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Abstract

In this paper, we investigate the problem of existence of solutions of quasi-
hemivariational inequalities. Some concepts of semicontinuity and hemiconti-
nuity on subsets for functions as well as for set-valued mappings are developed
and applied for solving quasi-hemivariational inequalities. Generalizations of
some old results on the existence of solutions of equilibrium problems are ob-
tained and applications to quasi-hemivariational inequalities are derived.
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1. Introduction

Let C be a nonempty, closed and convex subset of a real Banach space
(E, ‖, ‖E) which is continuously embedded in Lp (Ω;Rn), for some 1 < p < +∞
and n ≥ 1, where Ω is a bounded domain in Rm, m ≥ 1. Let i be the canonical
injection of E into Lp (Ω;Rn).

The aim of this paper is to study the existence of solutions for the following
quasi-hemivariational inequality:

Find u ∈ C and u∗ ∈ A (u) such that

〈u∗, v〉E + h (u) J0 (iu; iv) ≥ 〈Fu, v〉E ∀v ∈ C, (1.1)

where A : E ⇒ E∗ is a nonlinear set-valued mapping, F : E → E∗ is a nonlinear
operator, J : Lp (Ω;Rn)→ R is a locally Lipschitzian functional and h : E → R
is a given nonnegative functional.
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Quasi-hemivariational inequalities are a generalization of hemivariational in-
equalities introduced by Panagiotopoulos in [17], [18] and describe several prob-
lems arising in mechanics and engineering, see also Costea & Rădulescu [9],
Wangkeeree & Preechasilp [23], Rădulescu [22].

The quasi-hemivariational inequality problem (1.1) has been recently studied
in Costea & Rădulescu [9] when C is the whole space E. For technical reasons,
the authors considered the following quasi-hemivariational inequality:

Find u ∈ C and u∗ ∈ A (u) such that

〈u∗, v − u〉E + h (u) J0 (iu; iv − iu) ≥ 〈Fu, v − u〉E ∀v ∈ C. (1.2)

In Costea & Rădulescu [9], several results on the existence of solutions of
the quasi-hemivariational problem (1.2) have been obtained in two cases: (i)
when C is a nonempty, convex and compact subset of E; (ii) if C is a nonempty,
convex, closed and bounded (then weakly compact) subset of a reflexive Banach
space. Characterizations and applications for solving the quasi-hemivariational
problem (1.1) when C is the whole space E are derived.

Clearly, if C is a linear subspace and in particular, if C is the whole space
E, then the quasi-hemivariational problem (1.1) is equivalent to the quasi-
hemivariational problem (1.2).

In this paper, we follow a direct approach by studying the existence of
solutions of the quasi-hemivariational inequality problem (1.2) when C is a
nonempty, closed and convex subset of E. All the results obtained can be then
applied to the quasi-hemivariational inequality problem (1.1) when C is a linear
subspace and in particular, when C is the whole space E.

In the first section of this paper, we introduce some concepts of continuity
of functions and set-valued mappings and obtain some results and characteriza-
tions.

In the second section, we introduce a coercivity condition on a compact or
weakly compact subset and use the concept of continuity on a subset for solving
the quasi-hemivariational inequality problem (1.2) when C is a nonempty, closed
and convex subset of E.

In the last part of the paper, we obtain some results on the existence of
solutions of equilibrium problems by using the concept of continuity on a subset
of equilibrium bifunctions in their first or second variable. Applications for
solving quasi-hemivariational problems are given.

2. Notations and preliminary results

For a given Banach space (X, ‖.‖X), we denote by X∗ its dual space and by
〈., .〉X (or simply by 〈., .〉 if no confusion may arise), the duality pairing between
X∗ and X.

Recall that a function φ : X → R is called locally Lipschitzian if for every
u ∈ X, there exists a neighborhood U of u and a constant Lu > 0 such that

|φ (w)− φ (v) | ≤ Lu‖w − v‖X ∀u ∈ U,∀v ∈ U.
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If φ : X → R is locally Lipschitzian near u ∈ X, then the generalized directional
derivative of φ at u in the direction of v ∈ X, denoted by φ0 (u, v), is defined by

φ0 (u, v) = lim sup
w→u
λ↓0

φ (w + λu)− φ (w)

λ
.

Among several important properties of the generalized directional derivative
of locally Lipschitzian functions, we will make use in the present paper of the
following properties (for proofs and related properties, we refer to Clarke [8,
Proposition 2.1.1]).

Suppose that φ : X → R is locally Lipschitzian near u ∈ X. Then,

1. the function v 7−→ φ0 (u, v) is finite, positively homogeneous and subad-
ditive;

2. the function (u, v) 7−→ φ0 (u, v) is upper semicontinuous.

Before introducing some concepts of continuity we need in the paper, we
recall here some general results on convergence of sequences.

Let X be a Hausdorff topological space. Recall that a subset B of X is said
to be sequentially closed if whenever (xn)n is a sequence in B converging to x,
then x ∈ B. As well-known, a space is called sequential if every sequentially
closed subset is closed. Every metric space and more generally, every Fréchet-
Urysohn space is a sequential space. A space X is called Fréchet-Urysohn space
if whenever x is in the closure of a subset B of X, there exists a sequence in B
converging to x, see Engelking [12], Alleche & Calbrix [3] for further details.

The weak topology of Banach spaces is not sequential in general. However,
bounded subsets of reflexive Banach spaces endowed with the weak topology
have the following property: if a point x is in the weak closure of a bounded sub-
set B of a reflexive Banach space, then there exists a sequence in B weakly con-
verging to x (see Denkowski, Migórski & Papageorgiou [10, Proposition [3.6.23]).
Thus, every bounded and weakly sequentially closed subset of a reflexive Banach
space is closed.

We say that a subset B has the Fréchet-Urysohn property if whenever x is
in the closure of B, there exists a sequence in B converging to x. Every subset
of a Fréchet-Urysohn space has the Fréchet-Urysohn property. Also there are
some other interesting unbounded subsets of Banach spaces which have the
Fréchet-Urysohn property, see Dilworth [11].

In the sequel, for a subset B of X, we denote by

Exp (B) = {x ∈ X | ∃ (xn)n , xn ∈ B, ∀n, xn −→ x} ,

the sequential explosion of B. Of course, Exp (B) is neither closed nor sequen-
tially closed in general.

Let x ∈ X. A function f : X → R is called

1. sequentially upper semicontinuous at x if for every sequence (xn)n in X
converging to x, we have

f (x) ≥ lim sup
n→+∞

f (xn)
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where lim sup
n→+∞

f (xn) = inf
n

sup
k≥n

f (xk).

2. sequentially lower semicontinuous at x if −f is sequentially upper semi-
continuous at x, that is, for every sequence (xn)n of X converging to x,
we have

f (x) ≤ lim inf
n→+∞

f (xn)

where lim inf
n→+∞

f (xn) = sup
n

inf
k≥n

f (xk).

The function f is said to be sequentially upper (resp. sequentially lower)
semicontinuous on a subset S of X if it is sequentially upper (resp. sequentially
lower) semicontinuous at every point of S.

If sequences are replaced by generalized sequences (nets) in the above defi-
nition of sequentially upper (resp. sequentially lower) semicontinuous function,
we obtain the notion of upper (resp. lower) semicontinuous function.

The following result shows how easy is to construct sequentially upper (resp.
sequentially lower) semicontinuous functions on a subset which are not sequen-
tially upper (resp. sequentially lower) semicontinuous on the whole space.

Proposition 2.1. Let f : X −→ R be a function and let S be a subset of
X. If the restriction f|U of f on an open subset U containing S is sequentially
upper ( resp. sequentially lower) semicontinuous, then any extension of f|U to
the space X is a sequentially upper (resp. sequentially lower) semicontinuous
function on S.

The following lemma provides us some properties of sequentially upper and
sequentially lower semicontinuous functions on a subset.

Proposition 2.2. Let f : X −→ R be a function, S a subset of X and a ∈ R.
1. If f is sequentially upper semicontinuous on S, then

Exp ({x ∈ X | f (x) ≥ a}) ∩ S = {x ∈ S | f (x) ≥ a} .

Moreover, the trace on S of upper level sets of f are sequentially closed in
S.

2. If f is sequentially lower semicontinuous at S with respect to C, then

Exp ({x ∈ X | f (x) ≤ a}) ∩ S = {x ∈ S | f (x) ≤ a} .

Moreover, the trace on S of lower level sets of f are sequentially closed in
S.

Proof. The second statement being similar to the first, we prove only the
case of the sequential upper semicontinuity. Let

x∗ ∈ Exp ({x ∈ X | f (x) ≥ a}) ∩ S.

Let (xn)n be a sequence in Exp ({x ∈ X | f (x) ≥ a}) converging to x∗. Since
x∗ ∈ S, then by the sequential upper semicontinuity of f on S, we have

f (x∗) ≥ lim sup
n→+∞

f (xn) ≥ a.
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Thus, x∗ ∈ {x ∈ S | f (x) ≥ a}. The converse holds from the fact that

{x ∈ S | f (x) ≥ a} = {x ∈ X | f (x) ≥ a} ∩ S,

which is obvious as well as the sequential closeness in S of the trace on S of
upper level sets of f . �

The notions of upper and lower hemicontinuity are generalizations of the
notions of sequential lower and sequential upper semicontinuity respectively
when the space X is a real topological Hausdorff vector space. Recall that
f : X → R is called upper hemicontinuous at x ∈ X if the restriction of f on
any segment containing x is sequentially upper semicontinuous at x. It is called
lower hemicontinuous at x ∈ X if −f is upper hemicontinuous at x.

The notions of upper and lower semicontinuity of set-valued mappings are
the most known generalizations of the notion of continuity of functions to set-
valued mappings.

Let X and Y be Hausdorff topological spaces. Recall that a set-valued
mapping T : X ⇒ Y is said to be lower semicontinuous at x ∈ X, if for every
open subset V of Y such that V ∩T (x) 6= ∅, there exists an open neighborhood
U of x such that V ∩T (x′) 6= ∅ for all x′ ∈ U . Equivalently, T : X ⇒ Y is lower
semicontinuous at x ∈ X provided that T is continuous at x as a function from
X to the hyperspace of subsets of Y endowed with the lower Vietoris topology.
If the lower Vietoris topology is replaced by the upper Vietoris topology, then
we obtain the definition of the upper semicontinuity of T at x, see Papageorgiou
& Kyritsi-Yiallourou [19].

T is said to be lower semicontinuous on a subset S of X if T is lower semi-
continuous at every point of S.

Here we introduce a generalization of lower semicontinuity of set valued
functions when the space X is a real topological Hausdorff vector space. We say
that a set-valued mapping T : X ⇒ Y is lower quasi-hemicontinuous at x ∈ X,
if whenever z ∈ X and (λn)n a sequence in ]0, 1[ such that lim

n→+∞
λn = 0,

there exists a sequence (z∗n)n converging to some element x∗ of T (x) such that
z∗n ∈ T (x+ λn (z − x)), for every n.

The set valued function T will be said lower quasi-hemicontinuous on a
subset S of X if T is lower quasi-hemicontinuous at every point of S.

The following result shows that the notion of quasi-hemicontinuity of set-
valued mappings is also a generalization of different other notions.

Proposition 2.3. Let T : X ⇒ Y be a set-valued mapping and suppose that
one of the following assumption hold:

1. T is lower semicontinuous at x ∈ X;
2. T has a continuous selection.

Then T is lower quasi-hemicontinuous at x.

Proof. The second statement is obvious. The first comes from the fact that
T is lower semicontinuous at x ∈ X if and only if for every generalized sequence
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(xλ)λ∈Λ converging to x, and for every x∗ ∈ T (x), there exists a generalized
sequence (x∗λ)λ∈Λ converging to x∗ such that x∗λ ∈ T (xλ), for every λ ∈ Λ, see
Papageorgiou & Kyritsi-Yiallourou [19, Proposition 6.1.4]. �

Although the notion of semicontinuity of set-valued mappings is important
for the existence of continuous selections (Michael’s selection theorem), it is not
essential. This means that under additional conditions, different continuous set-
valued mappings with respect to other hyperspace topology may have continuous
selections and then, they are lower quasi-hemicontinuous. For further details
on selection theory of set-valued mappings, we refer to Papageorgiou & Kyritsi-
Yiallourou [19], Aubin & Frankowska [4], Repovš & Semenov [21].

As in Proposition 2.1, the following result shows how easy we construct lower
quasi-hemicontinuous set-valued mapping on a subset without being lower quasi-
hemicontinuous on the whole space.

Proposition 2.4. Let T : X ⇒ Y be a set-valued mapping and let S be a subset
of X. If the restriction T|U of T on an open and convex subset U containing
S is lower quasi-hemicontinuous, then any extension of T|U to the space X is a
lower quasi-hemicontinuous set-valued mapping on S.

A set-valued mapping T : E ⇒ 2E
∗
is said to be relaxed α-monotone if there

exists a functional α : E → R such that for every u, v ∈ E, we have

〈v∗ − u∗, v − u〉 ≥ α (v − u) ∀u∗ ∈ T (u) ,∀v∗ ∈ T (v) .

3. Existence results for quasi-hemivariational inequalities

For any v ∈ C, we define the following set:

Θ (v) =

{
u ∈ C | inf

v∗∈A(v)
〈v∗, v − u〉+ h (u) J0 (iu; iv − iu)− 〈Fu, v − u〉 ≥ α (v − u)

}
.

The following result should be compared with Theorem 3.1 and Theorem 3.2
in Costea & Rădulescu [9]. It provides us a result on the existence of solutions
of quasi-hemivariational inequalities.

Theorem 3.1. Let C be a nonempty, closed and convex subset of the real Ba-
nach space E which is continuously imbedded in Lp (Ω;Rn). Suppose that the
following assumptions hold:

1. there exists a compact subset K of C and v0 ∈ K such that the following
condition holds: for every u ∈ C \K, there exists v∗ ∈ A (v0) such that

〈v∗, v0 − u〉+ h (u) J0 (iu; iv0 − iu)− 〈Fu, v0 − u〉 − α (v0 − u) < 0;

2. α : E → R is a functional such that for every u ∈ C, lim
n→+∞

α(λnu)
λn

=

0 whenever (λn)n is a sequence in ]0, 1[ such that lim
n→+∞

λn = 0 and

lim sup
n→+∞

α (un) ≥ α (u) whenever (un)n is a sequence in C converging to u;
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3. A is relaxed α-monotone and lower quasi-hemicontinuous on K with re-
spect to the weak* topology of E∗;

4. h is a nonnegative sequentially lower semicontinuous functional on K;
5. F is an operator such that for every v ∈ C, u 7→ 〈Fu, v−u〉 is sequentially

lower semicontinuous on K.

Then, the quasi-hemivariational inequality problem (1.2) has at least one solu-
tion.

Proof. By using the relaxed α-monotonicity of A and the subadditivity of
the function v 7→ J0 (iu; iv), we obtain that the set-valued mapping v 7→ Θ (v)
is a KKM mapping. To do this, let {v1, . . . , vn} ⊂ C and put u0 =

∑n
k=1 λkvk

where λk ∈ ]0, 1[ for every k = 1, . . . n and
∑n
k=1 λk = 1. Assume that u0 /∈⋃n

k=1 Θ (vk), then for every k = 1, . . . n, we have

inf
v∗∈A(vk)

〈v∗, vk − u0〉+ h (u0) J0 (iu0; ivk − iu0)− 〈Fu, vk − u0〉 < α (vk − u0) .

For every k = 1, . . . n, choose v∗k ∈ A (vk) such that

〈v∗k, vk − u0〉+ h (u0) J0 (iu0; ivk − iu0)− 〈Fu, vk − u0〉 < α (vk − u0) .

Since A is relaxed α-monotone, then for every u∗0 ∈ A (u0), we have

〈v∗k, vk − u0〉+ h (u0) J0 (iu0; ivk − iu0)− 〈Fu, vk − u0〉 < α (vk − u0)

≤ 〈v∗k − u∗0, vk − u0〉.

Thus,

〈u∗0, vk − u0〉+ h (u0) J0 (iu0; ivk − iu0)− 〈Fu, vk − u0〉 < 0 ∀u∗0 ∈ A (u0) .

Since the function v 7→ J0 (iu; iv) is subadditive, then for any u∗0 ∈ A (u0), we
have

0 = 〈u∗0, u0 − u0〉+ h (u0) J0 (iu0; iu0 − iu0)− 〈Fu, u0 − u0〉

= 〈u∗0,
n∑
k=1

λk (vk − u0)〉+ h (u0) J0

(
iu0;

n∑
k=1

λk (ivk − iu0)

)

− 〈Fu,
n∑
k=1

λk (vk − u0)〉

≤
n∑
k=1

λk
(
〈u∗0, vk − u0〉+ h (u0) J0 (iu0; ivk − iu0)− 〈Fu, vk − u0〉

)
< 0.

This is a contradiction and then the set-valued mapping v 7→ Θ (v) is a KKM
mapping. Since Θ (v0) is contained in K which is compact, then by Ky Fan’s
lemma [13], we have ⋂

v∈C
Θ (v) 6= ∅.
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Now, we will prove that for every v ∈ C, we have

Θ (v) ∩K = Θ (v) ∩K.

To do this, let v ∈ C and u ∈ Θ (v) ∩ K. Let (un)n be a sequence in Θ (v)
converging to u. Let v∗ ∈ A (v) be arbitrary. We have for all n ≥ 1

α (v − un) ≤ 〈v∗, v − un〉+ h (un) J0 (iun; iv − iun)− 〈Fun, v − un〉 .

Since u ∈ K, then

α (v − u) ≤ lim sup
n→+∞

α (v − un)

≤ lim sup
n→+∞

(
〈v∗, v − un〉+ h (un) J0 (iun; iv − iun)− 〈Fun, v − un〉

)
≤ 〈v∗, v − u〉+ h (u) J0 (iu; iv − iu)− 〈Fu, v − u〉.

Thus, u ∈ Θ (v) ∩K.
Now, by using the fact that Θ (v0) is contained in K, we conclude that⋂

v∈C
Θ (v) =

⋂
v∈C

Θ (v) ,

and then, ⋂
v∈C

Θ (v) 6= ∅.

Finally, let u0 ∈
⋂
v∈C Θ (v). This means that u0 ∈ K and for every w ∈ C, we

have

inf
w∗∈A(w)

〈w∗, w − u〉+ h (u) J0 (iu; iw − iu)− 〈Fu,w − u〉 ≥ α (w − u) .

Let v ∈ C be arbitrary and define wn = u0 + λn (v − u0) where (λn)n is a
sequence in ]0, 1[ such that lim

n→+∞
λn = 0. By lower quasi-hemicontinuity of A

on K, let w∗n ∈ A (wn) be such that w∗n
w∗

−→ u∗0 ∈ A (u0). Since the function
v 7→ J0 (iu; iv) is positively homogeneous, we obtain

〈w∗n, v − u0〉 + h (u0) J0 (iu0; iv − iu0) − 〈Fu0, v − u0〉 ≥
α (λn (v − u))

λn
.

Letting n go to +∞, we obtain that

〈u∗0, v − u0〉+ h (u0) J0 (iu0; iv − iu0)− 〈Fu0, v − u0〉 ≥ 0

which completes the proof. �

The following result is a generalization of Theorem 3.2 in Costea & Rădulescu
[9]. It provides us with a second result on the existence of solutions of quasi-
hemivariational inequalities.
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Theorem 3.2. Let C be a nonempty, closed and convex subset of the real re-
flexive Banach space E which is compactly imbedded in Lp (Ω;Rn). Suppose that
the following hypotheses are fulfilled:

1. there exist a weakly compact subset K of C and v0 ∈ K such that the
following condition holds: for every u ∈ C \ K, there exists v∗ ∈ A (v0)
such that

〈v∗, v0 − u〉+ h (u) J0 (iu; iv0 − iu)− 〈Fu, v0 − u〉 − α (v0 − u) < 0;

2. α : E → R is a functional such that for every u ∈ C, lim
n→+∞

α(λnu)
λn

=

0 whenever (λn)n is a sequence in ]0, 1[ such that lim
n→+∞

λn = 0 and

lim sup
n→+∞

α (un) ≥ α (u) whenever (un)n is a sequence in C weakly con-

verging to u;
3. A is relaxed α-monotone and lower quasi-hemicontinuous on K with re-

spect to the weak* topology of E∗;
4. h is a nonnegative weakly sequentially lower semicontinuous functional on
K;

5. F is an operator such that for every v ∈ C, u 7→ 〈Fu, v − u〉 is weakly
sequentially lower semicontinuous on K.

Then the function v 7→ Θ (v) is a KKM mapping and

Exp (Θ (v)) ∩K = Θ (v) ∩K ∀v ∈ C.

If, in addition, Θ (v) has the Fréchet-Urysohn property, for every v ∈ C, then
the quasi-hemivariational inequality problem (1.2) has at least one solution.

Proof. By the same proof as in Theorem 3.1, we obtain that the set-valued
mapping v 7→ Θ (v) is a KKM mapping.

Now, let v ∈ C and u ∈ Exp (Θ (v)) ∩ K. Let (un)n be a sequence in
Θ (v) weakly converging to u. Since the compact embedding i is compact, it
maps weakly convergent sequences into strongly convergent sequences (see for
example, Renardy & Rogers [20, Theorem 8.84]). Let v∗ ∈ A (v) be arbitrary.
We have

α (v − un) ≤ 〈v∗, v − un〉+ h (un) J0 (iun; iv − iun)− 〈Fun, v − un〉 ∀n.

Since u ∈ K, then

α (v − u) ≤ lim sup
n→+∞

α (v − un)

≤ lim sup
n→+∞

(
〈v∗, v − un〉+ h (un) J0 (iun; iv − iun)− 〈Fun, v − un〉

)
≤ 〈v∗, v − u〉+ h (u) J0 (iu; iv − iu)− 〈Fu, v − u〉.

Thus, u ∈ Θ (v) ∩K.
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Suppose now that Θ (v) has the Fréchet-Urysohn property, for every v ∈ C.
Then

Exp (Θ (v)) = Θ (v) ∀v ∈ C

where the closure is taken with respect to the weak topology. Since the set-
valued mapping v 7→ Θ (v) is a KKM mapping and since Θ (v0) is contained in
K which is weakly compact, then by Ky Fan’s lemma, we have⋂

v∈C
Exp (Θ (v)) 6= ∅.

By the same arguments as in the proof of Theorem 3.1, we conclude that⋂
v∈C

Exp (Θ (v)) =
⋂
v∈C

Θ (v) ,

and then, ⋂
v∈C

Θ (v) 6= ∅.

Also, by a similar proof as in Theorem 3.1, we conclude that the quasi-
hemivariational problem (1.2) has at least one solution. �

4. Equilibrium problems versus quasi-hemivariational inequality prob-
lems and applications

Equilibrium problems are very general and they include as particular cases,
Nash equilibrium problems and convex minimization problems. Relevant appli-
cations in physics, optimization and economics are described by models based
on equilibrium problems.

Let C be a nonempty, closed and convex subset of a real topological Haus-
dorff vector space X. An equilibrium problem in the sense of Blum and Oettli
[7] (see also Alleche [1, 2], Bianchi & Schaible [6] and the references therein) is
a problem of the form:

Find u ∈ C such that Φ (u, v) ≥ 0 ∀v ∈ C (4.1)

where Φ : C × C → R is a bifunction such that Φ (u, u) ≥ 0, for every u ∈ C.
Such a bifunction is called an equilibrium bifunction.

We present in this section some results about the existence of solutions of
equilibrium problems and apply these results for solving quasi-hemivariational
inequalities.

In the sequel, we define the following sets: for every v ∈ C, we put

Φ+ (v) = {u ∈ C | Φ (u, v) ≥ 0}

and
Φ− (v) = {u ∈ C | Φ (v, u) ≤ 0} .

Recall that a function f : C → R is said to be
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1. semistrictly quasiconvex on C if, for every u1, u2 ∈ C such that f (u1) 6=
f (u2), we have

f (λu1 + (1− λ)u2) < max {f (u1) , f (u2)} ∀λ ∈ ]0, 1[ .

2. explicitly quasiconvex on C if it is quasiconvex and semistrictly quasicon-
vex (see for example Avriel, Diewert, Schaible & Zang [5]).

The following result extends the well-known Ky Fan’s minimax inequality
theorem (see Fan [14], Kassay [15], Konnov [16]) for sequentially upper semi-
continuous bifunctions on their first variable on a subset of a real Banach space.

Theorem 4.1. Let C be a nonempty, closed and convex subset of the real Ba-
nach space E. Let Φ : C × C −→ R be an equilibrium bifunction and suppose
that the following assumptions hold:

1. Φ is quasiconvex in its second variable on C;
2. there exists a compact subset K of C and v0 ∈ K such that

Φ (u, v0) < 0 ∀u ∈ C \K;

3. Φ is sequentially upper semicontinuous in its first variable on K.

Then the equilibrium problem (4.1) has a solution.

Proof. Since Φ is an equilibrium bifunction, then Φ+ (v) is nonempty and
closed, for every v ∈ C.

By quasiconvexity of Φ in its second variable, the mapping v 7→ Φ+ (v) is a
KKM mapping (see for example, Alleche [2], Bianchi & Schaible [6], Fan [13, 14],
Kassay [15]), and since Φ+ (v0) is contained in the compact subset K, then by
Ky Fan’s lemma, we have ⋂

v∈C
Φ+ (v) 6= ∅.

On the other hand, we have⋂
v∈C

Φ+ (v) =
⋂
y∈C

(
Φ+ (v) ∩K

)
.

Since
Exp

(
Φ+ (v)

)
= Φ+ (v) ∀v ∈ C,

then by Proposition 2.2, we have

Φ+ (v) ∩K = Φ+ (v) ∩K ∀v ∈ C.

Thus, ⋂
v∈C

Φ+ (v) =
⋂
v∈C

Φ+ (v) 6= ∅

which completes the proof. �
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As well-known in the literature, the equilibrium problem (4.1) can be also
solved when the bifunction Φ is not upper semicontinuous on its first variable.
In this case some additional conditions are needed.

The bifunction Φ : C × C −→ R is said to be pseudomonotone on C if

Φ (u, v) ≥ 0 =⇒ Φ (v, u) ≤ 0, ∀u, v ∈ C.

The following result extends (under the settings of the real Banach space E)
some results of Alleche [2], Bianchi & Schaible [6] on the existence of solutions
for pseudomontone equilibrium problems.

Theorem 4.2. Let C be a nonempty, closed and convex subset of the real Ba-
nach space E. Let Φ : C × C −→ R be an equilibrium bifunction and suppose
that the following assumptions hold:

1. Φ is pseudomonotone on C;
2. there exists a compact subset K of C and v0 ∈ K such that

Φ (u, v0) < 0 ∀u ∈ C \K;

3. Φ is upper hemicontinuous in its first variable on K;
4. Φ is explicitly quasiconvex in its second variable on C;
5. Φ is sequentially lower semicontinuous in its second variable on K.

Then, the equilibrium problem (4.1) has a solution.

Proof. By the same proof as in Theorem 4.1, we obtain that⋂
v∈C

(
Φ+ (v) ∩K

)
=
⋂
v∈C

Φ+ (v) 6= ∅.

Since Φ is sequentially lower semicontinuous in its second variable on K, then
by applying Proposition 2.2, we have

Φ− (v) ∩K = Φ− (v) ∩K ∀v ∈ C.

From pseudo-monotonicity, we have Φ+ (v) ⊂ Φ− (v), for every v ∈ C. It follows
that ⋂

v∈C

(
Φ+ (v) ∩K

)
⊂
⋂
v∈C

(
Φ− (v) ∩K

)
.

By using the the hemicontinuity of Φ in its first variable on K and the explicit
quasi-convexity (see Alleche [2, Lemma 2.4]), we have⋂

v∈C

(
Φ− (v) ∩K

)
⊂
⋂
v∈C

Φ+ (v) .

A combination of the above statements yields⋂
y∈C

Φ+ (y) =
⋂
y∈C

Φ+ (y).
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This completes the proof. �

Of course, Theorem 4.1 and Theorem 4.2 remain true if the real Banach
space E is replaced by a real topological Hausdorff vector space such that the
subset C is a Fréchet-Urysohn space.

Now we apply the above theorems to derive results on the existence of solu-
tion of quasi-hemivariational inequalities.

Define the equilibrium bifunction Ψ : C × C → R by

Ψ (u, v) = inf
v∗∈A(v)

〈v∗, v − u〉+ h (u) J0 (iu; iv − iu)− 〈Fu, v − u〉.

Although we are aware of the intrinsic properties of the generalized direc-
tional derivative, we do not know if Ψ satisfies any condition of continuity or
of convexity in its first or second variable. In other words, even under assump-
tions of Theorem 3.1 and Theorem 3.2, it is not clear whether Ψ satisfies any
condition of Theorem 4.1 or Theorem 4.1.

The following result provides us with a a sufficient condition for solving the
quasi-hemivariational inequality problem (1.2). Note that the concept of relaxed
α-monotonicity is no longer needed.

Theorem 4.3. Let C be a nonempty, closed and convex subset of the real Ba-
nach space E. Suppose that A is lower quasi-hemicontinuous on K with respect
to the weak* topology of E∗. If the equilibrium problem

find u ∈ C such that Ψ (u, v) ≥ 0 ∀v ∈ C

has a solution, then the quasi-hemivariational inequality problem (1.2) has a
solution.

Let us point out that by a classical method, we can also define an equilibrium
bifunction Ψ : C × C → R as follows:

Ψ (u, v) = sup
u∗∈A(u)

〈u∗, v − u〉+ h (u) J0 (iu; iv − iu)− 〈Fu, v − u〉.

Clearly, any solution of the quasi-hemivariational inequality problem (1.2) is a
solution of the equilibrium problem

Find u ∈ C such that Ψ (u, v) ≥ 0 ∀v ∈ C. (4.2)

The converse do not hold easily as in Theorem 4.3 and it seems to need additional
conditions on the values of the set-valued mapping A.
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