila-
tion into photons or quark-antiquark pair clearly shows that there must be interior
structure of electrons, and the constituents of an electron contribute to the making
of photon or the quark in the hadrons formed in the process. In fact, all sub-atomic
decays and reactions show clearly that there must be interior structure of charged
leptons, quarks and mediators. A careful examination of these subatomic decays
and reactions leads us to propose six elementary particles, which we call weaktons,
and their anti-particles:

(3.1)
w∗, w1, w2, νe, νµ, ντ ,

w̄∗, w̄1, w̄2, ν̄e, ν̄µ, ν̄τ ,

where νe, νµ, ντ are the three generation neutrinos, and w∗, w1, w2 are three new
particles, which we call w-weaktons. These are massless, spin- 1

2
particles with one

unit of weak charge gw. Both w∗ and w̄∗ are the only weaktons carrying strong
charge gs.

With these weaktons at our disposal, the weakton constituents of charged leptons
and quarks are then given as follows:

(3.2)

e = νew1w2, µ = νµw1w2, τ = ντw1w2,

u = w∗w1w̄1, c = w∗w2w̄2, t = w∗w2w̄2,

d = w∗w1w2, s = w∗w1w2, b = w∗w1w2,

where c, t and d, s, b are distinguished by the spin arrangements; see [3] for details.
In the weakton model, the mediators include the massless spin-1 photon γ and

its dual spin-0 massless particle φγ , the gluons gk and their dual fields φk
g , and the
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ν mediators:

(3.3)

γ = αw1w̄1 + βw2w̄2(⇈,�),

φγ = αw1w̄1 + βw2w̄w(↑↓, ↓↑), α2 + β2 = 1,

φν = α1νeν̄e + α2νµν̄µ + α3ντ ν̄τ (↓↑),
3∑

i=1

α2
i = 1,

gk = w∗w̄∗(⇈,�),

φk
g = w∗w̄∗(↑↓, ↓↑).

All mediators participate weak interaction through two weaktons carrying weak
charges. Both the gluons gk and their duals φk

g carry both strong charge and color
charges, and participate strong interactions as well. Also, the color index for both
gk and φk

g are the same.

3.2. w∗-color algebra. In an abstract sense, a color algebra (CG,PN , Indc) con-
sists of:

(1) a finite group CG, called color group,
(2) an algebra with generators e1, · · · , eN defined on Z:

(3.4) PN =

{
N∑

k=1

nkek

∣∣∣ nk ∈ Z

}
,

(3) a homomorphism

(3.5) Indc : P
N → CG,

such that for each element ω =
∑N

k=1 nkek ∈ PN , we can define a color
index for ω by

(3.6) Indc(ω) =
N∏

k=1

Indc(ek)
nk ,

where Indc(ek) ∈ CG is the image of ek under the homomorphism Indc.

Based on the weakton model, the weakton constituents of a quark and a gluon
are given by

q = w∗ww, g = w∗w̄∗.

The only weakton that has colors is w∗, which has three colors: r, g, b:

(3.7) w∗

r , w∗

g , w∗

b ,

and their antiparticles have colors r̄, ḡ, b̄.
We are now in position to define the w∗-color algebra as follows:

Definition 3.1. The w∗-color algebra (CG,P 3, Indc) is defined as follows:

(1) The color group

(3.8) CG = {r, g, b, y, r̄, ḡ, b̄, ȳ, w}
with group operation given in Definition 2.1;

(2) an algebra P 3 on the integer group Z:

(3.9) P 3 =





∑

k=r,g,b

nkw
∗

k

∣∣∣ nk ∈ Z




 ;
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(3) an homomorphism Indc : P
3 → CG defined by

(3.10) Indc(w
∗

k) = k, Indc(−w∗

k) = k̄ for k = r, g, b.

Consider a particle system ω, which consists of nk quark qk, n̄k antiquark q̄k, m1

gluons g1 = grḡ, m2 gluons g2 = gbr̄, m3 gluons g3 = ggb̄, m4 color-neutral gluons

g4, m̄1 gluons ḡ1, m̄2 gluons ḡ2, m̄3 gluons ḡ3, and m̄4 gluons ḡ4:

(3.11) ω =
∑

k=r,g,b

(nkqk + n̄k q̄k) +

4∑

i=1

(mig
i + m̄iḡ

i).

Then ω corresponds to an element Xω ∈ P 3 expressed by

(3.12) Xω =
∑

k=r,g,b

Nkw
∗

k,

where

(3.13)

Nr = (nr − n̄r) + (m1 −m2)− (m̄1 − m̄2),

Ng = (ng − n̄g) + (m3 −m1)− (m̄3 − m̄1),

Nb = (nb − n̄b) + (m2 −m3)− (m̄2 − m̄3),

and, consequently, the color index for ω is defined by

(3.14) Indc(ω) = Indc(Xω) = rNrgNgbNb ,

where for negative Nk < 0, we define

kNk = k̄−Nk .

It is then clear that

(3.15) Indc(ω1 + · · ·+ ωs) =

s∏

i=1

Indc(ωi).

The following is a basic theorem for w∗-color algebra, providing the needed
foundation for the structure for charged leptons and quarks.

Theorem 3.1. The following hold true for the w∗-color algebra.

(1) The color index of any gluon particle system with no quarks and no anti-
quarks

(3.16) ε =
4∑

i=1

(mig
i + m̄iḡ

i)

obeys

(3.17) Indc(ε) =






w for
3∑

i=1

(mi − m̄i) = ±3k,

y for
3∑

i=1

(mi − m̄i) = ±3k + 1,

ȳ for
3∑

i=1

(mi − m̄i) = ±3k + 2,

for some integer k = 0, 1, 2, · · · .
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(2) The color index of any single quark system

(3.18)
ω = q + ε,

ω′ = q̄ + ε
with ε given by (3.16)

obeys

(3.19)
Indc(ω) = r, q, b,

Indc(ω
′) = r̄, ḡ, b̄.

(3) The color indices of hadronic cloud systems

(3.20)
M = q + q̄ + ε meson system

B = q + q + q + ε baryon system
with ε given by (3.16)

must be given by

(3.21) Indc(M) = w, y, ȳ, Indc(B) = w, y, ȳ.

Two remarks are now in order.
1. In particle physics, all basic and important particle systems are given by the

particle systems in Assertions (1)-(3) in this theorem. System (3.16) represents a
cloud system of gluons around charged leptons, (3.18) represents for a cloud system
of gluons around a quark or an anti-quark, and (3.20) represents a cloud system of
gluons around a hadron (a meson or a baryon).

2. Physically,
∑3

i=1(mi − m̄i) = ±3k indicates that through exchange of weak-
tons, a cloud system (3.16) of gluons around charged leptons can become a cloud
system of white gluons coupled with the same number of yellow and anti-yellow
gluons.

Proof of Theorem 3.1. Step 1. By the basic properties (3.11)-(3.14) of color index,

(3.22) Indc(ε) = rMrgMgbMb

where

Mr = (m1 −m2)− (m̄1 − m̄2),

Mg = (m3 −m1)− (m̄3 − m̄1),

Mb = (m2 −m3)− (m̄2 − m̄3).

Consequently, using c−m = c̄m, we have

Indc(ε) =(rḡ)m1(r̄b)m2(gb̄)m3(r̄g)m̄1(rb̄)m̄2(ḡb)m̄3

=ym1ym2ym3 ȳm̄1 ȳm̄2 ȳm̄3 = yM .

Here

M =
3∑

i=1

(mi − m̄i).

Notice that y2 = ȳ and ȳ2 = y and Assertion (1) follows.

Step 2. For Assertion (2), with the above argument, it is easy to see that

(3.23)
Indc(ω) = Indc(q)Indc(ε) = Indc(q)y

M ,

Indc(ω
′) = Indc(q̄)Indc(ε) = Indc(q̄)y

M .

Then Assertion (2) follows from the fact that

Indc(q) = r, g, b, Indc(q̄) = r̄, q̄, b̄.
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Step 3. With the same arguments as above, we derive that

Indc(π) = cic̄jy
M , Indc(B) = cicjcky

M (1 ≤ i, j, k ≤ 3),

where c1 = r, c2 = g, c3 = b. By the basic rules for the color operator given in (2.3)
and (2.6), we have

cic̄j = w, y, ȳ, cicjck = c̄lck = w, y, ȳ,

and therefore Assertion (3) follows. �

4. Structure of Mediator Clouds Around Sub-Atomic Particles

Sub-atomic particles consist of charged leptons, quarks and hadrons. As demon-
strated in [3], strong and weak interactions consist of different layers, leading to
different particle structures in different layers: weakton layer (elementary particle
layer), mediator layer, charged lepton and quark layer, hadron layer and nucleon
layer.

In this section, we examine the structure of mediator clouds of sub-atomic parti-
cles, based on the layered properties of strong and weak interactions and the color
algebra introduced in the previous sections, leading to explanations of sub-atomic
decays and scatterings.

4.1. Strong and weak interaction potentials. In [3], we have derived both
strong and weak interaction potentials based on the principle of interaction dy-
namics (PID) and the principle of representation invariance.

The strong interaction potential Φs for a particle with radius ρ and the strong
interaction potential V s

12 between two particles, with radius ρ1 and radius ρ2 and
carrying N1 and N2 strong charges respectively, are given by

Φs = gs(ρ)

[
1

r
− As

ρ

(
1 +

r

R

)
e−r/R

]
,(4.1)

V s
12 = N1N2gs(ρ1)gs(ρ2)

[
1

r
− Ãs√

ρ1ρ2

(
1 +

r

R

)
e−r/R

]
,(4.2)

where As and Ãs are dimensionless constants,

gs(ρ) =

(
ρ

ρw

)3

gs,

g2s =
2

3(8
√
e− e)

(
ρn
ρw

)6

g2,

R =

{
10−13 cm for hadrons and nucleons,

10−16 cm for quarks,

ρw and ρn are the radii of weaktons and nucleons, gs is the strong charge, and
g2 ∼ 1− 10~c is the Yukawa coupling constant of strong interaction.

Also, the layered weak interaction potential Φw for a particle with radius ρ and
the weak interaction potential V w

12 between two particles, with radius ρ1 and radius
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ρ2 and carrying N1 and N2 weak charges respectively, are given by

Φw = gw(ρ)e
−r/r0

[
1

r
− Aw

ρ

(
1 +

2r

r0

)
e−r/r0

]
,(4.3)

V w
12 = N1N2gw(ρ1)gw(ρ2)e

−r/r0

[
1

r
− Ãw√

ρ1ρ2

(
1 +

r

r0

)
e−r/r0

]
,(4.4)

where Aw and Ãw are dimensionless constants, r0 = 10−16cm,

gw(ρ) =

(
ρ

ρw

)3

gw, g2w = 0.63

(
ρn
ρw

)6

~c,

and gw is the weak charge.
With the above layered properties of both strong and weak interaction potentials,

we see that in the sub-atomic scale, there is always an attracting shell-region near
a naked particle, such as the electron structure as shown in Figure 4.1; see also
[3]. Mediators are then attracted to this attracting shell-region, forming a cloud of
mediators. More precisely, by the weak interaction potential, there is an attracting
shell region of weak force:

(4.5) ρ1 < r < ρ2, ρ1 = 10−16 cm

with small weak force. Outside this region, the weak force is repelling:

(4.6) Fw > 0 for r < ρ1 and r > ρ2.

Since the mediators γ, φγ , g, φg and φν contain two weak charges 2gw, they are
attached to the electron in the attracting shell region (4.5), forming a cloud of me-
diators. The irregular triangle distribution of the weaktons ν2, w1 and w2 generate
a small moment of force on the mediators in the shell region, and there exist weak
forces between them. Therefore the bosons will rotate at a speed lower than the
speed of light, and generate a small mass attached to the naked electron νew1w2.

The main purpose of this section is to study the structure of the mediator clouds
near naked sub-atomic particles, using the color algebra introduced in the previous
sections.

ρ

Figure 4.1. Electron structure: mediator cloud of an electron
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4.2. Mediator clouds for charged leptons. For simplicity and due to similari-
ties, we consider only the case for electrons.

First, we recall the electron structure presented in [3]. The weakton constituents
of an electron are νew1w2. Noting that

electric charge: Qν = 0, Qw1
= −1

3
, Qw2

= −2

3
,

weak charge: Cw = 1, Cw1
= 1, Cw2

= 1,

we see that the distribution of weaktons νe, w1 and w2 in an electron is in an irreg-
ular triangle due to the asymptotic forces on the weaktons by the electromagnetic
and weak interactions.

It is known that an electron emits photons as its velocity changes. This is
called bremsstrahlung, and the reasons why bremsstrahlung can occur is unknown
in classical theories. As an electron is in an electromagnetic field, which exerts
a Coulomb force on its naked electron νew1w2, but not on the attached neutral
mediators. Thus, the naked electron changes its velocity, which draws the mediator
cloud to move as well, causing a perturbation to moment of force on the mediators.
As the attracting weak force in the shell region (4.5) is small, under the pertur-
bation, the centrifugal force makes some mediators in the cloud, such as photons,
flying away from the attracting shell region, and further accelerated by the weak
repelling force (4.6) to the speed of light, as shown in Figure 4.2.

e

(a)

F e

(b)

γ

γ

Figure 4.2. (a) The naked electron is accelerated in an electro-
magnetic field; (b) the mediators (photons) fly away from the at-
tracting shell region under a perturbation of moment of force.

Second, due to the weak interaction between mediators, they must be maintain
a distance r0 between each other with r0 being approximately the weak repelling
radius of the mediators. Consequently, the total number N of particles in each
layer of mediators satisfies that

(4.7) N ≤ 4πr2/r20,

where r is the radius of the layer. For example, if r = r0, then N ≤ 12.

Third, an electron refers to the system consisting of the naked electron νew1w2

and its mediator cloud. The mediator cloud consists of spin-1 photons and gluons.
As the total spin of an electron is Je =

1
2
, both the number of photons Nγ and the
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number of gluons Ng are even with half being left-handed and the other half being
right-handed.

Fourth, as an electron is white, the total color index of the gluons and the dual
gluons is white. By Theorem 3.1, the numbers of yellow and anti-yellow gluons and
dual gluons satisfy the following relationship in 3.17:

(4.8)

3∑

i=1

(mi − m̄i) = ±3k, k = 0, 1, · · · .

Hence the colorless of an electron, as well as the balance between yellow and anti-
yellow particles, can be achieved through the exchange of w∗ and w̄∗ between the
gluons and the dual gluons.

4.3. Mediators of quarks and gluon radiations. Different from the weakton
constituents of an electron, the weakton constituents of a quark include a weakton
with strong charge, leading to different structure of mediator clouds.

The strong interaction between a quark and a gluon consists of three parts: the
interaction between strong charges, the interaction between color charges and the
interaction between a strong charge and a color charge. We have developed layered
formulas for strong interaction potentials between strong charges, and it is clear
that the other two interactions must have much shorter range. Consequently, the
mediator cloud of a quark consists of two layers:

(4.9)
gluon layer: gluons and dual gluons,

photon layer: photons, dual photons, and ν-mediators.

Here the gluon layer is due to strong interaction, and the photon layer is due to the
weak interaction. The radius of the gluon layer is about the radius ρ0 of a quark:

ρ0 ∼ 10−23 − 10−21cm.

The radius of photon layer is about the radius of an electron:

ρe = 10−18 − 10−16cm.

By Theorem 3.1, the color of an quark system carrying gluon cloud can only be ei-
ther r, g, b or r̄, ḡ, b̄. The gluons in the cloud layer of a quark are confined. However,
gluons and dual gluons between quarks in a hadron can be exchanged.

The gluon exchange process between quarks in a hadron is called gluon radiation.
In fact, a quark can emit gluons, which will be absorbed by other quarks in the
hadron. For example, consider a quark q1 is transformed to q2 after emitting a
gluon g0, and the quark q2 is transformed to q4 after absorbing the gluon g0:

(4.10) q1 → q3 + g0, q2 + g0 → q4,

equivalently,

q1 + q2 → q3 + q4.

The corresponding color transformation is given by

Indc(q1) = Indc(q3)Indc(g0),

Indc(q4) = Indc(q2)Indc(g0),

Indc(q1 + q2) = Indc(q3 + q4).
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4.4. Mediator clouds of hadrons. Different from electrons and quarks, there is
no photon cloud layer around a hadron, due to the fact that the radius of a naked
hadron ρh is greater than the range of the weak interaction:

ρh ≥ 10−16cm.

Namely, a hadron can only have a strong attraction to gluons and dual gluons,
forming a gluon cloud with radius about the same as the radius of a hadron:

r1 ∼ 10−16 − 10−14cm.

Also, hadrons care colorless, for a baryon B and a meson M given by (3.20), we
have

Indc(M) = cic̄jIndc(ε) = w,

Indc(B) = cicjckIndc(ε) = w, 1 ≤ i, j, k ≤ 3.

Consequently, if the naked hadron is white, then the gluon cloud is white as well.
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