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Abstract

The Reformulation-Linearization Technique (RLT), due to Sherali
and Adams, can be used to construct hierarchies of linear programming
relaxations of mixed 0-1 polynomial programs. As one moves up the
hierarchy, the relaxations grow stronger, but the number of variables
increases exponentially. We present a procedure that generates cutting
planes at any given level of the hierarchy, by optimally weakening lin-
ear inequalities that are valid at any given higher level. Computational
experiments, conducted on instances of the quadratic knapsack prob-
lem, indicate that the cutting planes can close a significant proportion
of the integrality gap.

Keywords: polynomial optimisation, cutting planes, mixed-integer
nonlinear programming, quadratic knapsack problem.

1 Introduction

The Reformulation-Linearization Technique (RLT), developed by Adams,
Sherali and co-authors, is a general framework for constructing hierarchies
of linear programming (LP) relaxations of various optimisation problems.
Although first developed for 0-1 polynomial programs (PPs) [23], it was
soon adapted to continuous PPs [27], and then extended to mixed 0-1 PPs
[24]. Since then, it has been further extended and adapted, to cover a wide
range of integer programming and global optimisation problems (see, e.g.,
[22, 25]).

As one moves up the levels of the RLT hierarchy, the LP relaxations grow
stronger, but the number of variables increases exponentially. In practice,
therefore, one can hope to solve the relaxations only at very low levels of
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the hierarchy. In fact, even solving the relaxation at the first level can be
a challenge [3]. This led us to develop the framework presented in this pa-
per, which enables one to strengthen low-level relaxations by adding cutting
planes, rather than additional variables.

Our framework is applicable to mixed 0-1 PPs with bounded continu-
ous variables. It has three main components. First, we give procedures
for constructing low-degree polynomial over- and under-estimators of poly-
nomials of higher degree. Second, we show how to use those over- and
under-estimators to convert any valid linear inequality for a given high-level
RLT relaxation into an exponentially large collection of cutting planes for
a given low-level RLT relaxation. Third, we present separation algorithms
that, under certain conditions, enable one to find in polynomial time the
most-violated cutting plane in a given collection.

In order to explore the potential of the new cutting planes, we present
some computational results, using the quadratic knapsack problem (QKP)
as an example. It turns out that, for the difficult sparse QKP instances, our
cutting planes close around half of the gap between the upper bound from
the standard first-level relaxation and the optimum.

The paper is organised as follows. In Section 2, we review the relevant
literature. In Section 3, we present the new over- and under-estimators. In
Section 4, the cutting planes are defined, and it is shown how to strengthen
them using disjunctive arguments. In Section 5, we present the separation
algorithms. The computational results are presented in Section 6. Finally,
some concluding remarks are presented in Section 7.

2 Literature Review

In this section, we review the relevant literature. We review the RLT for 0-1
LPs in Subsection 2.1, extensions of the RLT to other problems in Subsection
2.2, and some strengthening procedures in Subsection 2.3.

2.1 The RLT for 0-1 LPs

The RLT was first introduced in Sherali & Adams [23], in the context of 0-1
LPs. Suppose we have a 0-1 LP of the form:

min cTx (1)

s.t. Ax ≤ b (2)

x ∈ {0, 1}n, (3)

where c ∈ Qn, A ∈ Qm×n and b ∈ Qm. The continuous relaxation of the
instance is the problem obtained by replacing the constraints (3) with the
weaker constraints x ∈ [0, 1]n.
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Let N = {1, . . . , n}. Given any integer 1 ≤ k ≤ n, the level-k RLT relax-
ation is constructed in two phases. The first step (reformulation) involves
the construction of a system of valid polynomial inequalities of degree k+1.
The second phase (linearisation) involves the replacement of monomials of
degree greater than 1 with new variables. The details of the reformulation
phase are as follows:

• For any disjoint pair S, T ⊂ N , let J(S, T ) denote
∏

i∈S xi
∏

i∈T (1−xi).

• For each disjoint pair S, T ⊂ N satisfying |S|+ |T | = k + 1, place the
inequality J(S, T ) ≥ 0 in the system.

• For each linear inequality in the system (2), say αTx ≤ β, and each
disjoint pair S, T ⊂ N satisfying |S|+ |T | = k, place the inequality

J(S, T )(β − αTx) ≥ 0

in the system.

The details of the linearisation phase are as follows:

• Take each polynomial inequality in the system and expand the left-
hand side so that it becomes a weighted sum of distinct monomials.

• Make each monomial multilinear using the identities xri = xi for all
i ∈ N and all integers 2 ≤ r ≤ k + 1.

• For each S ⊆ N with 2 ≤ |S| ≤ min{k + 1, n}, let yS be a new binary
variable, representing the multilinear monomial

∏
i∈S xi.

• Linearise each of the polynomial (now multilinear) inequalities in the
system, by replacing each multilinear monomial of degree larger than
one with the corresponding y variable.

Sherali and Adams showed that the RLT relaxation gets stronger as
one moves up the levels of the hierarchy, and becomes optimal when k =
n. On the other hand, the number of variables and constraints increases
exponentially with increasing k. In practice, it is often the first level that is
of most use for 0-1 LPs (see, e.g., [3, 26]).

2.2 Extensions of the RLT to more general problems

At the end of [23], Sherali and Adams extended the RLT to 0-1 PPs. The
reformulation phase is the same, except that one multiplies each original
inequality, whether linear or not, by the J(S, T ) terms. The linearisation
phase is also the same, except that, if the objective function is non-linear,
one must make it multilinear and then express it in terms of the x and y
variables.
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Note that, if the original 0-1 PP contains an inequality that involves a
polynomial of degree d, then the level-k relaxation will contain yS variables
for sets S of cardinality up to min{d + k, n}. Perhaps for this reason, this
variant of the RLT has been applied mainly to 0-1 quadratic programs (e.g.,
[1, 4, 12, 14, 21]).

In Sherali & Tuncbilek [27], the RLT was adapted to continuous PPs with
bounded variables. The approach is similar, but with two small differences.
The first is that one must begin by scaling all variables so that they are
bounded between zero and one. The second is that the identities of the
form xri = xi are no longer valid. As a result, the RLT relaxation contains
y variables that represent general monomials, rather than only multilinear
ones.

Unfortunately, when applied to PPs, the RLT hierachy no longer con-
verges to the optimum as k approaches n. Sherali & Adams [24] showed
however that the convergence result still holds if the RLT is applied to mixed
0-1 PPs, under the restrictions that (i) all continuous variables are bounded
and (ii) the objective and constraint functions do not involve products of
continuous variables.

The RLT has also been extended to many other problems in integer
programming and global optimisation. See, e.g., [22, 25] for details.

2.3 Known ways to strengthen RLT relaxations

The following three ways to strengthen level-1 RLT relaxations have been
proposed in the literature:

1. As well as multiplying linear inequalities by terms of the form xi and
1−xi in the reformulation phase, one can also multiply pairs of linear
inequalities together [17]. Specifically, given two inequalities of the
form αTx ≤ β and γTx ≤ δ, one can generate the quadratic inequality
(β−αTx)(δ−γTx) ≥ 0, which can then be linearised in the usual way.

2. Let X be the n× n symmetric matrix in which Xii = xi for all i and
Xij = yij for all i 6= j. Note that X = xxT . Also define the augmented
matrix

X̂ =

(
1
x

)(
1
x

)T

=

(
1 xT

x X

)
.

Then one can strengthen the relaxation by adding the constraint that
X̂ must be positive semidefinite [17].

3. One can add any inequality that is valid for the so-called Boolean
quadric polytope, which was defined by Padberg [18] as:

conv
{

(x, y) ∈ {0, 1}n+(n2) : yij = xixj ({i, j} ⊂ N)
}
.

4



Many valid inequalities are known for this polytope; see the survey
Deza & Laurent [7]. Such inequalities have been used, e.g., in [2, 4,
13, 14, 29].

The first idea can easily be extended to level-k relaxations with k > 1, by
multiplying k + 1 linear inequalities together (or indeed any collection of
polynomial inequalities whose degrees sum to k + 1). The second idea has
been extended to higher levels by, e.g., Lasserre [16] and Parrilo [19].

3 Low-Degree Polynomial Estimators

In this section, we consider how to derive polynomial over- and under-
estimators of a given low degree for monomials of a given higher degree.
We remark that the estimators provided in this section differ from the ones
usually used in global optimisation (see, e.g., [8, 28]), in that they are neither
convex nor concave in general.

3.1 Best possible estimators for a special case

Consider a multilinear monomial of the form
∏

i∈S xi, where |S| ≥ 2. The
following lemma presents a natural family of multilinear over- and under-
estimators of degree |S| − 1. (In this lemma, we use the convention that∏

i ∈ ∅ xi = 1.)

Lemma 1 Let 0 ≤ xi ≤ 1 for i ∈ S. For any T ⊆ S with |T | odd, we have:∏
i∈S

xi ≤
∑
W⊂T

(−1)|W |
∏

i∈(S\T )∪W

xi. (4)

(Here, W is permitted to be empty.) Similarly, for any T ⊆ S with |T | even,
we have: ∏

i∈S
xi ≥

∑
W⊂T

(−1)|W |−1
∏

i∈(S\T )∪W

xi. (5)

(Here, both T and W are permitted to be empty.)

Proof. Since all variables are in [0, 1], we have∏
i∈S\T

xi
∏
i∈T

(1− xi) ≥ 0.

Expanding the left-hand side we obtain:∑
W⊆T

(−1)|W |
∏

i∈(S\T )∪W

xi ≥ 0,
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or, equivalently,

(−1)|T |
∏
i∈S

xi +
∑
W⊂T

(−1)|W |
∏

i∈(S\T )∪W

xi ≥ 0.

The result follows. �

We illustrate this lemma with a simple example:

Example 1: Suppose that we seek quadratic estimators for the cubic mono-
mial x1x2x3. Accordingly, we set S = {1, 2, 3} in Lemma 1. By then setting
T to each of {1}, {2}, {3} and {1, 2, 3} in turn, we obtain the over-estimators
x2x3, x1x3, x1x2 and

1− x1 − x2 − x3 + x1x2 + x1x3 + x2x3,

respectively. By setting T to each of ∅, {1, 2}, {1, 3} and {2, 3} in turn, we
obtain the under-estimators 0, −x3 + x1x3 + x2x3, −x2 + x1x2 + x2x3 and
−x1 + x1x2 + x1x3, respectively. So, we obtain four distinct over-estimators
and four distinct under-estimators for the given monomial. �

In general, Lemma 1 yields 2d−1 distinct over-estimators and 2d−1 dis-
tinct under-estimators for a multilinear monomial of degree d. The following
theorem shows that these estimators are, in a sense, best possible.

Theorem 1 For any n > 2, consider the following set:{
x ∈ {0, 1}2n−1 : xS =

∏
i∈S

xi (∀S ⊆ N : |S| > 1)

}
.

The convex hull of this set is completely described by the inequalities∑
W⊆T

(−1)|W |x(N\T )∪W ≥ 0 (T ⊆ N), (6)

where, as before, both T and W are permitted to be empty.

Proof. The 2n points in the set are affinely independent, and therefore each
of them is a vertex of the convex hull. Since the convex hull is a polytope
with 2n vertices lying in a space of dimension 2n − 1, it must be a simplex.
As a result, it must have 2n facets. Moreover, by construction, each of the
2n inequalities (6) is satisfied at equality at all but one of the 2n vertices.
To see this, note that, for a given T , the inequality is satisfied at equality
at a vertex x∗ if and only if:∏

i∈N\T

x∗i
∏
i∈T

(1− x∗i ) = 0,
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or, equivalently, ∨
i∈N\T

(x∗i = 0) ∨
∨
i∈T

(x∗i = 1).

Equivalently, the inequality is not satisfied at equality if and only if x∗i = 1
for all i ∈ N \ T and x∗i = 0 for all i ∈ T . Therefore each of the inequalities
(6) defines a facet. �

Remark: If one has a monomial that is not multilinear, one can still use
Lemma 1 to derive estimators of one lower degree, simply by identifying
relevant variables, and then eliminating duplicates. This is illustrated in
the following example.

Example 2: Suppose that we seek quadratic estimators for the cubic mono-
mial x21x2. We simply take the eight estimators given in Example 1, identify
x3 with x1, and then eliminate duplicates. This yields three distinct over-
estimators, namely x1x2, x

2
1 and 1−2x1−x2+2x1x2+x21, and three distinct

under-estimators, namely 0, −x1 + x21 + x1x2 and −x2 + 2x1x2. �

3.2 Estimators obtained via recursion

By applying Lemma 1 recursively, one can obtain polynomial estimators of
any given degree for monomials of any given higher degree. One must then
be careful, however, not only to eliminate duplicates, but also to eliminate
estimators that are dominated by others. This is illustrated in the following
example.

Example 3: Suppose that we seek linear estimators for the cubic mono-
mial x1x2x3. In Example 1, we found four quadratic over-estimators and four
quadratic under-estimators. Applying Lemma 1 with sets S of cardinality 2,
each quadratic term appearing in any of the four quadratic over-estimators,
say xixj , can itself be replaced with either xi or xj . Enumerating all com-
binations yields ten distinct linear over-estimators, namely, x1, x2, x3, 1,
and 1 + xi − xj for all {i, j} ⊂ {1, 2, 3}. Of these, only the first three are
non-dominated.

In an analogous way, any quadratic term xixj appearing in any of the
four quadratic under-estimators can be replaced with either 0 or xi +xj−1.
Enumerating all combinations yields eight distinct linear under-estimators,
namely, 0, −x1, −x2, −x3, x1 − 1, x2 − 1, x3 − 1 and x1 + x2 + x3 − 2. Of
these, only the first and last are non-dominated.

So we obtain three non-dominated linear over-estimators and two non-
dominated linear under-estimators for the given monomial. �

Clearly, the time taken to enumerate the estimators that can be derived
by a recursive application of Lemma 1, and then eliminate duplicate and
dominated estimators, grows very rapidly with the degree of the monomial
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under consideration. This is not a serious drawback, however, since we will
be using these estimators to derive cutting planes for RLT relaxations (see
the next section), and, in practice, the RLT is useful only for mixed 0-1 PPs
involving polynomials of very low degree.

3.3 Estimators obtained via polyhedral computations

Another way to compute estimators of degree d for a monomial of degree
larger than d+ 1 is to use a polyhedral computation package, such as PORTA
[6] or cdd [9]. For example, if one feeds into these packages the 8 vectors in
the following set: {

x ∈ {0, 1}4 : x123 = x1x2x3
}
,

one finds that the convex hull of the set is defined by the inequalities x123 ≥
0, x123 ≤ x1 +x2 +x3−2, and x123 ≤ xi for i = 1, 2, 3. This implies that the
five non-dominated estimators presented in Example 3 are best possible.

In a similar way, to enumerate the estimators of degree 2 or less for the
quartic monomial x1x2x3x4, it suffices to compute the convex hull of the set{

x ∈ {0, 1}11 : xij = xixj (1 ≤ i < j ≤ 4), x1234 = x1x2x3x4
}
.

This yields 16 over-estimators, namely:

• x1x2 and five other similar expression obtained by permutation;

• 1− x1 − x2 − x3 + x1x2 + x1x3 + x2x3 and three similar expressions;

• x1 − x1x2 − x1x3 − x1x4 + x2x3 + x2x4 + x3x4 and three similar ex-
pressions;

• 3− 2
∑4

i=1 xi +
∑

1≤i<j≤4 xixj

• and (1−
∑4

i=1 xi +
∑

1≤i<j≤4 xixj)/3.

It also yields 23 under-estimators, namely:

• −2x1 + x1x2 + x1x3 + x1x4 are three similar expressions;

• −x1 − x2 + x1x2 + x1x3 + x2x4 and eleven similar expressions;

• −x1−x2+x1x3+x1x4+x2x3+x2x4−x3x4 and five similar expressions;

• and zero.

We remark that the last of the over-estimators cannot be derived using the
recursive argument presented in the previous subsection.

Unfortunately, the time taken to perform these computations increases
very rapidly with the degree of the given monomial. Moreover, the number
of estimators increases extremely rapidly. For example, we found 694 best-
possible quadratic estimators for the quintic monomial x1x2x3x4x5.
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4 The Cutting Planes

In this section, we show how to use the estimators presented in the last
section to generate cutting planes for RLT relaxations of mixed 0-1 polyno-
mial programs. We assume that the given mixed 0-1 PP instance takes the
following form:

inf p0(x) (7)

s.t. pj(x) ≥ 0 (j = 1, . . . ,m) (8)

xi ∈ {0, 1} (i ∈ B) (9)

xi ∈ [0, 1] (i ∈ N \B), (10)

where B denotes the set of binary variables. We let M denote {1, . . . ,m},
and, for each j ∈M , we let dj denote the degree of the polynomial pj(x).

4.1 The main concept

Suppose we are given an RLT relaxation of the mixed 0-1 PP (7)–(10), or
indeed any other linear or semidefinite relaxation, that includes all of the
x variables, together with the y variables for all monomials that are multi-
linear in the binary variables, and have degree between 2 and d, for some
integer d ≥ 2. Also let d′ > d be a given integer parameter. In order
to derive a single cutting plane that involves only the x variables and the
existing y variables, we can proceed as follows:

1. Let S, T be any disjoint subsets of N , and M ′ be any subset of M ,
such that |S|+ |T |+

∑
j∈M ′ dj = d′.

2. Construct the valid polynomial inequality:

J(S, T )
∏
j∈M ′

pj(x) ≥ 0,

which is of order d′ by construction.

3. Expand the left-hand side so that it becomes a weighted sum of distinct
monomials.

4. Simplify each monomial, if possible, using the identities xri = xi for all
i ∈ B and all integers 2 ≤ r ≤ d′.

5. Convert the resulting polynomial inequality into a valid polynomial
inequality of degree d, by replacing each monomial of degree greater
than d with an estimator of degree d, derived using the procedures
presented in the previous section. (Choose an over-estimator if the
monomial has positive weight, and an under-estimator if it has nega-
tive weight.)
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6. Expand the left-hand side of the resulting degree-d inequality so that
it becomes a weighted sum of distinct monomials once more.

7. Replace each monomial of degree larger than one with the correspond-
ing y variable.

Using this approach, one can easily generate exponentially-large families of
cutting planes for mixed 0-1 PPs. A detailed example is given in the next
subsection.

4.2 Example: the (s, t) inequalities

In this subsection, we show that our method yields several non-trivial, and
exponentially large, families of cutting planes, even when d = 2 and d′ = 3.
These cutting planes can be applied to level-1 RLT relaxations of pure or
mixed 0-1 linear or quadratic programs. (See Section 6 for an application
to the QKP.)

We will need the following notation: for any S ⊂ N and any α ∈ Qn,
let α(S) denote

∑
i∈S αi, S

+ denote {i ∈ S : αi > 0}, and S− denote
{i ∈ S : αi < 0}. The cutting planes are presented in the following three
theorems.

Theorem 2 Suppose that pj(x) is linear for some j ∈ M , and takes the
form β − αTx. (That is, the corresponding constraint can be written as
αTx ≤ β.) For any pair {s, t} ⊂ B, and any disjoint subsets S, T,W ⊂
N \ {s, t}, let R denote N \ ({s, t} ∪ S ∪ T ∪W ). Then the following ‘(s, t)’
inequalities are valid for all possible s, t, S, T and W :∑
i∈S∪W

αiyis +
∑

i∈T∪W
αiyit −

∑
i∈W

αixi ≤ −α(W−) + α(S+ ∪W−)xs

+ α(T+ ∪W−)xt +
(
β − α({s, t} ∪ S+ ∪ T+ ∪W− ∪R−)

)
yst. (11)

Proof. We start by constructing the following valid cubic inequality:

(β − αTx)xsxt ≥ 0.

Since xs and xt are binary, we have xsxt = x2sxt = xsx
2
t , and the cubic

inequality can be re-written as:∑
i∈N\{s,t}

αixixsxt ≤ (β − αs − αt)xsxt. (12)

Now, using the estimators given in Example 1 in Subsection 3.1, we can
convert this cubic inequality into a weaker quadratic inequality, by replacing
xixsxt with
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• xixs + xsxt − xs when i ∈ S+,

• xixt + xsxt − xt when i ∈ T+,

• xixs + xixt − xi when i ∈W+,

• 0 when i ∈ R+,

• xixs when i ∈ S−,

• xixt when i ∈ T−,

• 1− xi − xs − xt + xixs + xixt + xsxt when i ∈W−,

• xsxt when i ∈ R−.

Doing this, re-arranging, and then replacing xixj with yij everywhere yields
the inequality (11). �

Theorem 3 Let α, β, s, t, S, T , W and R be defined as in Theorem 2.
Then the following ‘mixed (s, t)’ inequalities are valid for all possible s, t,
S, T and W :∑
i∈W

αixi+
∑

i∈T∪R
αiyis−

∑
i∈T∪W

αiyit ≤ α(W+)+
(
β − α({s} ∪ S− ∪W+)

)
xs

−α(W+∪T−)xt +
(
α({s} ∪ S− ∪ T− ∪W+ ∪R+)− β

)
yst. (13)

Proof. We construct the following valid cubic inequality:

(β − αTx)xs(1− xt) ≥ 0,

and re-write it as:∑
i∈N\{s,t}

αi(xixs − xixsxt) ≤ (β − αs)(xs − xsxt). (14)

The rest of the proof is similar to that of Theorem 2. �

Theorem 4 Let α, β, s, t, S, T , W and R be defined as in Theorem 2.
Then the following ‘reverse (s, t)’ inequalities are valid for all possible s, t,
S, T and W :∑
i∈S∪T∪R

αixi−
∑

i∈T∪R
αiyis−

∑
i∈S∪R

αiyit ≤ β−α(W−)+
(
α(S+ ∪W−)− β

)
xs

+
(
α(T+ ∪W−)− β

)
xt +

(
β − α(S+ ∪ T+ ∪W− ∪R−)

)
yst. (15)
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Proof. We construct the following valid cubic inequality

(β − αTx)(1− xs)(1− xt) ≥ 0,

and re-write it as:∑
i∈N\{s,t}

αi(xi − xixs − xixt + xixsxt) ≤ β(1− xs − xt + xsxt). (16)

The rest of the proof is similar to that of Theorem 2. �

Note that, in each of the three theorems, there is an exponentially-large
number of ways of selecting S, T and W for a given pair (s, t) and a given
linear constraint αTx ≤ β.

We remark that the particular case of the mixed (s, t) inequalities ob-
tained when S = T = R = ∅ and αi = 1 for all i was previously given in
[15], in the context of the ‘edge-weighted clique’ problem.

4.3 Cut strengthening

When binary variables are present, it is sometimes possible to strengthen
the inequalities obtained via our approach, using a disjunctive argument.
We illustrate this with the three families of (s, t) inequalities presented in
the previous subsection.

Theorem 5 Let s, t, S, T , W , R, α and β be defined as in Theorem 2.
Also let

Us = min
{
α(S+), β − α({s} ∪ T− ∪W− ∪R−)

}
and

Ut = min
{
α(T+), β − α({t} ∪ S− ∪W− ∪R−)

}
.

Then the following ‘strong (s, t)’ inequality is valid for Q:∑
i∈S∪W

αiyis +
∑

i∈T∪W
αiyit −

∑
i∈W

αixi ≤ −α(W−) + (Us + α(W−))xs

+ (Ut + α(W−))xt +
(
β − Us − Ut − α({s, t} ∪W− ∪R−)

)
yst. (17)

Proof. Since {s, t} ⊂ B, every feasible vector x satisfies the following
four-term disjunction:

(xs = xt = 0)∨ (xs = 1 ∧ xt = 0)∨ (xs = 0 ∧ xt = 1)∨ (xs = xt = 1). (18)

Let LHS denote the left-hand side of the inequality (17). Consider each of
the four terms of the disjunction (18), and note that:

1. If xs = xt = 0, then LHS reduces to −
∑

i∈W αixi, and therefore
cannot exceed −α(W−).
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2. If xs = 1 but xt = 0, then LHS reduces to
∑

i∈S αixi, and therefore
cannot exceed Us.

3. If xs = 0 but xt = 1, then LHS reduces to
∑

i∈T αixi, and therefore
cannot exceed Ut.

4. If xs = xt = 1, then LHS reduces to
∑

i∈S∪T∪W αixi, and therefore
cannot exceed β − α({s, t} ∪R−).

Note also that the variable yst takes the value 1 if and only if xs = xt = 1,
i.e., only if the fourth term of the disjunction is satisfied. Therefore, LHS
cannot exceed the right-hand side of (17) in any of the four cases. �

Theorem 6 Let s, t, S, T , W , R, α and β be defined as in Theorem 2.
Also let

U ′′∅ = min
{
α(W+), β − α(S− ∪ T− ∪R−)

}
and

U ′′st = min
{
α(R+), β − α({s, t} ∪ T− ∪W− ∪ S−)

}
.

Then the following ‘strong mixed (s, t)’ inequality is valid for Q:∑
i∈W

αixi +
∑

i∈T∪R
αiyis −

∑
i∈T∪W

αiyit ≤ U ′′∅ +
(
β − α({s} ∪ S−)− U ′′∅

)
xs

− (U ′′∅ + α(T−))xt + (U ′′st + U ′′∅ − β + α({s} ∪ S− ∪ T−)yst. (19)

Proof. The proof is similar to that of Theorem 5, except that:

1. If xs = xt = 0, then LHS ≤ U ′′∅ .

2. If xs = 1 but xt = 0, then LHS ≤ β − αs − α(S−).

3. If xs = 0 but xt = 1, then LHS ≤ −α(T−).

4. If xs = xt = 1, then LHS ≤ U ′′st. �

Theorem 7 Let s, t, S, T , W , R, α and β be defined as in Theorem 2.
Also let

U ′s = min
{
α(S+), β − α({s} ∪ T− ∪W− ∪R−)

}
and

U ′t = min
{
α(T+), β − α({t} ∪ S− ∪W− ∪R−)

}
.

Then the following ‘strong reverse (s, t)’ inequality is valid for Q:∑
i∈S∪T∪R

αixi−
∑

i∈T∪R
αiyis−

∑
i∈S∪R

αiyit ≤ (β−α(W−))+(U ′s−β+α(W−))xs

+ (U ′t − β + α(W−))xt + (β − U ′s − U ′t − α(R− ∪W−))yst. (20)
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Proof. The proof is similar to that of Theorem 5, except that:

1. If xs = xt = 0, then LHS ≤ β − α(W−).

2. If xs = 1 but xt = 0, then LHS ≤ U ′s.

3. If xs = 0 but xt = 1, then LHS ≤ U ′t .

4. If xs = xt = 1, then LHS ≤ −α(R−). �

5 Separation

For a given family of cutting planes, a separation algorithm is a procedure
that takes a fractional LP solution (x∗, y∗) as input, and outputs a violated
inequality in that family, if one exists [11]. In this section, we present sepa-
ration algorithms for the cutting planes presented in the previous section.

5.1 Separation for the unstrengthened inequalities

First, we give a positive result for the case in which d and d′ are fixed.

Theorem 8 Let d and d′ be fixed. Suppose that a collection of degree-d
estimators has already been computed and stored for the degree-d′ monomial∏d′

i=1 xi (using, e.g., the methods described in Section 3). Then the separa-
tion problem for the cutting planes presented in Subsection 4.1 can be solved
in O(nd

′
(n+m)d

′
) time.

Proof. To begin with, take each of the degree-d estimators in the collection,
and convert it into a linear estimator, by substituting monomials of degree
greater than 1 with the corresponding y variables. This can be done in
constant time for fixed d and d′.

Now, the number of possible candidates for the triple (S, T,M ′) (see
Subsection 4.1) is maximised when all of the constraints (8) are linear, in
which case, it achieves the value:

d′∑
k=0

2k
(
n

k

)(
m

d′ − k

)
.

This is O((n + m)d
′
) when d′ is fixed. Each of the resulting O((n + m)d

′
)

degree-d′ inequalities can be expressed as a weighted sum of O(nd
′
) mono-

mials in O(nd
′
) time. For each of the resulting simplified inequalities, we

can obtain a most-violated cutting plane (if any exists) in O(nd
′
) time as fol-

lows. Consider each monomial in turn. If it has a positive coefficient on the
left-hand side of the inequality, then replace it with the linear over-estimator
that has the smallest value at (x∗, y∗). If it has a negative left-hand side
coefficient, replace it with the linear under-estimator that has the largest
value at (x∗, y∗). �
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For the particular case of the (s, t) inequalities, we have:

Theorem 9 The separation problems for the (s, t) inequalities (11) can be
solved in O(mn|B|2) time.

Proof. There are m choices for the linear inequality αTx ≤ β, and O(|B|2)
choices for the pair {s, t}. Once the inequality and the pair {s, t} have been
fixed, it suffices to assign each i ∈ N \ {s, t} to one of the sets S, T , W or
R, in the way which maximises the violation at (x∗, y∗). This can be done
in O(n) time. �

The separation problems for the mixed (s, t) and reverse (s, t) inequalities
can be solved in O(mn|B|2) time in a similar way.

5.2 Separation for the strengthened inequalities

It turns out that the separation problems for the strengthened inequalities
presented in Subsection 4.3 can also be solved in polynomial time. The
following theorem establishes this for the strong (s, t) inequalities.

Theorem 10 The separation problem for the strong (s, t) inequalities (17)
can be solved in O(mn|B|2) time.

Proof. Suppose that α, β, s and t are fixed. From the proof of Theorem 5,
one sees that the inequality (17) remains valid regardless of whether one sets
Us to either α(S+) or β−α({s}∪T−∪W−∪R−), and regardless of whether
one sets Ut to either α(T+) or β − α({t} ∪ S− ∪W− ∪ R−). Accordingly,
it suffices to devise an efficient separation algorithm for each of the four
possible cases.

If we set Us to α(S+) and Ut to α(T+), then the inequality (17) reduces to
the original (non-strengthened) (s, t) inequality (11), for which we provided
a separation algorithm in the Subsection 5.1.

Now suppose that we set Us to β − α({s} ∪ T− ∪W− ∪R−), but set Ut

to α(T+), as before. The inequality (17) can then be written as:∑
i∈S

αiyis+
∑
i∈T+

αi(yit+yst−xt)+
∑
i∈T−

αi(xs+yit−yst)+
∑

i∈W+

αi(yis+yit−xi)

+
∑

i∈W−
αi(1 + yis + yit − xi − xt) +

∑
i∈R−

αixs ≤ (β − αs)xs − αtyst.

Now, the right-hand side is a constant for fixed α, β, s and t. We can
therefore maximise the violation in O(n) time as follows. Consider each
i ∈ N \ {s, t} in turn. If αi > 0, place i into S, T or W according to which
of the following quantities is largest: y∗is, y

∗
it + y∗st − x∗t or y∗is + y∗it − x∗i .

If αi < 0, place i into S, T , W or R according to which of the following
quantities is smallest: y∗is, x

∗
s + y∗it − y∗st, 1 + y∗is + y∗it − x∗i − x∗t or x∗s.
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The case in which we set Us to α(S+) and Ut to β−α({t}∪S−∪W−∪R−)
can be treated similarly, just by switching the roles of s and t.

Finally, if we set Us to β−α({s}∪T−∪W−∪R−) and Ut to β−α({t}∪
S− ∪W− ∪R−), then the inequality (17) can be written as:∑

i∈S+

αiyis +
∑
i∈S−

αi(xt + yis − yst) +
∑
i∈T+

αiyit +
∑
i∈T−

αi(xs + yit − yst)

+
∑

i∈W+

αi(yis+yit−xi)+
∑

i∈W−
αi(1−xi+yis+yit−yst)+

∑
i∈R−

αi(xs+xt−yst)

≤ (β − αs)xs + (β − αt)xt − βyst.
To maximise the violation in this case, one must do the following for each
i ∈ N \ {s, t}. If αi > 0, place i into S, T or W according to which of the
following quantities is largest: y∗is, y

∗
it or y∗is + y∗it − x∗i . If αi < 0, place i

into S, T , W or R according to which of the following quantities is smallest:
x∗t + y∗is − y∗st, x∗s + y∗it − y∗st, 1− x∗i + y∗is + y∗it − y∗st or x∗s + x∗t − y∗st. �

One can also solve the separation problems for the strong mixed (s, t)
inequalities (19) and strong reverse (s, t) inequalities (20) in O(mn|B|2)
time, in a similar way. We omit the details for brevity.

6 Computational Experiments

In order to explore the potential of the new cutting planes, we applied our
method to the quadratic knapsack problem (QKP). The QKP, introduced
by Gallo et al. [10], takes the form:

max
{
xTQx : wTx ≤ c, x ∈ {0, 1}n

}
,

where Q ∈ Zn×n
+ is a matrix of profits, w ∈ Zn

+ is a vector of weights and
c ∈ Z+ is the knapsack capacity. The QKP is strongly NP-hard. A good
survey on the QKP is given by Pisinger [20].

To create the QKP instances, we followed the scheme proposed in [10].
Each weight wi is uniformly distributed between 1 and 50. The capacity c is
uniformly distributed between 50 and

∑
i∈N wi. Then, for a given choice of

a density parameter ∆%, each profit term qij is set to zero with probability
(100 - ∆)%, and uniformly distributed between 1 and 100 with probability
∆%. It is known (see, e.g., Caprara et al. [5]) that the QKP tends to
increase in difficulty as the density decreases. We created 5 such instances for
each combination of n ∈ {10, 20, . . . , 100} and ∆ ∈ {100%, 75%, 50%, 25%},
making 200 instances in total.

We then coded an LP-based cutting-plane algorithm, in the C program-
ming language and compiled with gcc, to compute various LP relaxations.
(This algorithm calls on functions from the IBM CPLEX Callable Library to
solve the LPs.) For each instance, we solved the following four relaxations:
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• The standard (first-level) RLT relaxation.

• The RLT relaxation augmented with the following triangle inequali-
ties, which were shown to define facets of the Boolean quadric polytope
by Padberg [18]:

−xk − yij + yik + yjk ≤ 0 (∀i, j, k ∈ N)

xi + xj + xk − yij − yik − yjk ≤ 1 (∀i, j, k ∈ N).

• The RLT relaxation augmented with the three kinds of strengthened
(s, t) inequalities (17)–(20).

• The RLT relaxation augmented with both triangle and strengthened
(s, t) inequalities.

We denote these relaxations by ‘RLT’, ‘RLT+T’, ‘RLT+ST’ and ‘All’, re-
spectively.

Each instance was also solved to proven optimality, using the code de-
scribed in [5]. (This was kindly given to us by the late Alberto Caprara.)
We then computed, for each instance and each relaxation, the percentage in-
tegrality gap, which is the gap between the upper bound and the optimum,
expressed as a percentage of the optimum.

Table 1 shows, for each value of ∆ and n, and each of the four relaxations,
the percentage integrality gap and the computational time (in seconds),
averaged over the 5 instances concerned. We see that both the ‘RLT+T’
and ‘RLT+ST’ gaps are significantly smaller than the ‘RLT’ gap, indicating
that both families of cutting planes are useful. This is especially true for
the more difficult sparse instances, where the initial gap is typically reduced
by 50% or more. Moreover, the ‘RLT+ST’ gap is invariably smaller than
the ‘RLT+T’ gap, indicating that the (s, t) inequalities are more effective
than the triangle inequalities. As further evidence of this claim, note that
the ‘All’ gaps are very close to the ‘RLT+ST’ gaps, which means that the
addition of triangle inequalities to the ‘RLT+ST’ relaxation is of little use.

On the other hand, we see that running times are significantly longer
when (s, t) inequalities are included. This is because the separation algo-
rithm for (s, t) inequalities typically found a very large number of violated
inequalities in the early iterations. In our implementation, all violated in-
equalities were added to the LP relaxation. We imagine that more sophis-
ticated cut selection strategies might lead to improved running times. Note
also that times for the ‘All’ relaxation are typically smaller than for the
‘RLT+ST’ relaxation. The explanation for this is that the (s, t) separation
algorithm was called only when no violated triangle inequalities could be
found. This strategy seemed to improve overall convergence.
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Instances RLT RLT + T RLT + ST All

∆ n Gap Time Gap Time Gap Time Gap Time

100 10 6.33 0.020 5.35 0.037 4.01 0.132 4.02 0.077
20 3.76 0.025 3.28 0.057 2.95 0.404 2.95 0.243
30 3.44 0.051 3.26 0.096 2.79 1.543 2.79 1.130
40 1.30 0.238 1.25 0.235 1.21 1.989 1.21 1.569
50 1.38 0.254 1.34 0.432 1.28 11.237 1.26 19.675
60 0.79 0.367 0.79 0.394 0.75 5.308 0.75 3.173
70 0.63 0.714 0.63 0.753 0.60 10.827 0.60 7.562
80 0.38 1.308 0.38 1.494 0.36 11.539 0.36 10.433
90 0.36 2.217 0.36 2.321 0.34 12.892 0.34 11.430
100 0.17 3.214 0.17 3.453 0.16 15.980 0.16 16.821

75 10 4.61 0.015 3.88 0.044 3.27 0.073 3.27 0.037
20 3.31 0.042 3.18 0.052 2.23 0.307 2.23 0.129
30 0.66 0.086 0.57 0.219 0.55 1.864 0.55 1.117
40 1.72 0.190 1.49 0.365 1.41 6.275 1.41 2.855
50 0.65 0.545 0.63 0.957 0.60 5.529 0.60 3.086
60 0.79 0.367 0.79 0.394 0.75 5.308 0.75 3.173
70 0.92 0.936 0.90 1.677 0.77 18.190 0.77 9.341
80 0.61 3.591 0.54 7.296 0.46 26.265 0.46 49.404
90 0.78 4.464 0.68 17.420 0.60 417.182 0.60 286.721
100 0.17 7.786 0.17 14.618 0.14 49.509 0.14 152.177

50 10 7.60 0.029 6.75 0.032 4.28 0.223 4.27 0.142
20 3.31 0.042 3.18 0.052 2.23 0.307 2.23 0.129
30 2.29 0.130 1.12 0.309 1.03 3.910 1.03 1.360
40 1.84 0.249 1.68 0.806 1.55 13.776 1.55 10.298
50 1.03 0.501 0.44 1.589 0.41 12.664 0.41 2.459
60 2.31 0.854 0.56 1.951 0.45 130.791 0.45 54.400
70 2.22 1.893 0.46 3.974 0.38 225.525 0.38 79.566
80 2.09 3.743 0.38 9.489 0.27 724.311 0.27 112.722
90 0.73 5.522 0.28 13.023 0.22 327.551 0.22 144.888
100 0.77 8.722 0.24 39.562 0.21 543.732 0.20 456.292

25 10 8.76 0.058 8.29 0.025 1.28 0.112 1.28 0.196
20 2.08 0.047 1.19 0.067 0.85 1.076 0.85 0.974
30 1.65 0.159 1.19 0.250 1.04 5.147 1.04 4.194
40 4.46 0.214 2.28 0.545 1.85 7.564 1.85 6.132
50 3.64 0.510 1.25 1.039 0.92 14.102 0.92 9.888
60 3.36 0.551 1.47 1.130 0.97 68.095 0.97 31.644
70 0.38 1.270 0.34 1.359 0.27 129.260 0.27 124.606
80 1.03 2.037 0.43 4.837 0.36 481.676 0.35 178.357
90 1.75 4.591 1.72 14.756 0.72 160.507 0.22 116.680
100 0.69 3.757 0.23 9.358 0.17 423.107 0.16 173.461

Table 1: Percentage integrality gaps for QKP instances
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7 Concluding Remarks

We have introduced new techniques for constructing low-degree polynomial
over- and under-estimators for monomials of higher degree, and shown how
they can be used to generate cutting planes for RLT relaxations of mixed
0-1 polynomial programs. The computational results, though restricted to
the level-1 RLT relaxation of the QKP, indicate that the cutting planes can
be effective at reducing the integrality gap.

A natural topic for future research is the efficient incorporation of the
cutting planes into an exact algorithm for mixed 0-1 polynomial programs of
low degree. Another is the question of whether some estimators are ‘better’
than others, in the sense of being more likely to lead to violated cuts. If
that were the case, then one could reduce the time taken by the separation
algorithms by eliminating some estimators from consideration.
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