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Abstract

The applicability of ADER finite volume methods to solve hyperbolic balance laws with stiff
source terms in the context of well-balanced and non-conservative schemes is extended to solve
a one-dimensional blood flow model for viscoelastic vessels, reformulated as a hyperbolic sys-
tem, via a relaxation time. A criterion for selecting relaxation times is found and an empirical
convergence rate assessment is carried out to support this result. The proposed methodology
is validated by applying it to a network of viscoelastic vessels for which experimental and nu-
merical results are available. The agreement between the results obtained in the present paper
and those available in the literature is satisfactory. Key features of the present formulation and
numerical methodologies, such as accuracy, efficiency and robustness, are fully discussed in the
paper.

Introduction
The validity of one-dimensional blood flow models for reproducing pressure and flow rate wave-

forms in the cardiovascular system has been confirmed in multiple ways. It has been shown that
these models well reproduce pressure and flow rate waves obtained using three-dimensional com-
putational models in real vascular geometries using both, rigid boundaries, see Grinberg et al.
[29] and fully three-dimensional Fluid-Structure-Interaction (FSI) models, see Xiao et al. [64].
One-dimensional blood flow models have also shown to reproduce measured pressure and flow
rate wave patterns in animal arteries Steele et al. [54], human arteries Reymond et al [51] and
human veins Müeller and Toro [43]. Moreover, these models have been used to study a variety of
pathological conditions, like the assessment of variations and occlusions of the Circle of Willis, see
Alastruey et al. [3] or the study of the influence of aortic valve stenosis in systemic circulation, see
Liang et al. [38]. Another relevant application of one-dimensional models is to provide boundary
conditions for three-dimensional FSI models, see Blanco et al. [6].

In this paper we solve a time-dependent, one-dimensional system that is a model for blood flow
in vessels with walls having viscoelastic properties. First, we reformulate the original Advection-
Diffusion-Reaction (ADR) problem via a relaxation technique introduced by Cattaneo [13, 14],
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obtaining a hyperbolic system with stiff source terms. Then, we solve the resulting system using
appropriate high-order accurate numerical methods.

Cattaneo [13] and Vernotte [63] are credited for having introduced a relaxation technique for
the heat equation, as a strategy for resolving the paradox of instantaneous wave propagation. See
also Nagy et al. [44]. The relaxation approach consists of augmenting the Fourier law with a
transient term involving a relaxation time, a parameter, which recovers the original Fourier law
for small relaxation times. Even though this relaxation technique was originally developed to
avoid a non-physical description of instantaneous heat propagation, it is also appropriate for the
construction of numerical schemes that transform ADR equations into hyperbolic systems which
may be stiff for small relaxation parameters.

Relaxation in the sense of Cattaneo has been applied to solve ADR problems, see for example
Gómez and collaborators [28, 27], where two-dimensional implementations have been carried out
for linear problems in the frame of finite element methods. Nishikawa and Roe [47, 48] and subse-
quently Nishikawa [45, 46] have implemented this approach in the frame of residual distribution
schemes to find steady state solutions to parabolic partial differential equations.

We remark that there exist other relaxation approaches, as for example the one due to Jin et
al. [34], which is an extension of the relaxation strategy presented by Jin and Xin [35], initially
proposed to cast non-linear hyperbolic problems into linear hyperbolic systems with stiff source
terms. However, this form of relaxation imposes a sub-characteristic condition for the derived
hyperbolic systems and spurious oscillations appear when this condition is not ensured [1]. This
relaxation approach also requires the sub-characteristic condition when applied to ADR problems,
requiring small relaxation parameters. Furthermore, the relaxation parameter for the ADR case
is present in the advective components. Therefore, stability depends on the relaxation. In the
context of implicit-explicit methods [50, 7, 8], the influence of these parameters on the stability
has been reduced by introducing an artificial viscosity. However, the accuracy of these methods is
reached in the parabolic limit of the ADR equations, i.e. for very small relaxation parameters.

Here we make use of Cattaneo’s relaxation technique because; i) avoids the sub-characteristic
condition [35, 34] and therefore allows a large enough relaxation parameter suitable for numer-
ical implementations; ii) allows selective relaxation of specific terms, in order to remove second
order derivatives present in the original model requiring only minor changes in the mathematical
formulation of the problem, maintaining the physical meaning of the relaxed model and allowing
for larger relaxation parameters in comparison to alternative approaches; iii) allows to compute
accurate and efficient solutions by implementing numerical schemes able to handle stiff source
terms.

The hyperbolic system obtained by relaxation of the original ADR system contains a stiff source
term. The numerical methods implemented here make use of the methodology presented by Müller
and Toro [42], which proposes high-order ADER (Arbitrary Accuracy DERivative Riemann prob-
lem) schemes for one-dimensional blood flow models, which reconcile source term stiffness, well-
balanced properties, accuracy and stability. The ADER approach was put forward by Toro et al.
[60] for linear problems on Cartesian meshes. Nowadays ADER schemes can be implemented in
both the finite volume and discontinuous Galerkin finite element frameworks. ADER schemes
are arbitrarily accurate in both space and time and are applicable to general geometries in mul-
tiple space dimensions. ADER schemes have recently been implemented to solve one-dimensional
blood flow models for elastic vessels with varying geometrical and mechanical properties [42, 41] in
the context of non-conservative hyperbolic systems. Moreover, ADER schemes have been applied
to ADR equations. Titarev and Toro [56] extended the ADER methodology in a straightforward
fashion to solve the model advection-diffusion equation. See also Toro and Hidalgo [59] and Hi-
dalgo et al. [32] for applications of ADER to pure diffusion equations. ADER was applied to the
compressible Navier-Stokes equations by Dumbser [18] and by Hidalgo and Dumbser in [31]. A
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disadvantage of the approach used in the above cited works is the time stability constraint that
scales with ∆x2, instead of the classical scaling of ADER schemes for hyperbolic problems, which
is ∆x. In this paper we relax this restriction exploiting the fact that ADER schemes can efficiently
treat stiff source terms and are thus an excellent candidate to solve ADR equations using the hy-
perbolisation approach. For an introduction to ADER schemes and a review of the literature see
chapters 19 and 20 of [58].

This paper is organised as follows. The governing equations, the relaxation procedure and
the blood flow model and its hyperbolic reformulation are presented in section 1. In section 2 we
briefly introduce the concepts of the ADER approach and the numerical methodology used in this
work. In section 3, we propose a sufficiency criterion for defining the relaxation time in such a
way that ensures that the formulation error will be smaller than the spatial discretization error
and provide numerical evidence that confirms the proposed criterion. In section 4 we validate
the proposed methodology by comparing our numerical results with experimental measurements
and numerical results reported in the literature for one-dimensional blood flow in a network of
viscoelastic vessels. Conclusions and remarks are drawn in section 5.

1 Governing equations
We consider non-linear advection-diffusion-reaction (ADR) equations written in the form

∂tQ+A(Q)∂xQ= ∂xG(Q,∂xQ)+S(Q) . (1)

Here, Q ∈ Rm is the vector of unknowns; A(Q) is a matrix; G(Q,∂xQ) represents the viscous flux
and S(Q) is the reaction term, a function of the unknown.

We introduce the following matrices

B(Q,∂xQ)= ∂G(Q,∂xQ)
∂Q

, D(Q,∂xQ)= ∂G(Q,∂xQ)
∂(∂xQ)

. (2)

With these definitions we can write the governing equations as

∂tQ+
(
A(Q)−B(Q,∂xQ)

)
∂xQ=D(Q,∂xQ)∂(2)

x Q+S(Q) . (3)

1.1 General formulation
We will relax system (3) by following the constitutive Cattaneo’s law [13],

∂tU− 1
ε
∂xQ = − 1

ε
U , (4)

where ε > 0 is a parameter. In practice, the strategy introduces the new variable U instead of
gradients ∂xQ for selected terms of the original ADR equations. The evolution equation (4) for
these new variables gives an asymptotic behaviour toward the original gradient. This allows to
write (3) as

∂tQ+
(
A(Q)−B(Q,U)

)
∂xQ=D(Q,U)∂xU+S(Q) . (5)

We only consider components of U as the non-zero components i of ∂xQ such that the i-th
column of D in (2) is not null. If we consider n ≤ m columns of D to be not null then, we can
consider U ∈Rn and

∂tQ+
(
A(Q)−B(Q,U)

)
∂xQ = D(Q,U)∂xU+S(Q) .

∂tU− 1
ε
∂xQ = − 1

ε
U .

(6)
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System (6) written in a semilinear form gives

∂tW+J(Q)∂xW=L(W) , (7)

where

W=
[

Q
U

]
, J(W)=

[
A−B −D̄
− 1
ε
I 0

]
, L(W)=

[
S(Q)
− 1
ε
U

]
, (8)

with matrix D̄ ∈ Rm×n containing only the n not null column vectors of D, I is the identity matrix
in Rn×n and 0 is the null matrix in Rn×m.

1.2 One-dimensional blood flow model for viscoelastic vessels
Let us consider well-known equations that describe one-dimensional blood flow as in [42]

∂t A(x, t)+∂xq(x, t) = 0 ,

∂tq(x, t)+∂x

(
α̂

q(x, t)2

A(x, t)

)
+ A(x, t)

ρ
∂x p(x, t) = f (x, t) ,

 (9)

where x is the axial coordinate along the vessel, t is time, A(x, t) is the cross-sectional area, q(x, t)
is the flow rate, α̂ ≡ 1, which indicates a blunt velocity profile, ρ is the fluid density, assumed as
a constant, p(x, t) is the average internal pressure and f (x, t) is the friction force per unit length,
given by

f (x, t)=−γπν q
A , (10)

where ν is the kinematic viscosity. In this work we take γ= 22, as specified in [2].
To close system (9) we introduce an additional equation known as tube law

p = pe +ψ(A, A0,K)+ϕ(A, A0)∂t A , (11)

where pe(x, t) is the external pressure and ψ is the transmural pressure given by

ψ(A(x, t), A0(x),K(x))= K(x)φ(A(x, t), A0(x)),

with

φ(A(x, t), A0(x))=
((

A(x, t)
A0(x)

)m
−

(
A(x, t)
A0(x)

)n)
. (12)

A0(x) is the cross-sectional area at equilibrium, K(x) is a positive function which depends on the
Young modulus, the wall thickness and A0, with m > 0 and n ∈ (−2,0]. See [9] for details.

Moreover, the viscoelastic term ϕ(A, A0)∂t A, taken as in [2], is

ϕ(A, A0)= Γ

A0
p

A
, (13)

where Γ is a constant related to the viscoelastic properties of the vessel wall.
From the governing equations we obtain ∂t A =−∂xq, allowing us to write

p = pe +ψ(A, A0,K)−ϕ(A, A0)∂xq . (14)

The pressure gradient is thus

∂x p = [1]∂x pe +
[
φ

]
∂xK + [

K(∂Aφ)− (∂Aϕ)(∂xq)
]
∂x A

+[
K(∂A0φ)− (∂A0ϕ)(∂xq)

]
∂x A0 −

[
ϕ

]
∂(2)

x q .
(15)
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1.3 Hyperbolic reformulation of the equations
Following Toro and Siviglia [61], we write system (9) with viscoelastic tube law (11) as

∂t A(x, t)+∂xq(x, t) = 0 ,

∂tq(x, t)+∂x

(
α̂

q(x, t)2

A(x, t)

)
= −

[
A
ρ

]
∂x pe −

[
A
ρ
φ

]
∂xK

− A
ρ

[
K(∂Aφ)− (∂Aϕ)(∂xq)

]
∂x A

− A
ρ

[
K(∂A0φ)− (∂A0ϕ)(∂xq)

]
∂x A0

+ A
ρ

[
ϕ

]
∂(2)

x q+ f ,
∂tK = 0 ,
∂t A0 = 0 ,
∂t pe = 0 ,



(16)

which can be written as (1) with the following definitions

Q= [
A q K A0 pe

]T ,

A=


0 1 0 0 0

c2 −u2 + ϕ∂x q
2ρ 2u A

ρ
φ A

A0

(
ϕ∂x q
ρ

− c2
)

A
ρ

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 ,

S= [
0 f 0 0 0

]T ,

∂xG(Q,∂xQ)=
[

0 ϕA
ρ
∂(2)

x q 0 0 0
]T

.



(17)

We introduce a new variable Ψ and a relaxation parameter ε> 0 such that

Ψ→ ∂xq , ε→ 0 . (18)

In addition, we mimic the Cattaneo’s law [13] with an evolution equation for Ψ given by

∂tΨ= 1
ε

(∂xq−Ψ) . (19)
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Therefore, we can reformulate system (16) as

∂t A(x, t)+∂xq(x, t) = 0 ,

∂tq(x, t)+∂x

(
α̂

q(x, t)2

A(x, t)

)
= −

[
A
ρ

]
∂x pe −

[
A
ρ
φ

]
∂xK

− A
ρ

[
K(∂Aφ)− (∂Aϕ)Ψ

]
∂x A

− A
ρ

[
K(∂A0φ)− (∂A0ϕ)Ψ

]
∂x A0

− A
ρ

[
ϕ

]
∂xΨ+ f ,

∂tK = 0 ,

∂t A0 = 0 ,

∂t pe = 0

∂tΨ+ −1
ε
∂xq = − 1

ε
Ψ ,



(20)

which can be written in quasi-linear form (7) with

W= [
A q K A0 pe Ψ

]T ,

J=



0 1 0 0 0 0
c2 −u2 + aΓ

2 2u A
ρ
φ A

A0

(
aΓ− c2) A

ρ
− A
ρ
ϕ

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 − 1

ε
0 0 0 0

 ,

L= [
0 f 0 0 0 − 1

ε
Ψ

]T ,



(21)

where

c2 = A
ρ

K∂Aφ , u = q
A , aΓ = ϕΨ

ρ
. (22)

1.4 Eigenstructure
In this section we study the eigenstructure for the first order system (7) with Jacobian (21).

Proposition 1.1. System (7) with Jacobian (21) is hyperbolic provided that

ε−1 ≥− Ψ

2 A
− ρ c2

ϕA
, (23)

with eigenvalues

λ1 = u− c̃ , λ2 =λ3 =λ4 =λ5 = 0 , λ6 = u+ c̃, (24)

where

c̃ =
√

c2 +ω , ω= ϕA
ρε

+ aΓ
2 (25)
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and linear independent eigenvectors

v1 =



1
u− c̃

0
0
0
− 1
ε

 , v6 =



1
u+ c̃

0
0
0
− 1
ε

 , v2 =



1
0
0
0
0

(c2+aΓ/2)−u2

ϕA ρ

 ,

v3 =



0
0
1
0
0
φ
ϕ

 , v4 =



0
0
0
1
0

(aΓ−c2)
ϕA0

ρ

 , v5 =



0
0
0
0
1
1
ϕ

 .



(26)

Proof. (omitted) .

Proposition 1.2. Fields associated to eigenvectors v1 and v6 are genuinely non-linear.

Proof. We denote λ1 = λ− and λ6 = λ+. In a similar manner we redefine sub-indices of associated
eigenvectors. The result follows by noting that

∇Wλ± ·v± =− 1
q ± 1

c̃
(
c ∂c
∂A + ∂ω

∂A
)− (u± c̃) A

q2 ± 1
2c̃

∂ω
∂Ψ 6= 0 . (27)

Proposition 1.3. Fields associated to eigenvectors v2 to v5 are linearly-degenerated fields.

Proof. The proof follows from the fact that for these eigenvectors, the associated eigenvalues are
identically zero, so that

∇Wλ= 0 . (28)

Proposition 1.4. Let N1(W) and N6(W) be two functions of W. Riemann invariants associated to
genuinely non-linear fields for eigenvectors v1 and v6 satisfy

N1 := u−
∫

c̃
A

dA = constant , N6 := u+
∫

c̃
A

dA = constant, (29)

respectively.

Proof. From eigenvectors associated to genuinely non-linear fields, the significant Riemann in-
variant for non-linear fields is

1
dA

= u± c̃
dq

. (30)

By considering uA = q and manipulating the above expression we obtain

du =± c̃
A

dA (31)

and the result holds.
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Proposition 1.5. Let L1(W) and L2(W) functions of W. For pe, A0 and K constants, Riemann
invariants associated to linearly degenerate fields for eigenvectors v2 to v5 satisfy

L1 := p̃+ 1
2ρu2 = constant , L2 := q = constant , (32)

with p̃ = pe +ψ−ϕΨ.

Proof. We note that for constant values of pe, A0 and K we can consider a reduced system of the
form (7) with

W= [
A q Ψ

]T ,

J=

 0 1 0
c2 −u2 + aΓ

2
2u − A

ρ
ϕ

0 − 1
ε

0

 ,

S= [
0 f − 1

ε
Ψ

]T .


(33)

This system has eigenvalues

λ1 = u− c̃ , λ2 = 0 , λ3 = u+ c̃ . (34)

Corresponding eigenvectors are

v1 =
 1

u− c̃
− 1
ε

 , v2 =
 1

0
− ρ
ϕA

{
u2 − (c2 +aΓ/2)

}
 , v3 =

 1
u+ c̃
− 1
ε

 . (35)

Riemann invariants associated to the stationary contact discontinuity (characteristic field associ-
ated to the eigenvalue λ2) are

1
dA

= 0
dq

=
− ρ
ϕA

{
u2 − (c2 +aΓ/2)

}
dΨ

. (36)

Hence, we obtain L2 = q = constant and

M(A,Ψ)dΨ+N(A,Ψ)dA = 0 , (37)

with

M(A,Ψ)= Aϕ
ρ

, N(A,Ψ)= u2 − c2 + aΓ
ρ

. (38)

This ordinary differential problem is not exact because

∂M
∂A

6= ∂N
∂Ψ

.

However, it can be proved that an integrating factor for this problem is F(A)= 1
A , i.e.

∂(FM)
∂A

= ∂(FN)
∂Ψ

.
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Moreover, (37) is equivalent to

F(A)M(A,Ψ)dΨ+F(A)N(A,Ψ)dA = 0 . (39)

Hence, the Riemann invariant is a function L1(A,Ψ) which satisfies dL1 = 0 or

∂AL
1(A,Ψ) = F(A)N(A,Ψ)= 1

A

(
u2 − c2 − aΓ

2

)
,

∂ΨL
1(A,Ψ) = F(A)M(A)= ϕ

ρ
.

(40)

To find L1 we first integrate ∂ΨL1 in (40) with respect to Ψ which yields

L1(A,Ψ)= aΓ+ g(A) . (41)

Then, g(A) is found by differentiating (41) with respect to A and using (40) to obtain

g′(A)= u2 − c2

A
, (42)

providing

L1(A,Ψ)= aΓ− ψ

ρ
− u2

2
. (43)

Since ρ is constant, from (37) and (39) we conclude that L1(A,Ψ) is constant across waves associ-
ated to linearly-degenerate fields.

2 Numerical methods
The ADER methodology [60, 62, 55] consists of two main building blocks: a spatial reconstruc-

tion procedure and the solution of a generalised Riemann problem at each interface. ADER is,
effectively, an extension of the second-order method of Ben-Artzi and Falcoviz [5]. The extension
relates to the generalised Riemann problem and is twofold: (i) initial conditions are piece-wise
smooth, for example piece-wise polynomials of any degree and (ii) source terms in the equations
are included, if present originally. We also remark that ADER is akin to the method proposed by
Harten et al. [30], as noted by Castro and Toro [12]. The ADER approach was first put forward
by Toro et al. [60] for linear problems on Cartesian meshes, see also [52]. Several extensions have
been proposed for non-linear problems on Cartesian [57] and non Cartesian meshes [36, 37, 11], to
mention but a few. Extension of the ADER approach in the framework of discontinuous Galerkin
finite element methods is due to Dumbser and collaborators; see [23, 16, 17], for instance. Sub-
sequently, the ADER approach was extended to non-conservative balance laws [10, 20, 22, 24] to
mention but a few. ADER methods are one-step schemes, fully discrete, containing two main in-
gredients: (i) a high-order spatial reconstruction procedure and (ii) the solution of a generalised,
or high order, Riemann problem (GRP) at each cell interface. Reconstructions should be non-linear
in order to circumvent Godunov’s theorem [26, 58]. Concerning the GRP, in this paper we use the
solver due to Dumbser et al. [21], that allows the treatment of stiff source terms in such a way
that the usually contradictory requirements of high accuracy and stiffness are reconciled. For a
review of ADER see [12, 40] and chapters 19 and 20 of [58].
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2.1 ADER framework
We discretize the computational domain by a set of intervals I i = [xi− 1

2
, xi+ 1

2
] of length ∆x =

xi+ 1
2
− xi− 1

2
. Then we integrate (7) on the space-time cell, or volume, In

i := I i × [tn, tn+1] which as
shown in [20, 22] yields

Wn+1
i = Wn

i +
1
∆x

∫ tn+1

tn

∫ xi+ 1
2

xi− 1
2

J(Wi)∂xWidxdt

+ 1
∆x

∫ tn+1

tn

∫ xi+ 1
2

xi− 1
2

L(Wi)dxdt

− ∆t
∆x

[
D−

i+ 1
2
+D+

i− 1
2

]
,


(44)

with

D−
i+ 1

2
= 1
∆t

∫ tn+1

tn
D−

i+ 1
2
(W−

i+ 1
2
,W+

i+ 1
2
)dt ,

D+
i− 1

2
= 1
∆t

∫ tn+1

tn
D+

i− 1
2
(W−

i− 1
2
,W+

i− 1
2
)dt


. (45)

Fluctuations D±
i+ 1

2
are defined by

D±
i+ 1

2
(W−

i+ 1
2
,W+

i+ 1
2
)= 1

2

∫ 1

0

(
J (Θ(s))±|J (Θ(s)) |

) dΘ
ds

ds, (46)

with Θ a Liptschitzian path in [0,1] satisfying

Θ(0)=W−
i+ 1

2
, Θ(1)=W+

i+ 1
2
.

For more details see [15, 49, 41] and references therein.

2.2 The Dumbser-Enaux-Toro (DET) solver for the GRP
Here the generalized Riemann problem is the following Cauchy problem

∂tW+J∂xW = L(W) ,

W(x,0) =
{

Pi(x) , x < xi+ 1
2
,

Pi+1(x) , x > xi+ 1
2
,

 (47)

where Pi(x) and Pi+1(x) are reconstruction polynomials defined in I i and I i+1 respectively. In this
paper we use the WENO reconstruction procedure proposed in [42]. See also [33] and [20] for
background on WENO reconstruction.

The solution of (47) allows us to approximate time integrals (45) with a required order of
accuracy. Here we use the Dumbser-Enaux-Toro (DET) solver [21]. Data to the left and right of
the interface xi+ 1

2
, necessary for the computation of numerical fluxes at quadrature points, are

obtained by solving a local Cauchy problem in each element of the computational mesh. This
solver yields Wi(x, t), that will be used to approximate integrals appearing in (44) by quadrature
rules.
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In the DET solver, we solve the local Cauchy problem in In
i , namely

∂tW+J∂xW = L(W) ,
W(x,0) = Pi(x) .

}
(48)

We transform the space-time interval In
i into [0,1]× [0,1], with reference variables ξ−τ given

by the change of variables x = x(ξ)= xi− 1
2
+ξ∆x and t = t(τ)= tn+τ∆t. The problem in ξ−τ variables

reads

∂τW+J∂ξW = L(W) ,
W(ξ,0) = Pi(x(ξ)) , (49)

with J= ∆t
∆x J and L=∆tL.

Problem (49) is now solved using a space-time discontinuous Galerkin method. Consider a
space V formed by nodal space-time polynomials θp(ξ,τ) defined in [0,1]× [0,1], whose basis is
{θ1, ...,θm}. Here m = (K +1)2, with K the degree of the reconstruction polynomials in (48) and
K + 1 the degrees of freedom of the space-time basis. Note that K + 1 will also be the order of
accuracy of the resulting ADER numerical scheme.

Multiplying (49) by a test function θl ∈V and integrating in [0,1]× [0,1] we have∫ 1
0

∫ 1
0

[
(∂τW)θl + (J(W)∂ξW)θl

]
dξdτ= ∫ 1

0
∫ 1

0 L(W)θl dξdτ . (50)

Integrating by parts in time τ the first term on the left hand side yields∫ 1
0

∫ 1
0 ∂τW(ξ,τ)θl(ξ,τ)dξdτ= ∫ 1

0 W(ξ,1)θl(ξ,1)dξ

−∫ 1
0 Pi(x(ξ))θl(ξ,0)dξ−∫ 1

0
∫ 1

0 W(ξ,τ)∂τθl(ξ,τ)dξdτ .

 (51)

Substituting (51) into (50) gives∫ 1
0 W(ξ,1)θl(ξ,1)−∫ 1

0
∫ 1

0 W(ξ,τ)∂τθl(ξ,τ)dξdτ

+∫ 1
0

∫ 1
0 J(W(ξ,τ))∂ξW(ξ,τ)θl(ξ,τ)dξdτ

= ∫ 1
0

∫ 1
0 L(W(ξ,τ))θl(ξ,τ)dξdτ+∫ 1

0 Pi(x(ξ))θl(ξ,0)dξ .


(52)

We now introduce the following operators for any two functions φ(ξ,τ) and ψ(ξ,τ), namely[
φ,ψ

]
τ =

∫ 1
0 φ(ξ,τ)ψ(ξ,τ)dξ ,

〈
φ,ψ

〉= ∫ 1
0

∫ 1
0 φ(ξ,τ)ψ(ξ,τ)dξdτ . (53)

Introducing these definitions into (52) yields

[W,θl]1 −〈W,∂τθl〉+
〈
J(W)∂ξW,θl

〉= 〈L(W),θl〉+ [Pi,θl]0 , (54)

with

[Pi,θl]0 =
∫ 1

0 Pi(x(ξ))θl(ξ,0)dξ . (55)

We seek solutions of the form

W(ξ,τ)=∑m
p=1θp(ξ,τ)Ŵp , (56)

with coefficients Ŵk yet to be determined.
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For convenience we define matrices

K1
k,l = [θk,θl]1 −〈θk,∂τθl〉 ,

Kξ

k,l =
〈
∂ξθk,θl

〉
,

Mk,l = 〈θk,θl〉 ,

Vrec,l = [Pi,θl]0 .


(57)

On the other hand, as we are considering a nodal base, then

J(W)∂ξW= J
( m∑

p=1
θp(ξ,τ)Ŵp

)
∂ξ(

m∑
p=1

θp(ξ,τ)Ŵp)≈
m∑

p=1
∂ξθp(ξ,τ)J(Ŵp)Ŵp =

m∑
p=1

θp(ξ,τ)X̂p . (58)

with X̂p coefficients directly computed on the polynomial space V, i. e. solving

X=M−1KξJW , (59)

with X= [
X̂1, ...,X̂m

]T
and JW= [

J(Ŵ1)Ŵ1, ...,J(Ŵm)Ŵm
]T

. In the same manner by projection on
the polynomial space we obtain

L(W) ≈ ∑m
p=1θp(ξ,τ)L(Ŵp) . (60)

Note that X̂ depends on coefficients Ŵ so that we can define the vectors

R=


Ŵ1

...
Ŵm

 , G(R)=


X̂1(R)

...
X̂m(R)

 , Z(R)=


L(Ŵ1)

...
L(Ŵm)

 . (61)

Then, (54) can be written as

K1R+MG(R)−MZ(R)=Vrec . (62)

This is a system of non-linear algebraic equations for R which can be solved by the fixed point
iteration procedure proposed in [19], namely

K1Rn+1 −MZ(Rn+1)=Vrec −MG(Rn), (63)

where n stands for the iteration step. Once R is known, the sought coefficients are known and so
the solution (56). We denote the solution to (49) by Wi(ξ,τ) to clarify that it corresponds to the
solution of the Cauchy problem in In

i .
Once that Wi(ξ,τ) is available in all computational cells, integrals in (44) can be approximated

by evaluating Wi(ξ,τ) in selected quadrature points. Moreover, numerical fluctuations appearing
in time integrals in (45) are obtained by using a first order classical Riemann solver at required
quadrature points τk with Wi(1,τk) and Wi+1(0,τk). In the following section we introduce the first
order Riemann solver used in the present work.
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2.3 The Dumbser-Osher-Toro (DOT) Riemann solver: Fluctuations
To compute fluctuations we will use the DOT solver of Dumbser and Toro [25]. Let λi(W) be

the i− th eigenvalue of J(W), then Λ(W) is the matrix formed by all eigenvalues λi(W), and let
R(W) be the matrix formed by the right eigenvectors of J(W). We define

λi(W)+ = max{λi(W),0} , λi(W)− = min{λi(W),0} . (64)

Let Λ(W)+ be the diagonal matrix formed by λi(W)+ and let Λ(W)− be the diagonal matrix formed
by λi(W)−. Then, we define the matrices |Λ| and |J| by

|Λ(W)| =Λ(W)+−Λ(W)− (65)

and

|J(W)| =R(W)|Λ(W)|R(W)−1 . (66)

Let us consider the interface xi+ 1
2

where data on the left is denoted by WL and data on the right
is denoted by WR . The fluctuation at the interface is computed as

D±
i+ 1

2
(WL,WR)= 1

2

∫ 1

0

(
J(Θ(s))±|J(Θ(s))|

)∂Θ
∂s

ds , (67)

where the integral is evaluated numerically. We consider a Gaussian quadrature of n points and
weights {ω j, s j}.

We still have to define the integration path Θ. If we choose the path

Θ(s)=WL + s (WR −WL) , (68)

the fluctuations are

D±
i+ 1

2
(WL,WR)= 1

2

n∑
j=1

ω j

(
J(Θ(s j))±|J(Θ(s j))|

)
(WR −WL) . (69)

However, in order to preserve and guarantee well-balanced properties, the integration path Θ(s)
should be chosen as the parametrization in phase-space of the curve L1 in proposition 1.5, defined
by the Riemann invariants associated to linearly-degenerate fields as proposed by Müller et al.
[41, 42]. In the next subsection we illustrate how path Θ is constructed.

2.4 Integration path
As proposed in [42], to guarantee well-balanced properties we take the integration path as

Θ(s)=



A(s)

q(s)= q−
i+ 1

2
+ s

(
q+

i+ 1
2
− q−

i+ 1
2

)
K(s)= K−

i+ 1
2
+ s

(
K+

i+ 1
2
−K−

i+ 1
2

)
A0(s)= A−

0,i+ 1
2
+ s

(
A+

0,i+ 1
2
− A−

0,i+ 1
2

)
pe(s)= p−

e,i+ 1
2
+ s

(
p+

e,i+ 1
2
− p−

e,i+ 1
2

)
Ψ(s)=Ψ−

i+ 1
2
+ s

(
Ψ+

i+ 1
2
−Ψ−

i+ 1
2

)


, (70)
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where super index − refers to the data immediately to the left of the interface and super index +
refers to the data immediately to the right of the interface. A(s) is obtained from the arch joining
two states A−

i+ 1
2

and A+
i+ 1

2
, through the curve defined by Riemann invariants L1 of the linearly

degenerated field. To determine this curve, we first note that for the stationary state case, q = 0,
we have

L1(A, A0,K , pe)= Kφ(A, A0)+ pe . (71)

Therefore, A(s) can be obtained from the algebraic equation

φ(A(s), A0(s))= L̄1(s)− pe(s)
K(s)

,

with

L̄1(s)= (1− s)L1(A−
i+ 1

2
, A−

0,i+ 1
2
,K−

i+ 1
2
, p−

e,i+ 1
2
)+ sL1(A+

i+ 1
2
, A+

0,i+ 1
2
,K+

i+ 1
2
, p+

e,i+ 1
2
) . (72)

Finally, we define the time step at time tn as

∆t = Cc f l
∆x
λmax

, (73)

where λmax = maxi=1,...,m|λi(Wn)| and Wn is the corresponding data evaluated at time tn.

3 Numerical accuracy of solutions to ADR equations by hy-
perbolic reformulation

In order to solve numerically ADR problems, we reformulate them as hyperbolic systems with
stiff source terms. Subsequently, we implement a numerical scheme which solves the stiff hy-
perbolic problem with order of accuracy q. However, it is desirable that the numerical solution
approximates the solution to the original ADR problem with the same order of accuracy q. In this
section we present a result of sufficiency which ensures this property. This result is independent
of the specific ADR problem and depends only on the relaxation time ε, the convergence rate q and
the mesh spacing ∆x. Furthermore, we provide numerical evidence that supports this result.

3.1 A sufficiency criterion for ensuring theoretically expected accuracy
From Nagy et al. [44] the solution of the hyperbolized problem, uh, and the solution of the

original ADR problem, up, are related by

up = uh +O(ε) , (74)

where O(ε) represents the formulation error in the relaxation approach. If we consider a numerical
scheme able to solve a hyperbolic problem with an accuracy of order q, then, taking into account
(73), we can write

ũ = uh +O(∆xq) , (75)

where ũ represents the numerical solution and ∆x is the mesh size. Thus O(∆xq) represents
the numerical error for the hyperbolic problem. The following result summarizes a sufficiency
condition which guarantees that the ADR problem is solved with accuracy q.
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Proposition 3.1. The solution of the ADR problem (1) by means of the hyperbolic reformulation
(6), is approximated with accuracy q for all ε and ∆x satisfying

4 := ε

(∆x)q Kq =O(1) , (76)

where

Kq = 1−2− 1
2

2q− 1
2 −1

.

Proof. From (74) and (75) we obtain

ũ−up = uh −up +O(∆xq) , (77)

which allows us to relate the formulation error and the numerical error as

O(∆xr)=O(ε)+O(∆xq) , (78)

where r is the order of accuracy by which the numerical scheme approximates the solution of
original ADR problem. Note that the numerical error can be expressed as

O(∆xr)= C∆xr , (79)

with C depending on the problem to be solved, but is independent of the mesh spacing ∆x.
We denote by ũk the numerical solution obtained with a mesh of length ∆xk. Therefore, from

(78) and (79), on two successive meshes with lengths ∆xk, ∆xk+1, we obtain(
∆xk

∆xk+1

)r
=

O(ε)+O(∆xq
k)

O(ε)+O(∆xq
k+1)

, (80)

yielding after manipulations (
∆xk

∆xk+1

)r
=

(
∆xk

∆xk+1

)q
θ , (81)

with

θ =
O(ε)

O(∆xq
k)

+O(1)

O(ε)
O(∆xq

k+1)
+O(1)

. (82)

Without loss of generality, we assume ∆xk = 2∆xk+1. Taking logarithm in (81), we obtain

r = q+ log(θ)/ log(2) . (83)

Let us now assume that given an expected order of accuracy q, we consider that the numerical
scheme yields this accuracy if

r ≥ q− 1
2

.

Therefore, the order of accuracy for the ADR problem attains that of the hyperbolic problem when

− 1
2 < log(θ)/ log(2) . (84)
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From the monotonicity of the logarithm, (84) is equivalent to

1p
2
< θ , (85)

which yields

1p
2

(
2q O(ε)

O(∆xq
k)

+O(1)

)
< O(ε)

O(∆xq
k)

+O(1) , (86)

or

O(ε)
O(∆xq

k)
<O(1)

(
1−2− 1

2

2q− 1
2 −1

)
. (87)

Moreover, we assume that

O(ε)
O(∆xq

k)
=O

(
ε

∆xq
k

)
= K

ε

∆xq
k

, (88)

with K to be determined. Therefore, we impose that

K
ε

∆xq
k
=O(1) , (89)

or

Kε2n̄q =O(1) , (90)

noting that it is possible to set ∆x = 2−n̄, where n̄ = log2(1/∆x). So, inspired by (87), for all n̄ ≥ 0 we
set

Kε≤ 1
2n̄q

(
1−2− 1

2

2q− 1
2 −1

)
≤

(
1−2− 1

2

2q− 1
2 −1

)
. (91)

For convenience we take K ≤ ε−1Kmax, as to maintain order O(1). Thus, we have

Kmax := ε 1−2− 1
2

2q− 1
2 −1

. (92)

In this manner, a sufficiency condition to maintain accuracy solving the ADR problem for a given
mesh of size ∆x is given by

ε

(∆x)q Kq =O(1) , (93)

where Kq = ε−1Kmax .

Remark 3.2. Note that if in equation (76) the left-hand side is greater than O(1), the formulation
error dominates over the numerical one. From the right hand side in (78), a mesh refinement
reduces the numerical error whereas the formulation error remains, becoming the barrier for the
accuracy of the numerical scheme.

Remark 3.3. In this work we assume O(1) = 15, which is the sum of the maximum magnitude
accepted as O(1), plus its rounding error. We observe that given a relaxation parameter ε it is
possible to predict the maximum number of cells such that the sought accuracy is attained.
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3.2 Convergence rate study for an ADR problem via hyperbolic refor-
mulation

Here, we provide numerical results that confirm proposition 3.1 for the particular case of the
one-dimensional blood flow model (16). To assess empirically the accuracy of the high-order nu-
merical scheme (44) and the ability of reformulation (20) to recover the solution of the original
viscoelastic problem (16), we construct a modified problem with exact solution. This is achieved
by prescribing a function to be inserted in (16). Here we choose such function as

Q̂(x, t)=


Â(x, t)
q̂(x, t)
K̂(x)
Â0(x)
p̂e(x)

=


Ã+ ã sin

( 2π
L x

)
cos

(
2π
T0

t
)

q̃− ã L
T0

cos
( 2π

L x
)
sin

(
2π
T0

t
)

K̃
Ã0
P̃e

 . (94)

Inserting (94) in (16) leads to the modified system

∂tQ+A(Q)∂xQ= ∂xG(Q,∂xQ)+S(Q)+ Ŝ(x, t) , (95)

where Ŝ(x, t) results from the evaluation of (94) in (16) and is only a function of time t and space
x variables. Ŝ(x, t) may be found with an algebraic manipulator and is not reported here. For
the present study we use the following parameters: L = 1.0m, T0 = 1.0 s, Ã = Ã0 = 4.0×10−4 m2,
ã = 4.0×10−5 m2, q̃ = 0.0m3 s−1 , K̃ = 50.0KPa, P̃e = 0.0Pa, m = 1/2 and n = 0. For this test we
used a CFL = 0.9.

Tables 1 to 4 show the empirical convergence rates from second to fifth order ADER schemes
with several relaxation times ε. The highlighted row corresponds to the largest number of cells N
for which, according to proposition 3.1, the theoretical convergence rate is expected to be achieved.
It can be seen that the expected empirical accuracy is achieved for all orders of accuracy, and at
least up to the predicted maximum number of cells.

Another interesting aspect to be noted is that when the discretization error becomes smaller
than the formulation error, the error norms become independent from further mesh refinement,
as expected.

4 Computational results for a network of viscoelastic ves-
sels

In this section we validate our numerical scheme in the context of an in-vitro model of the
human arterial system.

4.1 Review of reference in-vitro model of the arterial system
An in-vitro model of the human arterial system was put forward by Matthys et al. [39]. Along

with an accurate description of the physical model, the authors constructed the corresponding
mathematical model for one-dimensional blood flow in elastic vessels and provided a wealth of
measurements and numerical results. The vessel network is composed of 37 silicone tubes re-
sembling major arteries, a pump acting as the heart and terminal resistances representing the
peripheral circulation. We refer the reader to the above named reference for details on the topog-
raphy of the network, the description of mechanical properties, geometry of the vessels, terminal
resistances and flow rate measured at the root of the ascending aorta. In a subsequent publication,
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Alastruey et al. [2], a viscoelastic vessel wall model was used in order to improve computational
results for specific portions of the network, where non-physical high amplitude oscillation were ob-
served. This test constitutes an ideal benchmark for assessing the performance of the methodology
proposed in this paper in the context of a complex network of viscoelastic vessels.

4.2 Details on the settings of the network solver
Modelling the network of vessels proposed in [39] requires dealing with other aspects besides

the solution of system (16) within the one-dimensional domain. In particular, the flow rate has
to be prescribed at the root of the aorta, terminal lumped parameter models have to be resolved
and interface conditions at the junction between two or more vessels have to be given. Boundary
conditions involving a prescribed flow rate or terminal resistances were treated as in [4]. For the
treatment of junctions, the methodology proposed in [53] was used. Details on the treatment of
boundary conditions and junctions are given in A.

We adopted the spatial discretisation of [2]: vessels longer than 1.5 cm were divided in non-
overlapping cells of a maximum length of 2 cm; for vessels shorter than 1.5 cm a single cell was
used. Taking into account the results of proposition 3.1 and the fact that the characteristic mesh
spacing is of order ∆x = 2 cm for almost all vessels, we used a relaxation time ε = 10−3 s over the
entire network. This choice ensures that the formulation error will be smaller than the numerical
error for all vessels, except for 3 vessels which would require a relaxation time of ε= 10−4 s. As we
shall see later, this choice will not have a significant impact on the numerical results.

Computations were performed using a CFL = 0.9, which combined with the chosen relaxation
time results in an average time step of approximately ∆t = 400µ s. Note that the time step ∆t is
computed at each time step, in order to advance as much as possible in time during each step,
within the linear stability limit of unity of our explicit scheme.

4.3 Comparison of solutions obtained using elastic and viscoelastic ves-
sel wall models

Our first validation regards a comparison among experimental measurements reported in [2],
numerical results for elastic vessels reported in [42] and numerical results for the viscoelastic
model (16) obtained with the methodology presented in section 2 of this paper. We note that the
one-dimensional model for elastic vessels results from taking Γ= 0 in (13).

Figure 1 shows experimental measurements and computational results for both the elastic
and viscoelastic vessel wall models. It can be easily seen that the solution obtained with the
elastic model presents abnormally large amplitude fluctuations, as compared to experiments, in
the left renal and right carotid arteries during diastole. This phenomenon can be observed for both
measured quantities, pressure and flow rate, being more evident for the later one. The viscoelastic
formulation significantly increases the accuracy by which the numerical solution approximates
experimental measurements, reducing non-physical oscillations for pressure and flow rate.

4.4 Comparison with published numerical results
Here, we compare numerical results obtained with the proposed formulation and numerical

results previously reported in [2]. Figure 2 shows both numerical results, along with experimental
measurements for several vessels. Agreement between numerical results obtained with the pro-
posed methodology and those reported in [2] is excellent. We note that the time step of our explicit
scheme is around 20 times larger than that in [2], where a time step of ∆t = 20µ s was reported.
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4.5 Sensitivity of the numerical solution to the relaxation time ε

In figure 3 we report numerical results for different relaxation times ε. As expected, there is
a significant difference between results obtained using ε= 10−2 s and ε= 10−3 s for vessels which
show high frequency oscillations (right carotid artery). This is due to the fact that in the first
case the formulation error dominates over the discretization error, whereas for ε = 10−3 s we are
attaining the expected accuracy of the numerical scheme for almost all vessels. Further reduction
of ε does not result in significant improvement of the numerical solution, since the discretization
error remains dominant. Finally, the last row of figure 3 shows computational results for the
shortest vessel of the network, which would require a relaxation time ε = 10−4 s. Improvements
with respect to the numerical solution obtained using ε= 10−3 s are negligible.

5 Conclusions
In this paper we have reformulated a one-dimensional blood flow model for viscoelastic vessels

in the form of a hyperbolic system with stiff source terms, via a relaxation approach. After care-
fully studying the mathematical properties of the resulting system we proposed a methodology
for its numerical solution, ensuring high-order accuracy and well-balanced properties. Next, we
defined a criterion for selecting the relaxation time which depends only on the order of accuracy
of the numerical scheme used to solve the hyperbolic system and the mesh spacing. This criterion
ensures that the formulation error will be smaller than the discretisation error. Moreover, the
order of accuracy of the numerical scheme, as well as the proposed criterion for the definition of
the relaxation time, were tested via an empirical convergence rate study up to fifth order of accu-
racy in space and time. Empirical results confirm the theory. Finally, we validated the proposed
methodology by comparing our numerical results with experimental measurements, as well as
with numerical results reported in the literature for a network of viscoelastic vessels. We showed
that: the viscoelastic formulation improves the agreement between numerical results and experi-
mental measurements, as compared to the results obtained considering elastic vessels; numerical
results obtained with the proposed methodology are in agreement with previously reported data.
The choice of the relaxation time via the proposed criterion ensures an accurate numerical solu-
tion, also in the context of complex vessel networks.
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ADER-O2

ε N L1 L2 L∞ O(L1) O(L2) O(L∞) tCPU [s] 4
10−2 4 1.08e-05 1.23e-05 2.46e-05 - - - 0.59

8 2.58e-06 3.02e-06 7.42e-06 2.1 2.0 1.7 0.92 1.03e-01
16 5.58e-07 7.01e-07 2.11e-06 2.2 2.1 1.8 1.90 4.10e-01
32 1.34e-07 1.70e-07 5.24e-07 2.1 2.0 2.0 4.49 1.64e+00
64 3.50e-08 4.34e-08 1.19e-07 1.9 2.0 2.1 10.14 6.52e+00

128 1.48e-08 1.87e-08 4.18e-08 1.2 1.2 1.5 25.22 2.62e+01

10−3 4 1.05e-05 1.27e-05 2.86e-05 - - - 0.89
8 2.34e-06 3.07e-06 9.24e-06 2.2 2.0 1.6 1.17 1.03e-02
16 5.39e-07 7.45e-07 2.45e-06 2.1 2.0 1.9 3.81 4.10e-02
32 1.30e-07 1.83e-07 6.17e-07 2.1 2.0 2.0 8.10 1.64e-01
64 3.17e-08 4.50e-08 1.55e-07 2.0 2.0 2.0 16.23 6.58e-01

128 7.79e-09 1.08e-08 3.76e-08 2.0 2.1 2.0 39.74 2.62e+00
256 2.06e-09 2.59e-09 7.64e-09 1.9 2.1 2.3 92.13 1.05e+01
512 1.26e-09 1.53e-09 3.05e-09 0.7 0.8 1.3 276.16 4.20e+01

10−4 4 1.14e-05 1.28e-05 2.18e-05 - - - 2.25
8 2.26e-06 3.29e-06 1.04e-05 2.3 2.0 1.1 2.32 1.03e-03
16 5.65e-07 8.54e-07 2.82e-06 2.0 1.9 1.9 8.09 4.10e-03
32 1.36e-07 2.03e-07 6.85e-07 2.1 2.1 2.0 21.26 1.64e-02
64 3.31e-08 4.96e-08 1.69e-07 2.0 2.0 2.0 42.51 6.56e-02

128 8.20e-09 1.23e-08 4.23e-08 2.0 2.0 2.0 89.87 2.62e-01
256 2.02e-09 3.02e-09 1.04e-08 2.0 2.0 2.0 234.33 1.05e-00
512 4.85e-10 6.96e-10 2.43e-09 2.1 2.1 2.1 738.74 4.20e+00

1024 1.37e-10 1.69e-10 4.27e-10 1.8 2.0 2.5 2501.83 1.68e+01
2048 1.29e-10 1.48e-10 2.70e-10 0.1 0.2 0.7 8757.74 6.72e+01

10−5 4 1.95e-05 2.25e-05 3.33e-05 - - - 5.40
8 5.75e-06 6.97e-06 1.45e-05 1.8 1.7 1.2 9.50 1.03e-04
16 1.04e-06 1.40e-06 3.40e-06 2.5 2.3 2.1 27.35 4.10e-04
32 1.83e-07 2.57e-07 7.60e-07 2.5 2.4 2.2 59.42 1.64e-03
64 3.74e-08 5.51e-08 1.81e-07 2.3 2.2 2.1 128.79 6.56e-03

128 8.76e-09 1.33e-08 4.48e-08 2.1 2.1 2.0 279.25 2.62e-02
256 2.15e-09 3.29e-09 1.12e-08 2.0 2.0 2.0 745.23 1.05e-01
512 5.33e-10 8.17e-10 2.78e-09 2.0 2.0 2.0 2210.56 4.20e-01

1024 1.29e-10 1.97e-10 6.78e-10 2.0 2.1 2.0 7216.78 1.68e+00
2048 3.03e-11 4.30e-11 1.51e-10 2.1 2.2 2.2 25564.93 6.72e+00
4096 1.07e-11 1.32e-11 2.78e-11 1.5 1.7 2.4 96751.62 2.69e+01

Table 1: Empirical convergence rates for a second order ADER scheme with several relaxation
times ε. N is the number of cells. Errors are computed for variable A. CPU times are reported for
all tests. The highlighted row corresponds to the largest number of cells N for which, predicted by
proposition 3.1, the theoretical convergence rate is expected to be achieved.
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ADER-O3

ε N L1 L2 L∞ O(L1) O(L2) O(L∞) tCPU [s] 4
10−2 4 4.31e-06 4.85e-06 8.38e-06 - - - 0.70

8 5.91e-07 7.16e-07 1.46e-06 2.9 2.8 2.5 1.34 3.22e-01
16 7.43e-08 9.18e-08 2.03e-07 3.0 3.0 2.8 2.70 2.58e+00
32 1.84e-08 2.07e-08 3.57e-08 2.0 2.2 2.5 5.54 2.06e+01
64 1.54e-08 1.71e-08 2.52e-08 0.3 0.3 0.5 15.93 1.65e+02

10−3 4 3.82e-06 4.59e-06 9.08e-06 - - - 0.94
8 5.46e-07 6.77e-07 1.47e-06 2.8 2.8 2.6 2.07 3.22e-02

16 7.17e-08 8.94e-08 2.00e-07 2.9 2.9 2.9 4.14 2.58e-01
32 9.06e-09 1.13e-08 2.60e-08 3.0 3.0 2.9 9.25 2.06e+00
64 1.91e-09 2.16e-09 4.03e-09 2.2 2.4 2.7 24.20 1.65e+01

10−4 4 3.82e-06 4.59e-06 9.10e-06 - - - 1.83
8 5.58e-07 6.90e-07 1.48e-06 2.8 2.7 2.6 5.14 3.22e-03

16 7.35e-08 9.03e-08 1.99e-07 2.9 2.9 2.9 10.32 2.58e-02
32 9.22e-09 1.14e-08 2.59e-08 3.0 3.0 2.9 25.53 2.06e-01
64 1.15e-09 1.43e-09 3.39e-09 3.0 3.0 2.9 61.13 1.65e+00

128 2.05e-10 2.37e-10 4.91e-10 2.5 2.6 2.8 161.16 1.32e+01
256 1.53e-10 1.71e-10 2.65e-10 0.4 0.5 0.9 488.69 1.06e+02

10−5 4 7.92e-06 9.24e-06 1.46e-05 - - - 6.21
8 5.75e-07 7.01e-07 1.49e-06 3.8 3.7 3.3 14.84 3.22e-04

16 7.24e-08 8.98e-08 2.00e-07 3.0 3.0 2.9 32.91 2.58e-03
32 9.58e-09 1.16e-08 2.59e-08 2.9 2.9 3.0 70.57 2.06e-02
64 1.20e-09 1.47e-09 3.40e-09 3.0 3.0 2.9 175.85 1.65e-01

128 1.50e-10 1.84e-10 4.54e-10 3.0 3.0 2.9 491.91 1.32e+00
256 2.25e-11 2.72e-11 6.47e-11 2.7 2.8 2.8 1674.83 1.06e+01
512 1.50e-11 1.68e-11 2.90e-11 0.6 0.7 1.2 4963.15 8.44e+01

Table 2: Empirical convergence rates for a third order ADER scheme with several relaxation times
ε. N is the number of cells. Errors are computed for variable A. CPU times are reported for all
tests. The highlighted row corresponds to the largest number of cells N for which, according to
proposition 3.1, the theoretical convergence rate is expected to be achieved.
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ADER-O4

ε N L1 L2 L∞ O(L1) O(L2) O(L∞) tCPU [s] 4
10−2 4 6.73e-06 7.68e-06 1.64e-05 - - - 0.81

8 3.94e-07 4.83e-07 1.21e-06 4.1 4.0 3.8 1.62 1.16e+00
16 2.18e-08 2.47e-08 5.65e-08 4.2 4.3 4.4 3.66 1.86e+01
32 1.49e-08 1.65e-08 2.55e-08 0.6 0.6 1.1 10.42 2.98e+02

10−3 4 5.91e-06 7.80e-06 1.89e-05 - - - 1.11
8 4.94e-07 6.09e-07 1.55e-06 3.6 3.7 3.6 2.52 1.16e-01

16 2.80e-08 3.56e-08 9.79e-08 4.1 4.1 4.0 6.02 1.86e+00
32 9.59e-10 1.22e-09 4.02e-09 4.9 4.9 4.6 16.06 2.98e+01
64 1.44e-09 1.60e-09 2.44e-09 -0.6 -0.4 0.7 40.93 4.76e+02

10−4 4 6.27e-06 7.49e-06 1.74e-05 - - - 2.43
8 6.80e-07 8.16e-07 1.85e-06 3.2 3.2 3.2 6.32 1.16e-02

16 4.00e-08 4.78e-08 1.18e-07 4.1 4.1 4.0 15.28 1.86e-01
32 2.29e-09 2.77e-09 7.21e-09 4.1 4.1 4.0 39.87 2.98e+00
64 5.79e-11 7.43e-11 2.61e-10 5.3 5.2 4.8 107.24 4.76e+01

128 1.44e-10 1.61e-10 2.55e-10 -1.3 -1.1 0.0 335.48 7.62e+02

10−5 4 1.57e-05 1.81e-05 2.64e-05 - - - 8.23
8 5.50e-07 6.73e-07 1.66e-06 4.8 4.7 4.0 18.71 1.16e-03

16 4.53e-08 5.33e-08 1.26e-07 3.6 3.7 3.7 44.81 1.86e-02
32 2.64e-09 3.12e-09 7.74e-09 4.1 4.1 4.0 113.75 2.98e-01
64 1.46e-10 1.78e-10 4.89e-10 4.2 4.1 4.0 344.79 4.76e+00

128 2.06e-11 2.24e-11 4.12e-11 2.8 3.0 3.6 1068.13 7.62e+01

Table 3: Empirical convergence rates for a fourth order ADER scheme with several relaxation
times ε. N is the number of cells. Errors are computed for variable A. CPU times are reported for
all tests. The highlighted row corresponds to the largest number of cells N for which, according to
proposition 3.1, the theoretical convergence rate is expected to be achieved.
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ADER-O5

ε N L1 L2 L∞ O(L1) O(L2) O(L∞) tCPU [s] 4
10−2 4 1.88e-06 2.10e-06 3.37e-06 - - - 1.08

8 7.88e-08 9.43e-08 1.90e-07 4.6 4.5 4.1 2.60 4.44e+00
16 1.58e-08 1.75e-08 2.57e-08 2.3 2.4 2.9 6.75 1.42e+02
32 1.54e-08 1.71e-08 2.47e-08 0.0 0.0 0.1 19.59 4.54e+03

10−3 4 1.61e-06 1.88e-06 3.48e-06 - - - 1.32
8 6.71e-08 8.22e-08 1.71e-07 4.6 4.5 4.3 3.80 4.44e-01

16 2.71e-09 3.21e-09 6.61e-09 4.6 4.7 4.7 10.52 1.42e+01
32 1.54e-09 1.72e-09 2.49e-09 0.8 0.9 1.4 29.37 4.54e+02

10−4 4 1.57e-06 1.94e-06 3.55e-06 - - - 3.51
8 6.90e-08 8.41e-08 1.73e-07 4.5 4.5 4.4 9.45 4.44e-02

16 2.29e-09 2.83e-09 6.02e-09 4.9 4.9 4.8 25.46 1.42e+00
32 1.66e-10 1.86e-10 3.08e-10 3.8 3.9 4.3 77.60 4.54e+01

10−5 4 2.00e-06 2.24e-06 3.34e-06 - - - 10.37
8 6.93e-08 8.44e-08 1.74e-07 4.8 4.7 4.3 27.91 4.44e-03

16 2.46e-09 2.92e-09 6.00e-09 4.8 4.9 4.9 78.60 1.42e-01
32 7.24e-11 9.00e-11 1.95e-10 5.1 5.0 4.9 215.37 4.54e+00
64 1.71e-11 1.90e-11 3.01e-11 2.1 2.2 2.7 724.42 1.54e+02

Table 4: Empirical convergence rates for a fifth order ADER scheme with several relaxation times
ε. N is the number of cells. Errors are computed for variable A. CPU times are reported for all
tests. The highlighted row corresponds to the largest number of cells N for which, according to
proposition 3.1, the theoretical convergence rate is expected to be achieved.
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Figure 1: Comparison of numerical results obtained with a third order numerical scheme for the
elastic model (dashed line) and the viscoelastic model with a relaxation time ε = 10−3 s (thick
continuous line) and experimental measurements (thin continuous line) reported in [2].24
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Figure 2: Comparison of numerical results obtained with our third order numerical scheme for the
viscoelastic model with a relaxation time ε = 10−3 s (thick continuous line), reference numerical
results (dashed line) and experimental measurements (thin continuous line), both reported in [2].25
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Figure 3: Comparison of numerical results obtained with our third order numerical scheme for the
viscoelastic model with relaxation times ε= 10−2 s (dashed line), ε= 10−3 s (thick continuous line)
and ε= 10−4 s (thin continuous line).
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A Junctions and boundary conditions
While blood flow within each vessel is modelled using equations (20), we still need to treat

boundary conditions arising from measurements to be prescribed or from the interaction of one-
dimensional vessels with lumped parameter models [4]. Here we briefly explain how to treat junc-
tion and to assign boundary conditions for the one-dimensional model. Details on the numerical
treatment of lumped parameter models can be found in [4, 39].

A.1 Junction treatments
Let us consider a junction to be the point where J+1 vessels are confluent, where Q j is the

state vector associated to vessel j-th, with j = 0, . . . , J, see Figure 4.We assume that at the junction

dA0 = dK = dpe = 0 (96)

and that the vessel wall has elastic properties, as proposed in [39]. We want to find state vectors
Q∗

j = [A∗
j , q∗

j ] to be used as boundary conditions for each vessel. Therefore, for J +1 vessels we
need to compute 2(J+1) unknowns. J+1 equations are provided by requiring mass conservation

J∑
j=0

g j q∗
j = 0 (97)

and continuity of total pressure

p̃∗
0 +

1
2
ρ

( q∗
0

A∗
0

)2

− p̃ j − 1
2
ρ

( q j

A j

)2
= 0, j = 1, ..., J . (98)

In (97) g j is given as

g j(I j)=
{

1 , if I j = N j ,

−1 , if I j = 1 ,
(99)

where I j is the index of the computational cell of the j-th vessel that shares an interface with
the junction and N j is the number of computational cells of vessel j. Finally, the missing J +1
equations are provided by Riemann invariants for waves leaving the one-dimensional domain

q∗
j

A∗
j
+ g j

∫ A∗
j

A0

c(A)
A

dA− q j

A j
− g j

∫ A j

A0

c(A)
A

dA = 0 j = 0, ..., J . (100)

Equations (97), (98) and (100) constitute a non-linear system with 2(J+1) equations and 2(J+1)
unknowns and is solved using a Newton method. For further details on this methodology see [53].

A.2 Assigning boundary conditions for the one-dimensional model
Let Q= [A1D , q1D]T be the state of a computational cell at the extremity of a one-dimensional

vessel sharing a boundary, where we want to prescribe the cross-sectional area Abc, the flow rate
qbc, or both of them. These quantities might arise from lumped parameter models, from measure-
ments or from coupling conditions at junctions. If only one component of Q is known we compute
the value of the remaining component by solving the following equation

q1D

A1D
+ g1D

∫ A1D

A0

c(A)
A

dA− qbc

Abc
− g1D

∫ Abc

A0

c(A)
A

dA = 0 , (101)
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Figure 4: Schematic representation of a junction.

for the unknown quantity. Here, g1D plays the role of g j in (99), i.e. it identifies if computational
cell at the extremity corresponds to the beginning or to the end of the vessel.

We denote by QL
bc = [AL

bc, qL
bc]T and QR

bc = [AR
bc, qR

bc]T the state vectors for boundary conditions
on the left and right boundaries of the vessel, obtained from (101). To prescribe these values at
the vessel extremities, we use the fluctuations

D+
1− 1

2
= f (QL

1D)− f (QL
bc) , D−

N+ 1
2
= f (QR

bc)− f (QR
1D) , (102)

where f is a flux to be determined, N is the total number of cells of the vessel and QL,R
1D are

the state vectors inside the computational domain for the left and right boundaries, respectively.
Moreover, assuming

dA0 = dK = dpe = dΨ= 0 , (103)

from the momentum equation in (20) f must satisfy

fA∂x A+ fq∂xq =
(
c2 −u2 + aΓ

2

)
∂x A+

(
2u

)
∂xq = 0 . (104)

The reader can check that this is an exact differential equation. Therefore, flux f is found simply
from integration of (104), yielding

f (A, q)= A
[

K
ρ

(
m

m+1

(
A
A0

)m − n
n+1

(
A
A0

)n)
+u2 +aΓ

]
. (105)

This procedure ensures exact mass conservation over the network at a discrete level.
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