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Abstract

We numerically study structural transitions inside shallow nano-
scale wells with square cross-section, filled with nematic liquid crystal
material. We model the wells within the Landau-de Gennes theory
for nematic liquid crystals, in the absence of any external fields. We
obtain two qualitatively different states: (i) the DSD state for relatively
large wells with lateral dimension greater than a numerically computed
critical threshold and (ii) a novel, two-dimensional star-like biaxial
order reconstruction (OR) pattern called the WORS pattern, for wells
smaller than the critical threshold. We define quantitative criteria for
the onset of the WORS pattern in terms of the biaxiality parameter.
We systematically study the dependence of the critical threshold, for
the appearance of the WORS pattern, on the temperature and the
anchoring strength on the lateral well surfaces.

1 Introduction

Liquid crystals (LCs) are mesogenic phases of matter with physical proper-
ties intermediate between those of the conventional solid and liquid phases of
matter [2]. Nematic LCs are the simplest type of LCs; nematics are complex
anisotropic liquids with a certain degree of long-range orientational order-
ing. The structural properties of a nematic LC can be easily manipulated
by incident light, electric or magnetic fields and mechanical effects [3]. As a
consequence, they exhibit a wealth of diverse physical phenomena and are
often used as a testing ground for fundamental physics in condensed matter
systems [12]. Nematic LCs now have widespread applications across science
and technology e.g. electro-optic devices, sensors and notably, the huge and
thriving liquid crystal display (LCD) industry around the globe [19, 21, 8].
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Nematics in confinement have generated tremendous interest in recent
years [4, 5, 9, 3]. Such confined LC systems typically exhibit topological
defects or localized material imperfections [7, 19]. Defect core structures are
poorly understood; experimental and numerical studies indicate that defect
cores can be associated with uniaxial-biaxial structural transitions or equiv-
alently order reconstruction (OR) phenomena wherein the system mediates
between two different uniaxial states via a continuum of biaxial states [3, 9].
OR phenomena were first reported in the benchmark paper [9]. In [9], the
authors numerically analyze the interior of a defect core; the nematic LC is
in a uniaxial phase at the defect centre and in a uniaxial phase away from the
defect core. The corresponding directors (see (2)) are perpendicular to one
another and the LC material mediates between the two conflicting uniaxial
states via a continuum of biaxial states. OR phenomena were subsequently
reported in a batch of numerical papers [6, 18, 13, 14] which indicate that
OR phenomena typically occur in severely confined systems with compara-
ble material and geometrical length scales or/and under the action of intense
electric fields. For example, in [10], the authors study OR phenomena for
a twisted hybrid nematic cell. The authors numerically find two classes of
solutions: (i) the conventional purely uniaxial twisted solution wherein the
molecules twist uniformly between the two boundary plates and (ii) the OR
untwisted solution characterized by a biaxial band around the centre of the
cell. The OR solution is the only observable solution in nano-confined ge-
ometries where the cell gap is comparable to a material-dependent length
scale, known as the biaxial correlation length [6]. Experimental studies of
the OR phenomenon have been reported in for e.g. [18, 24] and such studies
are particularly relevant for new LC systems with intrinsic biaxiality and
their potential applications in nano-science and technology.

Our work is motivated in part by the results in [20, 21] with a view to
characterize novel two-dimensional (2D) OR patterns in prototype geome-
tries. This is an interesting problem since classical OR patterns are typically
one-dimensional (1D) with the structural characteristics varying along one
coordinate direction, e.g. along the radial direction in a spherical droplet
(see [9], along the vertical direction in a cylinder [13, 14] or along the normal
direction to parallel bounding plates [10] etc. and 2D OR patterns offer new
scientific possibilities. In [20, 21], the authors study a model liquid crys-
tal device comprising a periodic array of shallow micron-sized square wells.
These square wells are filled with nematic LC; the surfaces are treated so
as to induce tangential or planar boundary conditions [8, 21] i.e. on the
well surfaces, the LC molecules are constrained to be in the plane of the
surfaces. This relatively simple geometry is bistable or multistable in the
sense that there are multiple stable LC textures with contrasting optical
properties [20]. In [20, 21], the authors work within the powerful Landau-de
Gennes theory for nematic LCs [12]. Given that the wells are shallow, they
argue that it suffices to model 2D structural variations within the plane of
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the square and work with a strictly 2D model i.e. study 2D configurations
on the square. They work in the macroscopic limit, where the square size,
denoted by R, is on the micron-scale i.e. is much greater than the biaxial
correlation length, which is typically on the nanometer scale (see [18, 6]). In
this macroscopic limit, the stable LC states are effectively uniaxial almost
everywhere, except for small localized defects around the square vertices
[21]. The authors find two stable LC states: (i) the diagonal state with
the average uniaxial alignment along one of the square diagonals and (ii)
the rotated state where the average direction of alignment rotates by 180
degrees between a pair of opposite square edges.

We carefully examine the effects of nano-confinement on the same model
system. In particular, we work with a three-dimensional (3D) model, under
the assumption that all structural details are independent of the vertical
coordinate. Our 3D modelling captures biaxiality, which is outside the scope
of the 2D model employed in [20, 21]. We denote the lateral square well size
by R, which is measured in terms of the biaxial correlation length, and
obtain two qualitatively different LC textures as a function of R: (i) the
Diagonal Structure with Defects (DSD) for ”large” R and (ii) the Well Order
Reconstruction Structure (WORS) for small R. The DSD is qualitatively
similar to the diagonal solution in [20, 21] and our modelling reveals the
biaxial nature of the defect cores around the square vertices. The WORS
is a new 2D OR pattern connecting the four square vertices, characterized
by a star-shaped rim of maximal biaxiality that separates a uniaxial state
in the interior of the rim from a different uniaxial state outside the rim. In
other words, the system mediates between two different uniaxial states via
a 2D star-shaped ring of intermediate biaxial states. The WORS pattern
is the only stable LC pattern for ”small” wells, with R less than a critical
threshold length, denoted by Rc. In Section 4, we systematically investigate
how Rc depends on temperature and anchoring strength on the boundaries,
to obtain quantitative information about the stability of the WORS pattern.

The paper is organized as follows. In Section II, we review the Landau-
de Gennes theory for nematic LCs. In Section III, we outline the geometry
of the problem, the relevant parameterizations, the material length-scales
and the governing Euler-Lagrange equations. In Section IV, we present
our numerical results and summarize our conclusions and future outlook in
Section V.

2 Theoretical background

Let B ⊂ R3 denote an arbitrary three-dimensional domain filled with ne-
matic LC material, with a sufficiently regular boundary, ∂B. We work within
the Landau-de Gennes (LdG) theory for nematic LCs wherein the state of
the nematic LC is described by a macroscopic order parameter, the Q-tensor
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parameter [2, 12]. The Q-tensor order parameter can be viewed as a macro-
scopic measure of the system anisotropy i.e. a measure of the anisotropy in
dielectric response to electric fields or anisotropy in magnetic susceptibility
or response to magnetic fields. Mathematically, Q is a symmetric, traceless
3 × 3 matrix and from the spectral decomposition theorem, the Q-tensor
can be written in terms of its eigenvalues {si}, and eigenvectors, {−→e i}, as
shown below [3]

Q =

3∑
i=1

si
−→e i ⊗−→e i . (1)

The eigenvectors represent the distinguished directions of LC alignment and
the eigenvalues are a measure of the degree of orientational ordering about
these directions. A LC phase is said to be in the (i) disordered or isotropic
phase if Q = 0, (ii) uniaxial phase if Q has a pair of degenerate non-zero
eigenvalues and (iii) the biaxial phase if Q has three distinct eigenvalues
[12]. In the uniaxial case, Q can be concisely expressed as

Q = S

(
−→e 1 ⊗−→e 1 −

1

3
I

)
, (2)

in terms of the single distinguished eigendirection, the director field −→e 1, and
the scalar order parameter S. In other words, −→e 1, is the eigenvector with
the non-degenerate eigenvalue and all directions perpendicular to −→e 1 are
physically equivalent. In the biaxial phase, Q can be written as

Q = S

(
−→e 1 ⊗−→e 1 −

1

3
I

)
+R (−→e 2 ⊗−→e 2 −−→e 3 ⊗−→e 3) , (3)

where {−→e i} are the eigenvectors and (S,R) are two scalar order parameters
that measure the degree of orientational ordering about the different eigen-
vectors [22]. A quantitative measure of the degree of biaxiality is defined to
be

β2 = 1− 6(trQ3)2

(trQ2)3
, (4)

β2 ∈ [0, 1] and β2 = 0 for all uniaxial states [8] . The maximal value, β2 = 1,
is attained if and only if one of the eigenvalues, si, vanishes.

The LdG theory is a variational theory and the stable physically observ-
able LC states correspond to minimizers of an appropriately defined LdG
energy functional [22]. We work with the following LdG free energy

F =

∫
B
(fc + fe) d

3−→r +
∑
i

∫
∂B

f i
sd

2−→r , (5)

where d3−→r and d2−→r denote the volume and area measures, respectively
[3, 23]. The condensation ( fc), elastic ( fe), and surface (fs) free energy
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densities are given by [3]

fc =
A0(T − T∗)

2
trQ2 − B

3
trQ3 +

C

4
(trQ2)2, (6)

fe =
L

2
|∇Q|2, (7)

f (i)
s =

w(i)

2
Tr
(
Q−Q(i)

s

)2
. (8)

In particular, there are no external fields in this variational problem. The
condensation energy dictates the preferred degree of orientational order in
the bulk as a function of the temperature. In (6), A0, B, and C are
material constants, T denotes the temperature and T∗ is a characteristic
material-dependent supercooling temperature. One can readily check that
all stationary points of fc are necessarily uniaxial and that there are three
characteristic temperatures: (i) T = T∗ below which the isotropic phase

is unstable, (ii) TIN = T∗ +
B2

27A0C
associated with a first-order isotropic-

nematic phase transition and (iii) the nematic superheating temperature,

T∗∗ = T∗ +
B2

24A0C
, above which ordered nematic states do not exist. For

temperatures T < TIN , the condensation enforces a uniaxial scalar order

parameter, S = Seq(T ) =
B+

√
B2−24AC
4C , in the bulk and for temperatures,

T > TIN , fc pushes the system towards the disordered isotropic phase. The
elastic energy density penalizes any spatial inhomogeneities in the system
and we work within the simplest one-constant approximation in (7). The
elastic constant is denoted by L > 0 in (7). The surface anchoring energy

density, f
(i)
s , enforces a preferred orientation, encoded by Q

(i)
s , on the i-th

lateral surface. The anchoring coefficient, w(i), is a measure of the strength
of the surface anchoring and the wi → ∞ limit is the strong anchoring limit
(also see [21] for comparisons between strong and weak anchoring). Whilst
the elastic energy coerces the system towards a spatially homogeneous or
uniform state, the condensation energy promotes uniform uniaxial bulk or-
der given by S = Seq(T ). However, both conditions cannot typically be
satisfied in confined geometries because of boundary conditions, resulting in
inhomogeneous pattern formation. In what follows, we compare the com-
peting effects of the elastic contributions, condensation term and the surface
effects by means of two different length scales: a material-dependent length
scale known as the bare biaxial correlation length and the surface extrap-
olation length, which capture the relative effects of the elastic and surface
contributions respectively [13, 18].
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3 Modelling framework

3.1 Geometry

We study nematic samples inside a 3D well with square cross-section, B ⊂
R3, given by

B =
{
(x, y, z) ∈ R3; 0 ≤ x, y ≤ R, 0 ≤ z ≤ h

}
. (9)

In (9), h is the well height, R is the lateral dimension and h ≪ R, con-
sistent with the assumptions in [20, 21]. We take h = R

10 . The coordinate
unit-vectors are denoted by (−→e x,

−→e y,
−→e z). The boundary plates are located

at {x = 0, R}, {y = 0, R}, {z = 0, h} and all plates are treated to induce
tangent or planar degenerate boundary conditions. Further, we assume that
the structural characteristics only depend on the spatial coordinates (x, y)
and are independent of the vertical z-coordinate; an assumption often used
for shallow wells [20, 21]. The tangent boundary conditions are implemented
using a combination of natural boundary conditions, strong and weak an-
choring. We impose natural boundary conditions on the top and bottom
faces, z = 0 and z = h. All numerical simulations are initialized using planar
initial conditions. The planar initial conditions, combined with the natural
boundary conditions, suffice to ensure that the solutions respect the planar
degenerate conditions on the top and bottom plates i.e. no particular direc-
tion in the (x, y)-plane is distinguished or singled out. We enforce the tan-
gent boundary conditions on the lateral surfaces, x = {0, R} and y = {0, R},
via Dirichlet conditions/strong anchoring or weak anchoring/surface ener-
gies. In the strong anchoring case, the corresponding Q-tensor is prescribed
to be strictly uniaxial on the lateral surfaces, with director parallel to −→e x

and −→e y, on the xz and yz-surfaces respectively.

3.2 Parametrization

We adopt the following 3D parametrization of theQ-tensor order parameter,
as given in [13, 17]

Q = (q3+q1)
−→e x⊗−→e x+(q3−q1)

−→e y⊗−→e y+q2(
−→e x⊗−→e y+

−→e y⊗−→e x)−2q3
−→e z⊗−→e z,

(10)
where q1, q2, and q3 are independent of z and only depend on x and y. We
assume −→e 3 = −→e z is always an eigenvector of Q. The remaining two eigen-
vectors are allowed to rotate with respect to the reference frame, (−→e x,

−→e y),
by an angle φ ∈ [0, π). We have

−→e 1 = cosφ−→e x + sinφ−→e y,
−→e 2 = − sinφ−→e x + cosφ−→e y, (11)
−→e 3 = −→e z. (12)
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The parameter q2 is a measure of the departure of the eigenframe, (−→e 1,
−→e 2,

−→e 3),
from the Cartesian frame, (−→e x,

−→e y,
−→e z) and the two frames coincide when

q2 = 0. The eigenvalues {si} are explicitly given by s1 = q3 +
√

q21 + q22,
s2 = q3 −

√
q21 + q22 and s3 = −2q3. In particular, the biaxiality parameter

is defined to be

β2 (q1, q2, q3) = 1− 6

(
6
√

(q21 + q22)q3 − 6q33

)2
(
6q23 + 2

(
q21 + q22

))3 . (13)

The condition,
√

q21 + q22 = 0, corresponds to the exchange of eigenvalues,
s1 ↔ s2, in the nematic phase [9].

We briefly compare the parametrization (10) with the parametrization
in [21] where the authors study strictly two-dimensional LC configurations
on a square domain; the Q-tensor is then given by

Q = S (−→e 1 ⊗−→e 1 −−→e 2 ⊗−→e 2) . (14)

Here, trQ3 = 0, the biaxiality parameter in (13) has no physical meaning
and all defects correspond to isotropic regions or locally melted regions [21].
The 2D parametrization (14) can be related to (10) by

Q = S (−→e 1 ⊗−→e 1 −−→e 2 ⊗−→e 2) + q3

(
−→e z ⊗−→e z −

I

3

)
. (15)

The representation (10) contains more information than (14) since it allows
us to investigate structural variations in both q3 and β2, both of which
are outside the scope of the 2D representation (14). In particular, the
parametrization (10) can resolve the rich biaxial structure of defect cores.

On the faces, x = 0 and x = R, we set the preferred Q-tensor to be

Q(x)
s ≡ Q(0, y, z) = Q(R, y, z) =

Seq

3
(−−→e x ⊗−→e x + 2−→e y ⊗−→e y −−→e z ⊗−→e z)

(16)

where Seq = B+
√
B2−24AC
4C . On the boundaries y = 0 (bottom) and y = R

(top), we set

Q(y)
s ≡ Q(x, 0, z) = Q(x,R, z) =

Seq

3
(2−→e x ⊗−→e x −−→e y ⊗−→e y −−→e z ⊗−→e z) .

(17)

For systems with Dirichlet conditions, we set Q = Q
(x)
s and Q = Q

(y)
s on

the respective lateral surfaces. For systems with finite anchoring, we use

the prescribed Q-tensors in (16) and (17) as the preferred state, Q
(i)
s , in the

surface anchoring energy density in (8). On the surfaces z = 0 and z = h,
we impose natural boundary conditions i.e. require that

∂Q

∂ν
= 0 on z = 0, h, (18)
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where ν = ±−→e z is the outward normal to these faces in the (x, y)-plane.
This is consistent with the assumed invariance in the z-direction and when
combined with planar initial conditions for numerical simulations, ensures
that the leading eigenvector (with the largest positive eigenvalue) of the
Q-solutions respects the tangent boundary conditions.

3.3 Scaling

Let t be a dimensionless temperature defined to be t = (T −T∗)/(T∗∗ −T∗).
Therefore, t(T = T∗) = 0, t(T = TIN ) = 8/9 and t(T = T∗∗) = 1. We define

τ = 1 +
√
1− t. (19)

The equilibrium uniaxial order parameter can then be expressed as

Seq = S∗∗τ (20)

where S∗∗ = Seq(T∗∗) =
B
4C .

The structural characteristics of static LC equilibria are dictated by a
complex interplay between material properties and surface anchoring effects.
The key material length-scale is the biaxial correlation length defined to be

ξb =
ξ
(0)
b√
τ
, (21)

where ξ
(0)
b = 2

√
LC/B is the bare biaxial correlation length [1, 14, 23]. For

conventional nematics, ξ
(0)
b ∼ 2 − 5 nm [1]. The strength of the surface

interactions is traditionally described in terms of the surface extrapolation
length [14, 23].

d(i)e =
L

w(i)
. (22)

Typical values of L are around 10−12N and wi ∈
(
10−8, 10−3

)
N/m [8].

We further define the following dimensionless quantities: Q̃ = Q/S∗∗,

x̃ = x/R, ỹ = y/R, z̃ = z/R, ∇̃ = R∇, F̃ = F/F0, where F0 = LS2
∗∗R

3/(2ξ
(0)2
b ).

In what follows, we drop the tildes from the dimensionless variables and all
subsequent text is to be interpreted in terms of the dimensionless variables.
The dimensionless free energy F is given as in (5), and the corresponding
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dimensionless free energy densities are defined to be

fc =
τ

6
TrQ2 − 2

3
TrQ3 +

1

8

(
TrQ2

)2
=

τ

3

(
q21 + q22 + 3q23

)
− 4q3

(
q21 + q22 − q23

)
+

1

2

(
q21 + q22 + 3q23

)2
,

fe =

(
ξ
(0)
b

R

)2

|∇Q|2 = 2

(
ξ
(0)
b

R

)2 (
3 |∇q3|2 + |∇q1|2 + |∇q2|2

)
,

f (i)
s =

ξ
(0)2
b

d
(i)
e R

Tr (Q−Qs(φs))
2 =

2

3

(
ξ
(0)
b

R

)(
ξ
(0)
b

d
(i)
e

)(
9q23 + 3q21 + 3q22 − 3q3τ + τ2 − 3q1τ cos(2φs)− 3q2τ sin(2φs)

)
.

In the expression for fs above, the angle φs is either φs = 0 (plates at
y = 0 and y = R) or φs = π/2 (plates at x = 0 and x = R). The strong
anchoring limit, w(i) → ∞, corresponds to vanishing surface extrapolation

length, d
(i)
e → 0. We now offer some heuristic insight on pattern formation

within the LC wells. On the one hand, if τ is large compared to the scaled

elastic constant,

(
ξ
(0)
b
R

)2

, then the solution will predominantly minimize the

condensation energy i.e. be largely uniaxial with constant order parameter,
S = Seq(T ) (at least away from defects). On the other hand, if τ and(

ξ
(0)
b
R

)2

are of comparable magnitude, then there is a relatively small en-

ergetic penalty for biaxiality since deviations from the condensation energy
minima (uniaxial phases with S = Seq(T )) are not energetically expensive.

Similarly, if
ξ
(0)
b
R ≫ ξ

(0)
b

d
(i)
e

, then the uniaxial boundary conditions are relatively

weakly implemented on the lateral surfaces and the system has greater free-
dom to adopt almost “spatially homogeneous” or uniform states. This, in
turn, allows the system to avoid complex uniaxial-biaxial structural transi-
tions or the OR phenomenon for sufficiently weak anchoring. In the next
section, we compute phase diagrams for uniaxial-biaxial structural transi-
tions, as a function of R, anchoring strength and temperature, and these
phase diagrams corroborate our heuristic insights.

3.4 Euler Lagrange equations

We use standard methods in calculus of variations to compute the Euler-
Lagrange equations for extremal points of the LdG energy functional [25].
The Euler-Lagrange equations are a coupled system of elliptic partial differ-
ential equations for (q1, q2, q3) as shown below:
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(
ξ
(0)
b

R

)2

∆⊥q1 −
τ

6
q1 + 2q3q1 −

q1
2
(3q23 + q21 + q22) = 0, (23)

(
ξ
(0)
b

R

)2

∆⊥q2 −
τ

6
q2 + 2q2q3 −

q2
2
(3q23 + q21 + q22) = 0, (24)

(
ξ
(0)
b

R

)2

∆⊥q3 −
τ

6
q3 +

1

3
(q21 + q22 − 3q23)−

q3
2
(3q23 + q21 + q22) = 0, (25)

where ∆⊥ = ∂2

∂x2 + ∂2

∂y2
.

The boundary conditions on the plates x = 0 and x = R are

∂q1
∂x

= ∓ R

d
(x)
e

(
q1 −

τ

2

)
, (26)

∂q2
∂x

= ∓ R

d
(x)
e

q2, (27)

∂q3
∂x

= ∓ R

d
(x)
e

(
q3 −

τ

6

)
, (28)

−(+) in ∓ refers to the right (left) plate and d
(x)
e is a measure of the

anchoring strength, w
(x)
s on each plate.

Similarly, we have the following boundary conditions on the plates y = 0
and y = R

∂q1
∂y

= ∓ R

d
(y)
e

(
q1 +

τ

2

)
, (29)

∂q2
∂y

= ∓ R

d
(y)
e

q2, (30)

∂q3
∂y

= ∓ R

d
(y)
e

(
q3 −

τ

6

)
, (31)

where −(+) in ∓ refers to the top (bottom) plate and d
(y)
e is a measure of the

relative anchoring strength. The corresponding strong anchoring conditions
are

{
q1 = − τ

2 , q2 = 0, q3 =
τ
6

}
on y = {0, R} and

{
q1 =

τ
2 , q2 = 0, q3 =

τ
6

}
on

x = {0, R}. The strong anchoring or Dirichlet conditions can be recovered

from (26)-(28) and (29)-(31) in the limit, d
(x)
e → 0 and d

(y)
e → 0 respectively.

We solve the Euler-Lagrange equations (23 - 25) and the boundary con-
straints (26 - 31) using relaxation methods that have been successful in the
study of static LC textures with topological defects [25, 13]. These methods
compute the static solutions, (q1, q2, q3), by mimicking a dynamic gradient-
flow like procedure along which the total free energy continuously decreases
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till the equilibrium is attained, for an explicitly prescribed initial condition.
We use three different kinds of initial conditions: (i) bulk uniaxial alignment
along −→e x, (ii) bulk uniaxial alignment along −→e x +

−→e y, or (iii) the isotropic
phase with Q = 0. The Q-tensor is recovered from the solution, (q1, q2, q3),
by using the parameterization (10). The solutions are robust with respect
to different choices of initial conditions and we thus, deduce that they are
numerically stable.

4 Results

Macroscopic wells with R ≫ ξ0b , e.g. micron-sized wells, have already been
modelled in detail in [20, 21]. We focus on nano-scale wells, with R com-
parable to ξ0b , in this paper. We use fixed values of L,B,C and hence,

the bare biaxial correlation length, ξ
(0)
b =

√
4LC
B2 is a constant throughout

this paper. We are interested in structural changes induced by decreasing

the ratio η = R/ξ
(0)
b . In simulations, we work with temperatures below

T∗, corresponding to τ > 2 (see Eq.(19)). Previous work indicates that bi-
axial textures are more likely in this low-temperature regime, compared to
the high-temperature regime with temperatures above the nematic-isotropic
transition temperature. [17, 16]. For example, we carry out illustrative sim-
ulations with τ = 4. The same temperature was chosen in the reference [17],
where the authors study OR patterns in ”classical” hybrid planar cells.

4.1 Diagonal Structure with Defects (DSD)

In Figures 1, 2a and 3, we consider the specific example of a LC well with
R = 4.5ξ0b (of the order of 10 to 20 nm), at temperature τ = 4 (with t = −8 in
(19)), with strong anchoring conditions on the lateral surfaces. The Dirichlet
conditions (see (16) and (17)) induce an alignment mismatch along the four
vertical edges and we consequently, obtain four line defects along the four
vertical edges in the z-direction. In Figure 1 and Figure 2a, we plot the
spatial profile of β2 and in Figure 3, we plot the leading eigenvector (with
the largest positive eigenvalue) of the computed Q-tensor. This eigenvector
profile is strongly reminiscent of the diagonal solution reported in [20, 21]
and evidently has a diagonal profile across the square (x,y) cross-section. For
a purely uniaxial solution with two degenerate eigenvalues, this eigenvector
would simply be the director in (2). From Figure 3, it is clear that the
leading eigenvector has four point defects at the four square vertices and
each point defect can be regarded as a quarter of +1 or −1-degree point
defect i.e. the defects at the top left and bottom right are a quarter of +1-
degree radial defects and the defects at the bottom left and top right are a
quarter of −1-degree point defects. In other words, the leading eigenvector
rotates by 90 degrees between a pair of coincident square edges.
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In Figures 1 and 2a, we study the structural characteristics near each
defect core in terms of β2; the profile is somewhat similar to the classical
OR phenomenon studied in [9] etc. We have two intersecting faces at each
vertical edge and these faces enforce strictly uniaxial alignments with mu-
tually perpendicular directors, along −→e x and −→e y respectively, and positive
scalar order parameter. As is evident from the plots, the LC state mediates
between these two uniaxial ”boundary” states by means of an intermediate
biaxial pear-shaped lobe. This biaxial lobe has a rim of maximal biaxiality
(β2 = 1) and the interior of the lobe has suppressed biaxiality.

In Figure 4, we look at β2 along a square diagonal. We see that β2

monotonically increases from the vertex to the rim of the biaxial lobe, where
β2 ≈ 1. Here, β2 has a local maximum and this local maximum is followed
by a local minimum near the center of the diagonal. At the center, we are
relatively far away from square vertices. Then β2 attains a local maximum
at the rim of the biaxial lobe encasing the diagonally opposite vertex and
finally decreases to zero as we hit the opposite vertex. The β2-profile is char-
acterized by two maxima, one for each square vertex, separated by a local
minimum. The biaxial defect lobes are asymmetric in shape, in response
to the neighbouring defect cores at the different vertical edges. One could
define the characteristic linear defect core size to be the distance from the
vertex to the nearest rim of maximal biaxiality, measured along the square
diagonal. This length is roughly given by ξb, as is expected from previously
reported results in the literature [14, 13, 23, 17]. We refer to this diagonal
profile, with biaxial defect cores near the vertical edges, as the Diagonal
Structure with Defects (DSD) in the subsequent text.

4.2 Well Order-Reconstruction Structure (WORS)

We study structural transitions induced by gradually decreasing the ratio

η = R/ξ
(0)
b . In Figures 2a - 2d, we demonstrate a sequence of β2(x, y)

textures obtained by gradually decreasing the ratio, η = R/ξ
(0)
b , at fixed

temperature τ = 4, with strong anchoring conditions. As η decreases, the
biaxial defect lobes become larger (relative to domain size), overlap and
eventually connect to yield a 2D star-shaped rim of maximal biaxiality con-
necting the four vertices. We have numerically verified that the star-shaped
biaxial ring separates uniaxial states with negative order parameter inside
the ring from uniaxial states with positive order parameter outside the ring.
1 In this sense, this is a fully 2D OR pattern connecting the four vertices.

If we follow β2 along a small circular arc, centered around a square
vertex, we expect to see the following sequence of characteristic states: (i)
positive uniaxiality (positive scalar order parameter) with β2 = 0, (ii) max-

1We interpret regions with β2 < 0.01 as being uniaxial for practical purposes. We note
that β2 may not, strictly speaking, vanish at any point inside the well.
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imal biaxiality with β2 = 1, (iii) negative uniaxiality (negative scalar order
parameter)with β2 = 0, (iv) maximal biaxiality with β2 = 1, (v) positive
uniaxiality with β2 = 0. By symmetry, we expect to see state (iii) along
the square diagonal. In Figure 4, we monitor the structural characteristics
along a square diagonal at the fixed temperature τ = 4. In Figure 4a, we
plot β2(η), measured along the square diagonal, for different values of η.
For relatively large η, say η = 4.5, the β2-profile has two distinct maxima.
This corresponds to the DSD structure reported above. We refer to the
two maxima (where β2 = 1) in the regions x < 0.5 and x > 0.5 as the
left peak and right peakrespectively. As η decreases, the maxima approach
each other and coalesce at η = 3.39. For smaller values of η, say η = 3.3,
the β2-maximum is suppressed in magnitude i.e. is smaller than unity. At
η = ηc = 3.28± 0.01, β2 vanishes along the square diagonal.

In Figure 4b, we compute < β2 >d and β2
m as a function of η, rep-

resenting average value and maximal value of β2 along the well diagonals,
respectively. Additionally, we plot the position of the left peak, denoted by
xm in the region x ∈ [0, R/2]. Further, we also plot the spatial average of
β2 across the square cross-section, denoted by < β2(x, y) >, as a function
of η. From Figure 4b, we have that the global OR profile is established
at η = ηc = 3.28 ± 0.01, for which β2

m =< β2 >d= 0. The quantities,
β2
m =< β2 >d= 0, for all η ≤ ηc. For η ≤ ηc, we have a purely uniaxial

LC state, with negative scalar order parameter, along the square diagonal.

The corresponding critical radius, Rc = ηcξ
(0)
b . The average degree of biax-

iality, < β2 > (η) ≈ 0.4 for η ≤ ηc. Since < β2 >d= 0 for η ≤ ηc, xm is
not defined for η < ηc. In what follows, we refer to the star-shaped biaxial
OR pattern in Figure 2d as the Well Order Reconstruction Pattern
(WORS). We define the onset of the WORS by two quantitative measures:
β2
m =< β2 >d= 0 along the square diagonal. Our simulations suggest that

the DSD-WORS transition is continuously achieved by decreasing η and
hence, this is a second-order transition.

4.3 Phase diagrams

In Figures 6a, we numerically study the dependence of the critical

radius, Rc/ξ
(0)
b , on the scaled temperature t = (T − T∗)/(T∗∗ − T∗),

with strong anchoring conditions. As above, Rc is signalled by vanish-
ing β2 along the square diagonal. As t increases towards T = T ∗ (the tem-
perature at which the isotropic phase loses stability), Rc increases steeply.
This steep ascent can be explained on the grounds that the condensation
energy penalty for deviations from the uniaxial state with S = Seq(T ), de-
creases as t increases. Hence, biaxial order reconstruction patterns (such
as the WORS pattern) become increasingly energetically viable, and hence,
observable as t increases.
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In Figure 6b, we plot Rc/ξ
(0)
b versus the anchoring strength,

ξ
(0)
b

d
(0)
e

.

We impose equal anchoring strength on all four lateral surfaces and work
with two different temperatures, t = −8 and t = 0 respectively. These
temperatures correspond to qualitatively different temperature regimes (i.e.
T << T∗ and T = T∗ < TIN ). We observe a slowly increasing profile of
Rc versus

1

d
(0)
e

for both temperatures. From the reasoning in Figure 6a, the

critical threshold Rc is always higher for higher temperatures. Further, Rc

rapidly saturates to a limiting value as 1

d
(0)
e

increases; this limiting value is

simply the strong anchoring limit. For t = −8 or equivalently for τ = 4,

this limiting value is Rc = 3.28ξ
(0)
b which coincides with the critical value

yielded by the strong anchoring experiments in Figure 4. As 1

d
(0)
e

decreases

or equivalently as the anchoring strength decreases, the uniaxial boundary
conditions are relatively weakly implemented. This effectively increases the
lateral well size since the system has anchoring freedom on the lateral sur-
faces and hence, does not need to strictly match or satisfy the competing
preferred uniaxial states on intersecting edges. The WORS profile ceases
to exist for anchoring strengths below than a certain critical threshold. For
such cases, the anchoring conditions are not strong enough to support geo-
metrically imposed frustration.

4.4 Comparison with classical OR structure

In Figures 5a-5c, we compare the WORS pattern with the classical OR
pattern reported in a batch of numerical papers [10, 17, 23]. In Figure 5a,
we plot β2(x, y) across the square cross-section and observe a distinct star-
shaped rim of maximal biaxiality, β2(x, y) = 1, that separates regions with
positive uniaxial and negative uniaxial ordering outside and inside the rim,
respectively. In Figure 5b, we plot −β2(x, y) to emphasize the cross-shaped
uniaxial ordering (i.e. β2 = 0) along diagonals. Here, the local eigenframe of
Q coincides with the {−→e x,

−→e y,
−→e z}-laboratory frame and q2 = 0 throughout

the square domain in (10).
We can reproduce the classical OR phenomenon in our framework by

enforcing conflicting planar and homeotropic anchoring on the plates at
y = 0 and y = Ry respectively, whilst imposing natural boundary conditions
on x = 0 and x = Rx. Equivalently, we require that

Q(x, 0, z) =
Seq

3
(2−→e x ⊗−→e x −−→e y ⊗−→e y −−→e z ⊗−→e z) (32)

and

Q(x,Ry, z) =
Seq

3
(2−→e y ⊗−→e y −−→e x ⊗−→e x −−→e z ⊗−→e z) . (33)

We then progressively decrease the distance, Ry, whilst keeping Rx fixed, at

constant temperature τ = 4. At a critical value, η
(CL)
c = 2.45 (the super-

script (CL) marks the classical order reconstruction transition), we observe
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a structural transition into the classical OR pattern and the classical OR
pattern is observed for all η < η(CL). We plot β2 for the classical OR case in
Figure 5c and clearly see two sheets of maximal biaxiality (β2 = 1) enclosing
a sheet of negative uniaxiality (β2 = 0). On comparing Figures 5a and 5c,
it is clear that the WORS is qualitatively different to the classical OR pat-
tern; the WORS arises from mutually perpendicular uniaxial alignments on
four pairs of coincident faces whereas the classical OR phenomenon arises
from mutually perpendicular uniaxial alignments on pairs of parallel edges.
Whilst the WORS is observed for η < 3.28, the classical OR pattern is ob-
served for η < 2.45 i.e. the WORS pattern has a broader window of stability
compared to the classical OR case. We do not have rigorous explanations for
these effects but elevated stability thresholds can be potentially attributed
to the topological defects present in the WORS. Similar effects have been
observed in hybrid cylindrical cells with a boojums on bounding plates [23].

4.5 Interior Defects and the WORS pattern

We demonstrate a DSD-WORS structural transition induced by locally
melted regions within the DSD structure. This could, in practice, be real-
ized either by focussing a narrow laser beam within a well or by introducing
a nanoparticle (NP) imposing melting at the NP-LC interface. We numer-
ically enforce a melted square cavity of lateral size rm, at the center of the
well. Therefore, we enforce Q(R2 ± rm/2, R2 ± rm/2, z) = 0. We take τ = 4,
R
ξb

= 4.5, with strong anchoring conditions as in (16) and (17) and no exter-
nal fields. In dimensional terms, this describes a well with lateral dimensions
between 10−20 nm at a low temperature, well below the transition temper-
ature T = TNI . In particular, the DSD is stable in this regime, without the
melted region. In Figures 7a, 7b and 7c, we numerically compute LC equi-
libria in the absence and presence of locally melted regions respectively. We
recover the familiar DSD in Figure 7a which exhibits localized biaxial pear-
shaped lobes near the square vertices and the vertical well edges. However,
in Fig. 7b, we observe a star-shaped rim of maximal biaxiality, characteristic
of the WORS. In Figure 7c, we displace the melted region from the centre
towards the lower plate at y = 0 and lose the WORS. This suggests that the
WORS can be efficiently stabilized if the locally melted region is compatible
with the structural symmetry of the WORS.

In Figure 8 we study the effect of rm: the size of the melted region on
the DSD-WORS structural transition. We follow < β2 > as a function of η,
for different values of rm. All curve have a slowly decreasing profile till they

hit the critical value of η = η
(m)
c and the WORS is stable for all η ≤ η

(m)
c .

It is evident that interior melted regions substantially increase the value of

η
(m)
c . For example, we obtain ηc = 3.28 ± 0.01 with rm = 0 and calculate

η
(m)
c = 4.67± 0.01 for rm/R = 0.1. Hence, the threshold value is increased
by roughly 42%.
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5 Conclusions

We model and numerically analyze LC textures inside shallow square wells,
within the LdG theory for nematic LCs. These wells were first reported in
[20] and modelled in the papers [20, 21]. In [20, 21], the authors study large
micron-sized wells and perform a strictly two-dimensional study on a square
or a rectangle. Our aim is to quantify the effects of nanoconfinement, tem-
perature, boundary conditions on the experimentally observed well textures,
with special emphasis on novel biaxial textures. Our work purely focuses on
static LC textures and we do not study field-induced or dynamic effects.

We study shallow square wells with cross-sectional dimension R, where R

is measured in units of the bare biaxial correlation length, ξ
(0)
b . We assume

that all variables only depend on the spatial coordinates, (x, y), and that
they are independent of the z-coordinate. The boundary conditions on the
lateral surfaces, x = {0, R} and y = {0, R}, are imposed either via Dirichlet
conditions (as in (16) and (17)) or via a surface anchoring energy as in
(8). The Dirichlet conditions in (16) and (17) create line defects along the
vertical edges. For wells with R ≫ ξb, the static structures are effectively
uniaxial away from the edges and are well described by the diagonal and
rotated solutions in [20, 21]. We study wells with R = O (ξb) in this paper
and obtain two distinct LC states: the DSD and WORS patterns. The
DSD pattern is qualitatively similar to the diagonal solution reported in
[20, 21] and is only obtained for relatively large wells with R > Rc, where
the critical length Rc has been computed numerically. The DSD is largely
uniaxial away from the vertical line defects and the principal eigenvector has
a diagonal profile along the square diagonal on the bottom surface, z = 0.
There are localized pear-shaped biaxial regions/neighbourhoods near each
vertical edge, the rims of which exhibit maximal biaxiality. We believe that
the macroscopic properties of the DSD solution are qualitatively similar to
the diagonal solution in [20, 21] and our contribution is the resolution of the
biaxial defect cores, since biaxiality was not reported in previous work.

We progressively decrease the ratio η = R

ξ
(0)
b

and at a critical value η =

ηc(τ), (e.g. ηc(4) = 3.28± 0.01) we observe a global WORS pattern with a
star-shaped biaxial ring connecting all four vertical edges. The biaxial ring
separates uniaxial states with negative order parameter inside the ring from
uniaxial states with positive order parameter outside the ring respectively.
The critical value depends on the temperature and anchoring strength on the
lateral surfaces. We define quantitative criteria for the onset of the WORS
pattern, in terms of the maximum value of β2 (β2

m) and the average value of
β2 (< β2 >d) along a square diagonal. The onset is defined by the critical
value of η for which β2

m =< β2 >d= 0, denoted by etac, and the WORS is the
only observed state for η ≤ ηc. The DSD-WORS transition is a continuous
transition and we interpret stable states with β2

m =< β2 >d ̸= 0 for η > ηc
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Figure 1: The degree of biaxiality, β2(x, y), in a square well with R/ξ
(0)
b =

4.5, τ = 4 and strong anchoring conditions. The colour code for β2 ∈ [0, 1]
is on the right side.

as being a variant of the DSD state. Further, we study the dependence
of ηc on the temperature and the anchoring strength on the lateral surface,
with no external fields in Figure 6. Numerical simulations show that interior
locally melted regions, do not substantially alter the symmetry of WORS
but substantially increase the stability window of the WORS.

The WORS is a global 2D biaxial texture predicted for nano-confined
systems with moderate to strong anchoring conditions, for temperatures be-
low the supercooling temperature. The WORS is qualitatively different to
the reported diagonal and rotated solutions in [20, 21]. As such, we expect
that it will offer different optical properties, new responses to electric fields
etc. Our numerical work can give engineers quantitative information about
the scale and shape of nano-scale devices that can support the WORS pat-
tern. Once such devices are actually engineered, one could experimentally
measure the electro-optical responses of the WORS pattern, possibly by
analogy with similar experimental work on OR patterns in one-dimensional
hybrid cells in [18, 24]. Whilst our work sets up a sound foundation for
the study of the WORS pattern, there are several directions for further
study which include (i) field-induced effects, (ii) study of time-dependent
or dynamic phenomena, (iii) effects of elastic anisotropy, (iv) non-cuboid
geometries and (v) inclusion of interior defects. Whilst biaxial patterns
have been extensively found in the literature; see [14, 13, 23, 19, 10, 9] etc.,
these reported textures are heavily localized near defects or boundaries. Our
work, along with the generalizations cited above, can collectively yield vital
information about systems with intrinsic biaxiality and how biaxiality can
be exploited for future generations of nano-scale applications.
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Figure 2: Plots of β2(x, y) with decreasing η = R/ξ
(0)
b , at a fixed temperature

τ = 4 and strong anchoring conditions. (a) η = 4.5, (b) η = 3.8, (c) η = 3.6,
(d) η = 3 . We observe the WORS below the critical value ηc = 3.28∓ 0.01.

Figure 3: The maximal eigenvector of the Q-solution with R/ξ
(0)
b = 4.5,

τ = 4 and strong anchoring conditions.In the uniaxial limit, this eigenvector
is simply the nematic director field. The corresponding β2(x, y) dependence
is plotted in Fig. 1.
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Figure 4: Onset of WORS structure with τ = 4 and strong anchoring con-
ditions. (a) Plots of β2(x) along the well diagonal, where x/R is the scaled
distance along the square diagonal measured from the bottom left vertex.
η = 4.5, thick black full line; η = 3.5, thick red dashed line; η = 3.39, thick
blue dash-dash line; η = 3.3, thin black dashed line. (b) Structural char-
acteristics of WORS: < β2 >d (open squares), < β2 > (open spheres), β2

m

(asterisks)and xm (red dashed line)as a function of η. β2
m =< β2 >d= 0 for

the WORS and xm is not defined for η < ηc.

Figure 5: β2(x, y) plots for OR patterns with τ = 4. (a) and (b): the WORS
texture in a square well; η = 3, strong anchoring condition. (c) the classical
OR structure within a hybrid cell; η = 2.5, strong anchoring condition. (d)
WORS (top view), η = 3 with weak anchoring condition (R/de = 5).
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Figure 6: Effect of temperature and anchoring strength on the stability of
WORS. Symbols designate points where thresholds are calculated. Lines
are guides for the eye. (a) Temperature variation of η∗c =

√
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(squares) and ηc = Rc/ξ
(0)
b (spheres) with strong anchoring condition. (b)

Impact of anchoring strength on ηc for t = −8 (asterisk symbols) and t = 0
(spheres).

Figure 7: Effect of interior melted region on stability of nematic structures

with parameters R/ξ
(0)
b = 4.5, τ = 4, strong anchoring. (a) The DSD in

the absence of a melted region. (b) The WORS with a melted region at the
center of the well. (c) The melted region is displaced below the center of
the well.
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b for

structures (i) without (full red thin line) and with melted region (black
thick lines) revealing the DSD-WORS structural transition. The plots are
computed with τ = 4 and strong anchoring conditions. The linear size rm
of square melted region is equal to (ii) rm/R = 0.1 (thick full line), (iii)
rm/R = 0.08 (thick dashed line), (iv) rm/R = 0.06 (thick dash-dash line),
(v) rm/R = 0.04 (thick dotted line). The structural transition takes place

at (i) ηc = 2.28± 0.01, (ii) η
(m)
c = 4.86± 0.01, (iii) η

(m)
c = 4.67± 0.01, (iv)

η
(m)
c = 4.48± 0.01, (v) η

(m)
c = 4.29± 0.01.
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