
Chapter 1
Computer Experiment Designs via Particle
Swarm Optimization

Erin Leatherman, Angela Dean, and Thomas Santner

Abstract This paper illustrates the use of the Particle Swarm Optimization (PSO)
algorithm in obtaining optimal designs for computer experiments. A small example
is given to illustrate the steps of PSO. The quality and prediction ability of “mini-
max” space filling designs obtained using PSO with different numbers of “swarm
particles” and different numbers of iterations are examined .

1.1 Computer Experiments and Emulators

Computer experiments are used widely in diverse research areas such as engineer-
ing, biomechanics, and the physical and life sciences. Computer experiments use
computer simulators as experimental tools to provide outputs y(x) at specified de-
sign input points x, where a computer simulator is the computer implementation of
a mathematical model that describes the relationships between the input and output
variables in the physical system. Computer experiments can be especially attractive
when physical experiments are infeasible, unethical, or “costly to run.”

For fast running codes, the output response surface can be explored by evaluat-
ing (running) the simulator at a set of inputs x = (x1, . . . ,xk) that are dense in the
space of possible inputs, X . For slow-running codes, an approximator (also called
an “emulator” or “metamodel”) is often sought for the simulator output y(x); such
metamodels allow, for example, the detailed (approximate) exploration of the output
surface.

Erin Leatherman
West Virginia University, PO Box 6330, Morgantown, WV 26506, USA, e-mail: erl@stat.wvu.edu

Angela Dean
University of Southampton, Southampton, SO17 1BJ, UK, e-mail: dean.9@osu.edu

Thomas Santner
The Ohio State University, Columbus, OH 43210, USA, e-mail: santner.1@osu.edu

1



2 Erin Leatherman, Angela Dean, and Thomas Santner

One rapidly-computable class of emulators for deterministic computer simula-
tor output y(x) assumes that y(x) can be modeled as a realization of a Gaussian
Stochastic Process Y (x) (GaSP). In this paper, the input space X for the k inputs
is rectangular and, unless otherwise stated, scaled to [0,1]k. The GaSP models are
assumed to take the form

Y (x) =
p

∑
`=0

f`(x)β`+Z(x) = f ′(x)β + Z(x) , (1.1)

where f ′(x) = ( f1(x), . . . , fp(x)) is a vector of known regression functions, β =
(β1, . . . ,βp) is a vector of p unknown regression coefficients and Z(x) is a zero-
mean, stationary Gaussian stochastic process on X with covariance

Cov(Z(xu),Z(xv)) = σ
2
Z ×R(xu− xv | ρ) =

k

∏
j=1

ρ
4(xu j−xv j)

2

j , (1.2)

where xu j,xv j are the jth elements of input points xu,xv ∈ X , j = 1, . . . ,k, ρ =
(ρ1,ρ2, . . . ,ρk)

′, and ρ j ∈ [0,1] is the correlation between two outputs whose xu and
xv differ only in the jth dimension by |xu j− xv j|= 1/2, which is half their domain.

The design for the computer experiment is denoted by an n×k matrix X ∈D(n,k)
whose ith row is defined by the ith design point x′i = (xi1, . . . ,xik); D(n,k) denotes
the class of all designs with n runs, k input variables, and input space X .

Let yn = (y(x1), . . . ,y(xn)) denote (training) data to be used for estimating the
simulator output y(x0). When β is unknown, but the correlation parameters ρ are
known, the best linear unbiased predictor (BLUP) of y(x0), can be shown to be
ŷ(x0) = f ′x0

β̂ + r′x0
R−1(yn−F β̂ ) , where β̂ = (FT R−1F)−1FT R−1yn (see for exam-

ple [18]). Here β̂ is generalized least squares estimator of β , F is an n× p matrix
with uth row f ′(xu), R is an n× n matrix whose (u,v)th element is R(xu− xv | ρ),
and r′x0

= (R(x0− x1 | ρ), . . . ,R(x0− xn | ρ)) is an 1×n vector.

1.2 Design Criteria

Space-filling designs are popular choices for computer experiments when fitting
GaSP models, (see, for example, [9] and [3]). Space-filling criteria ensure that the
entire input space is sampled by preventing design points from being “close” to-
gether.

Two important space-filling criteria are the maximin (Mm) and the Average Re-
ciprocal Distance (ARD) criteria. The Mm criterion specifies that a design XMm ∈
D(n,k) that maximizes the minimum interpoint distance

min
xu,xv∈X

qz(xu,xv) (1.3)
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is optimal where q(xu,xv) is the distance between xu and xv. Here and below, we use
Euclidean distance, but other metrics could equally well be used.

The ARD criterion is specified by a given set J ⊂ {1, . . . ,k} of sub-dimensions
over which the distances are to be computed (e.g. [1], [14]). A design XARD is ARD-
optimal with respect to J if it minimizes

avz(X) =
1(n

2

)
∑ j∈J

(k
j

) ∑
j∈J

(k
j)

∑
`=1

∑
x?u,x?v∈X` j

[
j1/z

q(x?u,x?v)

]
(1.4)

where X ` j is the `th subspace of X having dimension j, x?u and x?v are the projections
of xu, xv onto X ` j, and q(x?u,x

?
v) is the distance between x?u and x?v .

For prediction, [12] showed that process-based design criteria produce better de-
signs than do space-filling criteria (see also [16]). Process-based criteria involve the
chosen emulator rather than geometric properties. Such criteria include the mini-
mum integrated mean squared prediction error (IMSPE) ([17]), maximum entropy
([20]), and maximum expected improvement [4]. For example, for a given ρ , σ2

Z
and predictor ŷ(·), the IMSPE-optimal design X I ∈D(n,k) minimizes

IMSPE∗ (X | ρ) =
1

σ2
Z

∫
X =[0,1]d

E
[
(ŷ(w)−Y (w))2 | ρ,σ2

Z

]
dw (1.5)

where the expectation is over the joint distribution of (Y (w),Y n). If the values of
the correlation parameters ρ cannot be specified in advance of the experiment but
a distribution π(ρ) of possible values is approximately known, an alternative crite-
rion is to minimize the IMSPE weighted by π(ρ), as in [12]. The examples in [12]
use π (ρ) = ∏

k
j=1 π(ρ j) and independent Beta distributions for π(ρ1), . . . ,π(ρk).

For given π(ρ), a design XA that minimizes weighted (averaged) integrated mean
squared prediction error:

AIMSPE∗ (X) =
∫
[0,1]k

IMSPE∗ (X | ρ)π (ρ)dρ (1.6)

is said to be AIMSPE∗-optimal.
For each of the four criteria (1.3)–(1.6), Figure 1.1 shows approximate optimal-

designs with k = 2 inputs and n = 20 runs constructed using PSO followed by a
quasi-Newton optimizer. The PSO used is described in Section 1.3; it took Ndes =
4nk = 160 “particles” and Nits = 8nk = 320 “iterations”. Maximin designs tend to
have design points on the boundary of the input region; as seen in the top left of
Figure 1.1, this is true in this example where 12 of the 20 points are on, or close to,
the boundary. The minimum distance between the points in this design is 0.2729,
which is close to the maximum achievable minimum interpoint distance of 0.2866
(http://www.packomania.com/).

The minimum ARD design, shown in the top right of Figure 1.1, used J = {1,2}
so that the ARD was calculated as an average over the 2-dimensional input space and
its two 1-dimensional projections. The resulting design has more uniformly spread
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Fig. 1.1 Approximate optimal designs for k = 2 inputs, n = 20 runs, using criteria (1.3)–(1.6) (cri-
terion value in parentheses): Panel (a) Mm design (0.2729); Panel (b) min ARD design (2.2096);
Panel (c) min IMSPE∗ design (2.2827×10−6); Panel (d) min AIMSPE∗ design (4.1192×10−4)

points in the 1-dimensional subspaces than the maximin design, but at the cost of
less uniformity in the 2-dimensional space. To obtain A more uniform distribution
of 2-dimensional points would arise if J = {2} rather than J = {1,2}.

For the minimum IMSPE∗ design, shown in the bottom left of Figure 1.1, the
correlation parameters, ρ1 and ρ2 were set to 0.75 (see [17, 12]). For the minimum
AIMSPE∗ design, π(ρ) took each of ρ1 and ρ2 to be Beta(37.96,37.96) (found by
[12] to perform well for prediction). Although, visually, both of these designs seem
to have more uniform 2-dimensional spread than the maximin design, their mini-
mum interpoint distances (MIPDs) are, respectively, 0.1954 and 0.2043, about 75%
of the MIPD 0.2729 for the Mm design. For more information on the prediction
performances of space-filling, IMSPE∗-optimal, and AIMSPE∗-optimal designs for
different parameter values, see [12].

1.3 Particle Swarm Optimization

Many optimization methods have been suggested in the literature; see, for exam-
ple, [7] and [21] for surveys. Some methods are most effective in local searches
of the input space; for example, gradient-based methods such as the Newton and
Quasi-Newton algorithms (see, for example, [7]). Other optimization methods em-
phasize a global search over the entire input space; for example, genetic algorithms
[8], simulated annealing [11], and particle swarm optimization ([10]). Some meth-
ods, such as simulated annealing ([11]) and mesh adaptive direct search ([2]), have
iteration-dependent parameters that enable them to search both globally and locally.
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PSO algorithms were introduced in [10]. PSO algorithms have had many appli-
cations including the computation of optimal designs for physical experiments using
classical criteria ([5, 6]) and by [12] to find optimal designs for computer experi-
ments. [12] used the output of PSO to identify starting points for a gradient-based,
constrained non-linear optimizer (fmincon.m from the MATLAB Optimization
toolbox).

In more detail, to find an n×k optimal design, PSO starts with a number (Ndes) of
n× k initial designs X1, . . .XNdes . Each X i is reshaped (column-wise) into an nk×1
vector z1

i = vec(X i), called the ith particle, i = 1,2, . . . ,Ndes. To ensure wide ex-
ploration of the nk-dimensional input space, the initial set of Ndes particles can be
selected as an Ndes×nk approximate Mm Latin Hypercube Design.

At iteration t, t = 1,2, . . . ,Nits, every particle zt
i is “updated,” using (1.7) to zt+1

i ,
and then evaluated under the criterion of interest. The update requires the following
notation. At iteration t, let gt denote that particle zt

i ∈
{

zt?
i | i = 1, . . . ,Ndes; t? ≤ t

}
that produces the global best value of the criterion of interest. Similarly, for each
particle i, let pt

i denote that zt
i ∈
{

zt?
i | t? ≤ t

}
having particle best value of the crite-

rion. Then
zt+1

i = zt
i + vt+1

i , (1.7)

where vt+1
i = θvt

i +αε1
t
i ◦ (gt − zt

i)+ βε2
t
i ◦ (pt

i− zt
i), ◦ is elementwise product of

vectors, ε1
t
i and ε2

t
i are independent random vectors whose elements are inde-

pendent Uniform[0,1], α and β are weights put on the step toward the global-
and personal- best positions respectively, θ ∈ [0,1] is the ‘inertia’ parameter, and
vt

i ∈ [−0.25,0.25].
The examples in Section 1.4 took α = β = 2, θ = 0.5, and initial velocity

v1
i = 0nk, as recommended by [10] and [21]. There we describe the results of PSO

in searching for a Mm design with (n,k) = (60,6) for different numbers of “parti-
cles” and different numbers of iterations, with and without final local optimization.
The use of PSO for obtaining IMSPE∗-optimal and AIMSPE∗-optimal designs is
described in [12].

We now illustrate the working of PSO in a “toy” example with (n,k) = (1,2) so
that each zt

i is a (nk =) 2−dimensional vector. Figure 1.2 shows Ndes = 8 zt
i positions

after Nits = 1,2,3,5,10,24 iterations, together with the (unknown) contours of the
design criterion, which is to be minimized. The optimal value is 1.0116, located at
[0.1215, 0.8240].

Panel (a) of Figure1.2, (labelled “Iteration t = 1”) shows the initial particle start-
ing locations, chosen as a maximin LHD. The particle located in the top left corner
of the scatterplot corresponds to the design that has the minimum criterion value
(= 3.6087) when t = 1, so this location is g1. At Iteration t = 2, the particles have
taken one step towards g1 plus a random perturbation, using (1.7). The stars denote
the current particle positions z2

i , and the open circles denote the starting positions
which form the current particle-best p2

i . An evaluation of the criterion values of
the designs corresponding to the new particle positions, z2

i , i = 1, . . . ,8, finds that
the global best design is remains unchanged, i.e., g2 = g1. At t = 3, each particle
i (= 1, . . .8) moves from z2

i towards a weighted combination of the global best par-
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Fig. 1.2 Panel (a) Iteration 1, min fnc value = 3.6087; Panel (b) Iteration 2, min fnc value = 3.6087;
Panel (c) Iteration 3, min fnc value = 3.6087; Panel (d) Iteration 5, min fnc value = 2.0557; Panel
(e) Iteration 10, min fnc value = 1.1776; Panel (f) Iteration 24, min fnc value = 1.0118

ticle position, g2, and its personal best position p2
i resulting in z3

i . Again the global
best position is unchanged so that g3 = g2 = g1. Some of the particle-best positions
(open circles) have changed, such as that closest to the bottom left of the picture,
while others remain the same, such as that one on the bottom border. By iteration
t = 5 (Panel (d)), most of the particles are closing in on the optimum, and one parti-
cle has found a better location than g3 with a smaller criterion value of 2.0557. This
implies that the previous best particle, which had not moved in previous iterations,
will now start to move towards the new best position.

By iteration t = 10, all but two of the z10
i are in the top left corner of the figure,

and one of these six has found a better location with criterion value 1.1776. The two
remaining z10

i are still drawn towards their previous particle-best positions further
“south”. One of these zt

i particle has not found a position better than the location
where it started. Because PSO requires only that one particle find the optimum,
increasing the number of particles simply increases the chance that the optimum
is located quickly. Here, with only 8 particles in 2-dimensional space, by iteration
24, the global best zt

i is g24 = [0.1211,0.8249] corresponding to a criterion value
of 1.0118, very close to the true optimum of 1.0116. The PSO search could be
followed by a gradient-based, constrained non-linear optimizer to hone in on the
exact optimum.
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Table 1.1 MIPDs and computation times to find a 60× 6 design using PSO with Ndes = p× n×
k particles (p ∈ {.1,1,4,10}) and Nits = q× n× k PSO iterations (q ∈ {.2,2,8,20}) optionally
followed by quasiNewton algorithm (fmincon). The column labeled “1” is the MIPD for the
design obtained by applying fmincon to the design g1. The empMSPE for predicting one output
based on this design are also listed.

PSO only PSO + fmincon
Ndes = 36; Nits .2nk 2nk 8nk 20nk 1 .2nk 2nk 8nk 20nk
Criterion value 0.5181 0.6425 0.6881 0.7222 0.7571 0.6750 0.8412 0.8065 0.8086
Time (secs) 46.4 78.5 172.5 355.7 267.9 113.0 476.4 344.7 442.8
empMSPE 5.2116 4.9567 4.7519 4.7866 5.0415 5.3442 5.0821 4.8269 4.8469

Ndes = 360; Nits .2nk 2nk 8nk 20nk 1 .2nk 2nk 8nk 20nk
Criterion value 0.5676 0.6947 0.7210 0.7230 0.7369 0.7652 0.7730 0.7235 0.7230
Time (secs) 257.4 312.8 485.9 830.3 431.7 375.7 434.2 489.5 830.6
empMSPE 4.9607 5.2233 5.2379 5.3221 5.5145 5.1181 5.5151 5.2354 5.3222

Ndes = 1440; Nits .2nk 2nk 8nk 20nk 1 .2nk 2nk 8nk 20nk
Criterion value 0.6004 0.6944 0.7125 0.7168 0.8216 0.7784 0.6948 0.7279 0.7168
Time (secs) 2926.5 3043.5 3424.3 4182.8 3330.2 3138.7 3046.0 3458.0 4184.4
empMSPE 5.1696 5.1995 5.0018 4.9909 4.8221 4.9231 5.0689 5.2398 4.7784

Ndes = 3600; Nits .2nk 2nk 8nk 20nk 1 .2nk 2nk 8nk 20nk
Criterion value 0.6361 0.7281 0.7444 0.7637 0.7784 0.8047 0.7281 0.7444 0.7637
Time (secs) 34415.4 34641.0 35387.7 36895.6 34678.9 34600.2 34641.3 35388.0 36896.0
empMSPE 5.1640 4.6342 4.8644 5.4624 4.9741 5.1198 4.6342 4.8644 5.4624

1.4 Quality of Designs Produced

Table 1.4 investigates the effect of varying Ndes and Nits in a PSO search for a Mm
design having k = 6 inputs and n = 60 runs. The running times on a Linux com-
pute machine, having a Dual Quad Core Xeon 2.66 processor with 32GB RAM are
shown, together with the achieved MIPD (to be maximized). The effect of following
PSO by the local optimizer, fmincon.m starting at at gNits is also shown.

For a given number of particles, Ndes, the left portion of Table 1.4 shows a steady
increase in the maximized MIPD of the computed design as the number of iterations,
Nits, increases. The right portion of the table shows that an increase in MIPD could
usually be achieved by following PSO with fmincon starting at particle gNits . The
extra run time needed for additional iterations and/or use of a local optimizer is
worthwhile.

Interestingly, for all 4 Ndes values, running fmincon with starting particle g1

produced a better design than was obtained by running 20nk = 7200 iterations of
PSO alone. This suggests that a considerably larger value of Ndes would be needed
to find the optimum using only PSO. Results of a modified PSO are given by [6] for
searching for maximin LHDs using approximately Ndes = 8000nk and Nits = 100nk.

Finally, Table 1.4 shows the empirical mean squared prediction error (empM-
SPE) for using the design to fit the empirical best linear unbiased predictor obtained
from (1.1) to outputs from one particular k = 6 output function. The values are gen-
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erally, but not always, lower for designs with MIPD close to 0.8. However, maximin
is not the best criterion for prediction ([12], [16]). A study is currently being carried
out on PSO in constructing AIMSPE∗-optimal designs for calibration ([13]).
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