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Abstract

We extend basic regularity of the free boundary of the obstacle prob-
lem to some classes of heterogeneous quasilinear elliptic operators with
variable growth that includes, in particular, the p(z)-Laplacian. Under
the assumption of Lipschitz continuity of the order of the power growth
p(x) > 1, we use the growth rate of the solution near the free bound-
ary to obtain its porosity, which implies that the free boundary is of
Lebesgue measure zero for p(x)-Laplacian type heterogeneous obstacle
problems. Under additional assumptions on the operator heterogeneities
and on data we show, in two different cases, that up to a negligible singular
set of null perimeter the free boundary is the union of at most a countable
family of C' hypersurfaces: i) by extending directly the finiteness of the
(n — 1)-dimensional Hausdorff measure of the free boundary to the case of
heterogeneous p-Laplacian type operators with constant p,1 < p < oo; 1)
by proving the characteristic function of the coincidence set is of bounded
variation in the case of non degenerate or non singular operators with
variable power growth p(z) > 1.

1 Introduction

In [2] Caffarelli remarked that the quadratic growth of the solution from the
free boundary of the obstacle problem for the Laplacian implies an estimate of
the (n — 1)-dimensional Hausdorff (H"~!) measure of the free boundary and a
stability property. This result has a simple generalization to second order linear
elliptic operators with Lipschitz continuous coefficients and regular obstacles,



as observed by one of the authors in [23], page 221. This generalization allows
the extension of those properties to the free boundaries of C1:! solutions of the
obstacle problem for certain quasilinear operators of minimal surfaces type (see
Theorem 7:5.1 of [23], page 246). These results are important since they are first
steps for the higher regularity of the free boundary in obstacle-type problems
(see the recent monograph [22] for problems with Laplacian).

In an earlier work [I] in the framework of homogeneous non degenerate
quasilinear operators that allow solutions to the obstacle problem with bounded
second order derivatives, Brézis and Kinderlehrer have obtained the first result
on the regularity of the free boundary in any spatial dimension: under a nat-
ural nondegeneracy condition on the data, the coincidence set of the solution
with the obstacle has locally finite perimeter (see Corollary 2.1 of [1]). As an
important consequence, by a well-known result of De Giorgi (see [12], page 54),
the free boundary d{u > 0} may be written, up to a possible singular set of
null perimeter (i.e. of |[Vx{u>o0}|[-measure zero) as a countable union of C!
hypersurfaces.

On the other hand, it was shown by Karp, Kilpeldinen, Petrosyan and
Shahgholian [I5], for the p-obstacle problem, with constant p,1 < p < oo,
that the free boundary is porous with a certain constant 6 > 0, that is, there
exists 7o > 0 such that for each € 0{u > 0} and 0 < r < r¢, there exists a
point y such that Bs,(y) C By(x)\ 9{u > 0}. The porosity of the free boundary
is a consequence of the controlled growth of the solution from the free bound-
ary. This interesting property was also established in [4] in the p(z)-Laplacian
framework and is now extended here to the more general class of heterogeneous
quasilinear degenerate elliptic operators in Sobolev spaces of variable exponent
p(x),1 < plz) < oo.

However, porosity is only a first step in the regularity of the free boundary
and, for instance, does not prevent it of being a Cantor-type subset. But since
a porous set in R”™ has Hausdorff dimension strictly smaller that n (see [20]
or [27]), it follows that the free boundary has Lebesgue measure zero, which
allows us to write the solution of the obstacle problem as an a.e. solution of
a quasilinear elliptic equation in the whole domain involving the characteristic
function x>0} of the non-coincidence set (see Theorem 3.1 below, that extends
earlier results in [3] and [4], respectively, for the A-obstacle and p(x)-obstacle
problems). This property is important to show, under general nondegeneracy
assumptions on the data, the stability of the non-coincidence set in Lebesgue
measure as a consequence of the continuous dependence of their characteristic
functions. As a consequence of our results, we can extend this property to more
general quasilinear obstacle problems, including for instance, Corollary 1.1 of
[6], Theorem 4 of [24] and Theorem 2.8 of [25].

Hausdorff measure estimates were obtained directly for homogeneous non-
linear operators of the p-obstacle problem (2 < p < 0o0) by Lee and Shahgholian
[17], for general potential operators by Monneau [19] in a special case corre-
sponding to an obstacle problem arising in superconductor modelling with con-
vex energy, and by three of the authors in [6] to the so called A-obstacle in
Orlicz-Sobolev spaces, that includes a class of degenerate and singular elliptic



operators larger than the p-Laplacian (1 < p < o00). Essentially with similar
estimates obtained in [6], the later work [28] reobtained the same results for
a slightly different class of homogeneous quasilinear elliptic operators that in-
cludes also the p-Laplacian case.

As it is well-known from geometric measure theory, the importance of the
estimate on the (n — 1)-dimensional Hausdorff measure of the free boundary lies
in the fact that, by a result of Federer, it implies that the non-coincidence set
{u > 0} is a set of locally finite perimeter. A main result of our present work is
the extension of properties on the H™~!-measure of the free boundary to a more
general class of heterogeneous quasilinear elliptic operators which includes a non
degenerate variant of the p(x)-Laplacian and extensions of the heterogeneous
p-Laplacian with 1 < p < oo constant. The first result, following the Brézis and
Kinderlehrer approach, will be a consequence of the new result, even for linear
operators, on the local bounded variation of the coincidence set in the heteroge-
neous obstacle problem. By well known results, the estimate on the perimeter
of the (free) boundary is equivalent to the H"~!-measure of the essential (free)
boundary, which is also called the measure-theoretic (free) boundary (see [§],
page 208). The free boundary points that are not in the essential free boundary
have ||Vx{y4>0} [-measure zero or, equivalently, null perimeter. In the second case
of a possibly degenerate or singular heterogeneous operator with p constant we
extend the Caffarelli direct approach following the developments of [17] and [6].
However, we were unable to prove this for the case of the p(x)-obstacle problem,
though we conjecture its essential free boundary has still finite "~ '-measure
under similar assumptions.

Unlike the classical obstacle problem that admits C1'! solutions, where the
extensions of the regularity of the free boundary from the Laplacian to the min-
imal surface type heterogeneous operators were simpler and did not require a
new technique, the passage from the homogeneous case to the quasilinear het-
erogeneous obstacle problem raises several nontrivial difficulties. In particular,
one has more a complicated form of the Harnack inequality, when we pass from
the p-Laplacian to the variable p(z)-type operators, which seems is not appli-
cable to the analysis of the free boundary regularity in the general framework
that we now describe.

Let Q be a bounded open connected subset of R”, n > 2, f € L>°(Q) and
g € WhPO)(Q) N L>®(Q), g > 0. We consider the quasilinear obstacle problem
(a(+)-obstacle problem) with a zero obstacle:

Au = div(a(z,Vu)) = f(x) in {u> 0},
u>0 in €,
u=g on Of,

where we denote by {u >0} :={z € Q: wu(z) > 0} the non-coincidence set.

The weak formulation of this problem is given by the following variational



inequality

Find u € K, such that :

(P) /Q(a(xNu) V(v —u) +f(x)(v—u))dx >0  Wek,,

where K, ={veW'O(Q) : v-ge Wol’p(')(Q)7 v=20 ae inQ} pis
a measurable real valued function defined in ) and satisfying for some positive
numbers p_ and p4

1<p_<pz)<py <oo, zell (1.1)

The space W, P () is defined as the closure of C§°(€2) in W1P()(Q), where
W1P()(Q) is the variable exponent Sobolev space

WO (Q) = {u e POQ) : Vue (Lp(‘)(Q))n}

and LPO)(Q) = {u : Q — R measurable : p(u) = / lu(z)|P®) da < oo }
Q

is equipped with the Luxembourg norm
ull o) = inf {/\ >0 plu/N) <1 }
Wl’p(')(Q) is equipped with the norm

[ullwroer = llullzee + Vel poe,

where
n

IVall ooy =D

=1

ou
ox i

Lr()

By B, (x) we shall denote the open ball in R™ with center « and radius r. The

conjugate of p(x), defined by p(pgf)zll, will be denoted by ¢(z). If the center of a
ball is not mentioned, then it is the origin.

We assume that the function a :  x R® — R™ is such that a(z,0) = 0 for
a.e. x € (), and satisfies the structural assumptions with x € [0,1] and some

positive constants cg, ¢1, ¢z, namely [9]

" da; p(z)-2
Zafn(ffm)fiszco(ﬁ-FmF) e, (1.2)
ig=1 "

n 8ai p(z)—2

> (G| < cato ) (13
ij=1 J




fora.e.z € Q,a.e.n= (m,n2,...,M,) € R®"\{0} and for all £ = (&1,&2,...,&,) €
R”, and

|a($1>77) —a(332»77)‘ (14)
p(z1)—1 p(zg)—1

< eofar =@l [+ ) TET (s ) TE ] (14 (s + nf) 2],

for x1,29 € Q, n € R™\ {0}.
Remark 1.1. Assumptions (1.2), (1.3) imply [7], [26], for some positive con-

stants c3, ¢4 and cs
a(@,8) - £ = cs(k+ 6P and  a(, )| < calr + €))7 2.

We therefore include the quasilinear operator
9 p(x)—2
Au = div (M(l‘)(ﬁ + |Vul?) 2 Vu). (1.5)

for a bounded Lipschitz positive function or definite positive matriz M(x) uni-
formly in x € Q.

Remark 1.2. The special case k = 0 corresponds to the heterogeneous p(x)-
Laplacian operator, which is singular for p(x) < 2 and degenerate for p(x) >
2. Note that requires p(xz) to be also Lipschitz continuous (see condition
). In the case of the heterogeneous p-Laplacian, corresponding to the case

p— =py =pin (1.1)), with a Lipschitz coefficient M (x) the assumption (1.4]) is
satisfied without the logarithm term and reduces, for all x1,x4 € €, to
la(z1,m) — a(w2,n)| < calar — xo||nP~
First, we recall the following existence and uniqueness result [11], [25].

Proposition 1.1. Assume that f € L1)(Q) and g € WP (Q)NL>®(Q). Then
there exists a unique solution u to the problem (P).

We may prove the following proposition exactly as in Proposition 1.2 of [4].

Proposition 1.2. If u is the solution of (P) then

i) f20imnQ = 0<u<]|glpe in .
ii) Au= f in D' ({u > 0}).
ii1) fxqu>0y < Au < f a.e. in Q.

Remark 1.3. Equation ii) and inequalities iii) of Proposition were estab-
lished in [25]], in the framework of entropy solutions, under the condition:

essirelsf)(ql(x) — (p(x) — 1)) > 0, where g1 (z) = % and qo(x) = 7228) p;__l.




Remark 1.4. If f > 0 in Q or f € L2 (), we know from Propositz'on

loc

that u is bounded and Au is locally bounded in Q. Moreover, if p(x) is Holder

continuous, and a(x,§) satisfies (1.2)-(1.4), then we have [9], u € C’ll.gg‘(Q), for
some « € (0,1).

In this work we extend classical local properties of the solution and of its free
boundary to this more general framework. For x = 0, in section 2, we establish
the growth rate of a class of functions to the heterogeneous case and, in section
3, we obtain the exact growth rate of the solution of the problem (P) near the
free boundary, from which we deduce its porosity. These results extend those
for the p-Laplacian [15] and for the p(z)-Laplacian [4]. As a direct consequence,
the first inequality of i) of Proposition is in fact an equation:

Au = fX{us0y a.e.in .

In section 4, also with x = 0 and constant exponents 1 < p < oo, we obtain
directly the finiteness of the "~ !-measure of the free boundary for a larger class
of p-obstacle type problems that includes degenerate or singular heterogeneous
operators, which dependence on = has bounded second order derivatives. Finally,
in the case k > 0, in section 5, we extend a second order regularity result for the
solution of the Dirichlet problem to the class of quasilinear operators following
[5]. This is used in section 6 to obtain, in that case with x > 0, the local
bounded variation of Au for the solution u of the respective obstacle problem,
which generalizes the bounded variation estimates of [I] and yields the control
of the H" !-measure of the essential free boundary, under the nondegeneracy
assumption on f.

2 A class of functions on the unit ball

In this section we assume that x = 0, and in all what follows we assume that p
is Lipschitz continuous, that is, there exists a positive constant L such that

Ip(z) —p(y)| < Llz —y|  Vz,y € Q. (2.1)

We study a family F, = F,(n,co,c1,c2,p—, p+, L) of solutions of problems de-
fined on the unit ball By. More precisely, u € F, if it satisfies:

u e WhpO)(By), u(0) =0,
0<u<1 inBi, 1A oo (1) < 1.

Condition u(0) = 0 makes sense, since from [9] we know that u € Cllo’f(Bl),
for some a € (0,1). In particular, there exist two positive constants a =
a(n,co,c1,c2,p—,py, L) and C = C(n, ¢y, c1,2,p—, P+, L) such that

||u||01,a(§3/4) < C, Yu € Fa. (2.2)

The following theorem gives a growth rate of the elements in the class F,.



Theorem 2.1. There exists a positive constant Coy = Co(n, g, c1,¢2,p—, D4, L)
such that, for every u € F,, we have

0 < u(z) < Colz|?, Vx € By,

where gy = ——2 1 is the conjugate of po = p(0).

Po —
Let us first introduce some notations. For a nonnegative bounded function

u, we define the quantity S(r,u) = sup u(z). We also define, for each u € F,
z€B,

the set
M(u) = {j e N: 22827771 u) > S(277 u)}.
Then we have

Lemma 2.1. I[fM(u) # (), then there exists a constant ¢y depending only on n,
co, €1, C2, P—, P+ and L such that

S(2777 1 u) < Ep(279)%, Vu € F,, Vje€ M(u).

Proof. Arguing by contradiction, we assume that Vk € N there exists uy € F,
and ji € M(uy) such that

S(279k 7 ) = k(279%) D0, (2.3)
Consider the function ]
on(z) = ug(2779%x)
TS )

defined in Bj;. By definition of v and M(uy), we have

S(Q_jk,uk) a .
Ogvk\m<2o in By,
sup wvi(z) =1, v (0) = 0.

I€§1/2

) 2k
Now, let pi(x) = p(27%x), s, = Se T ay’ and define for (z,£) € By x R"

_ . 1

@ (@) = s a2, ). (2.4)

We claim that
|Agvg ()| == |div(a®(z, Vo (2)))] = 0 as  k — oo. (2.5)

Then one can easily verify that
Agoy(x) = 279D Ay ) (270 )
+ 279k (In(s3,)) 2 (270 e, Vg, (2790 2) ) Vp(2 9k ).



Using the structural assumptions (second inequality in Remark and the fact
that up € Fo, and |Vp|e(q) < L (by (2.1)), this leads to

| Ao ()] < 2798 P70 g L2790 In(sy,) s ) Wy (270 ) [Pr@) -1,

Since up > 0 in By, ug(0) = 0, and u, € C'(Bs,4), we have Vuy(0) = 0.
Combining this result and (2.2), we get

VkeN, Vo€ By |Vup(277%x) <C(279)".
It follows that

|Agvg(z)] < 27PN (1 4 ¢ L(C)PH @1 In(sy,) | (277%)*Pr@)=D) - (2.6)

Note that S(277% 1 ug) = ug(zp), for some zj, € By—j,—1. Since u(0) = 0 and
u € C'(B3,4), we deduce that

S(2_jk_1,uk) < C‘Zkl < 02_jk_1.
Consequently, we obtain

2=k 2=k 2
TSy T Cc2t o

We recall from [4] that there exist positive constants ¢; = é1(«, po, 1) and é; =
éo(a, L, po, pt) such that

Co

—Jr\o T)— 61
[In(si)|(2774)7x@ D) .

= kodpo—1)2
which together with (2.6]) gives (2.5).

Lemma 2.2. With the notation above, the mapping ak(x,f) defined in (2.4))
satisfies all structural conditions (with the same constants as a(x, &) ). Moreover,
we have uniformly in (x,§) € By x By, for any M > 0

and 2_j’“5§’“(m)_1 <

Vk €N,

da¥
<Lp,—0 as k— oo (2.7)
3xj
Proof. 1t is easy to see that
- aaf " (z)—1 1 Gai s 1
(@, n&& = sp" — 527z, —n)&ig;
i,jzzl onj ! Z.J.Zzl § sk, On; Sk J
(2)-2
> o2 L[ g

coln|P* )2 |¢ .



n

" | dak ’ pr(a)—1 1 |0a; ;1
x, = s 27Tk, —
;1 o, @) 2y 677]( 7
(z)—2
< eer@=2|n]"

= cqfplre) 2

Now, to prove (2.7, we use the second inequality in Remark and (|1.4)

aa? _ 0 pr(z)—1 —Jk 1
drj| ‘%J( ai(2 kx’&cg))‘
z)— i 1
< PO e e
g pr(a)—1| 0 g, L
T Ol
pr(z)—1
< g L2779k p"(ﬁ) 1|1n |‘
pk(l’
+ 2622_j’“s£k(x)_1 £ ln‘ £
Sk

= <c4L2J‘k|1n(sk)| + 25277 | In |||) [
Sk
On the other hand,

—j x)— 6 —Jk x)—
279k |g[P+() 1}1n\§|| = 27| In(lg]) — In(sy)]

< 27O )
27 (s g7

+

The first term uniformly goes to zero (for (z,£) € By x By, for any M > 0) when
k — oo. Since 277%|In(sy)| — 0 as k — 0 ([4]), so does the second term. O

Therefore, the pointwise limit of a*(z,¢) does not depend on :

a*(z,€) = a(g),

where @ is a vector field satisfying the same structural assumptions (1.2)), (1.3),
with p(z) replaced by pg = p(0).

Conclusion of the proof of Lemma[21] By taklng into account the uniform

bound of vy, , and the fact that p; satisfies and ( . ) with the same
constants, we deduce [9) that there exist two positive constants § and C, inde-

pendent of k, such that vy € C1(Bj,4) and ||kacl,5(§3/4) < C, for all k > ko.
It follows then from the Ascoli-Arzella’s theorem tl@t there exists a subse-
quence, still denoted by vy, and a function v € C19 (Bs)4) such that vy — v



in 0176/(§3/4)7 for any ¢’ € (0,9). Moreover, it is clear that v satisfies (in the
weak sense)

div(a(Vv)) =0 in By, v>0 in By,
sup v(z) =1, v(0) = 0.
xEBl/Q

By the strong maximum principle (see [I4], for instance) we have necessarily

v =0 in Bs/, which is in contradiction with sup wv(x) = 1.
1631/2
O

Proof of Theorem 2.1. The theorem is proved by induction. Using Lemma [2.1}
the proof follows step by step as the one of Theorem 2.1 of [4] O

3 Porosity of the free boundary for x =0

In this section we also assume x = 0 and that there exist positive constants A,
A, such that,

0<A<f<A<o0, ae infd (3.1)

The following lemma and Theorem [2.1|give the exact growth rate of the solution
of the problem (P) near the free boundary. This extends to the heterogeneous
a(x,n)-case with k = 0 the results established in [2] for the Laplacian and
generalized in [I5] for the p-Laplacian, as well as for the A-Laplacian in [3] and
for the homogeneous p(x)-Laplacian in [4].

Lemma 3.1. Suppose that u € Wl’p(')(Q) is a nonnegative continuous function
satisfying
Au=f in D'({u>0}).

Then there exists r > 0 such that for eachy € {u > 0} andr € (0,7,) satisfying
B,.(y) C Q, we have for an appropriate constant C(y) > 0

(®)
sup u > C(y)rﬂpyffl + u(y).
3Br(y)

Proof. Tt is enough to prove the result for y € {u > 0}. For each y, we consider
the function defined by

p(y)
o) = v(x,y) = Cly)|x — |79,

where C(y) is to be chosen later.
We claim that there exists r, > 0 such that

vr e (0,ry), VYyeQ, Vae B,.(y) CQ Av < A (3.2)

10



To prove (3.2), we compute Vv and the divergence of a(z, V,v):
div (a(z, Vo)) = div (a(z, C(y)q(y)lz — y|"™ > (x - y))
2 8ai ~ aai awj
- 2 a—xl(:mw) + igl afnj(x,w) T (x)

n 8ai _ -
= 5 T CWa)le —y™72 Y (&j
i=1 v

ij=1
(zi —yi)(x; — yj)> da;

|z —y/? on;’

+ (¢(y) —2)
where w(z) := C(y)q(y)|z — y|*¥ (2 —y).
Therefore, using the structural assumptions (|1.3] . ., we get
|div(a(z, Vv))| < 2¢|w[P™) 7 In |w|

z)—1 — z)— —
+ ¢pmax(1,q(y) — 1)(C(y)q(y))p( ) |z — y| (@@ =D (@) =2)+a(y) -2
=: 51+ 5.

To estimate S, we write

Sy 2¢2|w[P®) 7 In(Jw|)|
265 (C(y)a(y))" o — y| P DU D10 (C(y)q(y)) + (aly) — 1) In]e - g
2e5(q(y))" 7 (C ()" o — y|P@ DO D 10 (C(y)g(y)) ]

+2¢2(g(y) — 1) (C(y)g()) "™ o — y|P@ D@D In(jz — y))|

N

Since rInr — 0, when r — 0, then S; can be made as small as we wish, if z is
close to y, and C(y) is small enough. To estimate Sa, we first observe that

(2 — D@ -2am)=2 _ |5y P

and for |x — |<r< 1 we have
o — | pE-p@) . )2 W) 1n(|jz—y|) < eﬁlw—y\\lnqw—ym < eﬁﬂln(r)l,
and since
Sy = cimax(l,q(y) — 1)(0(y)q(y))p(z) 1| —y\%

xz)—1 L__r|In(r
< ermax(l,q(y) - 1)(Cly)a(y))" " e,

Sy also can be made small, if » and C(y) are small enough.
It is clear now that (3.2) holds.

Now let € > 0 and consider the following function u.(x) = u(x) — (1 — €)u(y).

11



We have from (3.1))-(3.2)

Auc=Au=f>2A>Av in B.(y)N{u> 0}

Moreover,
ue=—(1—-euly) <0<v on (0{u>0})NB.(y).

If we also have
ue<v on (9B.(y))N{u >0},

then we get by the weak maximum principle
ue<v in B.(y)N{u>0}.

But u(y) = eu(y) > 0 = v(y), which constitutes a contradiction.
So there exists z € (0B, (y)) N {u > 0} such that u.(z) > v(z). Since v is radial,

we get

sup (- (1—u(@) = sup ue>  sup e > ue(2)
9B (y) 9B (y) 9B (y)N{u>0}

)
> v(2) = Cly)rt=T.
Letting € — 0, we get
()

sup u > sup u = C(y)rr®-1 + u(y).
B, (y) 0Br(y)

O

Denoting by u the solution of the problem (P) of the Introduction, we may
now prove the main result of this section: the porosity of the free boundary
H{u >0} N
We recall that a set £ C R is called porous with porosity 9§, if there is an rg > 0
such that

Vee E, Vre(0,79), Jye€R"™ suchthat Bs.(y)C Br(x)\E.

A porous set of porosity § has Hausdorff dimension not exceeding n—cé"™, where
¢ =c(n) > 0 is a constant depending only on n. In particular, a porous set has
Lebesgue measure zero (see [20] or [27] for instance).

Theorem 3.1. Let r, be as in Lemma .1 R € (0,7.) and zo € Q such that
Byg(xo) € Q. Then d{u > 0} N Bgr(xg) is porous with porosity constant de-
pending only on n,p_,py, L, co,c1,¢c2, A\, A, R, and ||g||p=. As an immediate
consequence, we have

Au= fX{us0y a-e. in Q.

We need first a lemma.

12



Lemma 3.2. Let R > 0 and xg € Q such that Byr(zo) C Q2. We consider, for

Yo € Bar(zo) N{u =0} and M > 0, the functions defined in By by

_ _ u(yo + Rz)
= M = . .
a(zag) a(yO +']%27 5)7 U(Z) MR (3 3)
Then we have u € Fz, for all R < Ry = % and M > My = %, where Fz s
defined as in Section 2 with the operator corresponding to a.

Proof. First, note that @ and u are well defined, since we have Bgr(yy) C

Bsgr(zg) C 2. Moreover, we have 4(0) = (o) =0, and for M > ”gLLm, we

MR
have 0 <u < 1in Bj.
Note that a(z, £) satisfies all structural conditions (not necessarily with the same
constants as for a) with p(z) := p(yo + Rz) instead of p.
Next, one can easily verify that @ satisfies

Au = div(a(z, Vu(z)))
= div(a(yo + Rz, Vu(yo + Rz)))
= R(Au)(yo+ Rz) < RAK1

ifR< Ry = %, and we conclude that u € F5 for all M > My and R < Ry. O

Proof of Theorem . Now, to prove the theorem, we argue as in [4]. Let 7.
be as in Lemma and R, = min(r,, Ro). Let then R € (0, R.) be such that
Byg(zg) C Q, and let x € E = 0{u > 0} N Br(xo). For each 0 < r < R, we

have B, (z) C Bag(zo) C Q. Let y € 9B, (x) such that u(y) = sup wu. Then we
9B, (z)

have by Lemma [3.1]

(z) (x)
u(y) = Clhrato—T + u(z) = ClratoT. (3.4)
Hence y € Bag(zo) N{u > 0}. Denoting by d(y) = dist(y, Bar(zo) N {u = 0})
the distance from y to the set Bagr(zo) N {u = 0}, we get from Lemma and
Lemma for a constant C

p(yo)
u(y) < Co(d(y))reo=T. (3:5)
Then we deduce from (3.4)-(3.5]) that
(2) (vg)
Corit=T < uly) < Co(d(y)) 7o), (3.6)

which, by using the Lipschitz continuity of p(x), leads to (see the proof of
Theorem 3.1 in [4])
d(y) > or,

where > 0 is some constant smaller than one and depending only on n,p_, p4, L,
o, C1,¢2, A\, A, R, and ||g]| o
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Let now y* € [x,y] such that |y — y*| = dr/2. Then we have [4]
By, (5") C Bsr(y) 0 Bu(o).

Moreover, we have
Bsr(y) N B(z) C {u> 0},

since Bs,(y) C By (y) C {u > 0} and d(y) > 7.
Hence we obtain

Bs,(y") C Bsr(y) N Br(z) C Br(x) \ 0{u > 0} C B (x) \ E.

O

Note that as a consequence of Theorem and Lemma we may also

obtain a more explicit growth rate of the solution u of the problem (P) near the
free boundary.

Proposition 3.1. Let Ry > 0 be as in Lemma 3.2, R € (0, Ry) and xq €0

such that u(xg) = 0 and Bygr(xo) C Q. Then there exists a positive constant Cy
depending only onn, p_,py, L, A, co, c1, c2, and ||g||L~ such that we have

~ p(zg)
u(z) < Colz — xo| == Va € Bp(xo).

Proof. Let R and xy be as in the proposition. Consider the functions a(y,§)
and 4(y) defined in Lemma for M > 0. By Lemma there exists My
such that for all M > My we have @ € F;. Applying Theorem for M = M,
and R = Ry, we obtain for a positive constant Cy > 0 depending only on n,
p—ap-‘r?La Co, C1, C2 .

a(y) < Colyl 5 vy e B,

Taking y = l“;iozo‘ for x € Br(xo), we get

CoMyR, (zg) C. _p(zg) - p(zg)
u() < QMR ettt = Collallee S Gl — ol
ROP(EO)*l Réﬂ(mo)*l

O

4 The Obstacle Problem of p-Laplacian Type in
a Heterogeneous Case

In this section we consider still the case of k = 0 and we assume the exponent p
is a constant, 1 < p < oco. For simplicity, since the results are local, we restrict
ourselves to the unit ball, and assume that

0<f<A<oo ae. in By, (4.1)

14



and additionally, Vf € MJ' (B1), which means that there exists a positive
constant Cp such that

/ |V fldx < Cor™ ', Vr e (0,3/4). (4.2)
In particular (4.2)) is satisfied, if f € C%1(By).

We assume that a satisfies (1.2) for k = 0, and satisfies for two positive
constants cg and cq, for a.e. (z,n) € Q x R".

n 82ai B
> |gopten| < cla ™, (4.3
ij=11"""""
n

82ak _
> || < clu (4.4
i,gk=11""17

Note that (4.4) implies (1.3)) and that (4.3 implies that a satisfies

n

>

ik=1

Oa _
s wn)| < el (45)

which is the equivalent of (1.4)), when p is constant, as in Remark 1.2.

4.1 Some auxiliary lemmas for a class of functions on the
unit ball

We consider the solutions of the following class of problems

u € WHP(By) N CH(By),

div (a(z, Vu(z))) = f(z) in {u >0} N By,
0<u<M,in By,

0 € 9{u > 0},

f'.a(‘) :

where M is a positive constant.

We introduce for each € € (0, 1), the unique solution of the following approx-
imating problem

uc —u € Wy P(By), (4.6)

div (ae(x,Vue)) = fH.(u.) in By, '

where H, is an approximation of the Heaviside function defined by H,(v) :=
+
v

min(1, *-), and a. is given by:

p=2

€Co n
ac(z,m) :=a(x,n)+7(6+\77|2) T, v €Q,neERN

15



Note that a. satisfies (|1.2] . . ) for k = €, because a satisfies the same inequal-
ities for k = 0. Moreover taking into account ( . ., we can easily verify
that we have for a.e. (z,n) € Q@ x R"

", | da. oot
> 35(%77)‘ <cale+ )T, (4.7)
ik=1 v
= azaei p_1
) am@x,(%ﬁ)‘ <csle+nl*) =, (4.8)
Q=1 i
52a€k
(e < eale ) (19)
eruil on;0x;

First, we observe [7], [26] that there exist two constants a € (0,1) and
My > 1 depending only on n, p, cg, c¢1, c2, A, and My such that u, € Clloco‘( 1)
and

||U6H01,u(§3/4) < M. (4.10)

In particular, if we set t. = (€ +|Vu|?)'/2, then we can assume without loss of
generality, that
[tell oo (By,0) < M- (4.11)

Adapting part of the proof of Proposition 2.1 in [6], we see that there exists a
subsequence, still denoted by u. such that

Ue = u in C’llo’f(Bl) for all 8 € (0, ). (4.12)
Moreover, we know from Theorem [£.1] that
ue € W22 (Bsy). (4.13)

For each r € (0,1/2) and € € (0, 1), we introduce the following quantity
1 p=
E.(r,v) = —/ [(e+ |V1)|2)T2|D2v\]2
1B:| /B,

The first result is an estimate of E(1/2,u.).

Lemma 4.1. Assume that p is constant, f satisfies (4.1)-(4.2), and that a
satisfies (1.2)-(1.3]) for k =0, and (4.3)-(4.4). Then we have for any € € (0,1)

3" (4ch v/ + c4)? + 2c3¢)

E(1/2,ue) < te| 3 Y
( / ,u) an min(1,p — 1) | 3/4|H ||L (Bs/4)
N /
+ - tells oo V fldzx. 4.14
(L p—D[Baa] e [ 19 (4.14)

To prove Lemma we need the following lemmas:

16



Lemma 4.2. Let G be a smooth odd nondecreasing function, and { a nonneg-
ative smooth function with compact support in By. Then we have

/ ¢ ZG’ (e, 2 Vttey, |*da
B 5

<Vney | (Gt 2D u| V(| da
B1

tez [ GG Vet ey | G2 Du|dx
Bl Bl

+vn | CG(t)|Vfl|da. (4.15)
B1

Proof. Let G and ¢ be as in the lemma. Note that [26]
ue € W»?(Bsy). (4.16)

Next, differentiating the equation in (4.6)) with respect to x; for each i =1, ..., n,
we obtain
div ((ae(z, Vue))s,) = (fHe(ue))s, in D'(By). (4.17)

Computing the derivative of a.(x, Vu,) with respect to x;, we get

i(ac, Vue) + Dypac(z, Vue) - Vuey, a.e.in By, (4.18)

(00, Vo), = 5

Using Cauchy-Schwarz inequality and the fact that a. satisfies (1.3]) with x = ¢,
we obtain

|Dpac(x, Vue) - Ves,| = ‘ Z 3a€ (7, Ve )Uez, 2,
< Z‘aae (2, Vue) |[tes,a, |
< (Z‘ﬁaek (z, Vue) )\Vuezi
< e+ [Vue?) T [V, (4.19)

Using Cauchy-Schwarz inequality and the fact that a, satisfies (1.3]) with x = ¢,
we obtain

a € PrP—<
aijw,wa < et [Vuf) . (4.20)
It follows from and ( - - ) that we have
(ac(z, Vue))z, € L*(Bs)y). (4.21)

17



Now, let ¢ = (2G(ucy,). Since

Vo = (PG (ter,)Vtiea, +2(G(ue,)V¢  in By, (4.22)
we see from (4.16), (4.22) and the smoothness of G and ¢, that we have ¢ €
H*'(Bs,4). Taking into account (4.21)) and using ¢ as a test function in (4.17)),
we get

/ (ae(:z:,Vue))w’_ ~V(C2G(uexi))dx
B ‘
— [ BHICCEL) = [ P )1 Gl o

B, Bar(x0)

which leads by (4.18)), (4.22)) and the monotonicity of H,, to

/ (gii (z,Vue) + Dypac(z, Vu,) - Vuezi).(CG’(uemi)Vuezi + G(uez, ) V) da
Bq %

< - fo, He(ue) PG Uy, )d
By
or

CG' (tes; ) Dpae(z, Vue) - Viteg, Vi, dx

B,
< - G(Uex; ) Dpac(z, Vue) - Ve, . V(dx
B,
- dac (z,Vue) - V(G (ueg,))dx
B axl ’ € €x;
- fo, Ho(ue) PG Uy, )da. (4.23)
By

Adding the inequalities from ¢ = 1 to i = n, in (4.23), we get

/ ¢ Z G’ (tew; ) Dpae(z, Vue) - Ve, Ve, da
B,

%

g/ > |G (uer,) || Dyac(z, Vue) - Vuey, |.|V¢|da
B1 i

da,
-3 /B 5 (0 Ve) V (Gl )

_Z/B foi He(ue) (G (Uey,; )dov. (4.24)

Moreover, since a. satisfies (|1.2]) with x = €, we have

8a€k

Dyac(x, Vue) - Vieg, - Viey, = Z :
kg O

> de+ [Vu?)™ [Vuew, 2. (4.25)

(-T7 Vue)uea:ia:k uewiwj
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The fact, that a. satisfies also (|1.3]) with x = € implies

|Dnae(x,Vu€) Ve, - V(| < |Dna€(x, Vue) - Ve, | - V(]
<

e+ [Vue?) = Ve, ||VC|. (4.26)

It follows from (4.24 - ) that

& /B 3G ) e + [Vue2) 5 [V,
<¢ [ 3 dl6(u)
B 5

—Z/ 8a€ (z, Vue). V(3G (U, ) )dx
B1

Z ol (ue) PG Uy, )dz (4.27)

2dx

e+ [Vue|?) = | Vites,

V(|dx

To handle the second term in the right hand side of (4.27)), we integrate by parts

0 (0. V) V(CCluaes)) o = — [ P Cuer,) div (o

o : D (x, Vug)) dzx.

(4.28)
Note that we have

2 2
=3 9 a;(x,VuE)—i— 0”ar (7, Vue) teup- (4.29)

0z, 0x; o on;0z;
Using (4.6])-(4.7), we obtain
- 82ak
 Vu)| < et 4.30

82ak

< cqt? 72| D%y, 4.31
om0z, < est? 7D u| (4.31)

>

ik, j=1
Combining (4.28)-(4.30)), we get
0
Z ‘ / i(zv Vue) - v(ch(uexi))dx
P B, 0z;

<ec G ey, )|t~ 1dx—|—04/ G ey, |22 | D?uc|dx.(4.32)
B

(IL’, Vue) : vuszj
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Regarding the last term in the right hand side of (4.27)), we have since |G (ucy, )
|G (te)]

<

Z’/B fziHE(us)CQG(uemi)dx G(Ueg, )|dz

2
< /B < Eijlfzi
< Vi [ e (433
B

Taking into account (4.27)), (4.32f) and (4.33)), we obtain

¢ / S G e 0 Vit [P
Bq i

< /nc} CG(t P2 D?u ||V |da
By

tos | GG dates | CG(t)t? D% uclda
B, B

4 /B C2(G (t)||V f|da.

which is (4.15). O
Proof of Lemma 4.1, We consider ¢ € D(Bs,4) such that

0<¢<1 inBzy
C =1 in Bl/2
V(| <4 in By,

We shall consider the two possible cases.

1%t Case: 1 <p < 2.
Let G(t) = (e + t2)p772t. Then we have:

G'(1) = (e+13) "7 [1+ 7(”6 1?;2

} >(p—1)(e+13)"7.
Setting t. = (e +|Vuc|*)'/? and s, = (€4 |uex, |?)'/? and the fact that 0 < ¢ < 1
and |V(] < 4, we get from (4.13)

4dci/n+cy
2 p—th—Z v . 2d < 17/ tp—ltp—Q D2 d
/Blc zi:se € | u€$z| T X 06(10—1) BlCe € | U€| €L
C
+
€

— n _

20



Using Young’s inequality, we get since ¢ = 0 outside Bg/4

46/1\/ﬁ +e <t€71t€72|D2u€|dm < (40/1\/5 + 04)2 / tf(pfl)d:t
Bs/a

cwlp—=1) Jp, 2c§(p— 1)?
1
+5 C[tr~2|D?uc|)* d. (4.35)
B,

Taking into account (4.34))-(4.35)), the monotonicity of =2 and the fact that
¢ =1in By, we obtain

2
/ (t7=2| D%u, ||2dz < (4ciy/n 4 c4)? + 2c3ch(p — 1) / tf(pfl)dl,
Bl/2 BB/4

2p -1
N / »
+ =YV f|da. 4.36
&1 Js, . V£ (4.36)

274 Case: p > 2.
Let G(t) = t. Then we get from (4.15)

4 /
=2 D2y, 2 < % Ctt7=2| D%y |da

B 0 B
+2 | crda @ Cte|V fdz. (4.37)
CO Bl CO Bl

Using Young’s inequality, we get since ¢ = 0 outside Bj 4

Gl [y,
B34

dci/n+ ¢y
/ 2062

/(tetf—Q\D2ue|dx<
Co B,

1

+= | P72 |D%uda. (4.38)
2 /s,

Taking into account (4.37)-(4.38) and the fact that ¢ = 1 in By /3, we obtain

4 / 2 2 /
/ =2\ D2, 2dx < ( Cl\/ﬁ‘f'ccé) + 0300/ P dz
B2 0 B34
2
L2 s (4.39)
0 3/4
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Using the monotonicity of t*~2 and (4.39)), we get

2
/ [tfo|D2uE|} dx :/ tP=2tP=2| D%y, |* dx
B2 B2
< ||t HL”(Bg/ )/ 2| D%, |? da
By /o

< (40/1\/5—’_04)2 +2C306(p ) ||t || t*d
= 7 L°° (Bs/a) ax
i) B34

NG
tell5 oo d
il LI /B Vs

(4(: VI A+ eq)? + 2e3c) 2(p—1)
: OByl 72

- 662 L‘X’(B%/U

2f
el s, /B 1V fd. (4.40)
3/4

Combining (4.36]) and (4.40]), the lemma follows. O
Remark 4.1. Using (4.3), (4.11]), we deduce from Lemma that we have for
all e € (0,1)

(40/1\/> +c4)? + 2c3¢),
¢ min(1,p — 1)2

2 _
+ #M{) 1/ |Vf|dl‘ < 0y,
comin(1,p — 1) Baa

where Cy is a positive constant depending on n, p, ¢}, ¢}, ¢s, ca, My and Cy.

E(1/2,u) < | B g | MY

Now we estimate E.(r, u).

Lemma 4.3. If the conditions of Lemma L] are satisfied, then we have for all
e€(0,1) and r € (0,1/2)

3" (4c) v/ + c4)® + 2esch(p — 1) 2(p—1)

Ee('f‘, ue) < 2n+2662(p_ 1)2712 |B3/4|||t57||L00(B3/4)

vn /
+ er|| oo Vi(2rx)|dx.
co(p — 1)|Bl/2|2n—1r" It HL (Bs/4) By [V f(2rz)|

ue(2rx)

Proof. Let € € (0,1) and r € (0, 5). We consider the function ue,(z) = 5
r

defined in B;. By definition, u, is the unique solution of the problem

Uey — Uy € WOI’p(B%)
div(aer(x, Vuer)) = frHe(uer) in B%,
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u(2rz)
2r
tions defined in B L, with u, a solution of the following class of problems

where u,(z) = fr(x) = 2rf(2rz), and ac-(z,n) = a(2rx,n) are func-

ur € WHP(By) N CH(By),

div (ar(z, Vur(2))) = fr(x) in {u, >0} N By,
0 <wu, <M in By,

0 € 9{u, > 0},

Far():

and where M is the positive number in (4.10]).
Indeed, first it is obvious that 0 € 8{u, > 0}, u, € WHP(By) N CH*(By),
and that we have from (4.10))
||Vur||Loo(B3/4) = ||vu||Loo(B3T/2) < My, Yu € ‘FA’V‘(')’ (4.41)
Moreover, we have
div (a,(z, Vu,))(z) = div (a(2rz, Vu(2rz)))
=2rf(2rz) = f.(x) in {u(rz)>0}={u.(x) >0},

and from (4.41]), we have since u,(0) =0
1 d 1 o
0<u(z)= / %ur(tm) dt = / Vu(2tra) -xdt < My Va € Bj.
0 0

Next, we observe that f, satisfies (4.1)-(4.2) with the constants 2rA and 2rCy,
aer(z,n) satisfies (1.2)-(1.3) with k = € and (4.3))-(4.5) with the constants cf,

¢y, 2reg, c3, ¢y and p. Obviously, the constants 2rA, 2rCy, 2rca, 4r2c3 and 2rey
are bounded above respectively by A, Cy, co, c3 and ¢4 for r € (O7 %) Setting
ter = (€ + |Vue(2rz)|?)/2, and applying Lemma [4.1| to u.,, we obtain

3m(4cv/n + ¢4)? + 2c3cp(p — 1)
2neg(p — 1)2

2\/n 1
+ 7 TN > tﬁ"‘ poc /
co(p —1)[By 2| Iterllz (Ba/a) Jpp

2(p—1
Eo(1/2,u0) < |Bsalllter 52 5

L>(B3/4)

|V fr|dx
3/4

or

n / 2 / _

Eu(1/2,u,) < SV T )" + eaco(p — 1)
2nc6 (p _ 1)2

87"2\/5 1 /
v lterllTe Vi(2rz)|dz. 4.49
A= OByl e [, VG (1.42)

2(p—1
|B3/4‘ ||ter||L(£>(Bl/4)

+
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Note that

E.(r,u)) = Il;r/B,, [(eJr|Vu€(x)|2)pz;2|D2uE(x)|]2daﬂ

1 .

= [(e + \Vu5(2r;z:)|2)72|D2ue(2rx)|]2d:r
|Bl/2| B3

S - [(e+ |Vu (2rm)\2)p%2|2rD2u (2rx)|]2 dx
4r2 |By ol J g, /2 ‘ ‘

E(1/2,ue)

Taking into account (4.42)-(4.43) and (4.14), we get
3" (4c)\/m + c4)? + 2c3c), 2p—1)
Ee(r,ue) < 27422 min(1,p — 1)%r |B‘°’/4|”t"”L°° (Bs/a)
24/n /
N te’r oo Vf(Q’I"ZL‘ dZL‘
Gt p = Dl mon f, 1972
or
3”(46’1\/ﬁ+ 64) + 26300( ) 2(p—1)
<
Be(r,ue) < 27 +2¢2 min(1,p — 1)%r |BS/4|HtET“L°°(Bs/4)
vn /
€T oo v d
+ B ey [, V@l
which completes the proof of the lemma. O

4.2 Hausdorff measure of the free boundary for x =0

In this section we extend the local finiteness of the (n—1)-dimensional Hausdorff
measure of the free boundary for a heterogeneous operator of p—Laplacian type.
This property was obtained only in homogeneous cases, for the p—Obstacle prob-
lem in [2] with p = 2, in [I7] for p > 2, and more generally for the A—Obstacle
problem [6] that includes the case 1 < p < oo (see also [28]). The new difficulty
is in the control of the additional z dependence of the quasilinear coefficients
a; = a;(x,n), requiring the additional assumptions (4.3) and (4.4).

Theorem 4.1. Assume that a satisfies (1.2)) with k = 0 and (4.3] , , and
that f is nonnegative and locally bounded n Q VfeMp. (Q ) Then for each
A > 0, the free boundary of the a(-)—obstacle problem (P) is locally of finite
(n — 1)-dimensional Hausdorff measure in {f(x) > A}.

Due to the local character of Theorem it is enough to give the proofs for
the solutions of the class of problems F,.), which for convenience, we state in
the next two theorems. For this purpose, we assume that f satisfies

0<A<Lf aein Bj. (4.44)
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Theorem 4.2. Assume that [ satisfies — and , and that a satis-
fies (with & = 0) and -. Then there exists a constant C' depending
only on n, p, co, c1, c2, c3, ¢4, A, A, Mo and Cy such that for each u € Fq(.y,
for each xo € 0{u > 0} N By/y and r € (0, %), we have

H" Y (0{u > 0} N B,(xg)) < Cr™ L,

In order to prove the theorem, we need two lemmas.

Lemma 4.4. Assume that a satisfies (1.2)) (with &k = 0) and (4.3)-(4.4), and
that f satisfies (4.2), (4.44). Then we have

2c? 2 8% 5 _
H?(ue) < )\21 [tP 2|D2 |] + T;tg(p 1).

Proof. Since NH(u¢) < fHe(ue), we get by recalling (4.7) and the fact that
a. satisfies ([1.3) with k = ¢

n i n

AH(ue) < dw(a6 x, Vu6 Z 6 (z, Vue) + Z 6 (7, VUue)Ueg,z;

s.

72 n %

n
a€
< Z SU Vue + Z 8’17 (-777 Vue) ‘uﬁquxj |
i=1 ig=1'"""
n " 3az 2
< Z z, V) Z nA(xvvue) | D u|
i=1 ij=1 J

— p—2
2¢a (e + | Vue|? ) = + ¢ (e+ |Vue?) * |D?u
= 2ct?71 4+ P72 D2u).

It follows that

NH?(u) < 822~ 4 2c2¢(P=2) | D2y |2

or
2 2¢2 o e 12, 86 a1
H(u) < Sp[t71D%u]] +>\2t6(p ).
O
Lemma 4. 5 Assume that [ satisfies (4.1] ., - Assume also that a

satisfies (1.2) (with & = 0) and (4.3)-( -D Then there ezists a positive constant
C dependmg only onn, p, co, c1, c2, A\, Moy and Cy such that for each u € F 4.y,
any 0 € (0,1) and r € (0,1/4) with Ba,(x0) C By and 2o € By NO{u > 0},
we have

L™(O5 N By(x) N {u > 0}) < Cor" 1,

where Os = {|Vu| < 5ﬁ} N Bijz.
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Proof Let u € Fu), x0 € BijaNo{u > 0}, 0 € (0,1) and r € (0,1/4) with
Bgr(x0> C B;.

For each € € (0,1) and n = 2P~1§, we consider the function

2 _p—2 L . _1_
(e+n7- 1)Tm if t>neT
G(t) = { max ((c +13)"7" e+ ) | < preT
(e+77p1) nﬁ ift<fnTi1.
We have G(0) =0, and G is Lipschitz continuous with
(e 4tz 1—1—(6 287 X 1 if p<2
a'(t) = S [ Pt . (4.45)
(6+77p71) 2 X{\t|<nﬁ} if p>2.
We also have
IG)| < (e+n7 1) Vi (4.46)

We denote by u, the solution of the problem (4.6) and we consider a function
¢ € D(Bar(x0)) such that

2
0<¢<1lin Byr(z9), ¢=11in B.(x0), |V < - in Bo(z9),  (4.47)
First we have from (|4.15))
/ CQZG’ Uer, 72| Vttey, |2 d
By

i

< Vnd (G(t)t? 2| D?uc||V(|dx

B
+ec3 CGt )P e + ¢y CGt )P~ 2|D?u|dx
B; B,
v [ @G|Vl (4.43)
B,

Taking into account (4.45))-(4.47) and the fact that {|Vu.| < Urdlj} C {|tea,;| <
n e }, we obtain from (4.48))

/ L[| Du,|Pda
By (z0)N{|Vuc|<n?P-T1}

2 4 p=1
< %(6 + n%) 2 / P2 D?u,|dx
mln(l,p - 1)TCO Bar(z0)

C3 1
b (e4ni1) / # dx
min(1,p — 1)cg ! Bar(z0)

b (e+n7T) / =2 D?u, |dx
min(1,p — 1)cg Bar(20)

Vn 2 ;/
————(e+nr-1) ? V fldzx. 4.49
min(1, p — 1)c; ( " ) Bay(x0) V1] ( )
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Using the Schwarz inequality and Remark we get

/ [tf*2|D2uE|]d:E
BT(CE())

(Lzm(mo) 12dm>1/2' ( _/BMIO) [t’;*lezuE\fdx)l/z

< |Bur [ (1B (@0) B2, u)) /2
< |Barl (Be(1/2,u0))' 2 < /G| By |-

Combining (4.49)-(4.50)), we get since ¢,n € (0,1)
2y/nc}

min(1,p — 1)reg

<

X

(4.50)

p—1
(e+n77) "% \/Cy|Bay|

/ L[ Dl <
B, (z0)N{|Vue|<nP—T}

c3 2 21 1
+ (et T) ? / P~ dx
min(1,p — 1)¢} ( ) Bay (20)

c4 2Bzl
_ —1 v/ C3|Ba,
+min(1,p—1)c{)(€+np ) 2|Bar|
vn p—1

2
———————(e+nr-1) ? / V fldx.
min(1, p — 1)cg ( ) Bay(x0) V1]

or
/ [ D da
By (z0)N{|Vue|<n?=T}

p—1

2 (k=1
(e+n77) % 1 2y/ncy —1
< VG + ) [ By + s t-\dz + Vn 9 |de |
mln(17p - 1)06 - r " BZT(IO) BQT(ZL’O)
2 p—1
(€+T}E) o 2\/ﬁc/ -1 n—
< i p = VO (T ) Bl ealBarl MY+ Vi
(c+071)"T -
€+ nr-1t [ 1 n—
= m _2\/50/1 CQ + \/HCO + T|BQ|(63M1P + C4):| T 1. (451)

Since Os C {|Vu| < nﬁ} and

t?(”_l)dm

/ t?(”_l)dm
BT($0)I'WO(§

N

/Br(xo)ﬂ{|VuE|<nT’i1}
(e + n%)p_1|81|rn,
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we get from (4.51)) by using (4.11])

2 12 8 2
/ H(ue) < 021 / [t272|D?u|] 2da + % 2001 g
B (0)N0s A% I B, (w0)n0s 22 /B (20)n0s
9 /2 8 9
S 021 / L [tf*2|D2u€|]2da: + i; . tz(pq)dx
A% o IVa <n =T A% B, (o) {|Vue | <n 7T}

8¢c3 —
< 2(6-{-77%)17 1|Bl|7"n

S 32
PR =1
e [oVRel a4 VAo +r{Bal(cati? ™ )]
(4.52)
Letting e — 0 in (4.52), we obtain
n 8¢c3 5 n
L™(Os N By(x) N {u > 0}) < 2 | By |r
e min(iij - 1)0077[2\/5‘31\/672+ VinGo + r|Baf(es MY ™" + ea) |77,
which leads to
L™(O5 N By (o) N {u > 0}) < Cor"1,
where C' is a positive constant depending on n, p, cg, 1, ¢3, ¢4, A, M7 and Cj.
O

Proof of Theorem . Let r € (0, %), By(wo) C By with 29 € 0{u > 0} N By 2
and ¢ > 0. Let E be a subset of R™ and s € [0, 00). The s-dimensional Hausdorff
measure of F is defined by

H*(E) = lim H;(F) = sup H (E),
0—0 5>0
where

Hi(E) = inf { ia(s) (dmr’;(cﬂ)) |E C G C;, diam(C;) < 5},

j=1 j=1

773/2
)= 1T
We argue as in the proof of Theorem 1.5 of [6]. More precisely, let E = d{u >
0}NB,(z0) and denote by (Bs(x;)) ¢ afinite covering of E, with ; € 9{u > 0}

i

oo
I'(s) = / e "t*"1dt for s > 0 is the Gamma function.
0

and P(n) maximum overlapping.
From the proof of Theorem there exists a constant cg such that

Viel 3Fy; € Bs(zi) © Beys(yi) C Bs(wi) N{u>0}NO0s.
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We deduce from Lemma [L.5] that

ZC”(Bl)c{}é” = ZC”(BCog(yi)) < Zzn(Bé(xi) N {u > 0} N Oy)

< P(n)L™(Bs(z;) N {u >0} N0s) < P(n)Cér™ 1,

where C' > 0 is the constant from Lemma [£.5] This leads to

iezl ( 1)( 2 ) S E"(Bl)cgp( )C ¢ ?

$0
HP 1 (0{u > 0} N By.(zg)) < Cr" L.

Letting § — 0, we obtain

1" (O{u > 0} N B, (zo)) < Cr™ L.

5 Second order regularity for x > 0

Here we extend a second order regularity result to non degenerate operators
similar to the one established in [5] in the p(x)—Laplacian framework.

For k > 0, we consider the family of problems

div (a(w,Vu)) =f in Q,
{ u=g on 01}, (5.1)
where f € L®(Q) and g € WP (Q).

We will assume that a(z,n) satisfies (1.2))-(1.4) and that p satisfies (1.1,
[21). By a solution of (5.1)) we mean a function v € WHP()(Q) satisfying

/a(m,Vu) Védr = —/ fedu, VEe WerY(Q),
Q Q
u—ge€ Wol’p(')(Q).

By the classical theory of monotone operators, we know that problem
has a unique solution. Moreover, the solution of is known to have C| ¢
regularity [9]. In this section, we are concerned with second order regularity.
This kind of regularity is classical for p-Laplace type operators with p constant.
We refer, for example to [I3] Theorem 8.1, Theorem 6.5 of [I§] and [26]. To
establish the VVlif estimate, we shall apply the method based on the difference
quotients Ay, as in the above references, and [5] in the case of the p(z)-Laplacian.

We will denote by ||v]|s the usual norm of functions in L*°(€2). Note that,
recalling Remark also by Theorem 4.1 of [10], since f € L*>(Q), the solution
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of (5.1) is locally bounded i.e. u € L{3 (£2). We shall assume here that u €
L*>°(Q). More precisely, there exists a positive constant M such that ||ul|e < M.
Since p is Lipschitz continuous, then for each ' C €2, we have from [9] that

lul|c1.e 0y < C,

where « = a(n,p_,py, L, M, ||f||s) and C = C(n,p—, p+, L, M, || |00, d(, 2))
are positive real numbers.

First, let us define for each h # 0 and each vector es (s = 1,...,n) of the
canonical basis of R™ | the difference quotient of a function ¢ by

p(z + he,) — ()
. .
The function A, ¢ is well defined on the set Ag €2 := {z € Q/x + hes € 1},
which contains the set Q) := {z € Q /d(z,00Q) > |h[}.
Since WP (Q) s WP (Q) — WH1(Q), some properties in [I3] (p. 263)
of difference quotients are still valid. In particular we have

o If o € WH1(Q), then A, 0 € WH(Q), and we have V(A pp) = A 1 (Vo).

Ag po(x) =

o A n(prp2)(x) = p1(z+hes)As ppa() +p2(x)As np1 (x) for functions ¢y
and o defined in .

o If at least one of the functions ¢; or ¢z has support contained in €2,

then we have
/ P15 pp2 = —/ w2 pp1.
Q Q

o If w e WL™(Byg) (m > 1) and (2Ag pw € WHY(Bsg) for ¢ € D(Bsg),
we have ([I3], Lemma 8.1) for |h| < R and some constant c¢(n),

[AspwllLm(Byg) < ()| DswllLm(Bar)
18~ (P As )l L (Bar) < (M)ID(CAspw) L (B3r)-

For simplicity, we will drop the dependence on s and write Ay for A, p, etc.
Here is the main result of this section.

loc

Theorem 5.1. If u is the solution of (5.1) with k> 0, then u € W22(Q).

Proof. Let R > 0 be such that the open ball Bag(xg) satisfies Bag(7g) C Q.
We consider a function £ € D(Bar(z)) such that

{ 0<¢<1, inByp,  &=1in Bg(),
IVE]? +|D%| < % in Bag(xo).

Then A, _p(§2A5 pu) is a test function for (5.1, and we have

/ a(z, Vu) - V(AL (£ Apu)) do = —/ FA_L(E2Apu) dx,
Q Q
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which leads to

/ Apa(z, Vu) - (£V(Apu) + 26A,uVE) d / fA_L(EApu)de. (5.2)
Let zp, := z + he, and write
Apa(z, Vu(z)) = %[a(mh, Vu(zy)) — a(z, Vu(z))] == U +V, (5.3)
where
U= = [aen, Vulen) — alz, Vuen))],
V= %[a(I,VU(mh)) ~a(r, Vu(z))]-

It follows then from (5.2)) and ( . ) that
/§2V V(Apu) = /§2U V(Apu) — /2§(Ahu)U-V§dz
- / 26 (Apu)V - Véda — / fA_L(E2Apu) d. (5.4)
Q Q

Writing Vu(zp,) = (Vu+ hA,(Vu))(z) and setting 0, = (Vu + thA,(Vu))(z),
we obtain

v o= }IL/OIjt[a(x,(Vu—FthAh(Vu))(x))} dt

1

; Vaa(z, (Vu+ thAp(Vu))(z)) - Ap(Vu) dt.

It follows then
V(Apu) = /o Vaa(z, (Vu + thA,(Vu)) () - Ap(Vu)V(Ayu) dt

Multiplying the last equality by 2 and integrating with respect to & over Q, we
obtain

/ £V -V(Apu) d
Q
1
= / [52/ Vaa(z, (Vu + thAy (V) (z)) - Ap(Vu)V(Apu) dt} dr :=1.
Q 0
Using one has
1 p(x)—2
2 2 K + 2 . .
IZCO/Q[S IV(Apu)| /0 (k+10:%) dt]dzzo (5.5)
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Next, we write

U = {alen, Vulon) - alx, Vu(a))

1

1
d
- E/o aa(m%—thes,Vu(xh)) dt

1
/ an(;v + thes, Vu(xh)) .eg dt.
0

Recalling (T.4)), the fact that u € Cllo’f (©2) and that p(-) is Lipschitz continuous
in 2, we easily deduce from the above equality, that for some positive constant
C, one has

Ul <C. (5.6)

Hence, by Young’s inequality we get for v > 0

’/ €U -V (Apu) dx
Q

< / €UV (D) do
Q
2 2 C2 2
< v | EVAR)|Fde+ — | £ da
Q v Jq
02
< V/§2|V(Ahu)|2dx+—|BgR\. (5.7)
Q 4v

Using (b.7)), we estimate the second term in the right hand side of ([5.4)) as follows

1/2
‘—2 /Q §(Ahu>U~vs‘ < X [ o

R
2 1/2
< M/ Vu|dz <. (5.8)
R Bsr

In order to estimate the third term in the right hand side of (5.4), we need to
estimate V. For this purpose, referring to the above definition of V' (after the

equality (5.4)) and using (1.3)), we have

1
vl < cl/ |(Vu + thAn (V) ()P 2 | An(Vu)| dt
0

A

aW(z)|An(Vu)l,

1 pla)—2
where W (z) = / (k+10,) = adt
0

Now since u € CY¥(Bjyg), it is easy to see that there exist two positive
constants [, and L, depending on «, such that I, < W (z) < L,. Moreover we
have |Apu| < ||Vul L (B,,)- Therefore it follows by Young’s inequality that for
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every >0

‘/2§VV§Ahuda: §201LH/§|Ah(Vu)||V§||Ahu|dx
Q Q
2 2 AL 2 2
< u | EAR(Vu) dm—i—T IVEI*|Apul® da. (5.9)
Q Q

Using again Young’s inequality, for A > 0 for the last term in the right hand
side of (5.4), we have, since f € L>(Q)

‘ ‘/Q fA,h(nghu) dx

< flle /Q AL (EA4u)

< em)fll / V(€2 A0)| de
Q
< ) fll /Q {sﬂvmhunmswsmhm] dn
B
< [ em@nr+mi S
201/2 )
o Vul|dzx. .
et [ [l ds (5.10)

Hence, choosing v = = A = %“, we obtain from ([5.4)-(5.10) for a positive
constant C' = C(’I’L, H’ap—vp-ﬁ-)La R7 ||fHoo)

zﬁ/ E|V(Apu)|* dx < C,
Q

which leads to
/ IV(Apu)]? dz < C/I,.
Br

Letting h — 0, we obtain the desired result [I3], Lemma 8.9. O

Due to Proposition 2.1 #ii), as an immediate consequence, we also have this
local second order regularity result for the obstacle problem.

Corollary 5.1. Under the assumptions of Theorem 5.1, namely for k > 0, if
u is the solution of the obstacle problem (P), then u € W22(Q) N CH*(Q) for
some o > 0.

6 H" '-measure of the free boundary for x > 0
The main result of this section is the local finiteness of the H" !'-measure of
the essential free boundary. It is known that the free boundary locally has finite

H"~Lmeasure for several homogeneous operators: the p—Obstacle problem, [2]
for p =2 and [I7] for p > 2, and more generally for a homogeneous operator of
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p—Laplacian type [28], and for the A—Obstacle problem [6] that also includes
the p—Laplacian (1 < p < 00).

It turns out, that the heterogeneous case is much more delicate in the p(x)
framework, as we now treat in this section for x > 0. In this case we show that
at least the essential free boundary has locally finite H" !-measure. We use
the bounded variation approach of Brézis and Kinderlehrer (see [1I] or [16]) by
showing that Au € BVje.(f2), which implies, for a nondegenerating forcing f,
that the set {u > 0} has locally finite perimeter. Hence 0.{u > 0} has locally
finite H"~!-measure (see, for example [§]), where 9. F is the essential boundary
of E. As an important consequence, by a well-known result of De Giorgi (see
[12], page 54), the free boundary may be written, up to a possible singular set
of || VX {u>0}|[-measure zero, as a countable union of C'' hypersurfaces.

Definition 6.1. Let w C Q. We say that the function g € L'(w) is of bounded
variation in w and write g € BV (w), if there exists a positive constant C such
that

/ngi dz| < Cl[¢llp=(q), forl<i<n and ¢ € C*(Q).

‘ w

If g € BV (w), we define its variation Vg as follows:

i=1v%

In this section we will assume additionally that

n

(92 i pr)—1 1 1
am.gx.@»”)’%(HlnIQ) T (U [ (s () 2 [) [ (5 [nf*) 2,
i,j=1 Lt
(6.1)
82ak 9 p(z)—2 o\ 1
’677483;-(%”7)‘“4(“77') T (s 0P ]), (62)
i,5,k=1 I

for some positive constants cz, c4.
We shall also assume that f satisfies (3.1), and Vf € M} (2) (Morrey

loc
space, [21]), which means that there exists a positive constant Cy such that

/ |Vf|dr < Cor™™!, for any B, CC Q. (6.3)

B'f‘
In particular, (6.3) is satisfied, if f € C%1(Q).

Theorem 6.1. Assume that p(-) satisfies (2.1), f satisfies (3.1), (6.3), and that
(1-2)-(1.4), (6.1), (6.2) hold with k > 0. Then Au = div(a(z, Vu)) € BVioc ().

Proof. Let B, (x) such that Bs,.(z¢) CC Q. For simplicity, we drop the depen-
dence on xg. We will prove that Vg (Au) < ¢ for some positive constant ¢. To
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do that, we select an approximation to sign(t), that is, a sequence of smooth
functions 7s(t), § > 0 satisfying

Ivs(t)] <1, 75(t) >0, t € R,
7v5(0) = 0, lim ys(¢) = sign(t).
5—0

We also consider a cutoff function { € C§°(Bs,) such that ( = 1 in B, and
0<¢<1in B
We introduce for € € (0, 1), the unique solution of the following approximating
problem
1,p(-

ue —g € Wy p()(Q), (6.4)

div (a(z, Vu,)) = fHc(ue) in Q,
where g is the same as in (P), and where H, is as in Section 4.

First, we observe [0] that there exist two constants a € (0,1) and M; > 1
independent of € such that u, € C-%(Q) and

loc
Huencl,a(ﬁm,) < M. (6.5)

Moreover, we know from Theorem 5.1 that we have for a positive constant My
independent of €
[uellw22(B,,) < Ma, (6.6)

and in particular, we have for a positive constant c5 independent of €

/ |D?u,|dx < cs. (6.7)
Bar

We shall first prove that there exists a positive constant cg independent of € and
6 such that we have for each k =1, ...,n

/ Cyﬁ(uea:k)(Aqukd‘T < ¢ce. (68)
B
Integrating by parts, we get

(1t ) (Ati) i = — / (02, V1) ).V (G5t )l

Ba, Ba,

da

= —/ ((33, Vue) + Dya(z, Vue) - Vu€l‘k> V(¢vs(tesy, ))dx
Bo,. Ba:k

0
= _/ %(xv VUC)V(C’}’S(uezk))dm - / Vé(uezk)Dna(x; VUE) : VuekaCde
Bzy- k B27‘

- CV5 (tewy ) Dypa(@, Vue) - Vieg, . Ve, dz. (6.9)
Bo,
Since a satisfies (1.2]), we have for a.e. x € By,

p(z

Dya(z,Vue) - Ve, - Ve, = co(k+|Vuel?) Ea |Vtter, |?. (6.10)
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The fact that a satisfies also (1.3)), implies that for a.e. x € By,
|Dpa(z, Vue) - Ve, - V{| < |Dpa(z, Vue) - Ve, | - V(]
p(m) 2
< alk+|Vud?) Ve, |[VC]. (6.11)

Using the fact that ¢ and -4 are nonnegative and that |ys| < 1, we deduce from

EI-EIT) that

da
Cv5 (Ueay ) (Ate)zdr < — Oz (2, Vue). V(75 (e, ) ) d
BQT B2 k
+61|VC|OO/ (5 + Ve [2) T4 (612)
2r
Using (6.5) and (6.7)), we see that
py—2
< alVelale s M) [ [V ldo
BQT
py—2
< 105|VCloo(k+ M2) "7 =cr. (6.13)
To handle J;, we integrate by parts
da
= €T d a_ 9 € d . .].4
J1 - (s (Ueg,, ) div (axk (z,Vu )) T (6.14)

Note that we have

i (22 50) =5 2 (B0 0)

2. 2 a;
:Z 8'0” (m,Vue)—&—Z 8.% (z,Vue) - Uex;e;-  (6.15)

Ox;0xy, — On;0xy,
Using —, we obtain
" | %a; pe)=1 1 1
S~ | et T € oo+ 9 5 (0ot [ e 19 ) s )

(.’L’, Vue) : uezjxl

< cac(k, py, My)|D?ue| = co| D?ue|.
Combining (6.14))-(6.17) and using the fact that [(vs(tes, )| < 1, we get

J </ div x,Vue) ) |dz
' Bo (3 k:( ))
3 a; aQai
< ,V € d 7v ¢) * Ueg, d
/Bgrz Ox;0xy, (, Vue) I+~/Bzrlz:’anja$k (2, Vite) - ey, | do
< | Bar| + C9/ |D?uc|dx < cs|Bar| + csc = cio. (6.18)
Ba,
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(Ii—f— [Vu| ) e (1 + ’111 (n—i— [Vu| )%’)|D2ue|

(6.17)



We deduce from , , and that (6.8) holds for ¢g = ¢7 + c10.
Now differentiating with respect to xj for k = 1,...,n, we obtain

(Atie)a, = fo, He(ue) + fH{(tc)uca, - (6.19)
Multiplying by (7s(tes, ) and integrating over Ba,., we get

C’Vé(uérk)(Aue)azkdx = C’y5(uezk)fmkHe(ue)d$
B27~ BZT

+ f(v&(uezk)Hé(us)uexkdx
Ba,.

which leads by taking into account (6.3 and and using the fact that
|C75(u5xk)H€(UE)| < 1 tO

fC’Yé(uezk)Hé(ue)uemkd‘r = C'Yz?(uexk)(Aue)zkdx
B, Ba,
[ stuad s <ot [ 10
B2r B2'r
<o+ Co(2r)" " =cnn. (6.20)

On the other hand, since H/(u¢)7ys(Uex,, )Uer, 1S a nonnegative function, we have
gi_% H(ue) s (Uery ery, = [(He(ue))a,| ae. in By,

which leads by the bounded convergence theorem to
Cf|(H€(ue))zk| dx g Ci1- (621)
Ba,

Multiplying again (6.19) by ¢ and integrating over Bs,., we get by taking into
account the fact that |(H,(u)| < 1 and (6.3)

A ldz < /B CH (W)l fou | + FCIH (1) )

Bz,

< [ ade s [ s e
Ba, B,
< Co(2r)" ™t +eiq = ca. (6.22)
Since ( is nonnegative and ¢ =1 in B,., we deduce from ([6.22)) that

/ (Au)s, |do < c1a, VE=1,...n.
B,

Hence we obtain Au, € W' (B,) uniformly. Finally we observe from (6-5)-(6.6)

loc

that the approximating sequence of solutions u. converges in VVEDC2 (Q) —weakly
and in C1#(Q), for some B > 0, to the solution u of the obstacle problem and
consequently also Au. — Au in L2 () — weakly which concludes the proof of

loc

the theorem. O
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As a consequence, we get the main result of this section:

Theorem 6.2. Assume that p satisfies (1.1)), . f satisfies (3.1)) and (6.3] .,
. da,

and that a satisfies (1.2)-(L.4) and (6.1)), (6.2 , and additionally ZZ 1 9a(2,0) =
0. Then the essential free boundary of pmblem (P) has locally ﬁmte HrL
measure.

Proof. From Proposition 2.2 iii) we know that the solution u of the obstacle
problem satisfies fx(,>0y < Au < f a.e. in ) and as a consequence of its

regularity given by Corollary 5.1, u € V[/lif (Q) N CH*(Q). Therefore

Oay; " da; 0%u
Au = Z oz, (z,Vu) + Z an; (x,Vu)iaxiaxj =0,

i=1 i,j=1
for a.e. € {u = 0} and consequently we have
Au = fxqusoy a-e. in €2,

By Theorem 6.1 and the assumptions on f we conclude

Au
f
This means that the set {u > 0} has locally finite perimeter, which immediately

implies (see, for example [8], page 204) that H"~1(.{u > 0} N B,.) < oo, for
any r € (0, R). O

= X{u>0} € BVioc(Q).

Remark 6.1. We recall that the essential free boundary 0.{u > 0} N B, (or
the measure-theoretic free boundary) consists of points which have positive upper
n-dimensional Lebesgue densities with respect to the two subsets {u > 0} N B,
and {u = 0} N B,.. The singular part 3o = (0{u > 0} \ 0.{u > 0}) N B, has null
perimeter, i.e., the set Yo of free boundary points which are not on the essential
free boundary has ||V x{u>o}||-measure zero, but its fine structure in the general
case is unknown. However a characterization of the singular set of the obstacle
problem may be given, but is essentially restricted to the case of the Laplacian
operator (see [22), Chapter 7).
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