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Abstract. In this paper we are concerned with qualitative properties of en-

tire solutions to a Schrödinger equation with sublinear nonlinearity and sign-
changing potentials. Our analysis considers three distinct cases and we estab-

lish sufficient conditions for the existence of infinitely many solutions.

1. Historical perspectives of the Schrödinger equation

The Schrödinger equation plays the role of Newton’s laws and conservation of en-
ergy in classical mechanics, that is, it predicts the future behaviour of a dynamic
system. The linear Schrödinger equation is a central tool of quantum mechanics,
which provides a thorough description of a particle in a non-relativistic setting.
Schrödinger’s linear equation is

∆ψ +
8π2m

~2
(E(x)− V (x))ψ = 0 ,

where ψ is the Schrödinger wave function, m is the mass, ~ denotes Planck’s con-
stant, E is the energy, and V stands for the potential energy.

The structure of the nonlinear Schrödinger equation is much more complicated.
This equation is a prototypical dispersive nonlinear partial differential equation that
has been central for almost four decades now to a variety of areas in mathematical
physics. The relevant fields of application vary from Bose-Einstein condensates and
nonlinear optics (see Byeon and Wang [16]), propagation of the electric field in op-
tical fibers (see Hasegawa and Kodama [26], Malomed [32]) to the self-focusing and
collapse of Langmuir waves in plasma physics (see Zakharov [42]) and the behaviour
of deep water waves and freak waves (the so-called rogue waves) in the ocean (see
Onorato, Osborne, Serio and Bertone [34]). The nonlinear Schrödinger equation
also describes various phenomena arising in the theory of Heisenberg ferromagnets
and magnons, self-channelling of a high-power ultra-short laser in matter, con-
densed matter theory, dissipative quantum mechanics, electromagnetic fields (see
Avron, Herbst and Simon [6]), plasma physics (e.g., the Kurihara superfluid film
equation). We refer to Ablowitz, Prinari and Trubatch [1], Sulem [36] for a modern
overview, including applications.
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Schrödinger also established the classical derivation of his equation, based upon
the analogy between mechanics and optics, and closer to de Broglie’s ideas. He de-
veloped a perturbation method, inspired by the work of Lord Rayleigh in acoustics,
proved the equivalence between his wave mechanics and Heisenberg’s matrix, and
introduced the time dependent Schrödinger’s equation

(1) i~ψt = − ~2

2m
∆ψ + V (x)ψ − γ|ψ|p−1ψ in RN (N ≥ 2),

where p < 2N/(N − 2) if N ≥ 3 and p < +∞ if N = 2. In physical problems, a
cubic nonlinearity corresponding to p = 3 is common; in this case problem (1) is
called the Gross-Pitaevskii equation. In the study of Eq. (1), Floer and Weinstein
[24] and Oh [33] supposed that the potential V is bounded and possesses a non-
degenerate critical point at x = 0. More precisely, it is assumed that V belongs
to the class (Va) (for some real number a) introduced in Kato [29]. Taking γ > 0
and ~ > 0 sufficiently small and using a Lyapunov-Schmidt type reduction, Oh [33]
proved the existence of standing wave solutions of problem (1), that is, a solution
of the form

(2) ψ(x, t) = e−iEt/~u(x) .

Using the ansatz (2), we reduce the nonlinear Schrödinger equation (1) to the
semilinear elliptic equation

−~2

2
∆u+ (V (x)− E)u = |u|p−1u .

The change of variable y = ~−1x (and replacing y by x) yields

(3) −∆u+ 2 (V~(x)− E)u = |u|p−1u in RN ,

where V~(x) = V (~x).
If for some ξ ∈ RN \{0}, V (x+sξ) = V (x) for all s ∈ R, equation (1) is invariant

under the Galilean transformation

ψ(x, t) 7−→ ψ(x− ξt, t) exp

(
iξ · x/~− 1

2
i|ξ|2t/~

)
ψ(x− ξt, t) .

Thus, in this case, standing waves reproduce solitary waves traveling in the direction
of ξ. In other words, Schrödinger discovered that the standing waves are scalar
waves rather than vector electromagnetic waves. This is an important difference,
vector electromagnetic waves are mathematical waves which describe a direction
(vector) of force, whereas the wave motions of space are scalar waves which are
simply described by their wave-amplitude. The importance of this discovery was
pointed out by Albert Einstein, who wrote: “The Schrödinger method, which has
in a certain sense the character of a field theory, does indeed deduce the existence
of only discrete states, in surprising agreement with empirical facts. It does so on
the basis of differential equations applying a kind of resonance argument”. (On
Quantum Physics, 1954).

In a celebrated paper, Rabinowitz [35] proved that problem (3) has a ground-
state solution (mountain-pass solution) for ~ > 0 small, under the assumption that
infx∈RN V (x) > E. After making a standing wave ansatz, Rabinowitz reduces the
problem to that of studying the semilinear elliptic equation

(4) −∆u+ V (x)u = f(x, u) in RN ,
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under suitable conditions on V and assuming that f is smooth, superlinear and has
a subcritical growth.

2. Introduction and main results

In the present paper we are concerned with the existence of infinitely many solutions
of the semilinear Schrödinger equation

(5) −∆u+ V (x)u = a(x)g(u) x ∈ RN (N ≥ 3),

where V , a are functions changing sign and the nonlinearity g has a sublinear
growth. Such problems in RN arise naturally in various branches of physics and
present challeging mathematical difficulties.

If problem (5) is considered in a bounded domain Ω, with the Dirichlet boundary
condition, then there is a large literature on existence and a multiplicity of solu-
tions (see [4, 15, 27, 28, 37, 39, 40]). In particular, Kajikiya [27] has considered
such sublinear case with sign-changing nonlinearity and has proved the existence
of infinitely many solutions.

If Ω is an unbounded domain and especially if Ω = RN , the existence and mul-
tiplicity of nontrivial solutions for problem (5) have been extensively investigated
in the literature over the past several decades, both for sublinear and superlinear
nonlinearities.

In the superlinear case, we can cite the references [2, 5, 7, 9, 18, 20, 22, 23, 25, 35,
41]. In particular, Costa and Tehrani [18] have considered the following problem

(6) −∆u− λh(x)u = a(x)g(u), u > 0 in RN ,

where λ > 0, h is a positive function, a changes the sign in RN , N ≥ 3, and g is
a superlinear function. With furthermore assumptions on h, a and g, they proved
the existence of λ1(h) > 0 such that problem (6) admits one positive solution for
0 < λ < λ1(h) and two positive solutions for λ1(h) < λ < λ1(h) + ε, for some ε > 0.

In recent years, many authors have studied the question of existence and multi-
plicity of solutions for problem (5) with sublinear nonlinearity, see [8, 11, 12, 13, 17,
19, 30, 38]. In most of the problems studied in the papers cited in the references
above, V and a are considered to be positive. In particular, Brezis and Kamin
[13] gave a sufficient and necessary condition for the existence of bounded positive
solutions of problem (5) with V = 0 and a > 0.

Balabane, Dolbeault and Ounaies [8] proved that for each integer k, the equation
(5) has a radially compactly supported solution that has k zeros in its support,

provided that V = a = −1 and g(u) = |u|−2θ
u, where θ ∈]0, 1

2 [.
Zhang and Wang [43] proved the existence of infinitely many solutions for equa-

tion (5) with g(u) = |u|p−1
u, 0 < p < 1 and the potentials V > 0, a > 0 satisfy the

following assumptions:

(S1) V ∈ C
(
RN ,R

)
and there exists r > 0 such that

m {x ∈ B (y, r); V (x) ≤M} → 0 as |y| → +∞, ∀ M > 0,

where m is the Lebesgue measure in RN .
(S2) a : RN → R is a continuous function and a ∈ L

2
1−p

(
RN
)

0 < p < 1.

If V , a both change sign on RN , various difficulties arise. To authors’ knowledge,
few results are known in this case. On this subject, Costa and Tehrani [19] have
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proved the existence of at least one non trivial solution for the following equation:

−∆u+ V (x)u = λu+ g(x, u),

under the following conditions:

(V C1) V ∈ Cβ
(
RN
)

(0 < β < 1) and lim
|x|→+∞

V (x) = 0;

(V C2)

∫
RN

(
|∇ϕ|2 + V (x)ϕ2

)
dx < 0 for some ϕ ∈ C1

0

(
RN
)
;

(GC1) |g(x, s)| ≤ b1(x) |s|α + b2(x) for some 0 < α < 1 and a class of integrable
functions b1 and b2;
(GC2) λ < 0 is an eigenvalue of the Schrödinger operator LV = −∆ + V (x) in
RN .

(GC2) lim
‖u0‖→+∞

u0∈Ker(−∆+V−λ)

1

‖u0‖2α
∫
RN

G (x, u0(x)) dx = ±∞.

Tehrani [38] studied the following perturbed equation:

(7) −∆u+ V (x)u = a(x)g(u) + f,

where a, V change sign on RN , f ∈ L2
(
RN
)
, and g is a sublinear function. With

further assumptions on a, V , f , and g, he proved the existence of at least one non
trivial solution.

Costa and Chabrowski [17] considered the following p-Laplacian equation:

(8) −∆pu− λV (x) |u|p−2
u = a(x) |u|q−2

u, x ∈ RN ,

where λ ∈ R is a parameter, 1 < q < p < p∗ = Np
N−p , V ∈ L

N
p
(
RN
)
∩L∞

(
RN
)
, a ∈

L∞
(
RN
)

and lim
|x|→+∞

a(x) = a∞ < 0. With further assumptions on a and V ,

they proved the existence of λ1 > 0 and λ−1 < 0 such that problem (8) admits at
least one positive solution for λ−1 < λ < λ1 and two positive solutions for λ > λ1

and λ < λ−1.
Benrhouma [10] has proved the existence of at least three solutions for equation

(7) with g(u) = |u|p sgn (u), 0 < p < 1, V changes the sign, and a < 0.
In all works cited above, where a and V change sign, the authors proved the

existence of at most three solutions. In this paper, we prove the existence of in-
finitely many solutions of problem (5) with a and V changing sign, under various
assumptions on these potential functions.

Denote by s the best Sobolev constant,

s = inf

{
‖∇u‖22 , u ∈W 1,2

(
RN
)
,

∫
RN

|u(x)|
2N

N−2 dx = 1

}
, N ≥ 3.

We suppose the following hypotheses on g:
(G1) g ∈ C (R,R), g is odd and there exist c > 0 , q ∈]0, 1[ such that

|g(x)| ≤ c |x|q , for all x ∈ R;

(G2) limx→0
G(x)

|x|2 = +∞, where G (x) =

∫ x

0

g(t)dt, ∀x ∈ R;

(G3) G is positive on R \ {0}.
We give three theorems on the existence of infinitely many solutions to the

nonlinear problem (5).
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Theorem 2.1. Assume that g(x) = |x|q−1
x, 0 < q < 1, and V satisfies:

(V1) V ∈ L∞
(
RN
)
, lim
|x|→+∞

V (x) = v∞ > 0 and∥∥V −∥∥N
2

< s,

where u∓(x) = max{∓u(x), 0}, for all x ∈ RN and for all u ∈ E and a satisfies:
(A1) a ∈ L∞

(
RN
)
, lim
|x|→+∞

a(x) = a∞ < 0 and there exist y = (y1, · · · , yN ) ∈ RN ,

R0 > 0 such that

a(x) > 0, for all x ∈ B (y,R0) .

Then problem (5) possesses a sequence of nontrivial solutions converging to 0.

In the next two theorems, we change the assumption of boundedness of a by
the integrability condition. The last assumption was supported to make the en-
ergy functional associated to problem (5) well defined and to guarantee that the
functional F (u) =

∫
RN a(x)G(u(x)) dx has a compact gradient. This compactness

property in turn was used to prove the required Palais-Smale condition, which is
essential in the application of the critical point theory. Then we have the following
two multiplicity properties.

Theorem 2.2. Suppose that g satisfies (G1) , (G2) , (G3), and the potentials V and
a satisfy the following hypotheses:

(V2) V ∈ LN
2

(
RN
)

and ∥∥V −∥∥N
2

< s;

(A2) a ∈ L
2∗

2∗−(q+1)
(
RN
)

and there exist y ∈ RN and R0 > 0 such that

a(x) > 0, ∀x ∈ B (y,R0) .

Then problem (5) possesses a bounded sequence of nontrivial solutions.

Theorem 2.3. Assume that g satisfies (G1) , (G2) , (G3), V satisfies (V1) and a
satisfies

(A3) a ∈ L
2

1−q
(
RN
)
, and there exist y = (y1, . . . , yN ) ∈ RN and R0 > 0 such that

a(x) > 0, ∀x ∈ B (y,R0) .

Then problem (5) possesses a bounded sequence of nontrivial solutions.

This paper is organized as follows. In section 2, we give some notations, we
present the variational framework and we recall some definitions, and standard
results. Next, the sections 3, 4 and 5 are dedicated to the proof of Theorems 2.1,
2.2 and 2.3.

3. Notations and preliminary results

In this section we present some notations and preliminaries that will be useful in
the sequel. We denote:

(∗) ‖u‖m =

(∫
RN

|u(x)|m dx
) 1

m

, 1 ≤ m < +∞;

(∗) 2∗ = 2N
N−2 if N ≥ 3 and 2∗ = +∞ if n ∈ {1, 2};

(∗) BR denotes the ball centered at the origin of radius R > 0 in RN and BcR =
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RN\BR;
(∗) F ′(u) : the Fréchet derivative of F at u.

Let F1, F2 be Banach spaces and T : F1 → F2. T is said to be a sequentially
compact operator if given any bounded sequence (xn) in F1 then (T (xn)) has a
convergent subsequence in F2.

Let E = H1
(
RN
)
∩ Lq+1

(
RN
)

(0 < q < 1) be the reflexive Banach space
endowed with the norm

‖u‖ = ‖∇u‖2 + ‖u‖q+1 .

Let X = D1,2
(
RN
)

=
{
u ∈ L2∗

(
RN
)

; ∇u ∈
(
L2
(
RN
))N}

, endowed with the
norm

‖u‖X =

(∫
RN

|∇u|2 (x)dx

) 1
2

.

Then X is a reflexive Banach space.
Let

Y =

{
u ∈ H1

(
RN
)

;

∫
RN

V +(x)u2(x)dx < +∞
}
,

under the hypotheses V ∈ L∞
(
RN
)

and esslimx→+∞V (x) > 0. We endow Y with
the inner product

〈u, v〉 =

∫
RN

∇u∇v +

∫
RN

V +(x)uvdx

and the associated norm ‖ ‖Y , which is equivalent to the usual norm

‖u‖H1 = ‖∇u‖2 + ‖u‖2 .

Consider the following functionals

I(u) =
1

2

∫
RN

(
|∇u|2 (x) + V (x)u2(x)

)
dx−

∫
RN

a(x)G (u(x)) dx,

ϕ (u) =
1

2

∫
RN

V (x)u2(x)dx−
∫
RN

a(x)G (u(x)) dx,

ψ(u) = −1

2

∫
RN

V −(x)u2(x)dx−
∫
RN

a(x)G (u(x)) dx,

Under suitable assumptions on a, G, V (to be fixed later), I, ϕ and ψ are well
defined and of class C1 on X, Y or E. A critical point of I is a weak solution of
problem (5).

Next, let us recall that a Palais-Smale sequence for the functional I, for short
we write (PS), is a sequence (un) such that

I(un) is bounded and ‖I ′(un)‖ → 0.

The functional I is said to satisfy the Palais-Smale condition if any (PS)-sequence
possesses a convergent subsequence.

A first main difficulty that appears in the study of problem (5) is the loss of
compactness. In order to overcome this difficulty, we use the Lions compactness
principle [31]. A second main difficulty is to satisfy the geometric conditions re-
quired by the Ambrosetti-Rabinowitz theorem [4]. We use a geometrical construc-
tion of subset to overcome this difficulty. Let us give a based definition and recall
the mountain pass theorem of Ambrosetti and Rabinowitz.
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Definition 3.1. Let E be a Banach space. A subset A of E is said to be symmetric
if u ∈ E implies −u ∈ E. For a closed symmetric set A which does not contain
the origin, we define the genus γ (A) of A by the smallest integer k such that there
exists an odd continuous mapping from A to Rk\ {0}. If there does not exist such
a k, we define γ (A) = +∞. We set γ (∅) = 0. Let Γk denote the family of closed
symmetric subsets A of E such that 0 /∈ A and γ (A) ≥ k.

Theorem 3.2 (Theorem of Ambrosetti-Rabinowitz [4]). Let E be an infinite di-
mensional Banach space and I ∈ C1 (E,R) satisfy:
(1) I is even, bounded from below, I (0) = 0 and I satisfies the Palais-Smale con-
dition.
(2) For each k ∈ N, there exists Ak ∈ Γk such that

sup
u∈Ak

I (u) < 0.

Under assumptions (1)− (2), we define ck by

ck = inf
A∈Γk

sup
u∈A

I (u) .

Then each ck is a critical value of I, ck ≤ ck+1 < 0 for k ∈ N and (ck) converges
to zero. Moreover, if ck = ck+1 = · · · = ck+p = c, then γ (Kc) ≥ p+ 1. The critical
set Kc is defined by

Kc = {u ∈ E; I ′ (u) = 0, I (u) = c} .

4. Proof of Theorem 2.1

In this section we consider the case where a is bounded and we define I on the
function space E = H1

(
RN
)
∩ Lq+1

(
RN
)
.

Lemma 4.1. Assume that (A1) and (V1) hold. Then any (PS)-sequence of I is
bounded in E.

Proof. By standard arguments, I is well defined and of class C1 on E.
Let (un) be a (PS)-sequence of I. Then there exists α > 0 such that I(un) ≤ α.

Applying Hölder inequality, conditions (A1) and (V1), we have

α ≥ I (un) =
1

2

∫
RN

(
|∇un|2 (x) + V (x)un(x)2

)
dx− 1

q + 1

∫
RN

a(x) |un(x)|q+1
dx

≥ 1

2

∫
RN

|∇un(x)|2 dx− 1

2

∫
RN

V −(x)un(x)2dx− 1

q + 1

∫
RN

a+(x) |un|q+1
(x)dx

+
1

q + 1

∫
RN

a−(x) |un|q+1
(x)dx

≥ 1

2

∫
RN

|∇un|2 (x)dx−
‖V −‖N

2

2s
‖∇un‖22 −

1

q + 1

∫
RN

a+(x) |un|q+1
(x)dx.

By (A1), there exists R > 0 such that

(9) −‖a‖∞ ≤ a(x) ≤ a∞
2

< 0, ∀ |x| ≥ R and a+ ∈ Lm
(
RN
)
, ∀ 1 ≤ m ≤ +∞.
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Combining (3.8) and (9), we infer that

α ≥ I (un) ≥ 1

2
‖∇un‖22 −

‖V −‖N
2

2s
‖∇un‖22 − s

−q−1
2

∥∥a+
∥∥

2∗
2∗−(q+1)

‖∇un‖q+1
2

≥

(
1

2
−
‖V −‖N

2

2s

)
‖∇un‖22 − s

−q−1
2

∥∥a+
∥∥

2∗
2∗−(q+1)

‖∇un‖q+1
2 ,

hence there exists β > 0 such that

(10) ‖∇un‖2 ≤ β ∀n ∈ N.

On the other hand, there exists c > 0 such that

c+
‖un‖

2
≥ −1

2
〈I ′ (un) , un〉+ I (un) =

(
1

2
− 1

q + 1

)∫
RN

a(x) |un|q+1
(x)dx

=

(
1

q + 1
− 1

2

)∫
RN

a−(x) |un|q+1
(dx−

(
1

q + 1
− 1

2

)∫
RN

a+(x) |un|q+1
dx

=

(
1

q + 1
− 1

2

)∫
RN

(
a−(x) + χBR

(x)
)
|un|q+1

dx

−
(

1

q + 1
− 1

2

)∫
RN

(
a+(x) + χBR

(x)
)
|un|q+1

dx

≥
(

1

q + 1
− 1

2

)
min

{
−a∞

2
, 1

}∫
RN

|un|q+1
(x)dx

− s
−q−1

2

(
1

q + 1
− 1

2

)∥∥a+ + χBR

∥∥
2∗

2∗−(q+1)

‖∇un‖q+1
2 .

Thus, there is a constant c > 0 such that∫
RN

|un|q+1
dx ≤ c

(
‖∇un‖2 + ‖un‖q+1 +

∥∥a+
∥∥

2∗
2∗+(q+1)

‖∇un‖q+1
2

)
.

Relation (10) yields

(11) ‖un‖q+1
q+1 ≤ c+ c ‖un‖q+1 for all n ∈ N.

Combining (10) and (11), we get

‖un‖ ≤ c ∀n ∈ N.

The proof is complete. �

We need the following lemma to prove that the Palais-Smale condition is satisfied
for I on E.

Lemma 4.2. There exists a constant c > 0 such that for all real numbers x, y,

(12)
∣∣∣|x+ y|q+1 − |x|q+1 − |y|q+1

∣∣∣ ≤ c |x|q |y|.
Proof. If x = 0, the inequality (12) is trivial.

Suppose that x 6= 0. We consider the continous function f defined on R\ {0} by

f(t) =
|1 + t|q+1 − |t|q+1 − 1

|t|
.
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Then lim|t|→+∞ f(t) = 0 and limt→0± f(t) = ± (q + 1). Thus, there exists a con-

stant c > 0 such that |f(t)| ≤ c, ∀ t ∈ R\ {0}. In particular
∣∣f ( yx)∣∣ ≤ c, so∣∣∣∣∣∣∣1 +

y

x

∣∣∣q+1

−
∣∣∣y
x

∣∣∣q+1

− 1

∣∣∣∣ ≤ c ∣∣∣yx ∣∣∣ .
Multiplying by |x|q+1

, we obtain the desired result. �

Lemma 4.3. Assume (A1) and (V1) hold. Then I satisfies the Palais-Smale con-
dition on E.

Proof. Let (un) be a (PS)-sequence. By Lemma 4.1, (un) is bounded in E. Then
there exists a subsequence un ⇀ u in E, un → u in Lploc

(
RN
)

for all 1 ≤ p ≤ 2∗

and un → u a.e. in RN .
Fix ϕ ∈ D

(
RN
)
. By the weak convergence of (un) to u, we get

(13)

∫
RN

∇un∇ϕ(x) + V (x)unϕ(x)dx→
∫
RN

∇u∇ϕ+ V (x)uϕ(x)dx.

By compactness Sobolev embedding, un → u in Lq+1 (supp (ϕ)), hence there exists
a function h ∈ Lq+1

(
RN
)

such that

a(x) |un|q−1
unϕ→ a(x) |u|q−1

uϕ a.e. in RN

and

|a| |un|q |ϕ| ≤ ‖a‖∞ |h| |ϕ| in RN .
Using the Lebesgue dominated convergence theorem, we deduce that

(14)

∫
RN

a(x) |un|q−1
unϕ(x)dx→

∫
RN

a(x) |u|q−1
uϕ(x)dx.

Combining relations (13) and (14), we obtain

0 = lim
n→+∞

〈I ′ (un) , ϕ〉 = 〈I ′ (u) , ϕ〉 , ∀ϕ ∈ D
(
RN
)
.

Then

(15) 〈I ′(u), u〉 = 0.

Since un ⇀ u in E, we have ‖u‖ ≤ lim inf
n→+∞

‖un‖ = lim
n→+∞

‖un‖. We distinguish two

cases:
A) Compactness: ‖u‖ = lim

n→+∞
‖un‖, then

lim sup
n→+∞

‖un‖q+1 ≤ ‖u‖q+1 + ‖∇u‖2 − lim inf
n→+∞

‖∇un‖2 .

Since

‖∇u‖2 ≤ lim inf
n→+∞

‖∇un‖2 , ‖u‖q+1 ≤ lim inf
n→+∞

‖un‖q+1 ,

we get

‖u‖q+1 ≤ lim inf
n→+∞

‖un‖q+1 ≤ lim sup
n→+∞

‖un‖q+1 ≤ ‖u‖q+1 ,

thus {
un → u a.e. in RN

‖un‖q+1 → ‖u‖q+1 .

By Brezis-Lieb lemma [14], we infer that

(16) un → u in Lq+1
(
RN
)
.



10 ANOUAR BAHROUNI, HICHEM OUNAIES AND VICENŢIU D. RĂDULESCU

Therefore ‖∇un‖2 → ‖∇u‖2. On the other hand∫
RN

|∇un −∇u|2 dx =

∫
RN

|∇un|2 dx+

∫
RN

|∇u|2 dx− 2

∫
RN

∇un∇u dx,

hence ∫
RN

∇un∇udx→
∫
RN

|∇u|2 dx.

Therefore

(17) ‖∇un −∇u‖2 → 0.

Combining relations (16) and (17), we deduce that un → u in E and the (PS)
condition for I is satisfied.

B) Dichotomy: ‖u‖ < lim
n→+∞

‖un‖. We prove that this case cannot occur.

Set vn = un − u.
Step 1: there exists (yn) ⊂ RN such that vn (.+ yn) ⇀ v 6= 0 in E. If not, for

all (yn) ⊂ RN , vn (.+ yn) ⇀ 0 in E. Then

∀R > 0 sup
y∈RN

∫
B(y,R)

|vn|q+1
(x)dx→ 0.

By [31, Lemma I.1, p. 231],

(18) vn → 0 in Lp
(
RN
)
, ∀ q + 1 < p < 2∗.

On the other hand,
(19)

〈I ′ (un) , un〉 =

∫
RN

(
|∇un|2 + V (x)u2

n

)
dx−

∫
RN

a(x) |un|q+1
dx

=

∫
RN

(
|∇vn|2 + V (x)v2

n

)
dx+

∫
RN

|∇u|2 dx+

∫
RN

(
V (x)u2 + 2∇vn∇u

)
dx

+

∫
RN

2V (x)vnudx−
∫
RN

a(x)
(
|un|q+1 − |u|q+1

)
dx−

∫
RN

a(x) |u|q+1
dx.

By (12) in Lemma 4.2, we obtain

|a(x)|
∣∣∣|un|q+1 − |u|q+1 − |vn|q+1

∣∣∣ = |a(x)|
∣∣∣|vn + u|q+1 − |u|q+1 − |vn|q+1

∣∣∣
≤ c |a(x)| |u|q vn.

Since vn ⇀ 0 in E, we deduce that

(20) lim
n→+∞

∫
RN

a(x)
(
|un|q+1 − |u|q+1

)
dx = lim

n→+∞

∫
RN

a(x) |vn|q+1
(x)dx.

Using Hölder inequality in combination with relations (9) and (18), we obtain

(21)

∫
RN

(
a+(x) + χBR

(x)
)
|vn|q+1

dx ≤
∥∥a+ + χBR

∥∥
2

1−q

‖vn‖q+1
L2(B(0,R)) → 0,
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Passing to the limit in (19) and using (9), (18), (20) and (21), we get

0 = lim
n→+∞

〈I ′ (un) , un〉 = 〈I ′ (u) , u〉+ lim
n→+∞

(∫
RN

(
|∇vn|2 − a(x) |vn|q+1

)
dx

)
= 〈I ′ (u) , u〉+ lim

n→+∞

(∫
RN

|∇vn|2 +
(
a−(x) + χBR

)
|vn|q+1

)
− lim
n→+∞

∫
RN

(
a+(x) + χBR

)
|vn|q+1

dx

= lim
n→+∞

∫
RN

|∇vn|2 +
(
a−(x) + χBR

)
|vn|q+1

dx.

≥ lim
n→+∞

∫
RN

(
|∇vn|2 + min

(
−a∞

2
, 1

)
|vn|q+1

)
dx

≥ lim
n→+∞

min

(
1,min

(
−a∞

2
, 1

))∫
RN

(
|∇vn|2 + |vn|q+1

)
dx.

Then vn → 0 in E, which yields a contradiction.
Step 2: (yn) is not bounded. Indeed, suppose that (yn) is bounded, there

exists a subsequence of (yn), also denoted by (yn), such that yn → y0. Then for all
ϕ ∈ D

(
RN
)

0 = lim
n→+∞

∫
RN

ϕ (x− yn) vndx = lim
n→+∞

∫
RN

ϕ (x) vn (x+ yn) dx =

∫
RN

ϕ(x)v(x)dx.

Hence v = 0 a.e. in RN , a contradiction.
Step 3: We show that v is a solution of the following problem:

(P∞)

{
−∆u+ v∞u = a∞ |u|q−1

u in RN
u ∈ E

We first prove that problem (P∞) admits only the trivial solution. Thus, since v
solves (P∞), we will obtain a contradiction.

Since (yn) is not bounded, then un (.+ yn) ⇀ v in E. In fact, u (.+ yn) ⇀ ψ ∈
E, hence

0 = lim
n→+∞

∫
RN
u (x+ yn)ϕ(x)dx =

∫
RN
ψ(x)ϕ(x)dx, ∀ϕ ∈ D

(
RN
)
.

It follows that ψ = 0 a.e. Therefore

(22) un (.+ yn) ⇀ v in E.

Let ϕ ∈ D
(
RN
)
. We have

〈I ′ (un) , ϕ (.− yn)〉 =

∫
RN

(∇un∇ϕ (x− yn) + V (x)unϕ(x− yn)) dx

−
∫
RN

a(x) |un|q−1
unϕ (x− yn) dx

=

∫
RN

∇un (x+ yn)∇ϕ(x) + V (x+ yn)un(x+ yn)ϕ(x)dx

−
∫
RN

a(x+ yn) |un|q−1
(x+ yn)un(x+ yn)ϕ(x)dx.
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Relation (22) yields

(23)

∫
RN

∇un (x+ yn)∇ϕ(x)dx→
∫
RN

∇v(x)∇ϕ(x)dx.

Since (un (.+ yn)) is bounded in E, un (.+ yn)→ v in Lploc
(
RN
)
, for all 1 ≤ p ≤ 2∗

(up a subsequence), un (x+ yn)→ v a.e. in RN and there exists K ∈ Lp
(
RN
)

such

that ϕ |un (.+ yn)| ≤ |K| in RN , 1 ≤ p ≤ 2∗. Then, by (V1), we obtain{
V (x+ yn)un (x+ yn)ϕ → v∞vϕ a.e. in RN
|V (x+ yn)un (x+ yn)ϕ| ≤ ‖V ‖∞ |K| |ϕ| ∈ L1

(
RN
)
.

Applying Lebesgue’s dominated convergence theorem, we deduce that

(24)

∫
RN

V (x+ yn)un (x+ yn)ϕ(x)dx→ v∞

∫
RN

v(x)ϕ(x)dx.

From hypothesis (A1), we find{
a(x+ yn) |un (x+ yn)|q−1

un(x+ yn)ϕ → a∞ |v|q−1
vϕ a.e. in RN

|a(x+ yn)| |un(x+ yn)|q |ϕ| ≤ ‖a‖∞ |K|
q |ϕ| ∈ L1

(
RN
)
.

Next, by Lebesgue’s dominated convergence theorem, we obtain

(25) lim
n→+∞

∫
RN

a(x+ yn) |un|q−1
(x+ yn)un(x+ yn)dx = a∞

∫
RN

|v|q−1
vϕ(x)dx.

Combining relations (23), (24) and (25), we deduce that for all ϕ ∈ D
(
RN
)
,

0 = lim
n→+∞

〈I ′ (un) , ϕ (.− yn)〉

=

∫
RN

(∇v(x)∇ϕ(x) + v∞vϕ) dx− a∞
∫
RN

|v|q−1
vϕ(x)dx .

Thus, v is a weak solution of problem (P∞), hence v = 0, which yields a contradic-
tion. From steps 1, 2, and 3, we conclude that the dichotomy does not occur. The
proof is complete. �

Lemma 4.4. Assume (A1) and (V1) are fulfilled. Then for each k ∈ N, there exists
Ak ∈ Γk such that supu∈Ak

I (u) < 0.

Proof. We use some ideas developed in [27].
Let R0 and y0 fixed by assumption (A1) and consider the cube

D (R0) =
{

(x1, · · · , xN ) ∈ RN : |xi − yi| < R0, 1 ≤ i ≤ N
}
.

Fix k ∈ N arbitrarily. Let n ∈ N be the smallest integer such that nN ≥ k. We
divide D (R0) equally into nN small cubes, denote them by Di with 1 ≤ i ≤ nN ,
by planes parallel to each face of D (R0). The edge of Di has the length of a = R0

n .
We construct new cubes Ei in Di such that Ei has the same center as that of Di.
The faces of Ei and Di are parallel and the edge of Ei has the length of a

2 . Thus,
we can construct a function ψi, 1 ≤ i ≤ k, such that

supp (ψi) ⊂ Di, supp (ψi) ∩ supp (ψj) = ∅ (i 6= j) ,

ψi(x) = 1 for x ∈ Ei, 0 ≤ ψi(x) ≤ 1, ∀x ∈ RN .
We denote

(26) Sk−1 =

{
(t1, · · · , tk) ∈ Rk : max

1≤i≤k
|ti| = 1

}
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(27) Wk =

{
k∑
i=1

tiψi(x) : (t1, · · · , tk) ∈ Sk−1

}
⊂ E.

Since the mapping (t1, · · · , tk) →
∑k
i=1 tiψi from Sk−1 to Wk is odd and homeo-

morphic, we have γ (Wk) = γ
(
Sk−1

)
= k. But Wk is compact in E, thus there is

a constant αk > 0 such that

‖u‖2 ≤ αk for all u ∈Wk.

We recall the following inequality:

(28) ‖u‖2 ≤ c ‖∇u‖
r
2 ‖u‖

1−r
q+1 ≤ c ‖u‖ ,

with r = 2∗(q−1)
2(2∗−q−1) . Then there is a constant ck > 0 such that

‖u‖22 ≤ ck for all u ∈Wk.

Let z > 0 and u =
∑k
i=1 tiψi(x) ∈Wk. We have

(29) I (zu) ≤ z2

2
αk + z2 ‖V ‖∞

2
ck −

1

q + 1

k∑
i=1

∫
Di

a(x) |ztiψi|q+1
dx.

By (26), there exists j ∈ [1, k] such that |tj | = 1 and |ti| ≤ 1 for i 6= j. Then

(30)

k∑
i=1

∫
Di

a(x) |ztiψi|q+1
dx =

∫
Ej

a(x) |ztjψj |q+1
dx+∫

Dj\Ej

a(x) |ztjψj(x)|q+1
dx+

∑
i 6=j

∫
Di

a(x) |ztiψi|q+1
dx.

Since ψj(x) = 1 for x ∈ Ej and |tj | = 1, we have

(31)

∫
Ej

a(x) |ztjψj |q+1
dx = |z|q+1

∫
Ej

a(x)dx.

On the other hand by (A1),

(32)

∫
Dj\Ej

a(x) |ztjψj |q+1
dx+

∑
i6=j

∫
Di

a(x) |ztiψi|q+1
dx ≥ 0.

Relations (29), (30), (31) and (32) yield

(33)
I (zu)

z2
≤ αk

2
+
‖V ‖∞

2
ck −

|z|q+1

z2
inf

1≤i≤k

(∫
Ei

a(x)dx

)
,

By (33), we conclude that

lim
z→0

sup
u∈Wk

I (zu)

z2
= −∞.

We fix z so small such that

sup {I(u), u ∈ Ak} < 0, where Ak = zWk ∈ Γk.

This concludes the proof. �

Lemma 4.5. Assume (A1) and (V1) hold. Then I is bounded from below.
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Proof. By (A1), we get

(34) a+ ∈ Lp
(
RN
)

for all 1 ≤ p ≤ +∞.

Then

I (u) =
1

2

∫
RN

(
|∇u|2 + V (x)u2

)
dx− 1

q + 1

∫
RN

a(x) |u|q+1
dx

≥ 1

2

∫
RN

(
|∇u|2 − V −(x)u2

)
dx− 1

q + 1

∫
RN

a+(x) |u|q+1
dx

≥

(
1

2
−
‖V −‖N

2

2s

)
‖∇u‖22 −

‖a+‖ 2∗
2∗−q−1

s
q+1
2

‖∇u‖q+1
2 .

In view of (V1) we conclude the proof. �

Proof of Theorem 2.1 concluded. We have I(0) = 0 and I is even. Combin-
ing Lemmas 4.3, 4.4 and 4.5, we deduce that the conditions (1) and (2) of Theorem
3.2 are satisfied. Thus, there exists a sequence (un) ⊂ E such that I(un) < 0,
I ′ (un) = 0 and I(un) → 0, for all n ≥ 0, hence un is a weak solution of problem
(5).

By (V1), we deduce that

1

q + 1
〈I ′(un), un〉 − I(un) =

(
1

q + 1
− 1

2

)∫
RN

(
|∇un|2 + V (x)u2

n

)
dx

≥
(

1

q + 1
− 1

2

)(
1

2
− 1

2s

∥∥V −∥∥N
2

)
‖∇un‖22 .

It follows that

(35) lim
n→+∞

∫
RN

|∇un|2 dx = 0.

On the other hand, by Hölder inequality, (9) and (35), we have

0 = lim
n→+∞

(
I(un)− 1

2
〈I ′(un), un〉

)
= lim
n→+∞

(
1

2
− 1

q + 1

)∫
RN

a(x) |un|q+1

=

(
1

q + 1
− 1

2

)
lim

n→+∞

(∫
RN

(
a−(x) + χBR

)
|un|q+1

dx−
∫
RN

(
a+(x) + χBR

)
|un|q+1

)

≥
(

1

q + 1
− 1

2

)
lim

n→+∞

∫
RN

(
a−(x) + χBR

)
|un|q+1

dx− ‖a
+ + χBR

‖
2∗

2∗−q−1

s
q+1
2

‖∇un‖q+1
2


=

(
1

q + 1
− 1

2

)
lim

n→+∞

∫
RN

(
a−(x) + χBR

)
|un|q+1

dx

≥
(

1

q + 1
− 1

2

)
min

(
−a∞

2
, 1

)
lim

n→+∞
‖un‖q+1

q+1 .

This shows that

(36) lim
n→+∞

∫
RN

|un|q+1
dx = 0,

hence limn→+∞ un = 0 in E. This concludes the proof. �
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5. Proof of Theorem 2.2

In this section, we define I and ϕ on X. We use standard arguments based on the
fact that I ′ is a sequentially compact operator in order to prove that I satisfies the
Palais-Smale condition. Then we deduce that problem (5) admits infinitely many
nontrivial solutions in X.

To prove Theorem 2.2, we need the following auxiliary results.

Lemma 5.1. Assume (A2), (V2) and (G1) are satisfied. Then ϕ′ is a sequentially
compact operator on X.

Proof. By standard arguments, the functionals I and ϕ are well defined and of class
C1 on X.

Let (un) ⊂ X be a bounded sequence. Then for all h ∈ X,

〈ϕ′ (un)− ϕ′ (u) , h〉 =

∫
RN

[V (x) (un − u)− a(x) (g(un)− g(u))]h(x)dx.

Let R > 0 and h ∈ X be such that ‖h‖ = 1. We have

〈ϕ′ (un)− ϕ′ (u) , h〉 = J1 (n, h,R) + J2 (n, h,R) ,

where

J1 (n, h,R) =

∫
BR

[V (x) (un − u)− a(x) (g(un)− g(u))]h(x)dx

J2 (n, h,R) =

∫
Bc

R

[V (x) (un − u)− a(x) (g(un)− g(u))]h(x)dx.

By Hölder’s inequality, (V2) , (A2) and (G1) we obtain

|J2 (n, h,R)| ≤
∫
Bc

R

|V (x) (un − u)h(x)− a(x) (g (un)− g (u))h(x)| dx ≤

(∫
Bc

R

|V (x)|
N
2 dx

) 2
N
(∫

Bc
R

|un − u|2
∗
dx

) 1
2∗
(∫

Bc
R

|h(x)|2
∗
dx

) 1
2∗

+

c

(∫
Bc

R

|a(x)|
2∗

2∗−(q+1) dx

) 2∗−(q+1)
2∗

(∫
Bc

R

(|un(x) + u(x)|)2∗
dx

) q
2∗
(∫

Bc
R

|h(x)|2
∗
dx

) 1
2∗

≤(∫
Bc

R

|V (x)|
N
2 dx

) 2
N

+

(∫
Bc

R

|a(x)|
2∗

2∗−(q+1) dx

) 2∗−(q+1)
2∗

 .
The last expression can be made arbitrarily small by taking R > 0 large enough.

For J1, since V ∈ L
N
2

(
RN
)

and a ∈ L
2∗

2∗−(q+1)
(
RN
)
, we deduce that for all

ε > 0, there exists η > 0 such that(∫
K

|a(x)|
2∗

2∗−(q+1) dx

) 2∗−(q+1)
2∗

+

(∫
K

|V (x)|
N
2 dx

) 2
N

< ε,
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for all K ⊂ BR with m (K) < η (see Dunford-Pettis [21]). Moreover,∫
K

|V (x) (un − u)− a(x) (g (un)− g (u))| |h(x)| dx ≤

c

(∫
K

|V (x)|
N
2 dx

) 2
N

+ c

(∫
K

|a(x)|
2∗

2∗−(q+1) dx

) 2∗−(q+1)
2∗

≤ cε,

where c is independent of n and h. By using the Vitali convergence theorem, we
deduce that J1 (n, h,R)→ 0 as n→ +∞ uniformly for ‖h‖ = 1. We conclude that
ϕ′ (un)→ ϕ′ (u) strongly in X ′. The proof is complete. �

Lemma 5.2. Assume that (V2), (A2) and (G1) are satisfied. Then any (PS)-
sequence of I is bounded in X.

Proof. Let (un) ⊂ X be a (PS)-sequence. Then there exists α > 0 such that
I (un) ≤ α. By Hölder inequality and conditions (A2) , (V2) , (G1), we have

α ≥ I (un) ≥ 1

2

∫
RN

(
|∇un|2 (x)− V −(x)un(x)2

)
dx−

∫
RN

a(x)G(un(x))dx

≥
(

1

2
− 1

2s

∥∥V −∥∥N
2

)
‖un‖2X − s

−q−1
2 ‖a‖ 2∗

2∗−(q+1)
‖un‖q+1

X .

Since 0 < q < 1, the last inequality shows that (un) is bounded in X. The proof is
complete. �

As a consequence, we obtain the following result.

Lemma 5.3. Assume that (V2), (A2) and (G1) are satisfied. Then I satisfies the
(PS) condition in X.

Proof. Set

F : D1,2
(
RN
)
→
(
D1,2

(
RN
))′

u 7−→ F (u), 〈F (u), v〉 =

∫
RN

∇u∇v dx, ∀v ∈ D1,2
(
RN
)
.

Then F is an isomorphism. Let (un) be a (PS) sequence of I, hence

(37) un = F−1(ϕ′(un)) + o(1).

By Lemma 5.2, (un) is bounded in X. Sine ϕ′ is a compact operator and using
(37), we deduce that (un) is strongly convergent in X (up a subsequence). �

Lemma 5.4. Assume (G1) , (V2) and (A2) are satisfied. Then I is bounded from
below.

Proof. By (G1) , (V2) and (A2), we have

I(u) =
1

2

∫
RN

(
|∇u(x)|2 + V (x)u2(x)

)
dx−

∫
RN

a(x)G (u(x)) dx

≥ 1

2

∫
RN

|∇u(x)|2 dx− 1

2

∫
RN

V −(x)u2(x)dx−
∫
RN

a(x)G (u(x)) dx

≥ 1

2

∫
RN

|∇u(x)|2 dx− 1

2s

∥∥V −∥∥N
2

‖u‖2X − s
−q−1

2 ‖a‖ 2∗
2∗−(q+1

) ‖u‖
q+1
X

≥
(

1

2
− 1

2s

∥∥V −∥∥N
2

)
‖u‖2X − s

−q−1
2 ‖a‖ 2∗

2∗−(q+1)
‖u‖q+1

X .
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Since 1 < q + 1 < 2, we deduce that I is bounded from below. The proof is
complete. �

Next, we prove the geometric condition required by Theorem 3.2.

Lemma 5.5. Assume (A2), (V2), (G1), (G2) , and (G3) are satisfied. Then for
each k ∈ N, there exists an Ak ∈ Γk such that supu∈Ak

I (u) < 0.

Proof. By using conditions (G2) and (G3), the proof is similar to that Lemma
4.4. �

Proof of theorem 2.2 concluded. The energy functional I is even and I (0) =
0. By Lemmas 5.3 and 5.4, condition (1) of Theorem 3.2 is satisfied. In view of
Lemma 5.5, condition (2) of theorem 3.2 is also satisfied. Thus, there exists a
sequence (uk) such that ck = I(uk) is a critical value of I, ck < 0, ck → 0, for all
k ≥ 0. This means that (uk) are weak solutions of problem (5) and (uk) is a (PS)
sequence of I. Then, by Lemma 5.2, (uk) is bounded. �

Remark 5.6. If g(x) = |x|q−1
x, 0 < q < 1, then un → 0 in X. In fact, by (V2),

we have

0 =
1

q + 1
〈I ′ (un) , un〉 − I (un) =

(
1

q + 1
− 1

2

)∫
RN

(
|∇un|2 + V (x) |un|2

)
dx

≥
(

1

q + 1
− 1

2

)(
1−
‖V −‖N

2

s

)∫
RN

|∇un|2 (x)dx.

Since I ′ (un) = 0 and lim
n→+∞

I (un) = 0, we deduce that un → 0 in X.

6. Proof of Theorem 2.3

In this section we change the condition (V2) by (V1) and we suppose that a satisfies
(A3). Under the last conditions, the functional I is not well defined both on X and
on E, then we define it on the space Y . First, we start by showing that (Y, 〈 〉) is
a Hilbert space and it is embedded into Lp

(
RN
)

for 2 ≤ p ≤ 2∗.

Lemma 6.1. Assume that (V1) holds. Then

u→
(∫

RN

(
|∇u(x)|2 + V +(x)u2(x)

)
dx

) 1
2

,

defines a norm on Y , which is equivalent to the usual norm in H1
(
RN
)

‖u‖H1 = ‖∇u‖2 + ‖u‖2 .

Proof. By (V1), there exists R > 0 such that

v∞
2
≤ V +(x) ≤ ‖V ‖∞ for all x ∈ BcR.
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Then ∫
RN

(
|∇u(x)|2 + V +(x)u2(x)

)
dx =∫

RN

|∇u(x)|2 dx+

∫
BR

V +(x)u2(x)dx+

∫
Bc

R

V +(x)u2(x) ≤∫
RN

|∇u(x)|2 dx+
∥∥V +

∥∥
L

N
2 (BR)

‖u‖22∗ + ‖V ‖∞
∫
Bc

R

u2(x)dx ≤∫
RN

|∇u(x)|2 dx+ s−1
∥∥V +

∥∥
L

N
2 (BR)

‖∇u‖22 + ‖V ‖∞
∫
Bc

R

u2(x)dx ≤

(1 + c1)

∫
RN
|∇u(x)|2 dx+ ‖V ‖∞

∫
Bc

R

u2(x)dx ≤

max ((1 + c1), ‖V ‖∞)

∫
RN

(
|∇u(x)|2 + u2(x)

)
dx,

with r1 = s−1 ‖V +‖
L

N
2 (BR)

.

On the other hand, we have∫
BR

|u(x)|2 dx ≤ (m (BR))
2
N

(∫
BR

|u(x)|2
∗
dx

) 2
2∗

≤ (m (BR))
2
N

s

∫
RN

|∇u(x)|2 dx.

Then ∫
RN

(
|∇u(x)|2 + |u(x)|2

)
dx =∫

RN

|∇u(x)|2 dx+

∫
BR

|u(x)|2 dx+

∫
Bc

R

|u(x)|2 dx ≤(
1 +

(m (BR))
2
N

s

)∫
RN

|∇u(x)|2 dx+
2

v∞

∫
Bc

R

V +(x) |u(x)|2 dx ≤

max

(
2

v∞
,

(
1 +

(m (BR))
2
N

s

))∫
RN

(
|∇u(x)|2 + V +(x) |u(x)|2

)
dx.

It follows that ‖ ‖Y is equivalent to ‖ ‖H1 . We conclude that (Y, ‖ ‖Y ) is a
Hilbert space. By the Sobolev embedding theorem, Y ↪→ Lp, 2 ≤ p ≤ 2∗, see
[3]. �

By using Lemma 6.1, the proof of Theorem 2.3, with slight modification, is
similar to that of Theorem 2.2.

Remark 6.2. If g(x) = |x|q−1
x, 0 < q < 1, then un → 0 in Y .

Remark 6.3. In Theorems 2.1, 2.2, and 2.3, we can suppose that u0 is a nonneg-
ative solution of (5), since

I(u0) = I (|u0|) = c0.

In such a case, u0 is called a ground state for I.
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