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IMPROVED ACCURACY OF INCOMPRESSIBLE APPROXIMATION OF

COMPRESSIBLE EULER EQUATIONS

BIN CHENG

Abstract. This article addresses a fundamental concern regarding the incompressible approx-

imation of fluid motions, one of the most widely used approximations in fluid mechanics. Com-

mon belief is that its accuracy is Opεq where ε denotes the Mach number. In this article,

however, we prove an Opε2q accuracy for the incompressible approximation of the isentropic,

compressible Euler equations thanks to several decoupling properties. At the initial time, the

velocity field and its first time derivative are of Op1q size, but the boundary conditions can be

as stringent as the solid-wall type. The fast acoustic waves are still Opεq in magnitude, since the

Opε2q error is measured in the sense of Leray projection and more physically, in time-averages.

We also show when a passive scalar is transported by the flow, it is Opε2q accurate point-wise

in time to use incompressible approximation for the velocity field in the transport equation.

1. Introduction and Statement of Main Theorem

All fluids are compressible, which generates acoustic waves. The restoring force is the pressure

gradient which results from the fluid being compressed and decompressed. The Mach number,

denoted by ε in our article, is defined as the typical value of the ratio of fluid speed over

sound speed. In the very subsonic regime ε ! 1, incompressible (vortical) fluid motions evolve

in a slower time scale than acoustic wave propagation; then, incompressible approximation

is often adopted so that effectively acoustic waves are filtered out. Numerous applications and

theoretical studies rely on the validity of such approximation that indeed offers more convenience

and simplicity than the compressible models.

Common belief is that the incompressible approximation introduces Opεq errors. In this

article, however, we prove an improved Opε2q error estimate between the isentropic, compressible

Euler equations and its incompressible counterpart, thanks to several decoupling properties. The

initial data is well-prepared in the sense that its first time derivative has Op1q spatial norms,

independent of the smallness of ε. In a loosely equivalent way, the velocity divergence is only

Opεq in spatial norms and acoustic waves have only Opεq amplitudes as well. Higher time

derivatives can still grow as ε Ñ 0. The central idea of time-averaging is repeatedly used to

suppress the amplitude of acoustic waves by a factor of ε. Intuitively, acoustic waves oscillate

fast at temporal frequencies of Opε´1q, and therefore averaging them in time effectively cancels

out the majority of oscillations.

We ought to point out that the nonlinear nature of fluid motions is bound to couple fast acous-

tic waves with the slower incompressible motions. Even when all acoustic waves are completely
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filtered out at the initial time, they are instantaneously generated from slow incompressible

motions. In the atmosphere for example, the ubiquitous acoustic waves are emitted all the time,

although most are inaudible to human ears1.

To this end, time-averaging plays a crucial role to further suppress the “unwanted” contri-

bution from acoustic waves to the incompressible dynamics. The physical relevance of time-

averaging is evident from the popularity of its generalized version, time filtering. In fact, time

filtering is necessary in dealing with observational and computational data when the resolution

of fast acoustic waves suffers from a wide range of factors. To make even closer connection to

applications, we will use time-averaging technique to show that, if a passive scalar is advected

by flow generated by the compressible Eule equations, then it is Opε2q accurate point-wise in

time to replace the velocity with its incompressible counterpart(s).

Our techniques are applicable to general bounded domains subject to the solid-wall boundary

condition. Several issues arise here: 1. nonlinear coupling of fast and slow dynamics does

not decay or disperse in any strong sense; 2. Fourier analysis is not applicable here; 3. it is

inconvenient to use straightforward energy estimates to obtain ε-independent energy estimates

(in H
m norms) for the solution and its first time derivative over an Op1q long time interval. The

latter is because integrating by parts is not valid for estimating spatial derivatives subject to

solid-wall boundary condition. These issues will be resolved by relying on time-averaging as well

as vorticity formulations.

1.1. Main results. Upon rescaling and nondimensionalization, the isentropic, compressible

Euler equations are expressed in terms of total density ρtot and velocity v,

(1.1)

$
’&
’%

Btρtot ` ∇¨pρtotvq “ 0,

Btv ` v¨∇v ` 1

ε2
∇πpρtotq
ρtot

“ 0,

with Mach number ε ! 1 bringing in acoustic waves oscillating on fast time scales. The pressure

law π P C8pR`q went through rescaling and affine transformation to satisfy

(1.2) πp1q “ π1p1q “ 1.

It is then understood that ρtot´1 „ Opεq, so that the pressure gradient is approximated by ∇ρtot

and the linearized acoustic waves have both phase and group velocities at order 1{ε, namely the

rescaled sound speed.

Without loss of generality, we only consider a connected (but not necessarily simply connected)

compact spatial domain Ω Ă R
2 or R3 with the “solid-wall” boundary condition

v¨tn
ˇ̌
BΩ

“ 0

where tn “ tnpxq is the outward normal to the static, smooth boundary BΩ which can be empty.

The topology of Ω will occasionally be a concern, e.g. in Remark 2.2.

1The sound speed is around 330 meters per second in the lower atmosphere; human’s hearing range starts from

20 Hertz. Therefore, we can not hear wave lengths longer than 17 meters in our everyday life.
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The main goal of this article is to estimate, in terms of ε and initial data, the size of pv ´ rvq
where rv solves the incompressible Euler equations

Btrv ` rv¨∇rv ` ∇q “ 0,(1.3a)

∇¨rv “ 0,(1.3b)

subject to rv¨tn
ˇ̌
BΩ

“ 0.(1.3c)

Initial data rv0 satisfies (1.3b), (1.3c).(1.3d)

Here, the scalar q is an auxiliary variable, also called pressure, that enforces the incompressible

condition (1.3b). Without such a term, the above system would be overdetermined.

The spatial Hm norm is defined as usual,

}fpxq}Hm :“
´ ÿ

|β|ďm

ż

Ω

|Bβxfpxq|2 dx
¯1{2

where multi-index β indicates orders of derivatives taken on each spatial dimension. Let HmpΩq
denote the closure space of smooth functions with finite H

m norms. Of course, L2pΩq “ H
0pΩq.

Before stating the Main Theorem, we clarify one technical point. The time derivates at t “ 0,

denoted by Bkt pρtot
0
,v0q, can be calculated without knowing the solution for t ą 0. This is because,

by repeatedly taking time derivatives on (1.1), one can inductively express Btpρtot,vq, B2t pρtot,vq,
. . . Bkt pρtot,vq solely in terms of pρtotpt, xq,vpt, xqq and their spatial derivatives up to the k-th

order evaluated at each fixed time t.

Theorem 1.1. (Main Theorem) Let integer m ě 4 and parameter ε P r0, 1{2s. Consider

the compressible system (1.1) subject to initial data pρtot0 ´ 1,v0q P H
mpΩq. Assume pρtot0 ,v0q is

compatible with the boundary condition, namely pBkt v0q¨tn
ˇ̌
BΩ

“ 0 for k ă m.

Let rv solve the incompressible system (1.3) subject to initial data rv0 “ Pv0. Here, P, defined

in (2.1) below, denotes the Leray projection into the incompressible velocity subspace.

Define

E0 :“
››pρ

tot ´ 1

ε
,v0q

››
Hm , Et,0 :“

››Btp
ρtot

ε
,v0q

››
Hm´1

Then, there exist constants E˚, T ˚, C˚ that only depend on m, Ω and pressure law πp¨q, so that

with E0 ď E˚{ε,
(1.4) sup

tPr0,T˚{E0s
}Pv ´ rv}Hm´3 ď C˚ ε2 pEt,0 ` E2

0q}Pv0}Hm .

The proof is given in the last Section 5.

Remark 1.2. There are two bounding factors in (1.4) that depend on initial data. Regarding the

pEt,0 `E2
0q factor, we note the compressible system (1.1) automatically enforces Et,0 ď OpE0{εq.

Then, using ill-prepared data that allow large time derivatives Et,0 „ Op1{εq and thus admit

acoustic waves of Op1q amplitudes, we would recover the OpεE0q error estimate for ill-prepared

data previously proved by B. Cheng in [6]. Regarding the other factor }Pv0}Hm, in the extreme

case with purely acoustic wave or potential flow initial data, Pv “ 0 is invariantly sustained by

the compressible system whereas the incompressible system simply yields rv “ 0. Then, both

sides of (1.4) vanish, consistent with such well known invariance.
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Remark 1.3. The local-in-time existence and uniqueness of C pr0, T s,HmpΩqq solution to (1.1)

has been established in [18]. The compatibility condition, pBkt v0q¨tn
ˇ̌
BΩ

“ 0 for k ă m, is both

necessary and sufficient for Hm well-posedness, although this is not the main focus of this article.

On the other hand, it is crucial in our study to obtain ε-independent upper bounds on }pρ,vq}Hm

and }Btpρ,vq}Hm´1 . This will be achieved in Section 4.

We used the clumsy notation of ρtot´1

ε
to state the Main Theorem, as it will be replaced

throughout the rest of this article with the density perturbation

(1.5) ρ :“ ρtot ´ 1

ε
.

With this notation,

(1.6) E0 “ }pρ0,v0q}Hm , Et,0 “ }Btpρ0,v0q}Hm´1 ,

so that the Main Theorem is invariant under the hyperbolic scaling ρ Ñ cρ,v Ñ cv, t Ñ t{c.
Also, one can easily use (1.9) from below and Sobolev inequalities to show

(1.7)
ˇ̌
ˇε
››Btpρ,vq

››
Hk ´

››p∇¨v,∇ρq
››
Hk

ˇ̌
ˇ ď Cε

››pρ,vq
››
Hk`1

››phεpρq, vq
››
Hk`1 for k ě 2,

where hεpρq “ ρ ` Opερ2q a la Taylor expansion. Thus, bounding the first time derivative

Btpρ,vq „ Op1q is loosely equivalent to having p∇¨v,∇ρq „ Opεq. If E0 is already of Op1q, then
preparing Et,0 „ Op1q is equivalent to enforcing ρ0 to be Opεq close to constant and v0 to be

Opεq close to incompressibility.

In the final Section 5, we will also prove the following corollary without relying on Leray

projection. Instead, the estimate is in terms of the physically relevant time-averages.

Corollary 1.4. Under the same hypotheses as in the Main Theorem 1.1, there exists constants

C˚˚, C˚˚˚ that only depends on m, Ω and pressure law πp¨q, so that for all times T P r0, T ˚{E0s,

(1.8) ε
››v ´ rv

››
Hm´3pT q `

››
ż T

0

v ´ rv
››
Hm´3 ď C˚˚ ε2 pEt,0 ` E2

0q

Moreover, if two scalars θpt, xq, rθpt, xq are transported by v, rv respectively

Btθ ` v¨∇θ “ 0,

Btrθ ` rv¨∇rθ “ 0,

subject to the same initial data θ0 “ rθ0 P H
mpΩq, then

sup
r0,T˚{E0s

}θ ´ rθ}Hm´3 ď C˚˚˚ ε2 pEt,0 ` E2
0q }Pv0}Hm}θ0}Hm

Apparently, by (1.4), the same Opε2q accuracy holds true if we approximate the velocity by Pv.

Note in (1.8) the gained ε factor thanks to time averaging. Also, it is Opε2q accurate point-wise
in time to use both rv and Pv approximations for v in the transport equation.
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1.2. Literature. There have been numerous results regarding the singular limits of compressible

Euler equations and other fluid equations in various settings. None of them has shown the

Opε2q accuracy. There have been studies regarding Opε2q corrections to the incompressible

approximation (e.g. [10] for periodic domains) – our result here confirms that such correction is in

fact zero for Euler equations in general spatial domains. We point to two survey papers for some

comprehensive lists of references: [21] with emphases on hyperbolic PDEs and homogenization

in mixed; [15] with emphases on viscous fluids and weak solutions. To mention only a few

earliest works in terms of well-prepared data, we refer to [8, 9, 14, 3, 13, 22]. In a closely related

paper [5], the bounded derivative method is applied to numerical schemes from geophysical

applications. Well-prepared conditions on initial data were later removed for problems in the

whole space ([25]), in an exterior domain ([11, 12]) and in a torus ([20]). These arguments more

or less rely on use of Fourier analysis and/or dispersive nature of the underlying wave equations.

Singular limit problems in a bounded spatial domain, on the other hand, remain much less

studied. In [18], Schochet proved the same low-Mach-number limit with solid-wall boundary

condition and well-prepared initial data. A main challenge in this setting is the presence of

characteristic boundary. Rauch elaborated in [16] that, near the boundary, only estimates along

tangential directions are available. In [17], Secchi proved the strong convergence of Pv for

3D Euler equations with ill-prepared initial data, without obtaining convergence rates. Very

recently, B. Cheng proved Opεq convergence rate for ill-prepared data in [6]. The time-averaging

technique used there inspired this current study; also see Cheng & Mahalov [7] for time-averaging

applied to geophysical models on a sphere.

1.3. Formulations. Further to (1.5), we rewrite (1.1) in terms of unknown pair pρ, vq,
Btρ ` ∇¨pρvq “ ´ε´1∇¨v(1.9a)

Btv ` v¨∇v ` hεpρq∇ρ “ ´ε´1∇ρ(1.9b)

(1.10) subject to v¨tn
ˇ̌
BΩ

“ 0.

(1.11) Here, hεpρq :“
ˆ
π1p1 ` ερq
1 ` ερ

´ 1

˙
1

ε
.

By (1.2) and Taylor expansion, hεpρq “ pπ2p1q ´ π1p1qqρ `Opερ2q. In a more compact form,

Bt
ˆ
ρ

v

˙
` N

ˆ
ρ

v

˙
“ ´ε´1L

ˆ
ρ

v

˙

with anti-symmetric operator

(1.12) L

ˆ
ρ

v

˙
:“

ˆ
∇¨v
∇ρ

˙
.

For purely aesthetic reasons, we will use notations L

ˆ
ρ

v

˙
and Lpρ,vq interchangeably.

In light of (1.7), the boundedness of first time derivative Btpρ,vq „ Op1q and the boundedness

of Lpρ,vq „ Opεq are closely related.

Later in the article, we will apply the Leray projection to the compressible system, which

effectively annihilates ε´1L. This gives a decomposition of the solution space into slow and
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fast subspaces, and correspondingly a decomposition of the compressible system into a slow one

governing the incompressible motions and a fast one governing the rapidly oscillating acoustic

waves.

The slow dynamics is very closely related to the vorticity equations. Apply ∇̂ to (1.9b) so

that the cancellation property ∇ˆ∇ “ 0 yields the equation for vorticity ω :“ ∇ ˆ v

Btω ` v¨∇ω ` p∇¨vqω “0 in 2D,(1.13a)

and Btω ´ ω ¨∇v ` v¨∇ω ` p∇¨vqω “0 in 3D(1.13b)

without Opε´1q terms contributing to Btω. Thus, vorticity ω evolves on a slow time scale. We

have to alert that the vortical dynamics may not contain all the information of the slow dynamics

if the spatial domain is not contractible. Take Remark 2.2 for example. The point vortex

restricted in a ring-shaped domain forms a steady solution of incompressible Euler equations;

together with an axisymmetric profile properly chosen for ρ, it also solves the compressible

system. However, both vorticity and divergence are identically zero; therefore the vorticity

equation, even combined with the divergence equation, does not retain all dynamical information

required to solve for v.

Nevertheless, the vorticity equation has the simple structure of a transport equation and does

not require solving the extra pressure variable, so it is very widely used in practice. We will also

take advantage of its nice structure to simplify estimate proofs in Section 3, 4.

The rest of this article is organized as follows. In Section 2, we define the Leray projection,

prove its properties using elliptic PDE theory and use it to extract the slow dynamics from the

compressible system. Section 3 contains probably the most novelty. It explains how to use the

time-averaging technique to obtain pointwise-in-time error estimates. A decoupling property of

the compressible system allows us gain an extra ε factor as long as the data is well-prepared.

Without concerns for boundary, the reader does not have to rely on the next Section 4. Here, we

use mixed norms to obtain ε-independent bounds on the sizes of the solution and its first time

derivative. The methods used here are partially similar to those of [19], but we work with both

ill-prepared and well-prepared data. The final Section 5 completes proofs of the Main Theorem

1.1, Corollary 1.4 and makes further comments.

Remark 1.5. The Sobolev inequalities used throughout this article can be summarized as

follows. Given functions f1pxq, f2pxq, . . . , fjpxq and a product pBβ1

x f1q pBβ2

x f2q . . . pBβj
x fjq with

multi-indices β1, ...., βj satisfying

(1.14) |β1 ` ... ` βj | ď 2m ´ 3 and m ě |β1| ě |β2| ě . . . ě |βj |,

we have
››śj

i“1
Bβi
x fi

››
L2

ď
››Bβ1

x f1
››
L2

śj
i“2

ˇ̌
Bβi
x fi

ˇ̌
L8pΩq

and therefore, by Sobolev inequalities and

Ω being two or three dimensional,

(1.15)
›››

jź

i“1

Bβi
x fi

›››
L2

À
jź

i“1

›››fi
›››
Hm

if (1.14) holds.

Here and below, the “similarly less than” notation a À b is understood as

a ď Cb for a constant C solely depending on m,Ω and pressure law πp¨q
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2. Projections onto Slow and Fast Subspaces

Define X to be the space of incompressible velocity fields subject to solid-wall boundary

condition,

X :“ L
2 closure of

!
vinc P C

1pΩq
ˇ̌
ˇ∇¨vinc “ 0, vinc¨tn

ˇ̌
BΩ

“ 0
)

Define P as the L
2-orthogonal projection onto X so that, for any v,v1 P L

2pΩq,

P2v “ Pv P X,(2.1a)
ż

Ω

pv ´ Pvq¨pPv1q “ 0.(2.1b)

In fact, P is the classical Leray projection subject to solid-wall boundary condition. Then, define

Q :“ 1 ´ P.

These projections can be characterized conveniently by elliptic PDE as follows.

Proposition 2.1. For any v P H
kpΩq with k ě 1, we have

(2.2) Qv “ ∇φ P H
kpΩq with φ solving

#
∆φ “ ∇¨v in Ω

∇φ ¨ tn “ v¨tn in BΩ

φ is unique up to an added constant and thus Qv is unique.

Here and below, we always assume k ě 1 whenever the trace of an H
kpΩq function is involved.

Proof. The solvability of (2.2) follow from standard elliptic PDE theory (e.g. [23], Ch. 5, Prop.

7.7). It suffices to verify p1 ´ Qq with Q given in (2.2) equals P which is uniquely defined in

(2.1a), (2.1b).

Obviously, (2.2) implies p1 ´ Qqv P X for any v P H
kpΩq. Then, for any vinc P X

Ş
H
kpΩq,

the uniqueness (up to a harmless constant) of φ in (2.2) implies that Qvinc “ 0. More precisely,

p1 ´ Qq is a projection so that, for any v P H
k, p1 ´ Qq2v “ p1 ´ Qqv.

It remains to show Qv is L2-orthogonal to any vinc P X. Since X
Ş

C 8pΩq is a dense subset

of X in the L
2 topology, it suffices to only consider smooth vinc as a typical element of X. Then,
ż

Ω

vinc¨pQvq dx “
ż

Ω

vinc¨∇φdx paq“
ż

Ω

∇¨pvincφq dx pbq“
ż

BΩ
tn¨vincφds

pcq“ 0,

where paq, pcq are due to the definition of vinc and pbq due to the divergence theorem. �

This proposition shows that Qv is always a perfect gradient and therefore its curl vanishes.

∇ˆpQvq “ 0, ∇ˆpPvq “ ∇ˆv.(2.3)

Compare them to the definitional facts,

∇¨pPvq “ 0, ∇¨pQvq “ ∇¨v.

This is to say, Pv contains all the information of the vorticity (but not necessarily vice versa!)

and Qv contains all the information of the divergence.

From here on, we will interchangeably use vP for Pv and vQ for Qv.



8 BIN CHENG

2.1. Boundedness of Projections and Elliptic Estimates. Operators L,∇ˆ,P,Q are all

elliptic operators with nontrivial kernels, and we will employ elliptic estimates with boundary

conditions to estimate them. The papers of Agmon, Douglis and Nirenberg [1], [2] establish a

“Complementing Boundary Condition” that is necessary and sufficient for the solution operator

of a s-th order elliptic PDE system to be C k Ñ C k`s and H
k Ñ H

k`s. To treat the Euler

equations (e.g. [4]), only a particular case is used: for any velocity field v with enough regularity,

(2.4) }v}Hk À }∇¨v}Hk´1 ` }∇ˆv}Hk´1 ` }v}L2 , if v¨tn
ˇ̌
BΩ

“ 0 and k ě 1.

Remark 2.2. We alert that the }v}L2 term above may not be dropped if, for example, Ω is not

contractible. Consider a ring-shaped domain Ω “ tpx, yq
ˇ̌
1 ă x2 ` y2 ă 2u and a point vortex

v “ ∇K ln
ˇ̌
x2 ` y2

ˇ̌
. Then, ∇¨v “ ∇ˆv “ 0 and v¨tn

ˇ̌
BΩ

“ 0, but v ‰ 0.

Now, set v “ vP in (2.4) and use the facts that ∇¨vP “ 0, vP ¨tn
ˇ̌
BΩ

“ 0 to obtain, without

boundary condition on v,

(2.5) }vP }Hk À }∇ˆvP }Hk´1 ` }vP }L2 for k ě 1.

This gives a bound on the high norms of vP using the high norms of ∇ˆvP “ ∇ˆv (by (2.3))

and the L
2 norm of vP .

Therefore, P, Q are bounded operators in H
kpΩq regardless of boundary condition,

(2.6) }Pv}Hk ` }Qv}Hk À }v}Hk for k ě 0

The case of k “ 0 is due to the definition of P and the Pythagorean theorem. Obvisouly, one

can reverse the direction of this inequality due to P ` Q “ 1.

Similar to (2.5), we can bound the norms of vQ using norms of ∇¨vQ “ ∇¨v. In fact, set

v “ vQ in (2.4), use (2.3) and the fact v¨tn
ˇ̌
BΩ

“ vQ¨tn
ˇ̌
BΩ

to obtain

(2.7) }vQ}Hk À }∇¨vQ}Hk´1 ` }vQ}L2 if v¨tn
ˇ̌
BΩ

“ 0

A notable feature of the above inequality is, unlike in Remark 2.2, the L
2 norm term above

can be dropped regardless of topology of the spatial domain.

Proposition 2.3. Let k ě 1. For any v P H
kpΩq subject to v¨tn

ˇ̌
BΩ

“ 0,

}vQ}Hk À }∇¨vQ}Hk´1 “ }∇¨v}Hk´1 .

Proof. Having (2.7) established, it suffices to show }vQ}L2 ď CΩ}∇¨v}L2 .
Take any smooth test velocity field v1. By Leray projection and Proposition 2.1, v1 “ ∇ψ `

Pv1. Then, we know

ż

Ω

vQ¨v1 “
ż

Ω

v¨∇ψ by the orthogonality of P, Q, and }∇ψ}L2 ď }v1}L2

by the Pythagorean theorem. Thus, a sufficient condition for the desired inequality

ż

Ω

vQ¨v1 ď
CΩ}∇¨v}L2}v1}L2 is,

(2.8)

ż

Ω

v¨∇ψ ď CΩ}∇¨v}L2}∇ψ}L2

Since Ω is compact, this is done by choosing ψ with zero mean, applying the divergence

theorem on the LHS and then applying the Hölder and Poincaré inequalities. �
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2.2. Slow and Fast dynamics. Next, we want to extract the slow dynamics from (1.9) in

the form of an evolutionary system that is free of Opε´1q time derivative. One could apply K

to cancel ε´1L and get the vorticity equations (1.13a) or (1.13b), but the comments thereafter

suggests that the vortical dynamics does not necessary retain all the information of the slow

dynamics. For such a reason, we will instead apply P on (1.9b). The intuition is, if we define

P7

ˆ
ρ

v

˙
:“

ˆ
0

Pv

˙
so that LP7 “ 0 and L, P7 are (skew-)symmetric, then hopefully they

commute P7L “ 0 and therefore applying P7 to (1.9) will eliminate the ε´1L term. This is

easily proved via duality argument if BΩ “ H, and can still be established in general provided

the boundary conditions are taken care of.

Proposition 2.4. For any scalar ρ P H
1pΩq,

Pp∇ρq “ 0.

Proof. By definition, we have ∇¨pPv1q “ 0 and pPv1q¨tn
ˇ̌
BΩ

“ 0 for any v1 P H
1pΩq. Therefore,

0 “
ż

Ω

ρ∇¨pPv1q “ ´
ż

Ω

p∇ρq¨pPv1q.

Then, apply (2.1b) twice,

0 “
ż

Ω

p∇ρq¨pPv1q “
ż

Ω

Pp∇ρq¨pPv1q “
ż

Ω

Pp∇ρq¨pv1q

Since H1pΩq is dense in L
2pΩq, we have

ż

Ω

Pp∇ρq¨pv1q “ 0 for any v1 P L
2. Thus, Pp∇ρq “ 0. �

Now, we apply P on (1.9b) to obtain the slow dynamics,

(2.9) ´ BtvP “ P
`
v¨∇v

˘
“ P

`
vP ¨∇vP

˘
` P

`
vP ¨∇vQ ` vQ ¨∇vP

˘
` P

`
vQ ¨∇vQ

˘

Here, we used the fact that hεpρq∇ρ is a perfect gradient, therefore by the above lemma,

Pphεprq∇rq “ 0. Now, apply Q to (1.9b) and keep (1.9a) as is to arrive at the fast dynamics,

Btρ` ∇¨pρvq “ ´ε´1∇¨v(2.10a)

BtvQ ` Qpv¨∇vq ` hεpρq∇ρ “ ´ε´1∇ρ(2.10b)

This way, the original system is decomposed into (2.10) governing the fast variables ρ,vQ with

Opε´1q coefficients, and (2.9) governing the slow variable vP whose first time derivative is Op1q.
Note density component is identically zero in the slow variable.

A key decoupling property is that the “fast-fast” product in (2.9) vanishes completely.

Lemma 2.5. For any vQ P H
2pΩq,

P
`
vQ ¨∇vQ

˘
“ 0.

Proof. By Proposition 2.1, there exists a scalar function φ so that vQ “ ∇φ. Then, vQ ¨∇v “
p∇φq¨∇p∇φq “ 1

2
∇|∇φ|2. So, by Proposition 2.4, P

`
vQ ¨∇vQ

˘
vanishes. �

Therefore, by defining B
`
v1,v2

˘
:“ v1 ¨∇v2 ` v2 ¨∇v1, we rewrite (2.9) as

(2.11) ´ BtvP “ P
`
vP ¨∇vP

˘
` PB

`
vP ,vQ

˘

If we set vQ ” 0 by brutal force, this equation is reduced to the incompressible Euler equations.
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Proposition 2.6. Consider a velocity field rv P C 2pr0, T ˚s ˆ Ωq. Then, rv solves the actual

incompressible Euler equations (1.3a), (1.3b), (1.3c) if and only if it solves

(2.12) ´ Btrv “ P
`
rv¨∇rv

˘

with the same initial data rv0 satisfying (1.3d).

Proof. “ Only if ”. Assume rv solves (1.3a), (1.3b), (1.3c). Apply P on (1.3a). On the LHS,

because Btrv also satisfies (1.3b), (1.3c), we have PpBtrvq “ Btrv by the definition of P. Also, we

have Pp∇qq “ 0 by Proposition 2.4. Therefore, applying P on (1.3a) gives us exactly (2.12).

“ If ”. Assume rv solves (2.12), which can be recast as

Btrv ` rv¨∇rv ´ Q
`
rv¨∇rv

˘
“ 0

By Proposition 2.1, there exists a scalar φ so that Q
`
rv ¨∇rv

˘
“ ∇φ and therefore the above

equation is of the same form as (1.3a) with pressure q “ ´φ. Also, since ∇¨rv0 “ 0 and taking

divergence on (2.12) gives Btp∇¨rvq “ 0, we have ∇¨rv “ 0, i.e. (1.3b) satisfied for all times in

r0, T ˚s. Finally, restrict (2.12) on BΩ, take its dot product with tn and use the definition of P

to obtain Btprv¨tnq “ 0 on BΩ. Since (1.3d) ensures rv0¨tn
ˇ̌
BΩ

“ 0, we have rv¨tn
ˇ̌
BΩ

“ 0, i.e. (1.3c)

validated for all times in r0, T ˚s. �

Problem is, in order to estimate the difference of (2.11) and (2.12), how can we bound the

“slow-fast” term PB
`
vP ,vQ

˘
by Opε2q? Because of nonlinearity, the slow subspace kerL is not

invariant under the coupled slow-fast dynamics. This means, even with initial data vQ

0
“ 0 and

vP
0

„ Op1q, nonlinear coupling can lead to vQ „ Opεq in later times.

To this end, we bring to focus the key idea of this article: a generic compressible solution v,

without being Opε2q pointwise in time, can still be Opε2q in terms of its time-averages as long

as vQ

0
„ Opεq initially. Such estimate in turn will suffice to make pvP ´ rvq „ Opε2q pointwise in

time. This is the subject of next section.

3. Pointwise-in-time Error Estimates Using Time-averages

In this section, we demonstrate in Lemma 3.1 and Theorem 3.3 the crucial role of time-

averages in estimating pvP ´ rvq pointwise in time. For brevity, throughout this section, we

assume solutions ρ,v, rv P C pr0, T s,HmpΩqq for integer m ě 4.

Define the time-averaging (indeed, integrating) operator

vpT, xq :“
ż T

0

vpt, xq dt

First, estimate the slow-fast product B
`
vP ,vQ

˘
of (2.11), which is the extra term compared to

the incompressible system (2.12). By the product rule, B
`
vP ,vQ

˘
“ BtB

`
vP ,vQ

˘
´B

`
BtvP ,vQ

˘
,

so we apply time averaging,

B
`
vP ,vQ

˘
ptq “B

`
vP ,vQ

˘ˇ̌
ˇ
t

0

´
ż t

0

B
`
BtvP ,vQ

˘

“B
`
vP ,vQ

˘ˇ̌
ˇ
t

0

`
ż t

0

B
`
PpvP ¨∇vP q ` PB

`
vP ,vQ

˘
, vQ

˘
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where BtvP was replaced via the slow dynamics (2.11). Apply the boundedness of P in (2.6)

and the Sobolev inequalities (with m ě 4),

(3.1) sup
r0,T s

}B
`
vP ,vQ

˘
}Hm´2 À sup

r0,T s

!
}vQ}Hm´1}vP }Hmp1 ` T }v}Hmq

)

Then, as the common factor in the above RHS, the spatial norms of vQ are expected to vanish

at Opε2q. In fact, by Proposition 2.3,

}vQ}Hm´1 À }∇¨v}Hm´2 À }∇p∇¨vq}Hm´3

where the last estimate is due to the Poincaré inequality and the zero spatial mean of ∇¨v. Now,
replace ∇p∇¨vq on the RHS using the continuity equation (2.10a),

(3.2) }vQ}Hm´1pT q À }∇p∇¨vq}Hm´3 “ ε

››››∇pρpT, ¨q ´ ρ0q ` ∇

ż T

0

∇¨pρvq
››››
Hm´3

.

Already, we have gained an ε factor in the bound of vQ. But this is not enough for Opε2q.
A key decoupling property here is that the quadratic terms in the RHS contain no “slow-

slow” product which would’ve made Op}vP }2q contribution. Instead, everything in the RHS of

(3.2) has a factor from the fast variables ρ,vQ, or more precisely p∇¨vQ,∇ρq “ Lpρ,vq. Thus,

combine (3.2) and Sobolev inequalities (with m ě 4) to get

(3.3) }vQ}Hm´1pT q À ε sup
r0,T s

!››Lpρ,vq
››
Hm´2p1 ` T }pρ,vq}Hm´1q

)
.

Plug it into (3.1) to prove the following lemma.

Lemma 3.1. Let integer m ě 4. Suppose the compressible Euler equations (1.9) admit solution

pρ,vq P C pr0, T s,HmpΩqq. Then, there exists a constant C solely depending on m, Ω, so that

sup
r0,T s

}B
`
vP ,vQ

˘
}Hm´2 ď C ε sup

r0,T s

!››Lpρ,vq
››
Hm´2p1 ` T }pρ,vq}Hm´1q}vP }Hmp1 ` T }v}Hmq

)

Meanwhile, estimate (1.7) relates Lpρ,vq „ Opεq to Btpρ,vq „ Op1q. Thus, we will show in

Section 4, by preparing initial data so that
››Btpρ,vq

››
Hm´1

„ Op1q at t “ 0, it will remain Op1q
for finite times, eventually making the RHS in the above lemma Opε2q.

Having bounded the time-average of the “extra term” B
`
vP ,vQ

˘
in the compressible system

(2.11), we move on to show how it helps us to estimate pvP ´ rvq. Before the main result in

Theorem 3.3, we prove following technical lemma showing that error propagation in a (bilinear)

PDE system heavily relies on the time-averages of its coefficients.

Lemma 3.2. Assume v1, v2, u1, u2, γ1, γ2 P C pr0, T s,HkpΩqq for k ě 1 and satisfy PDE systems

(3.4) Btui ` bpvi, uiq “ γi, i “ 1, 2, subject to the same initial data

Assume also bilinear operator b satisfies

xu,bpv, uqy
Hk´1 ď C1}v}Hk}u}2

Hk´1(3.5a)

}bpv, uq}
Hk´1 ď C2}v}Hk}u}Hk(3.5b)

for any v as linear combination of v1, v2 and any u as linear combination of u1, u2, γ1 ´ γ2.
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Then, with M :“ supr0,T s

 
}v1}Hk ` }u2}Hk

(
and C :“ suptC1, C2u,

sup
r0,T s

}u1 ´ u2}Hk´1 ď eCMT sup
r0,T s

››γ1 ´ γ2
››
Hk `

`
eCMT ´ 1

˘
sup
r0,T s

››v1 ´ v2
››
Hk

Under the same hypotheses, one can also prove

sup
r0,T s

}u1 ´ u2}Hk´2 ď eCMT sup
r0,T s

!››γ1 ´ γ2
››
Hk´1 `

››v1 ´ v2
››
Hk´1p1 ` T }Btu2}Hk´1q

)

but we will neither prove nor use it in this article, only proving a simplified version for the last

part of Corollary 1.4.

Notice the solution error pu1 ´u2q measured pointwise in time is affected by the source terms

γi only via the time average pγ1 ´ γ2q. On the other hand, |γ1 ´ γ2| can still be large. Similar

effect comes from pv1 ´ v2q as well.

Proof. (Lemma 3.2). Set i “ 1, 2 in (3.4) and subtract them to get

Btpu1 ´ u2q ` bpv1, u1 ´ u2q ` bpv1 ´ v2, u2q “ γ1 ´ γ2

Then, define the time integral of the right hand side

ξ :“ pγ1 ´ γ2q.

and replace the RHS of the previous equation with Btξ, recasting it into

Btpu1 ´ u2 ´ ξq ` bpv1, u1 ´ u2 ´ ξq ` bpv1, ξq ` bpv1 ´ v2, u2q “ 0.

It is easy to see that Btpu1 ´ u2 ´ ξq P C pr0, T s,Hk´1pΩqq due to (3.5). Take its H
k´1 inner

product with pu1 ´ u2 ´ ξq and apply (3.5) to get

1

2

d

dt
}u1 ´ u2 ´ ξ}2

Hk´1 ď C}u1 ´ u2 ´ ξ}Hk´1p}v1}Hk ` }u2}Hkq
´

}u1 ´ u2 ´ ξ}Hk´1 ` }ξ}Hk ` }v1 ´ v2}Hk

¯

Relax the last two terms }ξ}Hk `}v1 ´v2}Hk to a t-independent sup
r0,T s

p}ξ}Hk ` }v1 ´ v2}Hkq and

also relax p}v1}Hk ` }u2}Hkq to a t-independent M . Then, integrate this Gronwall’s inequality

from 0 to T to obtain, noting u1p0, ¨q ´ u2p0, ¨q “ ξp0, ¨q “ 0,

}u1 ´ u2 ´ ξ}Hk´1pT q ď peCMT ´ 1q sup
r0,T s

p}ξ}Hk ` }v1 ´ v2}Hkq

By the triangle inequality, this concludes the proof. �

The above lemma can be applied to compare the vorticity formulations of (2.11) and (2.12).

When H
k estimates are sought in the presence of boundary conditions, it is more convenient

to deal with vorticities which are governed by transport equations. There will be no boundary

terms containing the highest order spatial derivatives, thanks to the simple (bilinear) structure

of vorticity equations. The downside, however, is that the vorticity does not necessarily retain

all information of an incompressible velocity field – cf. Remark 2.2.
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Apply ∇̂ to the incompressible system (1.3a) and arrive at vorticity equation,

Btrω ` rv¨∇rω “ 0 in 2D,(3.6a)

Btrω ´ rω ¨∇rv ` rv¨∇rω “ 0 in 3D(3.6b)

Then, rewrite its compressible counterpart (1.13) into as similar as possible formulation

Btω ` vP ¨∇ω “ ´
´
vQ ¨∇ω ` p∇¨vQqω

¯
in 2D,(3.7a)

Btω ´ ω ¨∇vP ` vP ¨∇ω “ ´
´
vQ ¨∇ω ` p∇¨vQqω ´ ω ¨∇vQ

¯
in 3D(3.7b)

Here, vP ,vQ are separated to respect the fact that rv in (3.6) is only a slow variables. There

is no separation of ω because, by (2.3), ω “ ∇ˆv “ ∇ˆvP is purely slow. Thus, the bilinear

terms in the LHS of the above 4 equations only contain “slow-slow” products, and the bilinear

terms on the RHS only contain “slow-fast” products.

Theorem 3.3. (Time-averaging estimates) Consider the slow dynamics (2.11) and the

incompressible Euler equations (2.12), subject to the solid-wall boundary condition and the same

initial data vP
0 “ rv0. Suppose pρ,v, rvq P C pr0, T 5s,HmpΩqq for m ě 4. Then, there exists

constants D1,D2 only dependent on m, Ω so that,

sup
r0,T s

}rv ´ vP }Hm´3 ď εD1 sup
r0,T s

 ››Lpρ,vq
››
Hm´2}vP }Hm

(

for T P r0, T 5sŞ
”
0, D2{ sup

r0,T 5s

}pρ,v, rvq}Hm

ı

Proof. By the virtue of (2.5), we estimate respectively the high norms of vorticity and the L
2

norm of velocity, in the hope that a factor of B
`
vP ,vQ

˘
will appear in both estimates.

(i). Estimates on high norms of ∇ˆ prv´vP q “ rω´ω. Fit (3.6) and (3.7) into the framework

of Lemma 3.2 so that,

u1 “ rω, v1 “ rv
u2 “ ω, v2 “ vP

γ1 “ 0, γ2 “ RHS of (3.7),

bpv, uq “
#
v ¨∇u in 2D (3.6a), (3.7a)

v ¨∇u ´ u¨∇v in 3D (3.6b), (3.7b)

Note both forms of bp¨, ¨q satisfy (3.5). In particular, for any v as linear combination of vP , rv,
we have bp¨, ¨q satisfies (3.5a) with k “ m´ 3, thanks to the solid-wall boundary condition.

For the source terms, γ2 only consists of “slow-fast” products, so we should expect an estimate

of γ2 similar to that of B
`
vP ,vQ

˘
. In fact, the correspondence between (2.11) and (3.7) implies

∇ˆPB
`
vP ,vQ

˘
“ ´γ2 ùñ }γ1 ´ γ2}Hm´3 ď

››B
`
vP ,vQ

˘››
Hm´2

Combine it and Lemma 3.2 (with k “ m´ 3) to obtain, for any T P r0, T 5s,
(3.8) sup

r0,T s
}rω ´ ω}Hm´4 ď eCMT sup

r0,T s

››B
`
vP ,vQ

˘››
Hm´2 `

`
eCMT ´ 1

˘
sup
r0,T s

››rv ´ vP
››
Hm´3

where we relaxed the value of M so that M “ supr0,T 5s }pρ,v, rvq}Hm .
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(ii). Estimates on L
2 norm of prv ´ vP q. Fit the compressible Euler equations (2.11) and its

incompressible counterpart (2.12) into the framework of Lemma 3.2 so that,

u1 “ v1 “ rv, γ1 “ 0

u2 “ v1 “ vP , γ2 “ ´PB
`
vP ,vQ

˘

bpv, uq “ Ppv ¨∇uq.
Note only estimate (3.5a) with k “ 1 needs to be carefully verified with boundary condition. In

fact, since ui “ Pui, vi “ Pvi, γi “ Pγi, we have that any u, v relevant to the conditions below

(3.5) are in the image of P, thus making
ż

Ω

u¨Ppv ¨∇uq “
ż

Ω

u¨pv ¨∇uq . . . by L
2-orthogonality of P,Q

“
ż

Ω

1

2
v ¨∇|u|2 “ ´

ż

Ω

1

2
p∇¨vq|u|2 “ 0

Therefore, applying Lemma 3.2 with k “ 1, we arrive at

sup
r0,T s

}rv ´ vP }L2 ď RHS of (3.8)

Combine the above estimate with (3.8) and elliptic estimate (2.5) to arrive at

sup
r0,T s

}rv ´ vP }Hm´3 ď c1 ¨ RHS of (3.8)

Now we have “closed” the estimate of }rv ´ vP }Hm´3 by using itself to bound itself, and also

its coefficient on the RHS is less than 1 for short enough time T . Then, rearrange it to get

sup
r0,T s

}rv ´ vP }Hm´3 ď eCMT

c1 ` 1 ´ eCMT
sup
r0,T s

››B
`
vP ,vQ

˘››
Hm´2 ď c2 sup

r0,T s

››B
`
vP ,vQ

˘››
Hm´2

as long as T ď T 5 and T ď plnpc1{2 ` 1qq{pCMq “: D2{M .

Combine it with Lemma 3.1, relaxing terms such as T }v}Hm to D1 due to the range of T in

the last line of the theorem, to conclude the proof. �

4. Estimates Independent of ε

What does it mean to have estimates independent of ε? Basically, we want calculations to be

invariant under the hyperbolic scaling ρ Ñ cρ,v Ñ cv, t Ñ t{c. In Theorem 4.6 for example, we

will show H
m solutions exist at least for time interval of order 1{}pρ0,v0q}Hm . During this time

interval, the solution’s H
m norm is at most inflated by a constant and very importantly, the

H
m´1 norm of its first time derivative is also only inflated by a constant. The latter estimate

can be loosely stated as “what starts well-prepared, stays well-prepared”. Recall that having

Btpρ,vq „ Op1q is equivalent to having p∇¨v,∇ρq „ Opεq as detailed in (1.7)

They main difficulty is, even though L is skew-self-adjoint, namely

ż

Ω

ˆ
ρ

v

˙
¨ L

ˆ
ρ

v

˙
dx “ 0

for v¨tn
ˇ̌
BΩ

“ 0, it is in general not the case for the spatial derivatives, namely
ż

Ω

Bβx
ˆ
ρ

v

˙
¨ BβxL

ˆ
ρ

v

˙
dx ‰ 0 if β ‰ 0 and BΩ ‰ H.
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This would’ve introduced Opε´1q terms in the energy estimate. In addition, a very sophisticated

mollification procedure would’ve been needed in estimating the highest spatial derivatives [16].

On the other hand, we can recruit higher time derivatives since BΩ is static and,

(4.1)

ż

Ω

Bkt
ˆ
ρ

v

˙
¨ Bkt L

ˆ
ρ

v

˙
dx “ 0 if Bkt

ˆ
ρ

v

˙
P H

1pΩq and v¨tn
ˇ̌
BΩ

“ 0.

If one considers r0, T s ˆ BΩ as the lateral boundary of the time-space domain, then the Bt
derivatives are precisely taken in the tangential directions, resonating with the argument in [16]

that, near a characteristic boundary, tangential and normal derivatives are estimated differently.

We first rescale the original system into an equivalent one without explicit dependence on ε.

At the end of this section, we scale it back to the original formulation for which the essential

results will still be independent of ε, so long as hyperbolic scaling is respected in the estimates.

Recall the pressure law πpρtotq “ πp1 ` ερq rescaled to satisfy πp1q “ π1p1q “ 1. Introduce

new variable r satifying

(4.2) πp1 ` ερq “ 1 ` εr ðñ πinvp1 ` εrq “ 1 ` ερ “ ρtot

where πinv denotes the functional inverse of π. Note by Taylor expansion r “ ρ`Opερ2q. Then,
the Euler equations (1.1) are reformulated as, term-by-term,

$
’’&
’’%

ε

π1pπinvp1 ` εrqq pBtr ` v¨∇rq ` πinvp1 ` εrq∇¨v “ 0,

Btv ` v¨∇v ` 1

πinvp1 ` εrq
∇r

ε
“ 0.

Then, replace

(4.3) v “ v̆{ε, r “ r̆{ε, t “ τε

and rewrite it as a symmetric hyperbolic PDE system for the rescaled variable V :“ pr̆, v̆q,

(4.4) BτV ` v̆¨∇V “ ´σpr̆qLpV q, v̆¨tn
ˇ̌
BΩ

“ 0

where diagonal matrix

σpr̆q :“ diag
 
πinvp1 ` r̆qπ1pπinvp1 ` r̆qq, 1

πinvp1 ` r̆q , . . . ,
1

πinvp1 ` r̆q
(
.

This rescaled, ε-free system will be the main subject of this section.

Since σp0q “ I and σpr̆q is C 8, there exists a constant Rπ only depending on πp¨q such that

(4.5) for |r̆| ď Rπ, diagonal matrice σpr̆q P r1{2, 2s
For example, if πp¨q satisfies the γ-power law, then by the scaling assumption (1.2), it must be

πpρtotq “ pγ´1`pρtotqγq{γ so that πinvp1` r̆q “ p1`γr̆q1{γ . Because physics suggests γ P r1, 2s,
it is easy to calculate Rπ “ p1 ´ 2´γq{γ.

Introduce a mixed norm for V pτ, xq at any fixed time τ

~V ~mpτq :“
´ mÿ

k“0

}BkτV }2
Hm´kpΩqpτq

¯1{2
.

It is a somewhat lazy way to encapsulate all mixed space-time derivatives up to order m.
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For brevity, we make a priori assumption throughout this section that

(4.6) integer m ě 4, V P C pr0, τ˚s,HmpΩqq, ~V ~mpτq ď 1 and |r̆pτ, xq| ď Rπ

for all τ P r0, τ˚s, unless specified otherwise. The last two inequalities are not stringent at all

because by the scaling of V in (4.3), (4.4), one expects ~V ~m and |r̆| to be Opεq as long as the

original unknown satisfies scaling }pr,vq}Hm „ Op1q.

4.1. Mixed norms. First, we establish some basic facts of ~ ¨ ~ as direct consequences of

Sobolev inequalities. Given function fpτ, xq,
(4.7) |f |L8pΩq À }f}H2pΩq, thus |Bβτ,xf |L8pΩq À ~f~|β|`2

More generally, given functions f1pτ, xq, f2pτ, xq, . . . , fjpτ, xq and a product of mixed mixed

derivatives pBβ1

τ,xf1q pBβ2

τ,xf2q . . . pBβj
τ,xfjq with multi-indices β1, ...., βj satisfying

(4.8) |β1 ` ... ` βj | ď 2m´ 3 and m ě |β1| ě |β2| ě . . . ě |βj |,

we have
››śj

i“1
Bβi
τ,xfi

››
L2pΩq

ď
››Bβ1

τ,xf1
››
L2pΩq

śj
i“2

ˇ̌
Bβi
τ,xfi

ˇ̌
L8pΩq

and therefore by (4.7),

(4.9)
›››

jź

i“1

Bβi
τ,xfi

›››
L2

À
jź

i“1

~fi~m if (4.8) holds.

Estimates on σpr̆q and its matrix inverse σ´1pr̆q will also be needed. By (4.5), r̆-derivatives

of σ and σ´1 can be bounded by constants only depending on pressure law πp¨q and the order

of derivatives, i.e.

(4.10)

ˇ̌
ˇ̌ d

k

dr̆k
σpr̆q

ˇ̌
ˇ̌ `

ˇ̌
ˇ̌ d

k

dr̆k
σ´1pr̆q

ˇ̌
ˇ̌ À 1 for |r̆| ď Rπ.

Also, by the mean value theorem and σp0q “ I,

(4.11) |σpr̆q ´ I| `
ˇ̌
σ´1pr̆q ´ I

ˇ̌
À |r̆| for |r̆| ď Rπ.

Now, inductively apply the chain rule and product rule to obtain, for multi-index β,

Bβτ,xσpr̆q “ linear combination of
djσpr̆q
dr̆j

pBβ1

τ,xr̆q pBβ2

t,x r̆q . . . pBβj
τ,xr̆q

over all integers j P r1, |β|s and multi-indices satisfying β1 ` ... ` βj “ β

Therefore, by (4.9), (4.10) and the assumptions ~V ~m ď 1, m ě 4 set in (4.6),

}Bβτ,xσpr̆q}L2 À ~r̆~m, for 1 ď |β| ď m.

Obviously, this estimate works for matrix inverse σ´1 as well. Sum such estimates for all |β|
from 1 to m, and use (4.11) for the |β| “ 0 case to arrive at

(4.12) ~σpr̆q ´ I~m ` ~σ´1pr̆q ´ I~m À ~r̆~m.

Similar estimate works for Bτσ. In fact, applying (4.9) to Bτσ “ p d
dr̆
σpr̆q ´ d

dr̆
σp0qqBτ r̆ ` d

dr̆
σp0qBτ r̆,

and noting that d
dr̆
σpr̆q ´ d

dr̆
σp0q can be bounded in a way similar to (4.12) , namely,

~ d
dr̆
σpr̆q ´ d

dr̆
σp0q~m´1 À ~r̆~m´1 ď 1, we have

(4.13) ~Bτσpr̆q~m´1 ` ~Bτσ´1pr̆q~m´1 À ~Bτ r̆~m´1.
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Now, thanks to the ε-free formulation of (4.4), combine (4.12), (4.13) with Sobolev inequalities

(1.15) to iteratively estimate BτV, B2τV, . . . , Bmτ V and obtain, under the a priori assumption (4.6)

(4.14) ~BτV ~m´1 À }BτV }Hm´1 ď ~V ~m À }V }Hm

4.2. Vorticity estimates. Define ω̆ :“ ∇ ˆ v̆. Take ∇ˆ of the momentum equation in (4.4),

(4.15) Bτ ω̆ ` bvorpv̆, ω̆q “ 0

where bvorpv, ωq “
#
v¨∇ω ` p∇¨vqω in 2D

v¨∇ω ` p∇¨vqω ´ ω ¨∇v in 3D

It is then an exercise of energy estimates to show, with any v̆ satisfying (4.6) and v¨tn
ˇ̌
BΩ

“ 0,

(4.16) }ω̆}2
Hm´1

ˇ̌
ˇ
τ2

τ1
À

ż τ2

τ1

}v̆}Hm}ω̆}2
Hm´1 for 0 ď τ1 ă τ2 ď τ˚.

We note by passing that, when estimating the pm ´ 1qth spatial derivatives of ω̆, one should

mollify ω̆ by first extending it outside BΩ (if there is one), then convolving it with a smooth

kernel and restricting it back to Ω — cf. [24, pp. 557]. Velocity v̆ is not mollified because it is

assumed to be H
m, which allows us to utilize the v̆¨tn

ˇ̌
BΩ

“ 0 condition and divergence theorem

to show such identities as

ż

Ω

pv̆¨∇fqf dx “ ´1

2

ż

Ω

p∇¨v̆q|f |2 dx for f P H
1pΩq.

Next, recall (2.4) which gives a bound for V using LpV q “ p∇¨v̆,∇r̆q and ∇ˆv̆,

(4.17) }V }Hk À }LpV q}Hk´1 ` }∇ˆv̆}Hk´1 ` }V }L2 , if v̆ ¨ tn
ˇ̌
BΩ

“ 0 and k ě 1.

So it remains to estimate LpV q “ p∇¨v̆,∇r̆q. In light of (4.1) and the fact that LpV q and BτV
are connected via (4.4), we now move on to estimate }Bkt V }L2 for k “ 0, 1, . . . m.

4.3. Diagnostic estimates and recurrence. We now connect mixed norms of LpV q and BτV
via rescaled system (4.4) and its time derivatives. We call such estimates “diagnostic”, as

opposed to “prognostic” estimates such as (4.16) for ω̆ in the form of integral and differential

inequalities of the Gronwall type. Diagnostic estimates do NOT rely on evolutionary properties

of (4.4) and will not involve Gronwall type inequalities. They instead come from algebraic

manipulation of (4.4) at a fixed time τ , typically using the product rule and Sobolev inequalities.

Elliptic estimate (4.17) and the fact that Bkτ v̆¨tn
ˇ̌
BΩ

“ 0 for k P r0,m ´ 1s imply,

}BkτV }Hm´k À }LpBkτV q}Hm´k´1 ` }∇ˆBkτ v̆}Hm´k´1 ` }BkτV }L2 .

On the other hand, take Bkτ derivative on (4.4) to get, for k P r0,m ´ 1s,

´LpBkτV q “ Bk`1
τ V ` Bkτ pv̆¨∇V q ` Bkτ pσ ´ IqLpV q.

Combine these two to obtain a recursive inequality, for every k P r0,m ´ 1s,

(4.18) }BkτV }Hm´k À }Bk`1
τ V }Hm´k´1 ` }Bkτ

´
v̆¨∇V, pσ ´ IqLpV q, ω̆

¯
}Hm´k´1 ` }BkτV }L2 .

At one end of this recursive chain is }V }Hm , the desirable norm, and at the other end is }Bmτ V }H0 ,

which will be estimated prognostically using energy method in the next subsection.



18 BIN CHENG

Now, exclude k “ 0 and connect from k “ 1 to m´ 1, using the definition of ~ ¨ ~ and replace

Bτ ω̆ with bilinear terms a la (4.15) to get

}BτV }Hm´1 À ~Bτ
´
v̆¨∇V, pσ ´ IqLpV q

¯
~m´2 ` ~bvorpv̆, ω̆q~m´2 `

mÿ

k“1

}BkτV }L2

Combine it with Sobolev inequalities (4.9), bounds on pσ ´ Iq in (4.12) and the equivalence of

~¨~m and }¨}Hm in (4.14) to reach the following lemma.

Lemma 4.1. (Diagnostic estimates on first time derivative) Consider V pτ, xq, a solution

of (4.4) in the a priori setting of (4.6). Then,

}BτV }Hm´1 À }V }2
Hm `

mÿ

k“1

}BkτV }L2

The extra quadratic term will cause no trouble, due to the scaling argument below (4.6).

Combine it with the k “ 0 case of (4.18) and apply (4.12), (4.14) to similarly deduce

2d1}V }Hm ď }ω̆}Hm´1 ` }V }2
Hm `

mÿ

k“0

}BkτV }L2

for some constant d1. Notice the vorticity ω̆ stays as is.

Finally, relax one of the }V }Hm factors on the RHS to d1 and absorb the associated quadratic

term into the LHS, reaching the following lemma.

Lemma 4.2. (Diagnostic estimates) Consider V pτ, xq, a solution of (4.4) in the a priori

setting of (4.6). If furthermore }V }Hm ď d1 for some constant d1 solely depending on m,Ω and

pressure law πp¨q, then,

d1}V }Hm ď }ω̆}Hm´1 `
mÿ

k“0

}BkτV }L2 .

4.4. Prognostic estimates of }BkτV }L2. Take the Bkτ derivative of (4.4) and single out the

highest derivatives

Bτ pBkτV q ` v̆¨∇BkτV ` σLpBkτV q “ ´rBkτ , σL ` pv̆¨∇qsV “: Rpkq

Here, the commutator term rBkτ , σL ` pv̆ ¨∇qsV is understood in the sense of Leibniz product

rule, so it contains τ derivatives up to the k-th order. It can be estimated diagnostically.

Proposition 4.3. (Commutator estimates) Given a solution V pτ, xq to (4.4) satisfying a priori

assumption (4.6). Then, for all k P r0,m ´ 1s, (we are being cautious not to include k “ m)
›››Rpkq

›››
L2

À }BτV }Hm´1}V }Hm .

Proof. The case k “ 0 is trivial, so we consider k P r1,m ´ 1s. By Sobolev inequalities (4.9),
›››rBkτ , σL ` pv̆¨∇qsV

›››
L2

À ~pBτσ, Bτ v̆q~m´1~BxV ~m´1

Here, we used the fact that, in the expansion of rBkτ , σL ` pv̆ ¨∇qsV , every product contains a

factor with at least one τ derivative taken on σ or v̆. Combine it with (4.13) and (4.14) to

conclude the proof. �
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Before obtaining estimates of }Bkt V }L2 in the next lemma, we carry out some calculation for

anyW with the same number of components as V and with regularityW P H
1pΩq, BτW P L

2pΩq.

2

ż

Ω

pσ´1W q ¨ pBτW ` v̆¨∇W q

paq“
ż

Ω

Bτ pσ´1W ¨ W q `
ż

Ω

v̆¨∇pσ´1W ¨W q ´
´ż

Ω

pBτσ´1qW ¨ W `
ż

Ω

pv̆¨∇σ´1qW ¨ W
¯

pbq“
ż

Ω

Bτ pσ´1W ¨ W q `
ż

Ω

v̆¨∇pσ´1W ¨W q ´
ż

Ω

pBτ r̆ ` v̆¨∇r̆qp d
dr̆
σ´1W ¨W q

pcq“
ż

Ω

Bτ pσ´1W ¨ W q ´
ż

Ω

p∇¨v̆qpσ´1W ¨W q ´
ż

Ω

pBτ r̆ ` v̆¨∇r̆qp d
dr̆
σ´1W ¨W q

pdq“
ż

Ω

Bτ pσ´1W ¨ W q ´
ż

Ω

∇¨v̆pσ´1 ´ σ1,1
d

dr̆
σ´1qW ¨W.

Here, paq is by the product rule and the fact that σ is diagonal, pbq is by the chain rule, pcq is by

the divergence theorem and v̆ ¨ tn
ˇ̌
BΩ

“ 0, and pdq is a simple substitution via the mass equation

of (4.4) with σ1,1 denoting the first entry of matrix σ.

Add and subtract a 2

ż

Ω

pσ´1W q ¨ pσLpW qq “ 2

ż

Ω

W ¨ LpW q term and rearrange it,

d

dτ

ż

Ω

σ´1W ¨W “ ´ 2

ż

Ω

W ¨ LpW q `
ż

Ω

∇¨v̆pσ´1 ´ σ1,1
d

dr̆
σ´1qW ¨W

` 2

ż

Ω

pσ´1W q ¨
´

BτW ` v̆¨∇W ` σLpW q
¯

Use (4.10) to bound the maxima of σ, σ´1, Br̆σ´1, and also use |∇¨v̆|L8 À }V }Hm to arrive at,
ˇ̌
ˇ̌ d
dτ

}W }2
L2σ

ˇ̌
ˇ̌ À

ˇ̌
ˇ̌
ż

Ω

W ¨ LpW q
ˇ̌
ˇ̌ ` }V }Hm}W }2

L2σ

` }BτW ` v̆¨∇W ` σLpW q}L2}W }L2σ
(4.19)

where

}W }L2σ :“
´ż

Ω

σ´1W ¨Wdx
¯
.

Lemma 4.4. (Prognostic estimates) Consider V pτ, xq a solution to (4.4) satisfying a priori

assumption (4.6). Then, for all k P r0,ms and 0 ď τ1 ă τ2 ď τ˚,

}BkτV }2
L2σ

ˇ̌
ˇ
τ2

τ1
À
ż τ2

τ1

´
}BkτV }L2σ ` }BτV }Hm´1

¯
}BkτV }L2σ}V }Hm .

Note k “ m is included here. Also, for k ě 1, both sides are in some sense quadratic in BτV ,

which will eventually yield desirable bound on the inflation of }BτV }Hm´1 .

Proof. First, restrict the value of k P r0,m ´ 1s so that BkτV P H
1pΩq and Bkτ v̆¨tn

ˇ̌
BΩ

“ 0 is

well-defined, allowing us to apply the divergence theorem to have

(4.20)

ż

Ω

BkτV ¨ LpBkτV q “ 0, if k P r0,m ´ 1s.

Thus, set W “ BkτV in (4.19) and in the RHS, apply (4.20) to cancel out the first term and use

Proposition 4.3 to estimate the last term to prove the lemma for k P r0,m ´ 1s.
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The tricky part is the highest derivative Bmτ V which is merely in L
2pΩq. Thus, (4.19) and

(4.20) are not directly applicable here, although a version of Proposition 4.3 is. One remedy is

to apply mollification in time, namely a time filter, to increase time regularity. Here instead, we

demonstrate the closely related time-averaging technique.

Let W in (4.19) be the time average of Bmτ V , i.e. with small δ ą 0, setting

W “ W δ :“ 1

δ

ż τ`δ

τ

Bmτ V “ 1

δ
Bm´1
τ V

ˇ̌
ˇ
τ`δ

τ

Then, W δ is still in H
1pΩq with its τ derivative in L

2pΩq, validating (4.19) and making the first

term in the RHS zero. Moreover, for the last term in (4.19),

δ¨
´

BτW δ ` v̆¨∇W δ ` LpW δq
¯

“ pBτBm´1
τ V ` v̆¨∇Bm´1

τ V ` LpBm´1
τ V qq

ˇ̌
ˇ
τ`δ

τ
´
ˆ
v̆
ˇ̌
ˇ
τ`δ

τ

˙
¨∇Bm´1

τ V pτ ` δ, ¨q

“ ´
ż τ`δ

τ

BτRpm´1q ´
ˆż τ`δ

τ

Bτ v̆
˙

¨∇Bm´1
τ V pτ ` δ, ¨q

In the RHS, the BτRpm´1q term, measured in L
2 norm, is À }BτV }Hm´1}V }Hm , estimated using

the same technique as Proposition 4.3. The Bτ v̆ term has a maximum bounded by }BτV }Hm´1 .

Combining these estimates with Hölder’s inequality
`şb

a
f dτ

˘2 ď |b ´ a|
şb
a
f2 dτ , we arrive at

}BτW δ ` v̆¨∇W δ ` LpW δq}2
L2

À
ˆ
1

δ

ż τ`δ

τ

}BτV }2
Hm´1}V }2Hm

˙
`

ˆ
1

δ

ż τ`δ

τ

}BτV }2
Hm´1

˙
}V }2

Hmpτ ` δq

Now integrate (4.19) over rτ1, τ2´δs, and apply the above estimate and the fact that

ż

Ω

W δ¨LpW δq “
0. Then, pass the limit as δ Ñ 0` to prove the lemma for k “ m. Note by V P C pr0, τ˚s,Hmq,
we have BkτV P C pr0, τ˚s,Hm´kq, and thus lim

δÑ0

››W δ ´ Bmτ V
››
L2

pτq “ 0. �

4.5. Estimates of }pρ,vq}Hm and }Btpρ,vq}Hm´1 . We will still mostly work with V “ εpr,vq,
only reconnecting with v and r « ρ in Theorem 4.6 near the end of this section. The goal to

keep in mind is the existence time in terms of τ at the same order of 1{}V0}Hm with the }V }Hm

norm only inflated by a constant. We also need to see similar inflation of }BτV }Hm´1 but will

tolerate some additional term that is quadratic in }V }Hm .

Lemma 4.5. (Estimates on V and BτV ) Consider a solution of (4.4), V P C pr0, τ˚s,HmpΩqq
with m ě 4. Then, there exist positive constants τ 7, Cv, C1, C2, C3 that solely depend on m,Ω

and pressure law πp¨q so that, if }V }C pr0,τ˚s,Hmq ď Cv, then for times τ P r0, τ˚s
Ş

r0, τ 7{}V0}Hms,
}V }Hm ď C1}V0}Hm(4.21)

}BτV }Hm´1 ď C2}BτV0}Hm´1 ` C3}V0}2Hm(4.22)

Notice, under the hyperbolic rescaling (4.3), one has }V }Hm “ ε}pr, v̆q}Hm and }BτV }Hm “
ε2}Btpr, v̆q}Hm both of which are respected in this lemma.
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Proof. We pick constant Cv so that }V }C pr0,τ˚s,Hmq ď Cv implies a priori assumption (4.6) and

}V }Hm ď d1 as required by Lemma 4.2.

Introduce the shorthand notations

fpτq :“ }BτV }Hm´1pτq, F pτq :“ }V }Hmpτq,

φpτq :“
´ mÿ

k“1

}BkτV }2
L2σ

¯1{2
, Φpτq :“

´
}ω̆}2

Hm´1 ` }V }2
L2σ

` φ2pτq
¯1{2

where f, φ only involves 1st and higher Bτ derivatives.

By definition and |σ| P r1{2, 2s, we have φ ď
?
2~BτV ~m´1 and Φ ď

?
2~V ~m. Combine it

with (4.14) to get

φ À f, Φ À F.(4.23)

Meanwhile, we have been gathering diagnostic estimates in Lemmas 4.1, 4.2, i.e.

f À pF 2 ` φq, F À Φ(4.24)

and prognostic estimates in (4.16) and Lemma 4.4 which sum up to

φ2
ˇ̌
ˇ
τ2

τ1
À
ż τ2

τ1

pφ` fqφF,
ˇ̌
ˇ
τ2

τ1
Φ2 À

ż τ2

τ1

pΦ ` fqΦF(4.25)

(i). Estimate of Φpτq. Use the second part (4.25), relax f to F a la (4.14) and relax F to Φ

a la (4.24) to obtain Φ2

ˇ̌
ˇ
τ2

τ1
ď 2c1

ż τ2

τ1

Φ3 for some constant c1. Thus, Φ
2pτq ď Φ2p0q ` 2c1

ż τ

0

Φ3

and by the continuity of Φpτq and the comparison principle,

Φ ď Φ̃ solving
d

dτ
pΦ̃q2 “ 2c1pΦ̃q3, Φ̃p0q “ Φp0q

ùñ Φpτq ď Φ̃pτq “ Φp0q
1 ´ c1Φp0qτ

as long as the RHS is bounded. Thus

(4.26) 1 ´ c1Φp0qτ ě 1{2 ùñ Φpτq ď 2Φp0q.
Then, by the equivalence of F,Φ as in (4.23), (4.24), we proved (4.21) as well as the τ interval

prescribed above it.

(ii). Estimate of φpτq. Combine the first parts of (4.24), (4.25), and relax F to F p0q a la

(4.21),

φ2
ˇ̌
ˇ
τ2

τ1
ď 2c2

ż τ2

τ1

pφ ` F 2p0qq¨φ¨F p0q.

By the continuity of φpτq and the comparison principle,

φ ď φ̃ solving
d

dτ
pφ̃q2 “ 2c2pφ̃ ` F 2p0qq¨φ̃¨F p0q, φ̃p0q “ φp0q

ùñ φpτq ď φ̃pτq “ ´F 2p0q ` ec2F p0qτ pφp0q ` F 2p0qq.
Combine it with the τ interval above (4.21) and the first parts of (4.23), (4.24) to prove (4.22).

�
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This lemma leads to the final theorem of this section.

Theorem 4.6. (Uniform estimates) Under the same hypotheses as Main Theorem 1.1 with

E0,Et,0 equivalently given in (1.6), there exist constants E˚, T 7, C7, C
7
t , C

7
L
that solely depend on

m,Ω and pressure law πp¨q so that,

E0 ď E˚{ε implies there exists a unique solution pρ,vq P C
1
`
r0, T 7{E0s ˆ Ω

˘
.

More precisely,

}pρ,vq}C pr0,T 7{E0s,Hmq ď C7E0,(4.27a)

}Btpρ,vq}C pr0,T 7{E0s,Hm´1q ď C
7
t pEt,0 ` E2

0q,(4.27b)

}Lpρ,vq}C pr0,T 7{E0s,Hm´1q ď C
7
L
ε pEt,0 ` E2

0q.(4.27c)

Proof. The short time existence of classical solutions is established in [18], so we only prove

the estimates here. The continuation method is always at our disposal, since the compatibility

condition pBkt v0q¨tn
ˇ̌
BΩ

“ pBkτ v̆0q¨tn
ˇ̌
BΩ

“ 0 is invariant under hyperbolic rescaling (4.3).

First of all, by the close relation of r and ρ in (4.2) namely r̆ “ εr “ πp1 ` ερq ´ πp1q and

ερ “ πinvp1` εrq ´ πinvp1q, we can use similar technique for proving (4.12), (4.13) to show that

}ερ}Hm ď 1, |ερ| ď 1{2 ùñ }r}Hm À }ρ}Hm, }Btr}Hm´1 À }Btρ}Hm´1 ,

}εr}Hm ď 1, |εr| ď Rπ ùñ }ρ}Hm À }r}Hm, }Btρ}Hm´1 À }Btr}Hm´1 .

Therefore, by choosing constants wisely, it suffices to show there exist similar universal constants

e˚, τ 7, c0, c1, c2, so that, }V0}Hm ď e˚ implies

}V }C pr0,τ 7{}V0}Hm s,Hmq ď c0}V0}Hm ,(4.28a)

}BτV }C pr0,τ 7{}V0}Hm s,Hm´1q ď c1p}BτV0}Hm´1 ` }V0}2Hmq,(4.28b)

}LpV q}C pr0,τ 7{}V0}Hm s,Hm´1q ď c2p}BτV0}Hm´1 ` }V0}2Hmq.(4.28c)

Indeed, choose e˚ “ Cv{C1 with C1 ą 1 and Cv used in Lemma 4.5. Then, by continuity

argument and Lemma 4.5, the a priori assumption }V }Hm ď Cv as well as (4.28a), (4.28b)

remain true in the time interval prescribed. Finally, (4.28c) is by a simple deduction from

(4.28a), (4.28b), the ε-free formulation (4.4), Sobolev inequalities and bounds of σ in (4.12).

�

5. Proof of the Main Theorem and Concluding Remarks

Now we prove the Main Theorem 1.1 using the time-averaging estimates in Theorem 3.3 and

the ε-independent estimates in Theorem 4.6.

Proof. (Main Theorem 1.1). First, regarding the time interval of validity, by (4.27a) of Theorem

4.6, replace T 5 with T 7{E0 in the last line of Theorem 3.3 to get

T P
“
0, T 7{E0

‰č“
0, D2{ sup

r0,T 5s

}pρ,v, rvq}Hm´1

‰

By estimate (4.27a) again, and by a similar estimate well known to be true for rv (e.g. [24, Ch.

17, Thm. 3.2]), we further shorten the second time interval to r0,D2{pC7E0qs. Therefore, take

T ˚ :“ mintT 7,D2{C7u to make both Theorem 3.3 and 4.6 valid for T P r0, T ˚{E0s.
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On this time interval, Theorem 3.3 guarantees

sup
r0,T s

}rv ´ vP }Hm´3 ď D1 ε sup
r0,T s

››Lpρ,vq
››
Hm´2 sup

r0,T s
}vP }Hm

One ε factor is in place, and (4.27c) of Theorem 4.6 guarantees another ε factor from Lpρ,vq.
So, our last job is to bound }vP }Hm in terms of }vP

0 }Hm. Scale vorticity estimate (4.16) back

to variables ω, t so that }ω}2
Hm´1

ˇ̌
ˇ
t2

t1
À
ż t2

t1

}v}Hm}ω}2
Hm´1 . Apply energy method to (2.11), noting

vP ¨tn
ˇ̌
BΩ

“ vQ¨tn
ˇ̌
BΩ

“ 0, to get }vP }2
L2

ˇ̌
ˇ
t2

t1
À

ż t2

t1

}v}Hm}vP }2
L2
. Combine these two Gronwall

inequalities with elliptic estimate (2.5) to obtain }vP }HmpT q À }vP
0

}Hm exppT supr0,T s }v}Hmq.
Then, the exponent can be relaxed to C7T 7 due to (4.27a). The proof is complete! �

The proof of Corollary 1.4 is as follows. First, regarding }v ´ rv}Hm´3 , combine (4.27c) of

Theorem 4.6 with elliptic estimates from Proposition 2.3 to obtain }vQ}Hm À εpEt,0 ` E2
0q. By

the Opε2q estimate of }vP ´ rv}Hm´3 from the Main Theorem, this is more than enough to prove

the Opεq estimate of }v ´ rv}Hm´3 .

Secondly, regarding

ż T

0

v ´ rv, use estimate (3.3) of vQ and estimate (4.27c) of Lpρ,vq to

obtain

(5.1) }
ż T

0

vQ}Hm´1 À ε2pEt,0 ` E2
0qp1 ` T sup

r0,T s
}pρ,vq}Hm´1q À ε2pEt,0 ` E2

0q

where the T supr0,T s }pρ,vq}Hm´1 term is absorbed into a constant, due to (4.27a). Meanwhile,

the Opε2q estimate of }vP ´ rv}Hm´3 from the Main Theorem apparently implies,

}
ż T

0

vP ´ rv}Hm´3 À ε2pEt,0 ` E2
0q}vP

0 }HmT À ε2pEt,0 ` E2
0q

where the last estimate is due to T ď T ˚{E0 À T ˚{}vP
0

}Hm . Combine the above two estimates

to complete the proof of (1.8).

Lastly, regarding the transport equations in Corollary 1.4, it is proven in the same fashion as

Lemma 3.2. First, subtract them and rearrange

Btpθ ´ rθq ` rv¨∇pθ ´ rθq “ prv ´ vP q¨∇θ ´ vQ ¨∇θ “ prv ´ vP q¨∇θ ´ Btξ

where ξ :“ vQ ¨∇θ. Combine Bt terms together and write an equation in terms of pθ ´ rθ ` ξq,

(5.2) Btpθ ´ rθ ` ξq ` rv¨∇pθ ´ rθ ` ξq “ prv ´ vP q¨∇θ ` rv¨∇ξ.

Now, perform integrating by parts on ξ and use the transport equation of θ itself,

ξpT, ¨q “ vQ ¨∇θ
ˇ̌
ˇ
T

0

´
ż T

0

vQ ¨∇Btθ “ vQ ¨∇θ
ˇ̌
ˇ
T

0

`
ż T

0

vQ ¨∇pv¨∇θq

Take the H
m´2 norm, apply (5.1) and Sobolev inequalities (1.15) to get

(5.3) }ξ}Hm´2 À ε2pEt,0 ` E2
0q sup

r0,T s
}θ}Hm

`
}1 ` T sup

r0,T s
}v}Hm

˘
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Apply the standard energy method to the transport equation of θ, using the same mollification

for proving vorticity estimate (4.16), to get

}θ}2
Hm

ˇ̌
ˇ
t2

t1
À
ż t2

t1

}v}Hm}θ}2
Hm ùñ sup

r0,T s
}θ}Hm À }θ0}Hm exppT sup

r0,T s
}v}Hmq.

Plug it into (5.3) and absorb all T supr0,T s }v}Hm terms into a constant a la (4.27a),

(5.4) sup
r0,T s

}ξ}Hm´2 À ε2pEt,0 ` E2
0q }θ0}Hm

Then, apply energy method on (5.2), bounding the RHS with the above estimate and (1.4),

}θ ´ rθ ` ξ}2
Hm´3

ˇ̌
ˇ
t2

t1
À

ż t2

t1

}θ ´ rθ ` ξ}Hm´3

!
}rv}Hm}θ ´ rθ ` ξ}Hm´3

` ε2pEt,0 ` E2
0q p}θ0}Hm¨}rv}Hm ` }vP

0 }Hm¨}θ}Hmq
)
.

Since θ ´ rθ ` ξ “ 0 at t “ 0, this Gronwall inequality implies a desirable Opε2q estimate for

}θ ´ rθ ` ξ}Hm´3 and together with (5.4), it proves the last inequality of Corollary 1.4.

For future studies, we like to comment on the possibilities of sharpening the error estimates for

practical use such as numerical analysis, for the incompressible approximation is so ubiquitously

important. One aspect is to get some good bounds on the inequality constants C˚, T ˚ etc. This

can benefit from using optimal constants in the Sobolev inequalities, making all À relations

explicitly ď relations. In addition, for the easier case BΩ “ H, one can drastically reduce the

steps of the energy method in Section 4, potentially reducing constants as well. Another aspect

is to utilize dispersive and/or dissipative mechanisms which the current article does not reply on.

It will be very interesting to see what role they can play when combined with time-averaging.

Furthermore, we note that it is easy to extend our techniques to domains living in two and

three dimensional Riemannian manifolds, in which case two major analytical tools remain valid:

Stokes’ theorem as generalization of divergence theorem and Sobolev inequalities. Also, calcu-

lations carried out in this article mostly rely on a handful of coordinate-independent operators ,

i.e ∇,∇¨, ∇̂ ,v ¨∇,∆. Then, our results and techniques can be applied to interesting areas such

as geophysical fluid dynamics on a sphere and relativistic fluid dynamics.
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