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Abstract

We prove that a strong converse theorem holds for the classical capacity of all phase-
insensitive bosonic Gaussian channels, when imposing a maximum photon number constraint on
the inputs of the channel. The pure-loss, thermal, additive noise, and amplifier channels are all
in this class of channels. The statement of the strong converse theorem is that the probability
of correctly decoding a classical message rapidly converges to zero in the limit of many channel
uses if the communication rate exceeds the classical capacity. We prove this theorem by relating
the success probability of any code with its rate of data transmission, the effective dimension of
the channel output space, and the purity of the channel as quantified by the minimum output
entropy. Our result bolsters the understanding of the classical capacity of these channels by
establishing it as a sharp dividing line between possible and impossible communication rates
over them.

1 Introduction

One of the most fundamental tasks in quantum information theory is to determine the ultimate
limits on achievable data transmission rates for a noisy communication channel. The classical
capacity is defined as the maximum rate at which it is possible to send classical data over a
quantum channel such that the error probability decreases to zero in the limit of many independent
uses of the channel [14, 25]. As such, the classical capacity serves as a distinctive bound on our
ability to faithfully recover classical information sent over the channel.

The above definition of the classical capacity states that (a) for any rate below capacity, one can
communicate error free in the limit of many channels uses and (b) there cannot exist an error-free
communication scheme in the limit of many channel uses whenever the rate exceeds the capacity.
However, strictly speaking, for any rate R above capacity, the above definition leaves open the
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possibility for one to increase the communication rate R by allowing for some error ε > 0. Leaving
room for the possibility of such a trade-off between the rate R and the error ε is the characteristic
of a “weak converse,” and the corresponding capacity is sometimes called the weak capacity. A
strong converse, on the contrary, establishes the capacity as a very sharp threshold, so that there
is no such room for a trade-off between rate and error in the limit of many independent uses
of the channel. That is, it guarantees that the error probability of any communication scheme
asymptotically converges to one if its rate exceeds the classical capacity.

Despite their significance in understanding the ultimate information-carrying capacity of noisy
communication channels, strong converse theorems are known to hold only for a handful of quantum
channels: for those with classical inputs and quantum outputs [20, 31] (see earlier results for all
classical channels [32, 1]), for all covariant channels with additive minimum output Rényi entropy
[16], for all entanglement-breaking and Hadamard channels [30], as well as for pure-loss bosonic
channels [29].

In this paper, we consider the encoding of classical messages into optical quantum states and the
transmission of these codewords over phase-insensitive Gaussian channels. In particular, we prove
that a strong converse theorem holds for the classical capacity of these channels, when imposing
a maximum photon number constraint on the inputs of the channel. Phase-insensitive Gaussian
channels are invariant with respect to phase-space rotations [7], and they are considered to be
one of the most practically relevant models to describe free space or optical fiber transmission, or
transmission of classical messages through dielectric media, etc. In fact, phase-insensitive Gaussian
channels constitute a broad class of noisy bosonic channels, encompassing all of the following:
thermal noise channels (in which the signal photon states are mixed with a thermal state), additive
noise channels (in which the input states are randomly displaced in phase space), and noisy amplifier
channels [7, 11, 12].

In some very recent studies [11, 8, 18], a solution to the long-standing minimum output entropy
conjecture [15, 9] has been established for all phase-insensitive Gaussian channels, demonstrating
that the minimum output entropy for such channels is indeed achieved by the vacuum input state.
The major implication of this work is that we now know the classical capacity of any phase-
insensitive Gaussian channel whenever there is a mean photon-number constraint on the channel
inputs (the capacity otherwise being infinite if there is no photon number constraint). For instance,
consider the thermal noise channel represented by a beamsplitter with transmissivity η ∈ [0, 1]
mixing signaling photons (with average photon number NS) with a thermal state of average photon
number NB. The results in [11] imply that the classical capacity of this channel is given by

g(ηNS + (1− η)NB)− g((1− η)NB),

where g(x) ≡ (x + 1) log2(x + 1) − x log2 x is the entropy of a bosonic thermal state with mean
photon number x. However, the corresponding converse theorem, which can be inferred as a
further implication of their work, is only a weak converse, in the sense that the upper bound on
the communication rate R of any coding scheme for the thermal noise channel can be written in
the following form:

R ≤ 1

1− ε
[g(ηNS + (1− η)NB)− g((1− η)NB) + h2(ε)],

where ε is the error probability, and h2(ε) is the binary entropy with the property that limε→0h2(ε) =
0. That is, only in the limit ε→ 0 does the above expression serve as the classical capacity of the
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channel, leaving room for a possible trade-off between rate and error probability. This observation
also applies to the classical capacities of all other phase-insensitive Gaussian channels mentioned
above.

In the present work, we prove that a strong converse theorem holds for the classical capacities
of all phase-insensitive Gaussian channels when imposing a maximum photon-number constraint.
This means that if we demand that the average code density operator for the codewords, which are
used for transmission of classical messages, is constrained to have a large shadow onto a subspace
with photon number no larger than some fixed amount, then the probability of successfully decoding
the message converges to zero in the limit of many channel uses if the rate R of communication
exceeds the classical capacity of these channels.

This paper is structured as follows. In Section 2, we review several preliminary ideas, including
some definitions and notation for phase-insensitive Gaussian channels, and we recall structural
decompositions of them that we exploit in our proof of the strong converse. We also recall the
definition of the quantum Rényi entropy and an inequality that relates it to the smooth min-
entropy [23]. In Section 3, we then prove our main result, i.e., that the strong converse holds
for the classical capacity of all phase-insensitive Gaussian channels when imposing a maximum
photon-number constraint. We conclude with a brief summary in Section 4 along with suggestions
for future research.

2 Preliminaries

2.1 Phase-insensitive Gaussian channels

Bosonic Gaussian channels play a key role in modeling optical communication channels, such as
optical fibers or free space transmission. They are represented by completely positive and trace
preserving (CPTP) maps evolving Gaussian input states into Gaussian output states [28, 6, 4]. (A
Gaussian state is completely characterized by a mean vector and a covariance matrix [28].) Single-
mode Gaussian channels are characterized by two matrices X and Y acting on the covariance matrix
Γ of a single-mode Gaussian state in the following way:

Γ −→ Γ′ = XΓXT + Y, (1)

where XT is the transpose of the matrix X. Here X and Y are both 2× 2 real matrices, satisfying

Y ≥ 0, detY ≥ (detX − 1)2,

in order for the map to be a legitimate completely positive trace preserving map (see [28] for more
details). A bosonic Gaussian quantum channel is said to be “quantum-limited’ if the inequality
above (involving detX and detY ) is saturated [8, 11]. For instance, an amplifier channel ANG
(characterized by its gain G and the number of noise photons N) is quantum-limited when the
environment is in the vacuum state (we will denote such a quantum-limited amplifier by A0

G).
A whole subclass of these bosonic Gaussian channels consists of the phase-insensitive Gaussian

channels [12, 28, 11, 18, 7, 24]. Phase insensitive channels correspond to the choice

X = diag
(√
τ ,
√
τ
)
, (2)

Y = diag (ν, ν) ,
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with τ, ν ≥ 0 obeying the constraint above. The action of such phase-insensitive channels on an
input signal mode can be uniquely described by their transformation of the symmetrically ordered
characteristic function, defined as

χ(µ) ≡ Tr[ρD(µ)], (3)

where D(µ) ≡ exp(µâ† − µ∗â) is the displacement operator for the input signal mode â [28]. For
the Gaussian channels, the transformed characteristic function at the output is given by χ′(µ) =
χ(
√
τµ) exp(−ν |µ|2 /2) [6, 11].

2.1.1 Examples

The canonical phase-insensitive Gaussian channels are the thermal noise channel, the additive noise
channel, and the amplifier channel.

The thermal channel Eη,NB can be represented by a beamsplitter of transmissivity η ∈ [0, 1]
that couples the input signal of mean photon number NS with a thermal state of mean photon
number NB. The special case NB = 0 corresponds to the pure-loss bosonic channel Eη, where the
state injected by the environment is the vacuum state.

In the additive noise channel Nn̄, each signal mode is randomly displaced in phase space ac-
cording to a Gaussian distribution. The additive noise channel Nn̄ is completely characterized by
the variance n̄ of the noise introduced by the channel.

The quantum amplifier channel ANG is characterized by its gain G ≥ 1 and the mean number of
photons N in the associated ancilla input mode (which is in a thermal state).

The transformed characteristic functions for these Gaussian channels are given by [18, 9, 12]

χ′(µ) =


χ(
√
ηµ)e−(1−η)(NB+1/2)|µ|2 for Eη,NB

χ(µ)e−n̄|µ|
2

for Nn̄
χ(
√
Gµ)e−(G−1)(N+1/2)|µ|2 for ANG .

(4)

2.1.2 Structural decompositions

Using the composition rule of Gaussian bosonic channels [3], any phase-insensitive Gaussian bosonic
channel (let us denote it by P) can be written as a concatenation of a pure-loss channel followed
by a quantum-limited amplifier [7, 11]

P = A0
G ◦ ET , (5)

where ET is a pure-loss channel with parameter T ∈ [0, 1] and A0
G is a quantum-limited amplifier

with gain G ≥ 1, these parameters chosen so that τ = TG and ν = G (1− T ) +G− 1 (with τ and
ν defined in (2)).

For instance, the additive noise channel Nn̄ can be realized as a pure-loss channel with transmis-
sivity T = 1/(n̄+1) followed by a quantum-limited amplifier channel with gain G = n̄+1. Also, we
can consider the thermal noise channel Eη,NB as a cascade of a pure-loss channel with transmissivity
T = η/G followed by a quantum-limited amplifier channel with gain G = (1 − η)NB + 1. These
two observations are equivalent to

Nn̄(ρ) = (A0
n̄+1 ◦ E 1

n̄+1
)(ρ), (6)

Eη,NB (ρ) = (A0
(1−η)NB+1 ◦ ET )(ρ). (7)
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The above structural decompositions are useful in establishing the classical capacity as well as the
minimum output entropy for all phase-insensitive channels [11, 18, 8].

2.1.3 Classical capacitites of phase-insensitive channels

Holevo, Schumacher, and Westmoreland (HSW) characterized the classical capacity of a quantum
channel N in terms of a quantity now known as the Holevo information [14, 25]

χ(N ) ≡ max
{pX(x),ρx}

I(X;B)ρ, (8)

where {pX(x), ρx} represents an ensemble of quantum states, and the quantum mutual information
I(X;B)ρ ≡ H(X)ρ+H(B)ρ−H(XB)ρ, is defined with respect to a classical-quantum state ρXB ≡∑

x pX (x) |x〉 〈x|X ⊗N (ρx)B. The above formula given by HSW for certain quantum channels is
additive, in the sense that

χ(N⊗n) = nχ(N ), (9)

for any positive integer n. For such quantum channels, the HSW formula is indeed equal to the
classical capacity of those channels. However, a regularization is thought to be required in order
to characterize the classical capacity of quantum channels for which the HSW formula cannot be
shown to be additive. The classical capacity in general is then characterized by the following
regularized formula:

χreg(N ) ≡ lim
n→∞

1

n
χ(N⊗n). (10)

The recent breakthrough work in [11] (along with earlier results in [15]) has established the
following expressions for the classical capacities of various phase-insensitive channels:

C(Eη,NB ) = g(ηNS + (1− η)NB)− g((1− η)NB), (11)

C(Nn̄) = g(NS + n̄)− g(n̄) , (12)

C(ANG ) = g(GNS + (G− 1)(N + 1))− g((G− 1)(N + 1)), (13)

where NS is the mean input photon number. In general, the classical capacity of any phase-
insensitive Gaussian channel is equal to [11]

g(N ′S)− g(N ′B), (14)

where N ′S = τNS + (τ + ν − 1) /2 and N ′B = (τ + ν − 1) /2, with τ and ν defined in (2). In the
above, N ′S is equal to the mean number of photons at the output when a thermal state of mean
photon number NS is input, and N ′B is equal to the mean number of noise photons when the
vacuum state is sent in. Note that the capacities in (11), (12), and (13) all have this particular
form (difference in the corresponding mean number of photons). The classical capacities specified
above are attainable by using coherent state encoding schemes for the respective channels [15]. We
will show in Section 3 that these expressions can also be interpreted as strong converse rates.

2.2 Quantum Rényi entropy and smooth min-entropy

The quantum Rényi entropy Hα(ρ) of a density operator ρ is defined for 0 < α <∞, α 6= 1 as

Hα(ρ) ≡ 1

1− α
log2 Tr[ρα] . (15)
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It is a monotonic function of the “α-purity” Tr[ρα], and the von Neumann entropy H(ρ) is recovered
from it in the limit α→ 1:

lim
α→1

Hα(ρ) = H(ρ) ≡ −Tr[ρ log2 ρ] .

The min-entropy is recovered from it in the limit as α→∞:

lim
α→∞

Hα(ρ) = Hmin (ρ) ≡ − log ‖ρ‖∞ ,

where ‖ρ‖∞ is the infinity norm of ρ.
The quantum Rényi entropy of order α > 1 of a thermal state with mean photon number NB

can be written as [13]
log [(NB + 1)α −Nα

B]

α− 1

For an additive noise channel Nn̄, the Rényi entropy Hα(Nn̄(ρ)) for α > 1 achieves its minimum
value when the input ρ is the vacuum state |0〉〈0| [18]:

min
ρ
Hα(Nn̄(ρ)) = Hα(Nn̄(|0〉〈0|)) =

log2[(n̄+ 1)α − n̄α]

α− 1
for α > 1. (16)

Similarly, for the thermal noise channel Eη,NB , the Rényi entropy Hα(Eη,NB (ρ)) for α > 1 achieves
its minimum value when the input ρ is the vacuum state |0〉〈0| [18]:

min
ρ
Hα(Eη,NB (ρ)) = Hα(Eη,NB (|0〉〈0|)) =

log2[((1− η)NB + 1)α − ((1− η)NB)α]

α− 1
for α > 1. (17)

In general, the main result of [18] shows that the minimum output Rényi entropy of any phase-
insensitive Gaussian channel P is achieved by the vacuum state:

min
ρ(n)

Hα(P⊗n(ρ(n))) = nHα(P(|0〉〈0|). (18)

The above definition of the Rényi entropy can be generalized to the smooth Rényi entropy. This
notion was first introduced by Renner and Wolf for classical probability distributions [23] and was
later generalized to the quantum case (density operators). For a given density operator ρ, one can
consider the set Bε(ρ) of density operators ρ̃ that are ε-close to ρ in trace distance for ε ≥ 0 [22].
The ε-smooth quantum Rényi entropy of order α of a density operator ρ is defined as [22]

Hε
α(ρ) ≡

{
inf ρ̃∈Bε(ρ)Hα(ρ̃) 0 ≤ α < 1

supρ̃∈Bε(ρ)Hα(ρ̃) 1 < α <∞ . (19)

In the limit as α→∞, we recover the smooth min-entropy of ρ [22, 27]:

Hε
min(ρ) ≡ sup

ρ̃∈Bε(ρ)
[− log2 ‖ρ̃‖∞] . (20)

From the above, we see that the following relation holds

inf
ρ̃∈Bε(ρ)

‖ρ̃‖∞ = 2−H
ε
min(ρ) . (21)

A relation between the smooth min-entropy and the Rényi entropy of order α > 1 is given by the
following inequality [23]

Hε
min (ρ) ≥ Hα (ρ)− 1

α− 1
log

(
1

ε

)
. (22)

We will use this relation, along with the minimum output entropy results from [18], to prove the
strong converse theorem for the classical capacity of all phase-insensitive Gaussian channels.
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3 Strong converse for all phase-insensitive Gaussian channels

In this section, we consider the transmission of classical messages through phase-insensitive channels
and show that a strong converse theorem holds for the classical capacity of these channels. Before
doing so, we first make the following two observations:

• If the input signal states are allowed to have an arbitrarily large number of photons, then
the classical capacity of the corresponding channel is infinite [15]. Thus, in order to have
a sensible notion of the classical capacity for any quantum channel, one must impose some
kind of constraint on the photon number of the states being fed into the channel. The most
common kind of constraint is to demand that the mean number of photons in any signal
transmitted through the channel can be at most NS ∈ [0,∞). This is known as the mean
photon number constraint and is commonly used in establishing the information-carrying
capacity of a given channel [15, 10, 11]. However, following the same arguments as in [29]
(and later in [2]), we can show that the strong converse need not hold under such a mean
photon number constraint. So instead, we prove that the strong converse theorem holds under
a maximum photon number constraint on the number of photons in the input states.

• Our proof of the strong converse theorem for the phase-insensitive channels can be regarded
as a generalization of the arguments used in establishing the strong converse theorem for the
classical capacity of the noiseless qubit channel [19, 16]. However, a comparison of our proof
here and that for the noiseless qubit channel reveals that it is a significant generalization.
Furthermore, our proof here also invites comparison with the proof of the strong converse
for covariant channels with additive minimum output Rényi-entropy [16], especially since
additivity of minimum output Rényi entropies plays a critical role in the present paper.

Let ρm denote a codeword of any code for communication over the phase-insensitive Gaus-
sian channel P. The maximum photon number constaint that we impose on the codebook is to
require that the average code density operator 1

M

∑
m ρm (M is the total number of messages)

has a large shadow onto a subspace with photon number no larger than some fixed amount nNS .
Mathematically, this constraint is given by

1

M

∑
m

Tr
{

ΠdnNSeρm
}
≥ 1− δ1(n), (23)

where δ1(n) is a function that decreases to zero as n increases. In fact, the coherent-state encodings
that attain the known capacities of the phase-insensitive channels do indeed satisfy the maximum
photon number constraint, with an exponentially decreasing δ1(n), if coherent states with average
photon number per mode < NS − δ are used, with δ being a small positive number (see Ref. [29]
for an argument along these lines).

We can define a photon number cutoff projector ΠL projecting onto a subspace of n bosonic
modes such that the total photon number is no larger than L:

ΠL ≡
∑

a1,...,an:
∑
i ai≤L

|a1〉〈a1| ⊗ . . .⊗ |an〉〈an|, (24)

where |ai〉 is a photon number state of photon number ai. The rank of the projector ΠdnNSe is

never larger than 2n[g(NS)+δ] (Lemma 3 in [29]), i.e.,

Tr
{

ΠdnNSe
}
≤ 2n[g(NS)+δ], (25)
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where δ ≥ 1
n(log2 e + log2(1 + 1

NS
)), so that δ can be chosen arbitrarily small by taking n large

enough.
The first important step in proving the strong converse is to show that if most of the probability

mass of the input state of the phase-insensitive channel P is in a subspace with photon number no
larger than nNS , then most of the probability mass of the channel output is in a subspace with
photon number no larger than nN ′S , where N ′S is the mean energy of the output state. We state
this as the following lemma:

Lemma 1 Let ρ(n) denote a density operator on n modes that satisfies

Tr{ΠdnNSeρ
(n)} ≥ 1− δ1(n),

where δ1(n) is defined in (23). Let P be a phase-insensitive Gaussian channel with parameters τ
and ν as defined in (2). Then

Tr{ΠdnN ′S+δ2)eP⊗n(ρ(n))} ≥ 1− δ1(n)− 2
√
δ1(n)− δ3(n),

where N ′S = τNS +(τ + ν − 1) /2, P⊗n represents n instances of P that act on the density operator
ρ(n), δ2 is an arbitrarily small positive constant, and δ3(n) is a function of n decreasing to zero as
n→∞.

Proof. The proof of this lemma is essentially the same as the proof of Lemma 1 of [2], with some
minor modifications. We include the details of it for completeness. We first recall the structural
decomposition in (5) for any phase-insensitive channel:

P(ρ) =
(
A0
G ◦ ET

)
(ρ),

i.e., that any phase-insensitive Gaussian channel can be realized as a concatenation of a pure-loss
channel ET of transmissivity T followed by a quantum-limited amplifier channel AG with gain G,
with τ = TG and ν = G (1− T ) + G − 1. Thus, a photon number state |k〉 〈k| input to the
phase-insensitive noise channel leads to an output of the following form:

P (|k〉 〈k|) =
k∑

m=0

p (m)A0
G (|m〉 〈m|) , (26)

where

p (m) =

(
k

m

)
Tm (1− T )k−m .

The quantum-limited amplifier channel has the following action on a photon number state |m〉 [7]:

A0
G (|m〉 〈m|) =

∞∑
l=0

q (l|m) |l〉 〈l| ,

where the conditional probabilities q (l|m) are given by:

q (l|m) =

{
0 l < m(

1− µ2
)m+1

µ2(l−m)
(

l
l−m
)

l ≥ m ,
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where µ = tanh r ∈ [0, 1], with r chosen such that G = cosh2 (r).
The conditional distribution q (l|m) has the two important properties of having finite second

moment and exponential decay with increasing photon number. The property of exponential decay
with increasing l follows from

(
1− µ2

)m+1
µ2(l−m)

(
l

l −m

)
=
(
1− µ2

)m+1
µ−2m2

−2 log2

(
1
µ

)
l
(

l

l −m

)
≤
(
1− µ2

)m+1
µ−2m2

−2 log
(

1
µ

)
l
2lh2( l−ml )

=
(
1− µ2

)m+1
µ−2m2

−l
[
2 log

(
1
µ

)
−h2( l−ml )

]

The inequality applies the bound
(
n
k

)
≤ 2nh2(k/n) (see (11.40) of [5]), where h2 (x) is the binary

entropy with the property that limx→1 h2 (x) = 0. Thus, for large enough l, it will be the case

that 2 log
(

1
µ

)
− h2

(
l−m
l

)
> 0, so that the conditional distribution q (l|m) has exponential decay

with increasing l. We can also then conclude that this distribution has a finite second moment. It
follows from (26) that

P (|k〉 〈k|) =

∞∑
l=0

[
k∑

m=0

p (m) q (l|m)

]
|l〉 〈l| . (27)

The eigenvalues above (i.e.,
∑k

m=0 p (m) q (l|m) ) represent a distribution over photon number
states at the output of the phase-insensitive channel P, which we can write as a conditional prob-
ability distribution p (l|k) over l given the input with definite photon number k. This probability
distribution has its mean equal to τk + (τ + ν − 1) /2, since the mean energy of the input state is
k. Furthermore, this distribution inherits the properties of having a finite second moment and an
exponential decay to zero as l→∞.

For example, we can consider the thermal noise channel Eη,NB with the structural decomposition
given by (7)

Eη,NB (ρ) = (A0
(1−η)NB+1 ◦ Eη/((1−η)NB+1))(ρ).

The mean of the corresponding distribution for this channel when a state of definite photon number
k is input, following the above arguments, is equal to ηk + (1− η)NB.

The argument from here is now exactly the same as the proof of Lemma 1 of [2] (starting from
(40) of [2]). We include it here for completeness. We now suppose that the input state satisfies the
maximum photon-number constraint in (23), and apply the Gentle Measurement Lemma [21, 31]
to obtain the following inequality

Tr
{

ΠdnN ′S+δ2eP
⊗n
(
ρ(n)

)}
≥ Tr

{
ΠdnN ′S+δ2eP

⊗n
(

ΠdnNSeρ
(n)ΠdnNSe

)}
− 2
√
δ1(n), (28)

where N ′S = τNS + (τ + ν − 1) /2. Since there is photodetection at the output (i.e., the projector
ΠdnηN ′S+δ2e is diagonal in the number basis), it suffices for us to consider the input ΠdnNSeρ

(n)ΠdnNSe
to be diagonal in the photon-number basis, and we write this as

ρ(n) =
∑

an:
∑
i ai≤dnNSe

p (an) |an〉 〈an| ,
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where |an〉 represents strings of photon number states. We then find that (28) is equal to∑
an:
∑
i ai≤dnNSe

p (an) Tr
{(

ΠdnN ′S+δ2e
)
P⊗n (|an〉 〈an|)

}
− 2
√
δ1(n)

=
∑

an:
∑
i ai≤dnNSe

p (an)
∑

ln:
∑
i li≤dnN ′S+δ2e

p (ln|an)− 2
√
δ1(n), (29)

where the distribution p (ln|an) ≡
n∏
i=1

p (li|ai) with p (li|ai) coming from (27).

In order to obtain a lower bound on the expression in (29), we analyze the term∑
ln:
∑
i li≤dnN ′S+δ2e

p (ln|an) (30)

on its own under the assumption that
∑

i ai ≤ dnNSe. Let Li|ai denote a conditional random
variable with distribution p (li|ai), and let Ln|an denote the sum random variable:

Ln|an ≡
∑
i

Li|ai,

so that ∑
ln:
∑
i li≤dnN ′S+δ2e

p (ln|an) = Pr
{
Ln|an ≤ nN ′S + δ2

}
= Pr

{
Ln|an ≤ n (τNS + (τ + ν − 1) /2) + δ2

}
(31)

≥ Pr

{
Ln|an ≤ n

(
τ

1

n

∑
i

ai + (τ + ν − 1) /2 + δ2

)}
, (32)

where (τ + ν − 1) /2 represents the mean number of noise photons injected by the channel, and the
inequality follows from the constraint

∑
i ai ≤ dnNSe. Since

E {Li|ai} = τai + (τ + ν − 1) /2,

it follows that

E
{
Ln|an

}
= n

(
τ

1

n

∑
i

ai + (τ + ν − 1) /2

)
,

and so the expression in (32) is the probability that a sum of independent random variables deviates
from its mean by no more than δ2. To obtain a bound on the probability in (32) from below, we
now follow the approach in [2] employing the truncation method (see Section 2.1 of [26] for more
details), in which each random variable Li|ai is split into two parts:

(Li|ai)>T0
≡ (Li|ai) I ((Li|ai) > T0) ,

(Li|ai)≤T0
≡ (Li|ai) I ((Li|ai) ≤ T0) ,

10



where I (·) is the indicator function and T0 is a truncation parameter taken to be very large (much
larger than maxi ai, for example). We can then split the sum random variable into two parts as
well:

Ln|an =
(
Ln|an

)
>T0

+
(
Ln|an

)
≤T0

≡
∑
i

(Li|ai)>T0
+
∑
i

(Li|ai)≤T0
.

We can use the union bound to argue that

Pr
{
Ln|an ≥ E

{
Ln|an

}
+ nδ2

}
≤ Pr

{(
Ln|an

)
>T0
≥ E

{(
Ln|an

)
>T0

}
+ nδ2/2

}
+ Pr

{(
Ln|an

)
≤T0
≥ E

{(
Ln|an

)
≤T0

}
+ nδ2/2

}
. (33)

The idea from here is that for a random variable Li|ai with sufficient decay for large values, we can
bound the first probability for

(
Ln|an

)
>T0

from above by ε/δ2 for ε an arbitrarily small positive

constant (made small by taking T0 larger) by employing the Markov inequality. We then bound
the second probability for

(
Ln|an

)
≤T0

using a Chernoff bound, since these random variables are
bounded. This latter bound has an exponential decay with increasing n due to the ability to use a
Chernoff bound. So, the argument is just to make ε arbitrarily small by increasing the truncation
parameter T0, and for n large enough, exponential convergence to zero kicks in. We point the
reader to Section 2.1 of [26] for more details. By using either approach, we arrive at the following
bound: ∑

ln:
∑
i li≤dnN ′S+δ2e

p (ln|an) ≥ 1− δ3(n),

where δ3(n) is a function decreasing to zero as n →∞. Finally, we put this together with (29) to
obtain

Tr
{

ΠdnN ′S+δ2eP
⊗n
(
ρ(n)

)}
≥

∑
an:
∑
i ai≤dnNSe

p (an)
∑

ln:
∑
i li≤dnN ′S+δ2e

p (ln|an)− 2
√
δ1(n)

≥ (1− δ1(n)) (1− δ3(n))− 2
√
δ1(n)

≥ 1− δ1(n)− δ3(n)− 2
√
δ1(n),

thereby completing the proof.

Let Λm denote a decoding POVM acting on the output space of n instances of the phase-
insensitive channel. In what follows, we prove the strong converse theorem for the classical capacity
of all phase-insensitive Gaussian channels.

Theorem 1 Let P be a phase-insensitive Gaussian channel with parameters τ and ν as defined in
(2). The average success probability psucc of any code for this channel satisfying (23) is bounded as

psucc =
1

M

∑
m

Tr{ΛmP⊗n(ρm)} ≤

2−nR2
n
[
g(N ′S)−Hα(P(|0〉〈0|))+δ2+

1
n(α−1) log(1/ε)

]
+ ε+ 2

√
δ1(n) + 2

√
δ1(n) + δ3(n), (34)
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where α > 1, ε ∈ (0, 1), N ′S = τNS + (τ + ν − 1) /2, P⊗n denotes n instances of P, δ1(n) is defined
in (23), δ2 is an arbitrarily small positive constant and δ3(n) is a function decreasing with n (both
defined in Lemma 1).

Proof. This proof is very similar to the proof of Theorem 2 of [2], with the exception that we
can now invoke the main result of [18] (that the minimum output entropy for Rényi entropies of
arbitrary order is attained by the vacuum state input). Consider the success probability of any
code satisfying the maximum photon-number constraint (23):

1

M

∑
m

Tr{ΛmP⊗n(ρm)} ≤ 1

M

∑
m

Tr{ΛmΠdnN ′SeP
⊗n(ρm)ΠdnN ′Se}

+
1

M

∑
m

∥∥∥ΠdnN ′SeP
⊗n(ρm)ΠdnN ′Se − P

⊗n(ρm)
∥∥∥

1

≤ 1

M

∑
m

Tr{ΛmΠdnN ′SeP
⊗n(ρm)ΠdnN ′Se}

+ 2

√
δ1(n) + 2

√
δ1(n) + δ3(n).

The first inequality is a special case of the inequality

Tr{Λσ} ≤ Tr{Λρ}+ ‖ρ− σ‖1 , (35)

which holds for 0 ≤ Λ ≤ I, ρ, σ ≥ 0, and Tr{ρ},Tr{σ} ≤ 1. The second inequality is obtained by
invoking Lemma 1 and the Gentle Measurement Lemma [21, 31] for ensembles.

Note that in the above, the second term vanishes as n → ∞; hence it suffices to focus on the
first term, which by cyclicity of trace yields

1

M

∑
m

Tr{ΛmΠdnN ′SeP
⊗n(ρm)ΠdnN ′Se} =

1

M

∑
m

Tr{ΠdnN ′SeΛmΠdnN ′SeP
⊗n(ρm)}. (36)

At this point, we consider the set of all states σ̃m that are ε-close in trace distance to each
output of the phase-insensitive channel P⊗n (ρm) (let us denote this set by Bε (P⊗n (ρm)). This
consideration will allow us to relate the success probability to the smooth min-entropy. We find
the following upper bound on (36):

1

M

∑
m

Tr{ΠdnN ′SeΛmΠdnN ′SeP
⊗n(ρm)} ≤ 1

M

∑
m

Tr{ΠdnN ′SeΛmΠdnN ′Seσ̃m}+ ε

≤ 1

M

∑
m

Tr{ΠdnN ′SeΛmΠdnN ′Se} ‖σ̃m‖∞ + ε.

We can now optimize over all of the states σ̃m that are ε-close to P⊗n (ρm), leading to the tightest
upper bound on the success probability

1

M

∑
m

Tr{ΠdnN ′SeΛmΠdnN ′SeP
⊗n(ρm)} (37)

≤ 1

M

∑
m

Tr{ΠdnN ′SeΛmΠdnN ′Se} inf
σ̃m∈Bε(P⊗n(ρm))

‖σ̃m‖∞ + ε. (38)
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Since the quantity inf σ̃m∈Bε(P⊗n(ρm)) ‖σ̃m‖∞ is related to the smooth min-entropy via

inf
σ̃m∈Bε(P⊗n(ρm))

‖σ̃m‖∞ = 2−H
ε
min(P⊗n(ρm)),

the upper bound in (38) gives

1

M

∑
m

Tr{ΠdnN ′SeΛmΠdnN ′Se}2
−Hε

min(P⊗n(ρm)) + ε

≤ 1

M

∑
m

Tr{ΠdnN ′SeΛmΠdnN ′Se} sup
ρ

2−H
ε
min(P⊗n(ρ)) + ε

=
1

M
2− infρHε

min(P⊗n(ρ))Tr{ΠdnN ′Se}+ ε

≤ 2−nR2− infρHε
min(P⊗n(ρ))2n[g(N

′
S)+δ] + ε. (39)

The first inequality follows by taking a supremum over all input states. The first equality follows
because

∑
m Λm = I for the set of decoding POVM measurements {Λm}, and the second inequality

is a result of the upper bound on the rank of the photon number cutoff projector in (25). We have
also used the fact that the rate of the channel is expressed as R = (log2M)/n, where M is the
number of messages.

Observe that the success probability is now related to the smooth min-entropy, and we can now
exploit the following relation between smooth min-entropy and the Rényi entropies for α > 1 [23]:

Hε
min (ω) ≥ Hα (ω)− 1

α− 1
log

(
1

ε

)
.

Using the above inequality and the fact that the “strong” Gaussian optimizer conjecture has been
proven for the Rényi entropies of all orders [18] (recall (18)), we get that

inf
ρ
Hε

min

(
P⊗n(ρ)

)
≥ n

[
Hα (P(|0〉 〈0|))− 1

n (α− 1)
log

(
1

ε

)]
. (40)

The first term on the right hand side is a result of the fact that the vacuum state minimizes the
Rényi entropy of all orders at the output of a phase-insensitive Gaussian channel.

By tuning the parameters α and ε appropriately, we recover the strong converse theorem:

Corollary 1 (Strong converse) Let P be a phase-insensitive Gaussian channel with parameters
τ and ν as defined in (2). The average success probability psucc of any code for this channel satisfying
(23) is bounded as

psucc =
1

M

∑
m

Tr{ΛmP⊗n(ρm)} ≤

2−nR2n[g(N
′
S)−g(N ′B)+δ2+δ5/δ4+δ4C(N ′B)]

+ 2−nδ5 + 2

√
δ1(n) + 2

√
δ1(n) + δ3(n), (41)

where N ′S = τNS + (τ + ν − 1) /2, N ′B ≡ (τ + ν − 1) /2, P⊗n denotes n instances of P, δ1(n) is
defined in (23), δ2 is an arbitrarily small positive constant and δ3(n) is a function decreasing with
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n (both defined in Lemma 1), δ4 and δ5 are arbitrarily small positive constants such that δ5/δ4 is
arbitrarily small, and C (N ′B) is a function of N ′B only. Thus, for any rate R > g (N ′S)− g (N ′B), it
is possible to choose the parameters such that the success probability of any family of codes satisfying
(23) decreases to zero in the limit of large n.

Proof. In Theorem 1, we can pick α = 1+ δ4 and ε = 2−nδ5 , with δ5 > 0 much smaller than δ4 > 0
such that δ5/δ4 is arbitrarily small, and the terms on the right hand side in (40) simplify to

n

[
H1+δ4 (P(|0〉 〈0|))− δ5

δ4

]
.

The output state P(|0〉 〈0|) for the phase-insensitive channel with the vacuum state as the input is
a thermal state with mean photon number N ′B ≡ (τ + ν − 1) /2. The quantum Rényi entropy of
order α > 1 of a thermal state with mean photon number N ′B is given by [9]

log [(N ′B + 1)α −N ′αB ]

α− 1
. (42)

Lemma 6.3 of Tomamichel’s thesis gives us the following inequality for a general state (for α close
enough to one):

Hα (ρ) ≥ H (ρ)− 4 (α− 1) (log v)2 ,

where
v ≡ 2−

1
2
H3/2(ρ) + 2

1
2
H1/2(ρ) + 1

For a thermal state, we find using (42) that

H3/2 (ρ) = 2 log
[(
N ′B + 1

)3/2 −N ′3/2B

]
,

H1/2 (ρ) = −2 log
[(
N ′B + 1

)1/2 −N ′1/2B

]
,

so that

v
(
N ′B
)

=
[(
N ′B + 1

)3/2 −N ′3/2B

]2
+
[(
N ′B + 1

)1/2 −N ′1/2B

]−2
+ 1.

We then find that

H1+δ4 (P(|0〉 〈0|)) ≥ H (P(|0〉 〈0|))− δ4C
(
N ′B
)

= g
(
N ′B
)
− δ4C

(
N ′B
)
,

where
C
(
N ′B
)
≡ 4

[
log v

(
N ′B
)]2

.

We now recover the bound in the statement of the corollary.
Finally, we recall the capacities of the phase-insensitive channels in (11), (12), and (13). Com-

paring them with the statement of Corollary 1, we can conclude that these expressions indeed
represent strong converse rates for these respective channels, since the success probability when
communicating above these rates decreases to zero in the limit n→∞.
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4 Conclusion

Phase-insensitive Gaussian channels represent physical noise models which are relevant for optical
communication, including attenuation, thermalization, or amplification of optical signals. In this
paper, we combine the proofs in [2] with the recent results of [11, 18] to prove that a strong
converse theorem holds for the classical capacity of all phase-insensitive Gaussian quantum channels.
We showed that the success probability of correctly decoding classical information asymptotically
converges to zero in the limit of many channel uses, if the communication rate exceeds the capacity.
Our result thus establishes the capacity of these channels as a very sharp dividing line between
possible and impossible communication rates through these channels. This result might find an
immediate application in proving security of noisy quantum storage models of cryptography [17]
for continuous-variable systems.

As an open question, one might attempt to establish a strong converse for the classical capac-
ity of all phase-sensitive Gaussian channels. Another area of research where our result might be
extended is in the setting of network information theory—for example, one might consider estab-
lishing a strong converse for the classical capacity of the multiple-access bosonic channels, in which
two or more senders communicate to a common receiver over a shared communication channel [33].
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