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Abstract

Computer experiments based on deterministic simulators can sometimes be used
to replace or supplement physical experiments. This paper studies the construction
and predictive performance of designs obtained using integrated mean square predic-
tion error (IMSPE) and Weighted IMSPE (W-IMSPE) criteria. While IMSPE-based
criteria use predictors exactly tuned to the process generating the data, a simulation
study shows that empirical best linear unbiased predictors (EBLUPs) with parameters
estimated from the data of IMSPE-based designs improve upon the predictive accuracy
of EBLUPs formed from space-filling designs. Best IMSPE- and W-IMSPE-optimal
designs are recommended for practice.

Keywords: Experimental design; Gaussian process interpolator; IMSPE; Emulator; Kriging;
Simulator
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1 Introduction

A deterministic computer simulator is the implementation in computer code of a mathemat-

ical model that describes the relationship between input and output variables in a physical

system. As mathematical descriptions have become more sophisticated, the use of determin-

istic simulators as experimental vehicles has become more widespread in applications such as

engineering design (for example, the design and wear of tool coatings in Nekkanty (2009) and,

more generally, Forrester, Sobester, and Keane (2008)), biomechanics (Ong, Santner, and

Bartel 2008), the physical sciences (Higdon, Kennedy, Cavendish, Cafeo, and Ryne 2004),

the life sciences (Upton, Guilak, Laursen, and Setton 2006; Fogelson, Kuharsky, and Yu

2003), public policy (Lempert, Schlensinger, Bankes, and Andronova 2000), and population

biology (Hajagos 2005).

As in any experiment, a computer experiment is performed by varying the inputs to

the simulator and observing the effects on the simulator output. Computer experiments are

sometimes used instead of traditional physical experiments when the number of experimental

factors is too numerous to study via a physical experiment, when a physical experiment is

financially prohibitive, or when conducting a physical experiment is unethical.

In some cases the desired computer simulator is expensive to evaluate and can require

days or even months to run, see for example Hayeck (2009) or Ong et al. (2008). This paper

assumes that a fast-running and reasonably accurate emulator of the simulator output can be

obtained based on a Gaussian Process (GP) model. It assumes that the GP model parameters

are unknown and must be estimated using the data from a “well-chosen” set of simulator

inputs (training data). Output from this emulator can then be used to make predictions of

simulator output (e.g. Sacks, Schiller, and Welch 1989a; Sacks, Welch, Mitchell, and Wynn

1989b; Currin, Mitchell, Morris, and Ylvisaker 1991; Santner, Williams, and Notz 2003).

Broadly, two classes of designs for running computer experiments have been considered in

the literature: space-filling designs and process-based designs. Some comparisons of designs

for computer experiments can be found in Bates, Buck, Riccomagno, and Wynn (1996),

Koehler and Owen (1996), Bursztyn and Steinberg (2006), and Johnson, Jones, Fowler, and

Montgomery (2008).

Space-filling designs include uniform designs (Wang and Fang 1981; Fang, Lin, Winker,
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and Zhang 2000), maximin and minimax designs (Johnson, Moore, and Ylvisaker 1990),

minimum average reciprocal distance designs (Audze and Eglais 1977; Bates, Sienz, and

Toropov 2003; Liefvendahl and Stocki 2006), and lattice designs (Niederreiter 1992; Bates

et al. 1996). Often a space-filling design is selected by one of the above criteria from the

class of Latin hypercube designs (Morris and Mitchell 1995), which were originally proposed

for integration (McKay, Beckman, and Conover 1979) and which ensure the design has a

uniform projection in each individual input dimension.

In contrast, process-based design criteria make use of an emulator of the (future) sim-

ulator output. Process-based design criteria include minimum Integrated Mean Squared

Prediction Error (IMSPE) (Sacks et al. 1989a,b), maximum entropy (Shewry and Wynn

1987; Currin et al. 1991; Mitchell and Scott 1987), and maximum expected improvement

(Bernardo, Buck, Liu, Nazaret, Sacks, and Welch 1992; Jones, Schonlau, and Welch 1998).

Optimal process-based designs are more problematic to construct than space-filling designs

because they require complete specification of the interpolating process, e.g., the mean and

covariance/correlation of a GP emulator. However it is often the case that the specific val-

ues of such parameters are not known. In some cases, subject-matter knowledge about the

parameters may be available. In other cases, the parameters must be estimated only from

training data collected during the initial runs of the simulator. This paper assumes that

sufficient information about the interpolating model parameters is available such that the

minimum Weighted Integrated Mean Squared Prediction Error (W-IMSPE) design criterion

can be applied to determine the training data used to make simulator predictions at untested

input sites.

The organization of the paper follows. Section 2 presents the GP model of simulator out-

put and the corresponding best linear unbiased predictor (BLUP) of the output at untested

inputs. Section 3 uses this model and BLUP to specify IMSPE and W-IMSPE design criteria.

Section 4 discusses computational methods used to construct the optimal designs considered

in this paper. Section 5 presents the correlation weight functions (priors, for Bayesians)

used to construct W-IMSPE-optimal designs, and examples of these designs. A simulation

study in Section 6 demonstrates that empirical versions of the BLUP based on W-IMSPE-

and IMSPE-optimal designs provide more accurate predictions of simulator output than do

empirical BLUPs (EBLUPs) based on traditionally-used space-filling designs; this section
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also makes design recommendations. Section 7 discusses limitations and extensions of the

results.

2 Statistical Model and Prediction

Let y(x) denote the real-valued output of a computer simulator for x ∈ X , a d × 1 input

vector, where X is a d-dimensional, rectangular input space that is scaled to [0, 1]d. As in

Sacks et al. (1989a,b) and Currin et al. (1991), the deterministic computer simulator outputs

are modeled as realizations of the GP

Y (x) =
p�

i=1

fi(x)βi + Z(x) = fT (x)β + Z(x), (1)

where fT (·) = (f1(·), f2(·), . . . , fp(·)) are known regression functions, β = (β1, β2, . . . , βp)
T is

a vector of unknown regression coefficients, and deviations from the regression are modeled

by Z(·), a zero-mean, stationary GP over X with variance σ2
Z

, and product Gaussian

correlation function

Cor (Y (xu), Y (xv)) = R(xu − xv | ρ) =
d�

j=1

ρ
4(xuj−xvj)

2

j
, (2)

where ρj ∈ [0, 1] for 1 ≤ j ≤ d and xuj is the jth element of input xu, 1 ≤ u ≤ n (Higdon

et al. (2004)). Here ρ = (ρ1, ρ2, . . . , ρd)T , and ρj is the correlation between the outputs

at two inputs that differ only in the jth dimension by half their domain. The equivalent

parameterization γj = −4 ln(ρj), 1 ≤ j ≤ d, of (2) is often used so that ρ4(·)
2

j
= e−γj(·)2 and

γj ≥ 0. However, the methodology in this paper does not rely on the use of the Gaussian

correlation function (2), so alternative correlation functions, such as those in Section 2.3.3

of Santner et al. (2003), could be used instead.

Suppose that n simulator outputs y(x1), y(x2), . . . , y(xn) are observed at n training in-

puts represented by the rows of the (n×d) design matrix X = [x1,x2, . . . ,xn]T . Informally,

the set of d-dimensional input points {xi ∈ X , 1 ≤ i ≤ n} will be referred to as “the n × d

design X” and the set of all such designs will be denoted by Dn,d.

Sacks et al. (1989a) show that when the correlation parameters ρ are known but β is un-

4



known, the best linear unbiased predictor of y(x0), based on yn = (y(x1), y(x2), . . . , y(xn))
T ,

is

�y(x0) = fT

0
�β + rT

0R
−1(yn − F �β), (3)

where f 0 = f(x0) is the p × 1 vector of known regressors at x0; F is the n × p matrix of

known regressors having (i, j)th element fj(xi) for 1 ≤ i ≤ n, 1 ≤ j ≤ p; r0 is the n×1 vector

(R(x0 − x1), . . . , R(x0 − xn))
T and R is the n× n matrix (R(xi − xj)) whose elements are

defined by the correlation function (2); and �β = (F TR−1F )−1F TR−1yn is the generalized

least squares estimator of β.

Prediction based on the GP model (1) is popular for many reasons. First, the predictor

is semi-parametric; the long-run trend mean structure is specified by a regression while local

deviations from the trend are described by a stationary GP. Second, when GP parameters are

known, the conditional distribution (and conditional mean) used to predict new output values

based on current runs and to quantify uncertainty about the estimated output are simple

to obtain. Third, the (empirical) BLUPs based on this model interpolate the data at the

training data inputs, which is desirable when the computer simulator produces deterministic

output.

The predictor in (3) will be used to construct IMSPE- and W-IMSPE-optimal designs

in Section 3. Later, Section 6 will compare the predictive ability of (3) with restricted

maximum likelihood (REML) plug-in estimates for ρ, based on training data obtained from

various designs.

3 Design Criteria for Prediction

When considering designs for a computer experiment, the simulator is often treated as a

“black-box” function, meaning that the relationship between the inputs and outputs is com-

pletely unknown. In such cases, space-filling designs have been suggested for computer

experiments in order to explore the entire input space, see Bates et al. (1996). The sim-

ulation study in Section 6 includes two types of space-filling designs: the maximin Latin

hypercube design (Johnson et al. 1990) and the minimum average reciprocal distance Latin

hypercube design (Audze and Eglais 1977; Bates et al. 2003; Liefvendahl and Stocki 2006).

These designs will be compared with process-based designs obtained under the minimum
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IMSPE and the minimum W-IMSPE criteria defined below.

IMSPE and W-IMSPE criteria focus on good prediction. The predictor �y(x0) in (3)

depends on X and on the model parameters (through F , r0, and R). For fixed design X, ρ,

and σ2
Z
, one measure of prediction ability at x0 is the mean squared prediction error (MSPE)

of �y(x0) which is

MSPE
�
x0,X | σ2

Z
,ρ

�
= σ2

Z



1−
�
fT

0 rT

0

�



0p×p F T

n×p

F n×p Rn×n





−1 


f 0

r0







 , (4)

where 0p×p is a p × p matrix of zeros and the implicit expectation in (4) is taken over the

joint distribution of (Y (x0),Y
n) with Y n = (Y (x1), Y (x2), . . . , Y (xn))

T .

An IMSPE-optimal design in Dn,d minimizes the MSPE (4) averaged over the input space

X . Formally, the IMSPE is

IMSPE
�
X | σ2

Z
,ρ

�
=

�

X
MSPE

�
w,X | σ2

Z
,ρ

�
dw

= σ2
Z



1− trace








0 F T

F R





−1
�

X




fwfT

w fwrT

w

rwfT

w rwrT

w



 dw







 , (5)

when ρ and σ2
Z
are known (see Sacks et al. (1989a,b) for calculation details). Formula (5)

can be expressed in terms of the univariate standard Normal distribution for the Gaussian

correlation function (2). A design XI that minimizes

IMSPE� (X | ρ) ≡ IMSPE
�
X | σ2

Z
= 1,ρ

�
(6)

also minimizes IMSPE (· | σ2
Z
,ρ) for all σ2

Z
> 0. Therefore the IMSPE optimal design is

defined in terms of IMSPE�.

This paper considers the case where the correlation parameters ρ that need to be specified

to calculate IMSPE� are not known, but information about either the range or more detailed

subject matter knowledge of the possible values of ρ is available. In this case, an average

of the IMSPE� values with weights π (ρ) is an appropriate criterion. From a Bayesian

perspective, the weight π (ρ) is a prior distribuion. This results in the Weighted Integrated
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Mean Square Prediction Error (W-IMSPE) design objective function

W (X) =

�

[0,1]d
IMSPE� (X | ρ) π (ρ) dρ. (7)

A design XW that minimizes (7) is a W-IMSPE-optimal design.

Using training data determined by a minimum W-IMSPE design is desirable for use in

a computer experiment because it ensures that the predictor �y(·) is close to the computer

simulator output y(·), on average, over the entire input space X , as well as over the correlation

parameter spaces weighed according to π(ρ). It will be shown in Section 6 that these designs

perform well over a range of example surfaces. In the next section, computational issues

arising in the calculation of the W-IMSPE objective function are discussed.

4 Computational Methods for W-IMSPE-optimal De-

sign Construction

The sections that follow describe how the numerical evaluation of the W-IMSPE objec-

tive function was performed and the optimization methods used in this paper to find the

W-IMSPE-optimal designs studied in Section 6. To avoid the numerical complication of

calculating W-IMSPE when design points {xi} are “too close” together, which leads to a

numerically non-invertible correlation matrix R, an �-ball of radius 10−3 is placed around

each design point.

4.1 Numerical Evaluation of the W-IMSPE Objective Function

Because closed-form evaluation of W-IMSPE is not available, numerical integration was used

to calculate (7). Many methods of numerical integration from the the numerical analysis

literature have been used in statistics; two recent surveys of these methods are Kincaid and

Cheney (2002) and Givens and Hoeting (2012). This paper used Sobol´ sequences to perform

Quasi-Monte Carlo integration of (7) (Morokoff and Caflisch (1995) and Niederreiter (1992));
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thus the W-IMSPE formula is approximated by

W (X) ≈
2k�

j=1

IMSPE�
�
X | ρ

j

�
π
�
ρ
j

�
, (8)

where ρ
j
is the jth point of the 2k-point Sobol´ sequence in d dimensions. The d correlation

parameters are taken to be mutually independent, so π(ρ1, . . . , ρd) =
�

d

i=1 πi(ρi) where πi(·)
is the probability density of ρi.

Two techniques were implemented to enhance the computational accuracy of (8): a

rescaling and shifting of the {ρ
j
}2k
j=1 points, and selecting the minimally accurate k. The first

technique is based on the observation that, for fixed k and the selected π(·), many terms in (8)

can have very small π(ρ
j
). One can improve the accuracy of (8) by increasing the number of

ρ
j
having significant π

�
ρ
j

�
contributions to (8). This can be accomplished by transforming

the range of integration of each ρ
j
from [0, 1]d to

�
d

i=1[ai, bi], where 0 < ai < bi < 1 are

selected so that all component pdfs πi(ρi), 1 ≤ i ≤ d, of π(ρ) satisfy

πi(ρi) ≥ 10−10 for ρi ∈ [ai, bi], (9)

ignoring the constant of proportionality that this induces on the right side of (8). For the

d = 2, 3, 5 used in this paper, all univariate prior ranges [ai, bi] were selected to satisfy (9).

When d is “large”, say d = 20, the bounds (9) can still result in very small π(ρ) for many

of the terms in the Sobol´ sequence. In this case, a value larger than 10−10 could, after

appropriate accuracy studies, be used in (9).

The second method of increasing the accuracy of (8) while ensuring computationally

feasibility is to select the minimal k so that (8) computed with 2k terms provides a ‘good’

estimate of W-IMSPE (7). The length of the Sobol´ sequence needed to estimate (7) well is

tied to d, the dimension of the integral. As d in (7) increases, longer Sobol´ sequences are

needed for (8) to approximate (7) accurately. For the examples in this paper, k was chosen to

be 11 for d = 2, 16 for d = 3, and 17 for d = 5. This selection was determined by calculating

W-IMSPE (8) for several designs using an array of k values, and selecting the smallest k

for which W-IMSPE converged numerically. Unfortunately, because the computation time

needed to evaluate (8) doubles as k increases to k+1, the use of k = 16 and 17 to find the W-
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IMSPE-optimal designs for d = 3 and 5, respectively, became computationally prohibitive.

Instead, an adaptive number of draws was used in the optimization. This method will be

described in Section 4.2

4.2 Design Optimization

This paper used a combination of Particle Swarm Optimization (PSO) and gradient-based

quasi-Newton (QN) optimization to find the n× d design X that minimizes W-IMSPE (8)

for the input space, X = [0, 1]d. To find a W-IMSPE-optimal design of size (n, d) for a

specific π(ρ), a modified particle swarm optimization (PSO) was used to identify a design

that served as the starting point for a QN search for the best design; a detailed description

of this heuristic approach is presented in Leatherman, Dean, and Santner (2014).

The basic PSO algorithm for this application is described first, then modifications that are

used herein are given. The PSO algorithm of Kennedy and Eberhart (1995) was implemented

using Ndes n × d starting designs X1
i
, 1 ≤ i ≤ Ndes, called “particles”. Each design X1

i

was reshaped (column-wise) into an nd × 1 vector z1
i
= vec (X1

i
). To ensure the initial

designs were well spread in nd-space, the initial set of Ndes designs were selected so that
�
z1
1, z

1
2, . . . , z

1
Ndes

��
formed an approximate maximin LHD.

Each particle was updated a given number, Nits, of times. The update step from zt

i
to

zt+1
i

, 1 ≤ i ≤ Ndes and 1 ≤ t ≤ Nits, is a randomly weighted step towards the current

global-best position,

gt ≡ argmin
s∈{1,2,...,t}, i∈{1,2,...,Ndes}

W (Xs

i
) .

and the current design-best position

pt

i
≡ argmin

s∈{1,2,...,t}
W (Xs

i
) .

The update is

zt+1
i

= zt

i
+ vt+1

i
, (10)

where “velocity” vt+1
i

= γvt

i
+α�1ti◦(gt − zt

i
)+β�2ti◦(pt

i
− zt

i
) and ◦ denotes the element-wise

product of comparable vectors. Following the recommendations of Kennedy and Eberhart

(1995) and Yang (2010), designs in this paper were constructed using step weights α =

9



β = 2, inertia parameter γ = 0.5, initial velocity v1
i
= 0nd, and independent random

vectors �1ti and �2ti whose elements are independent Uniform[0,1], for 1 ≤ i ≤ Ndes and

1 ≤ t ≤ Nits. Additionally, the random velocity vectors vt

i
were bounded component-

wise by [−0.25× 1nd, 0.25× 1nd]. For this paper, components of the velocity vectors vt

i

falling outside of the bounds were relocated to the boundary of the velocity domain in each

dimension for which this occurred. Additionally, any element of zt

i
moved outside of [0, 1]nd

was relocated to the boundary of [0, 1]nd in each dimension in which the violation occurred.

Finally, the PSO algorithm was run with Nits = 2 × Ndes iterations and Ndes = 4 × n × d

initial designs.

To provide computational feasibility, the PSO algorithm was modified using an adaptive

number of Sobol´ draws. The idea is that initially a smaller k can be used because W (X)

differences are likely to be larger while bigger k values must be used when making the final

W (X) comparisons because these values are likely to be more nearly equal. Specifically, for

each starting design X1
i
, 1 ≤ i ≤ Ndes, approximately the first 90% of the Nits iterations

were performed with a ‘cheaply’ estimated W (X) by calculating (8) with 211 Sobol´ draws.

The remaining 10% of the iterations used the more accurate k for the d of interest.

A second modification of the PSO algorithm was made to enhance the ability of the

algorithm to escape from local minima. A randomly selected set of 5% of the Ndes designs

that were evolved after 90% of the PSO iterations were replaced by a space-filling set of

alternative designs. Then the remaining 10% of the PSO iterations were conducted starting

with this modified set of designs (and using the more accurate k). Recalling that each design

is a nd × 1 vector, the alternative designs where taken to be the rows of an (approximate)

maximin Latin hypercube containing 0.05×Ndes rows and nd columns.

After the remaining 10% of the iterations were performed using the larger number of

Sobol´ draws, the best design constructed by PSO was taken as the starting design for a

single run of a QN algorithm (as implemented in the MATLAB code fmincon.m) to produce

the final design. The QN algorithm used the larger, d-dependent, k value to calculate (8).
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5 W-IMSPE-optimal Designs

This section lists the specific correlation values, ρ0, used to construct IMSPE-optimal designs

and the specific correlation weight functions, π(ρ), used to construct W-IMSPE-optimal

designs for the simulation study in Section 6. All IMSPE- and W-IMSPE-optimal designs

in this paper were constructed using a constant mean fT (x)β = β0 for the GP (1). This

section also shows an example of a W-IMSPE-optimal design that was constructed using the

computational methods described in Section 4 and compares it to a maximin design for the

same (n, d).

5.1 Selection of Correlation Weights

Four IMSPE-optimal designs were found corresponding to minimizing IMSPE�(X|ρ0) for

four choices of ρ0 and four W-IMSPE-optimal designs were constructed corresponding to

four non-degenerate π(ρ). Note that IMSPE-optimal designs can also be considered W-

IMSPE-optimal designs that are constructed with a degenerate prior. The ρ0 for three of

the IMSPE-optimal designs contained a common correlation value in all dimensions: ρ0 =

0.25 × 1d, 0.50 × 1d, and 0.75 × 1d. These point masses and their corresponding designs

are denoted I.25, I.5, and I.75 in Table 1. The fourth ρ0 varied correlation values across

input dimensions; some correlations were set to reflect high activity (ρ = 0.25) and others

to reflect low activity (ρ = 0.75). Specifically, for d = 2, ρ0 = [0.75, 0.25]T ; for d = 3,

ρ0 = [0.75, 0.25, 0.25]T ; and for d = 5, ρ0 = [0.75, 0.75, 0.25, 0.25, 0.25]T . This point mass

and its corresponding IMSPE-optimal design are denoted IM in Table 1.

The first non-degenerate π(ρ) is the (non-informative) uniform weight on [0.01, 0.99]d;

that is, π(ρ) =
�

1
0.99−0.01

�d
for ρ ∈ [0.01, 0.99]d. The uniform prior and its corresponding

W-IMSPE-optimal design are denoted WU in Table 1. The remaining three non-degenerate

π(ρ) were of the form
�

d

i=1 π(ρi), with a common, marginal beta density for independent

ρi, 1 ≤ i ≤ d. The first two marginal densities, beta(5, 13) and beta(15, 43), were specified

by selecting integer parameters that yielded a mode of 0.25 and standard deviations of 0.10

and 0.0570, respectively. The third marginal density, beta(37.96, 37.96), has mode 0.50 and

standard deviation 0.0570, which is the same standard deviation as the beta(15, 43) weight

function. These three weight functions and their corresponding W-IMSPE-optimal designs
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are denoted W.25
W
, W.25

N
, and W.5

N
in Table 1, where the superscripts represent the mode of

the distribution and the subscripts W and N represent “wide” and “narrow” distribution

spread.

Table 1: Labels for the weight functions and correlation values used in the calculation of
W-IMSPE-optimal and IMSPE-optimal designs. For W.25

W
, W.25

N
, and W.5

N
the support of the

distribution is determined by (9).

Label Correlation ρ0

I.25 0.25× 1d

I.5 0.50× 1d

I.75 0.75× 1d

(0.75, 0.25)T , d = 2

IM (0.75, 0.25, 0.25)T , d = 3

(0.75, 0.75, 0.25, 0.25, 0.25)T , d = 5

Label Weight π(·) in
�

d

i=1 π(ρi)

W.25
W

π(ρ) ∝ ρ4 (1− ρ)12

W.25
N

π(ρ) ∝ ρ14 (1− ρ)42

W.5
N

π(ρ) ∝ ρ36.96 (1− ρ)36.96

WU π(ρ) =
�

1
0.99−0.01

�
× I(ρ∈[0.01,0.99])

5.2 Example of a W-IMSPE Design

In total, thirty-two W-IMSPE- (IMSPE-)optimal designs were constructed corresponding to

the four (n, d) combinations in {(10, 2), (15, 3), (30, 3), (16, 5)} and the eight weight functions

listed in Table 1.

While the full set of designs is presented in Appendix A of the Supplementary Material,

one specific example is examined here. This design is an n = 30-run W-IMSPE-optimal

design for the W.25
W

weight function over the input space [0, 1]3 (the points of the design

are listed in Table 22 in the Supplementary Material). The 1-d and 2-d projections of

this design, presented in Figure 1, show that the projected points are somewhat clustered.

However, when viewed in the full 3-d input space, the points of this design appear more

space-filling; the minimum 3-d Euclidean interpoint distance is 0.2975. Additionally, none
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Figure 1: Two-dimensional projections of a 30-run W-IMSPE-optimal design in [0, 1]3 con-
structed using the W.25

W
weight function.

of the points in this design lie on a boundary of [0, 1]3; in fact, all points are located within

[0.06, 0.94]3.

For comparison, a 30-run maximin Euclidean interpoint distance design in [0, 1]3 was

obtained from the website of Specht (2013). The 1-d and 2-d projections of this design are

plotted in Figure 2. In both lower dimensions, the projections are more grid-like than for

the W.25
W
-optimal design. By construction, the minimum 3-d interpoint distance is larger for

this design (0.4714) than for the W.25
W
-optimal design (0.2975). Also, many of the maximin

design points lie on a boundary of [0, 1]3.

6 Design Comparison

6.1 Prediction Accuracy

Because this paper assumes that prediction is of primary interest, the design objective func-

tion W-IMSPE is based on the MSPE building block (4) which describes an ideal circum-

stance in which simulator test surfaces are drawn from a GP with known parameters and

prediction is performed using (3) which also assumes knowledge of the GP parameters.

Section 6 uses simulation to compare designs constructed for the utopian predictor of
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Figure 2: Two-dimensional projections of a 30-run maximin Euclidean interpoint distance
design in [0, 1]3 obtained from Specht (2013).

Section 2 by their predictive accuracy when using a widely-employed EBLUP with estimated

parameters. The predictor used is the EBLUP

�yE(x0) = �β0 + �rT

0
�R

−1
�
yn − 1n

�β0

�
, (11)

based on the constant-mean GP with unknown process variance σ2
Z
and having Gaussian

correlation function (2) with unknown correlations ρ = (ρ1, . . . , ρd)T . Here yn is defined

following (3), while �β0 =
�
1
T

n
�R

−1
yn

�
/
�
1
T

n
�R

−1
1n

�
, 1n is a column vector of n ones, and �r0

and �R are defined analogously to r0 and R but in terms of an estimated correlation function

�R(· | �ρ) instead of the known correlation function R(· | ρ). In this paper �ρ is the REML

estimate of ρ.

Using a given design, X, training data is collected from a specified test-bed output

function y(x) (see Section 6.3). Then REML estimates of ρ are calculated (using the MAT-

LAB Parametric Empirical Kriging (MPErK) (2013) software). The empirical mean square

prediction error (EMSPE)

EMSPE(X) =
1

6d

6d�

i=1

�
�yE(xi)− y(xi)

�2
(12)
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over an equally-spaced grid of 6d points in [0, 1]d is used to quantify the predictive accuracy

when using design X.

6.2 Designs Studied

For each (n, d) ∈ {(10, 2), (15, 3), (30, 3), (16, 5)}, ten designs were compared using EMSPE.

The designs are described below and, in brief, include space-filling, IMSPE-optimal and W-

IMSPE-optimal designs. The two space-filling designs used were a maximin Latin hypercube

design (MmLHD) under L2 distance (Johnson et al. 1990; Morris and Mitchell 1995) and

a minimum average reciprocal distance Latin hypercube design (mARDLHD) (Audze and

Eglais 1977; Liefvendahl and Stocki 2006). Both space-filling designs were obtained from the

website of van Dam, den Hertog, Husslage, and Rennen (2013), and are listed in Appendix

D of the Supplementary Material.

The four IMSPE-optimal designs I.25, I.5, I.75, and IM in Table 1, were constructed by using

the PSO plus QN optimization algorithm of Section 4.2 to minimize IMSPE�(X | ρ) in (6) for

the constant-mean GP model. Similarly the four W-IMSPE-optimal designs W.25
W
,W.25

N
,W.5

N
,

and WU in Table 1 were calculated for the constant-mean GP model using the integration

methods and the modified PSO plus QN algorithm described in Section 4.

6.3 The Test-Bed of y(·) Functions

A test-bed of non-linear surfaces was created using the method of Trosset (1999) to compare

the predictive capability of the designs described in Section 6.2. In this application of Trosset

(1999), each test surface is a Kriging interpolator of the form

ytest(w) = β̂0 + r(w)TR−1
�
Y 500 − 1500β̂0

�
, w ∈ [0, 1]d . (13)

based on 500 draws from a GP. Specifically, Y 500 was a 500 × 1 vector drawn from a GP

at an approximate maximin 500 × d LHD in [0, 1]d, L. The GP had mean 100, variance

10, and Gaussian correlation function (2), where ρ = [ρ1, ρ2, . . . , ρd]T was specified to be

one of seven correlation settings described below. For numerical stability, a nugget of size

10−6 was added to the diagonal of the GP’s covariance matrix, σ2R. In ytest(w), r(w) is the

15



500×1 vector of correlations (R(xi,w)) for xT

i
∈ L, R is the 500×500 matrix of correlations

(R(xi,xj) + δi=j(10−6)) for xT

i
,xT

j
∈ L, and �β0 =

�
1
T

500R
−1Y 500

�
/
�
1
T

500R
−1
1500

�
.

To compare the designs described in Section 6.2, seven correlation families were used to

generate a test-bed of response surfaces. For each correlation setting, 40 surfaces ytest(w)

were taken as representative computer simulators of that setting. The seven correlation

families can be grouped into three categories:

1. Deterministically Common Correlation: Three test-beds ytest(·) correspond to ρ1 =

ρ2 = . . . = ρd = ρ where ρ ∈ {0.25, 0.50, 0.75}. These families are denoted TDC

.25 ,T
DC

.5 ,

and TDC

.75 , respectively. Because the correlation parameters are of equal size for a given

correlation family, each input dimension has the same opportunity to influence the

output.

2. Stochastically Common Correlation: Three test beds ytest(·) correspond to independent

and identically distributed ρ1, ρ2, . . . , ρd drawn from one of the following distributions:

beta(5, 13), beta(11.34, 11.34), and beta(13, 5). These families are denoted TSC

.25 ,T
SC

.5 ,

and TSC

.75 , respectively, where the subscript denotes the mode of the distribution. The

values of the correlation parameters are not necessarily equal within a single vector

draw; thus, the d inputs are allowed to have unequal influences on the output. Given

one of the three parameter distributions, a separate d× 1 vector of correlation param-

eters is drawn independently to create each of the 40 ytest(w).

3. Mixed Activity Correlation: The final set of correlation parameters is selected so that

some inputs have a strong effect on the output (high activity) while others do not

affect the output substantially (low activity). Inputs having high activity correspond

to ρH , which are drawn independently from a Uniform(0.1, 0.5) distribution for each

high activity input, and inputs having low activity correspond to ρL, which are drawn

independently from a Uniform(0.90, 0.99) distribution for each low activity input.

This family is denoted TM and includes ρ = [ρL, ρH ]T for d = 2, ρ = [ρL, ρH , ρH ]T for

d = 3, and ρ = [ρL, ρL, ρH , ρH , ρH ]T for d = 5. A separate d × 1 vector of correlation

parameters is drawn independently to create each of the 40 ytest(w).

For each correlation family, 40 correlation parameter vectors are selected. Each vector of

correlation parameters is inserted in (2) and Y 500 is drawn to construct a test surface (13).
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A total of 280 = 7 × 40 surfaces was drawn for each input size d = 2, 3, 5; the same 280

surfaces were used to test both the 15× 3 and 30× 3 designs.

6.4 Results and Recommendations

After creating a test-bed of 280 ytest(w) surfaces for each of the dimensions d = 2, 3, 5,

training data were collected from the surfaces using each of the ten designs described in

Section 6.2. For each set of training data, predictions �yE(·) were made at an equally-spaced

input grid of 6d points. Each grid of predictions was used to calculate EMSPE (12) for a

particular design and test surface combination.

Figure 3: Boxplots of 40 EMSPE values for test-bed TDC

.25 and the (n, d) = (30, 3) designs.
The mean EMSPE for each design is plotted as a solid circle, and the smallest 75th percentile
among the 10 designs is denoted by a horizontal line.

The 40 EMSPE values were collected for all test surface and design combinations. Fig-

ure 3 shows boxplots of EMSPE values for each 30 × 3 design studied using the test-bed

TDC

.25 . In this figure, the mean EMSPE for each design is plotted as a solid circle. The 75th

percentiles of the EMSPE values were calculated for each combination of design and test-bed

correlation setting. For the 30× 3 designs, these percentiles are summarized by design type
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and correlation setting in Table 2. Corresponding tables for the other design sizes are found

in Appendix B of the Supplementary Material.

Table 2: The 75th percentile of the 40 EMSPE values for the 10 designs and the 7 test-bed
correlation settings studied when (n, d) = (30, 3).

ytest(·) Test-bed Correlation Setting

Deterministically Stochastically Mixed

Common Common Activity

Design TDC

.25 TDC

.5 TDC

.75 TSC

.25 TSC

.5 TSC

.75 TM

IMSPE-
optimal

I.25 2.1937 0.4306 0.0280 2.0914 0.3936 0.0706 0.6521

I.5 1.8645 0.3691 0.0268 2.0570 0.4773 0.0754 0.5162

I.75 2.5201 0.3870 0.0235 2.0880 0.3983 0.0518 0.4609

IM 2.1269 0.4959 0.0497 2.6889 0.5168 0.0914 0.4108

Space-
Filling

MmLHD 2.2112 0.5718 0.0539 2.1850 0.5010 0.0991 0.5291

mARDLHD 2.1691 0.5681 0.0528 2.7823 0.6478 0.1052 0.5420

W-
IMSPE-
optimal

W.25
W

1.8686 0.4491 0.0296 2.1522 0.4759 0.0691 0.7352

W.25
N

1.8856 0.4150 0.0323 2.0956 0.5543 0.0926 0.5438

W.5
N

1.9562 0.3829 0.0249 2.0010 0.4014 0.0561 0.5133

WU 2.0548 0.4376 0.0399 2.5183 0.4566 0.0765 0.5093

Table 2 (and Tables 35–37 in Appendix B) show that design choice is more important

for small values of ρ than for large values of ρ, since the 75th percentile of EMSPE values

becomes smaller and more similar between designs as the test-bed correlation ρ → 1. That

is, the values in column TDC

.25 are larger and more variable than the values in column TDC

.5 ,

and the values in column TDC

.5 are larger and more variable than the values in column TDC

.75 .

The same pattern occurs for columns TSC

.25 , T
SC

.5 , and TSC

.75 . Surfaces constructed using large

values of ρ (TDC

.75 and TSC

.75 ) are the easiest to predict because the highly-correlated nature

of their outputs results in a relatively flat surface, while surfaces constructed with small

values of ρ (TDC

.25 and TSC

.25 ) are harder to predict because of the associated ytest(·) variability.

A similar observation regarding surface complexity and prediction difficulty was made in

Section 4 of Loeppky, Sacks, and Welch (2009).

In order to determine how well a particular design performs across all 7 correlation set-

tings, the designs’ 75th percentiles of EMSPE were standardized within test-bed correlation

setting by dividing each design’s 75th percentile by the minimum 75th percentile seen for that

particular correlation setting and design size. Boxplots of the 7 standardized values for the

30× 3 designs are given in Figure 4, while Figures 5–7 show the corresponding boxplots for
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Figure 4: Boxplots of the seven standardized 75th percentiles of the 40 EMSPE values, when
(n, d) = (30, 3).

the other design sizes studied. Note that the minimum of the standardized values is 1, and

designs having standardized 75th percentile distributions with values near 1 predict well.

Figures 4–7 demonstrate that space-filling designs do not perform as well as the IMSPE-

and W-IMSPE-optimal designs across the set of test-bed correlation settings. Therefore, it

is recommended that the MmLHD and the mARDLHD should not be used when prediction

is the goal of the computer experiment. This recommendation is consistent Pronzato and

Müller (2011) and Müller, Pronzato, Rendas, and Waldl (2013) who show that prediction

variances are larger for space-filling designs than for competing designs.

Recall that design IM was constructed for the setting where particular inputs were selected

to have high activity and other inputs were specified to have low activity. While IM also

does not perform well across the set of test-bed correlation families, it does predict well

for test functions constructed from TM , the correlation setting for which this design was

constructed. Hence, if the experimenter can specify in advance which simulator inputs have

high/low activity, design IM is a good choice. However, if the input activity is unclear a

priori, it is risky to use design IM .
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Figure 5: Boxplots of the seven standardized 75th percentiles of the 40 EMSPE values, when
(n, d) = (10, 2).

While intuition might suggest the use of designs constructed for the “non-informative”

Uniform(0.01, 0.99) weight function when the correlation parameters are unknown, this

design does not perform as well across the 7 test-bed correlation families as the other IMSPE-

and W-IMSPE-optimal designs.

Instead, Design I.75 is recommended for use in computer experiments when prediction

is the experimental goal because of its overall good performance across test-bed correlation

families and design sizes. This design is also recommended by Sacks et al. (1989a), for

computer experiment designs of size 9× 2.

A final set of comparisons will be made, those between the IMSPE- and W-IMSPE-

optimal designs. The W-IMSPE-optimal Design W.25
W

generally performs better across the

test-bed correlation families than the related IMSPE-optimal design I.25 or the W-IMSPE-

optimal design W.25
N
. This is true for all design sizes studied but (n, d) = (16, 5). Similarly,

the W-IMSPE-optimal design W.5
N
performs similarly or better across the test-bed correlation

families than its IMSPE-optimal design I.5. This is true for all design sizes studied except

(n, d) = (10, 2). However, the IMSPE-optimal designs take less than 0.5% of the time to
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Figure 6: Boxplots of the seven standardized 75th percentiles of the 40 EMSPE values, when
(n, d) = (15, 3).

construct than the associated W-IMSPE-optimal designs. Therefore, the experimenter may

want to consider paying the price of a slightly larger prediction error in order to use a design

that is more rapidly-computable.

7 Summary and Discussion

This paper presents a detailed study of the construction and comparison of initial designs

for computer experiments using the minimum weighted integrated mean square prediction

error criterion. The minimum W-IMSPE design criterion seeks to identify training data that

produce good predictions, on average, over the input space using a prior weight function

for the correlation parameters. The minimum W-IMSPE criterion replaces the necessity of

determining specific values for correlation parameters in the minimum IMSPE� criterion with

that of specifying a π(ρ) for the GP model correlations. It is shown that two widely-used

space-filling designs for computer experiments are inferior to IMSPE- and W-IMSPE-optimal

designs with respect to empirical prediction error for a wide range of test functions. Two
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Figure 7: Boxplots of the seven standardized 75th percentiles of the 40 EMSPE values, when
(n, d) = (16, 5).

W-IMSPE-optimal designs are recommended as well as a computationally simpler IMSPE-

optimal design.

For specific test-bed correlation settings, particular W-IMSPE-optimal designs predicted

better than IMSPE-optimal designs, on average, as noted in the previous section. However,

the IMSPE-optimal designs take less than 0.5% of the time to construct than the time

needed to construct W-IMSPE-optimal designs (see Appendix C for design construction

times). Therefore, cost considerations may dictate the use of a rapidly-computable design

with slightly larger prediction error. Overall, Design I.75 was found to be the most robust

of the rapidly-computable designs investigated, providing good predictions on average, over

many surfaces within several test-bed correlation settings. This design is an IMSPE-optimal

design constructed assuming correlation values ρ = 0.75× 1d.

When physical observations are available, they may be used to calibrate the simulator

model to obtain simulator output as close as possible to the mean physical response. Cur-

rently under investigation are W-IMSPE- and IMSPE-optimal designs for achieving small

prediction errors for future physical observations.
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The GP model used in this paper is stationary with constant mean. Future work includes

examination of designs for prediction using a non-constant mean GP with stationary variance

assumption, and eventually to non-stationary models.
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pendix A gives the IMSPE- and W-IMSPE-optimal designs used in the simulation

study of Section 6. Appendix B provides tables of the 75th percentiles of the EM-

SPE values for each combination of design and test-bed correlation setting for (n, d) ∈

{(10, 2), (15, 3), (16, 5)}. Appendix C gives the times required to construct the IMSPE-

and W-IMSPE-optimal designs for this paper. Lastly, Appendix D lists the space-filling

designs used in the simulation study of Section 6. (pdf)
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Supplementary Material

The supplementary material contains four appendices. Appendix A gives the IMSPE- and

W-IMSPE-optimal designs used in the simulation study of Section 6. Appendix B provides

tables of the 75th percentiles of the EMSPE values for each combination of design and test-

bed correlation setting for (n, d) ∈ {(10, 2), (15, 3), (16, 5)}. Appendix C gives the times

required to construct the IMSPE- and W-IMSPE-optimal designs for this paper. Lastly,

Appendix D lists the space-filling designs used in the simulation study of Section 6.

A IMSPE- and W-IMSPE-optimal Designs

Table 3: A 10-run IMSPE-optimal design in [0, 1]2 for prior I.25. This design was constructed
using Ndes = 80 = 4×n×d designs (particles) and Nits = 160 = 2×Ndes iterations for PSO.
The IMSPE� value of this design is 0.0464.

x1 x2

0.1438 0.1398

0.5109 0.9161

0.8497 0.5016

0.4971 0.3407

0.1397 0.4996

0.5049 0.0840

0.8612 0.1421

0.1444 0.8611

0.4910 0.6597

0.8621 0.8579
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Table 4: A 10-run IMSPE-optimal design in [0, 1]2 for prior I.5. This design was constructed
using Ndes = 80 = 4×n×d designs (particles) and Nits = 160 = 2×Ndes iterations for PSO.
The IMSPE� value of this design is 0.0082.

x1 x2

0.1514 0.8880

0.9140 0.8683

0.8231 0.5425

0.1535 0.1328

0.3570 0.6216

0.5615 0.0599

0.0698 0.5033

0.5002 0.3157

0.8994 0.1622

0.5787 0.8776

Table 5: A 10-run IMSPE-optimal design in [0, 1]2 for prior I.75. This design was constructed
using Ndes = 80 = 4×n×d designs (particles) and Nits = 160 = 2×Ndes iterations for PSO.
The IMSPE� value of this design is 5.2025× 10−4.

x1 x2

0.5573 0.0627

0.1674 0.9105

0.7432 0.4034

0.3078 0.3977

0.1272 0.1336

0.9384 0.7220

0.5071 0.7739

0.0431 0.5924

0.9017 0.1568

0.7772 1.0000
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Table 6: A 10-run W-IMSPE-optimal design in [0, 1]2 for prior W.25
W
. This design was

constructed using 211 Sobol´ draws for Ndes = 80 = 4 × n × d designs (particles) and
Nits = 240 = 3×Ndes iterations for PSO. The W-IMSPE value of this design is 0.0013.

x1 x2

0.1732 0.9239

0.8065 0.9327

0.9397 0.6606

0.1167 0.1399

0.0675 0.6220

0.5165 0.0650

0.3027 0.3758

0.7177 0.4060

0.8914 0.1460

0.4873 0.7779

Table 7: A 10-run W-IMSPE-optimal design in [0, 1]2 for prior W.25
N
. This design was

constructed using 211 Sobol´ draws for Ndes = 80 = 4 × n × d designs (particles) and
Nits = 240 = 3×Ndes iterations for PSO. The W-IMSPE value of this design is 0.0974.

x1 x2

0.1285 0.8725

0.8500 0.8656

0.8903 0.4822

0.1341 0.1498

0.6220 0.5814

0.5172 0.1119

0.1365 0.5453

0.4118 0.3804

0.8533 0.1470

0.4564 0.8610
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Table 8: A 10-run W-IMSPE-optimal design in [0, 1]2 for prior W.5
N
. This design was

constructed using 211 Sobol´ draws for Ndes = 80 = 4 × n × d designs (particles) and
Nits = 240 = 3×Ndes iterations for PSO. The W-IMSPE value of this design is 0.0175.

x1 x2

0.8908 0.1535

0.3314 0.5695

0.0692 0.5148

0.5602 0.3291

0.1481 0.1450

0.8511 0.5602

0.5619 0.8552

0.1521 0.8900

0.5183 0.0679

0.8964 0.8935

Table 9: A 10-run W-IMSPE-optimal design in [0, 1]2 for prior WU . This design was
constructed using 211 Sobol´ draws for Ndes = 80 = 4 × n × d designs (particles) and
Nits = 160 = 2×Ndes iterations for PSO. The W-IMSPE value of this design is 0.0243.

x1 x2

0.8249 0.1168

0.3332 0.0784

0.5684 0.2985

0.9164 0.4641

0.4265 0.9143

0.0852 0.2553

0.2664 0.5292

0.8608 0.8685

0.1037 0.8088

0.6405 0.6680
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Table 10: A 10-run IMSPE-optimal design in [0, 1]2 for prior IM . This design was constructed
using Ndes = 80 = 4×n×d designs (particles) and Nits = 160 = 2×Ndes iterations for PSO.
The IMSPE� value of this design is 0.0078.

x1 x2

0.1083 0.8388

0.3816 0.0395

0.5223 0.2906

0.8906 0.8589

0.4764 0.9621

0.1848 0.5167

0.8654 0.1280

0.8512 0.4864

0.0897 0.1967

0.5570 0.7124

Table 11: A 15-run IMSPE-optimal design in [0, 1]3 for prior I.25. This design was constructed
using Ndes = 180 = 4 × n × d designs (particles) and Nits = 360 = 2 × Ndes iterations for
PSO. The IMSPE� value of this design is 0.1982.

x1 x2 x3

0.8097 0.8163 0.8140

0.7695 0.2290 0.1319

0.4628 0.5368 0.8298

0.1838 0.1900 0.1861

0.4637 0.5351 0.1703

0.7702 0.2309 0.8689

0.4767 0.1784 0.5008

0.8095 0.8156 0.1857

0.1763 0.8235 0.1903

0.1762 0.8240 0.8085

0.8704 0.1294 0.5009

0.1610 0.5049 0.4999

0.4944 0.8386 0.4993

0.1839 0.1904 0.8143

0.8213 0.5227 0.5000
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Table 12: A 15-run IMSPE-optimal design in [0, 1]3 for prior I.5. This design was constructed
using Ndes = 180 = 4 × n × d designs (particles) and Nits = 360 = 2 × Ndes iterations for
PSO. The IMSPE� value of this design is 0.0539.

x1 x2 x3

0.8551 0.4992 0.4909

0.8392 0.8199 0.1592

0.1763 0.8260 0.1671

0.5143 0.5014 0.8459

0.1543 0.5009 0.4866

0.2198 0.8861 0.7831

0.8385 0.1789 0.1605

0.2163 0.1162 0.7836

0.1158 0.5044 0.8834

0.5449 0.8556 0.4549

0.8332 0.8266 0.8231

0.1755 0.1743 0.1681

0.8321 0.1727 0.8235

0.5447 0.1452 0.4545

0.5052 0.4991 0.1458
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Table 13: A 15-run IMSPE-optimal design in [0, 1]3 for prior I.75. This design was constructed
using Ndes = 180 = 4 × n × d designs (particles) and Nits = 360 = 2 × Ndes iterations for
PSO. The IMSPE� value of this design is 0.0062.

x1 x2 x3

0.8400 0.8513 0.1612

0.4214 0.5269 0.8780

0.1446 0.8604 0.8276

0.4922 0.1247 0.5037

0.1581 0.1609 0.1507

0.1448 0.8523 0.1676

0.1591 0.1528 0.8337

0.8718 0.5152 0.4896

0.8854 0.1095 0.5206

0.1283 0.4898 0.5148

0.8010 0.2011 0.8979

0.8341 0.8461 0.8487

0.8063 0.1926 0.1021

0.4884 0.8698 0.5027

0.4778 0.5524 0.1229
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Table 14: A 15-run W-IMSPE-optimal design in [0, 1]3 for prior W.25
W
. This design was

constructed using Ndes = 180 = 4 × n × d designs (particles) and Nits = 360 = 2 × Ndes

iterations for PSO. The first 90% of the iterations were based on 211 Sobol´ draws, and the
final iterations were based on 216 Sobol´ draws. The W-IMSPE value of this design is 0.2275.

x1 x2 x3

0.8781 0.8767 0.4999

0.8136 0.1818 0.1842

0.1823 0.8132 0.8165

0.4947 0.1568 0.4999

0.8231 0.4769 0.5007

0.1749 0.1742 0.1866

0.8126 0.1819 0.8169

0.7711 0.7708 0.1340

0.1820 0.8132 0.1834

0.1559 0.4948 0.4996

0.4659 0.4661 0.8311

0.4667 0.4659 0.1680

0.4775 0.8231 0.4992

0.1748 0.1744 0.8132

0.7705 0.7709 0.8659
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Table 15: A 15-run W-IMSPE-optimal design in [0, 1]3 for prior W.25
N
. This design was

constructed using Ndes = 180 = 4 × n × d designs (particles) and Nits = 360 = 2 × Ndes

iterations for PSO. The first 90% of the iterations were based on 211 Sobol´ draws, and the
final iterations were based on 216 Sobol´ draws. The W-IMSPE value of this design is 0.6197.

x1 x2 x3

0.8299 0.8554 0.4995

0.6530 0.2056 0.1319

0.1783 0.6309 0.8479

0.4689 0.1224 0.4999

0.4909 0.5155 0.4999

0.1687 0.2035 0.2338

0.8802 0.2206 0.5012

0.8483 0.6057 0.1665

0.5176 0.8525 0.1769

0.1707 0.8397 0.5002

0.6507 0.2062 0.8686

0.1775 0.6301 0.1527

0.5186 0.8531 0.8227

0.1676 0.2043 0.7646

0.8485 0.6060 0.8336
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Table 16: A 15-run W-IMSPE-optimal design in [0, 1]3 for prior W.5
N
. This design was

constructed using Ndes = 180 = 4 × n × d designs (particles) and Nits = 360 = 2 × Ndes

iterations for PSO. The first 90% of the iterations were based on 211 Sobol´ draws, and the
final iterations were based on 216 Sobol´ draws. The W-IMSPE value of this design is 0.1596.

x1 x2 x3

0.5449 0.8550 0.4552

0.8396 0.1785 0.1603

0.1126 0.5007 0.8872

0.5445 0.1450 0.4557

0.5151 0.5001 0.8450

0.1749 0.1733 0.1682

0.8553 0.5000 0.4944

0.8397 0.8212 0.1602

0.1749 0.8266 0.1681

0.1553 0.5001 0.4845

0.8322 0.1734 0.8249

0.5050 0.4999 0.1444

0.2173 0.8831 0.7829

0.2170 0.1171 0.7833

0.8323 0.8266 0.8248
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Table 17: A 15-run W-IMSPE-optimal design in [0, 1]3 for prior WU . This design was
constructed using Ndes = 180 = 4 × n × d designs (particles) and Nits = 360 = 2 × Ndes

iterations for PSO. The first 90% of the iterations were based on 211 Sobol´ draws, and the
final iterations were based on 216 Sobol´ draws. The W-IMSPE value of this design is 0.0951.

x1 x2 x3

0.7964 0.8769 0.4274

0.6021 0.1928 0.1231

0.2409 0.5448 0.8942

0.2960 0.1025 0.3992

0.6524 0.4144 0.6257

0.1279 0.4103 0.1673

0.8854 0.1665 0.4732

0.8618 0.5721 0.1362

0.3478 0.8672 0.1217

0.1196 0.8071 0.5444

0.5996 0.1454 0.8737

0.4603 0.6076 0.3566

0.5004 0.8851 0.8107

0.1160 0.2057 0.7281

0.8814 0.6426 0.8422
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Table 18: A 15-run IMSPE-optimal design in [0, 1]3 for prior IM . This design was constructed
using Ndes = 180 = 4 × n × d designs (particles) and Nits = 360 = 2 × Ndes iterations for
PSO. The IMSPE� value of this design is 0.0863.

x1 x2 x3

0.1832 0.2630 0.1699

0.2885 0.9077 0.5137

0.7712 0.7156 0.4609

0.1968 0.7560 0.8746

0.7111 0.0991 0.1458

0.7630 0.8898 0.8289

0.7254 0.4994 0.1233

0.2431 0.5000 0.5459

0.2868 0.0923 0.5151

0.1837 0.7370 0.1706

0.7257 0.5003 0.8417

0.7102 0.9002 0.1448

0.7713 0.2853 0.4601

0.7639 0.1104 0.8294

0.1972 0.2449 0.8750
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Table 19: A 30-run IMSPE-optimal design in [0, 1]3 for prior I.25. This design was constructed
using Ndes = 360 = 4 × n × d designs (particles) and Nits = 720 = 2 × Ndes iterations for
PSO. The IMSPE� value of this design is 0.0640.

x1 x2 x3

0.4994 0.8186 0.9048

0.6724 0.6423 0.6180

0.5008 0.4617 0.0714

0.1198 0.5758 0.1572

0.3242 0.6467 0.6165

0.4969 0.3891 0.8373

0.1466 0.0968 0.4551

0.4989 0.1531 0.6104

0.8812 0.8452 0.4241

0.5028 0.7686 0.2358

0.1459 0.1605 0.8378

0.1372 0.1789 0.1124

0.8522 0.0963 0.4556

0.3276 0.3816 0.3629

0.1493 0.5429 0.9054

0.5015 0.9302 0.5424

0.8541 0.1602 0.8371

0.7832 0.8943 0.1028

0.5000 0.0959 0.1805

0.1361 0.8864 0.8232

0.2210 0.8948 0.1027

0.8802 0.5732 0.1585

0.5004 0.1013 0.9051

0.0866 0.4411 0.5624

0.8621 0.1772 0.1128

0.1191 0.8465 0.4230

0.8473 0.5384 0.9061

0.6731 0.3784 0.3640

0.8641 0.8839 0.8234

0.9136 0.4417 0.5645
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Table 20: A 30-run IMSPE-optimal design in [0, 1]3 for prior I.5. This design was constructed
using Ndes = 360 = 4 × n × d designs (particles) and Nits = 720 = 2 × Ndes iterations for
PSO. The IMSPE� value of this design is 0.0094.

x1 x2 x3

0.8621 0.8683 0.8390

0.6541 0.3197 0.3814

0.4663 0.8572 0.9213

0.3335 0.6891 0.5945

0.3389 0.3212 0.6069

0.0625 0.4989 0.5878

0.1024 0.8804 0.8433

0.1816 0.4952 0.2300

0.8936 0.5010 0.6333

0.5521 0.9260 0.5860

0.5109 0.4985 0.0608

0.9250 0.5016 0.1581

0.8852 0.4945 0.9355

0.1254 0.8984 0.4052

0.0998 0.8041 0.0716

0.9139 0.8784 0.4061

0.4133 0.8953 0.1632

0.6495 0.5091 0.8274

0.5473 0.0722 0.5864

0.1787 0.5033 0.9266

0.8215 0.1343 0.0871

0.8575 0.1295 0.8373

0.4689 0.1515 0.9226

0.9135 0.1223 0.4113

0.1056 0.1197 0.8459

0.1002 0.1885 0.0754

0.8208 0.8652 0.0851

0.1280 0.1026 0.4099

0.6514 0.6806 0.3710

0.4167 0.1060 0.1657
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Table 21: A 30-run IMSPE-optimal design in [0, 1]3 for prior I.75. This design was constructed
using Ndes = 360 = 4 × n × d designs (particles) and Nits = 720 = 2 × Ndes iterations for
PSO. The IMSPE� value of this design is 5.3755× 10−4.

x1 x2 x3

1.0000 0.1116 0.5233

0.0000 0.3229 0.3762

0.1088 0.1072 0.1033

0.5256 0.7503 0.6855

0.6749 0.0974 0.7911

0.8021 0.8993 0.4272

0.6928 0.0000 0.1457

0.6727 0.9590 1.0000

0.7099 0.6058 0.1155

0.3106 0.1447 0.9287

0.5836 0.5822 1.0000

0.0000 0.7762 0.5924

0.0000 0.0908 0.7914

0.3385 0.0000 0.4428

0.0949 0.9013 0.1630

0.3522 0.9159 0.5174

0.1731 0.9071 0.8945

1.0000 0.8360 0.8243

0.4612 0.2664 0.0994

0.4886 0.9377 0.0002

0.2935 0.3849 0.7047

0.3823 0.6633 0.3510

0.1269 0.5000 0.8985

0.6149 0.3068 0.3780

0.1461 0.5513 0.0782

0.8523 0.4698 0.7989

0.9417 0.5511 0.3998

1.0000 0.2311 0.0911

0.9207 0.1529 1.0000

1.0000 0.9005 0.0000
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Table 22: A 30-run W-IMSPE-optimal design in [0, 1]3 for prior W.25
W
. This design was

constructed using Ndes = 360 = 4 × n × d designs (particles) and Nits = 720 = 2 × Ndes

iterations for PSO. The first 90% of the iterations were based on 211 Sobol´ draws, and the
final iterations were based on 216 Sobol´ draws. The W-IMSPE value of this design is 0.0749.

x1 x2 x3

0.4412 0.8924 0.8498

0.2858 0.5643 0.7184

0.1759 0.9000 0.5456

0.3952 0.6919 0.3582

0.5957 0.5617 0.1080

0.1283 0.1168 0.6161

0.5441 0.0745 0.4546

0.8359 0.1274 0.1512

0.8457 0.8592 0.1468

0.9155 0.7345 0.4924

0.3623 0.1067 0.8797

0.1221 0.1275 0.1901

0.9065 0.1695 0.5381

0.4428 0.8900 0.1257

0.1083 0.3288 0.8872

0.0745 0.5225 0.4688

0.9005 0.4618 0.8335

0.6537 0.9169 0.4776

0.4642 0.1748 0.1000

0.1095 0.7954 0.8786

0.1785 0.4786 0.0985

0.3242 0.3166 0.3831

0.8068 0.1198 0.8789

0.5717 0.2926 0.6980

0.9108 0.4769 0.1445

0.1079 0.8404 0.1654

0.6584 0.6626 0.6479

0.5392 0.5230 0.9315

0.8484 0.8598 0.8560

0.7267 0.4099 0.3683
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Table 23: A 30-run W-IMSPE-optimal design in [0, 1]3 for prior W.25
N
. This design was

constructed using Ndes = 360 = 4 × n × d designs (particles) and Nits = 720 = 2 × Ndes

iterations for PSO. The first 90% of the iterations were based on 211 Sobol´ draws, and the
final iterations were based on 216 Sobol´ draws. The W-IMSPE value of this design is 0.1941.

x1 x2 x3

0.4540 0.8512 0.9042

0.3607 0.6748 0.6237

0.5670 0.9155 0.5613

0.1565 0.8838 0.4233

0.2464 0.5007 0.2453

0.3604 0.3253 0.6240

0.1565 0.1162 0.4236

0.5673 0.0843 0.5616

0.8215 0.8635 0.1145

0.9051 0.4996 0.1789

0.6110 0.5004 0.8469

0.1043 0.2306 0.1066

0.9058 0.5000 0.8999

0.4213 0.8838 0.1538

0.1794 0.5002 0.9052

0.0711 0.5001 0.5378

0.8375 0.1464 0.8394

0.5378 0.4990 0.0701

0.4204 0.1158 0.1539

0.1131 0.8624 0.8206

0.6226 0.6742 0.3548

0.6206 0.3248 0.3552

0.4539 0.1492 0.9043

0.1131 0.1378 0.8207

0.8210 0.1357 0.1148

0.1044 0.7700 0.1063

0.8375 0.5001 0.6119

0.8376 0.8536 0.8392

0.9066 0.8466 0.4570

0.9067 0.1539 0.4574
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Table 24: A 30-run W-IMSPE-optimal design in [0, 1]3 for prior W.5
N
. This design was

constructed using Ndes = 360 = 4 × n × d designs (particles) and Nits = 720 = 2 × Ndes

iterations for PSO. The first 90% of the iterations were based on 211 Sobol´ draws, and the
final iterations were based on 216 Sobol´ draws. The W-IMSPE value of this design is 0.0289.

x1 x2 x3

0.3616 0.3261 0.3369

0.8948 0.1205 0.5699

0.6656 0.3149 0.6043

0.9052 0.4884 0.3575

0.8364 0.1384 0.9094

0.9126 0.8659 0.5720

0.4826 0.1944 0.0807

0.1059 0.1897 0.9140

0.9227 0.5125 0.8355

0.8656 0.8704 0.1536

0.8208 0.8744 0.9035

0.1205 0.1237 0.1470

0.6266 0.6915 0.6755

0.5265 0.4880 0.9399

0.3014 0.7001 0.4124

0.0583 0.4833 0.4407

0.5322 0.0702 0.3789

0.6630 0.5802 0.2361

0.2365 0.4418 0.7404

0.1030 0.8860 0.1686

0.1316 0.0964 0.5843

0.3739 0.9065 0.8738

0.8638 0.1249 0.1514

0.4548 0.8530 0.0772

0.0920 0.7278 0.9117

0.4354 0.0951 0.8335

0.5458 0.9362 0.4370

0.8419 0.5006 0.0750

0.1633 0.5273 0.0733

0.1132 0.9052 0.6283
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Table 25: A 30-run W-IMSPE-optimal design in [0, 1]3 for prior WU . This design was
constructed using Ndes = 360 = 4 × n × d designs (particles) and Nits = 720 = 2 × Ndes

iterations for PSO. The first 90% of the iterations were based on 211 Sobol´ draws, and the
final iterations were based on 216 Sobol´ draws. The W-IMSPE value of this design is 0.0272.

x1 x2 x3

0.4949 0.8672 0.9182

0.3613 0.6693 0.7289

0.0801 0.2349 0.7693

0.0989 0.6251 0.4611

0.2906 0.0997 0.1056

0.3395 0.3740 0.5437

0.1525 0.0753 0.4665

0.5166 0.1803 0.3209

0.9168 0.4570 0.6634

0.2190 0.5922 0.0739

0.6094 0.4052 0.8656

0.0750 0.3206 0.2089

0.6367 0.6433 0.4956

0.3333 0.9230 0.4966

0.1691 0.5214 0.9202

0.4318 0.7538 0.2424

0.8522 0.1791 0.8884

0.7928 0.3683 0.3234

0.5491 0.4201 0.0773

0.1030 0.8747 0.7915

0.6759 0.9018 0.1147

0.9049 0.6088 0.1174

0.6269 0.0889 0.6627

0.3557 0.1071 0.9047

0.8078 0.1337 0.1167

0.1174 0.8937 0.1812

0.8867 0.7070 0.9065

0.7668 0.9235 0.7156

0.9109 0.8618 0.3895

0.9222 0.1043 0.4517
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Table 26: A 30-run IMSPE-optimal design in [0, 1]3 for prior IM . This design was constructed
using Ndes = 360 = 4 × n × d designs (particles) and Nits = 720 = 2 × Ndes iterations for
PSO. The IMSPE� value of this design is 0.0184.

x1 x2 x3

0.4898 0.7803 0.6707

0.9063 0.2887 0.4747

0.3301 0.6472 0.9313

0.1416 0.3293 0.4456

0.1250 0.6010 0.6821

0.7797 0.4139 0.9380

0.8214 0.9057 0.0935

0.6243 0.8840 0.3221

0.5511 0.3316 0.2568

0.6027 0.5459 0.4840

0.8332 0.9222 0.5886

0.1779 0.0986 0.6764

0.1602 0.6729 0.3301

0.9096 0.6575 0.2908

0.3516 0.0873 0.9277

0.8931 0.6121 0.7406

0.7645 0.8727 0.9073

0.7349 0.0755 0.5198

0.8170 0.3830 0.0706

0.5737 0.6705 0.0917

0.8482 0.1189 0.8410

0.2560 0.1367 0.0801

0.7897 0.0887 0.1500

0.1553 0.4712 0.0954

0.5362 0.3265 0.7059

0.1940 0.8879 0.1108

0.2233 0.0776 0.3376

0.2044 0.9051 0.8709

0.1807 0.9344 0.4989

0.1547 0.3408 0.8879
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Table 27: A 16-run IMSPE-optimal design in [0, 1]5 for prior I.25. This design was constructed
using Ndes = 320 = 4 × n × d designs (particles) and Nits = 640 = 2 × Ndes iterations for
PSO. The IMSPE� value of this design is 0.6935.

x1 x2 x3 x4 x5

0.2617 0.2608 0.2612 0.2617 0.7396

0.7397 0.7374 0.7385 0.2615 0.2613

0.2616 0.2606 0.2603 0.7367 0.2605

0.7397 0.7384 0.2604 0.7372 0.2616

0.7386 0.2606 0.7400 0.2635 0.7388

0.7390 0.7390 0.2628 0.2607 0.7395

0.2606 0.7378 0.7389 0.2606 0.7381

0.2609 0.7391 0.7375 0.7381 0.2604

0.7383 0.2618 0.7376 0.7404 0.2612

0.7398 0.2610 0.2625 0.2604 0.2632

0.2621 0.2608 0.7379 0.2608 0.2612

0.2597 0.2617 0.7378 0.7390 0.7377

0.2609 0.7384 0.2616 0.7395 0.7386

0.7395 0.2618 0.2618 0.7391 0.7389

0.2621 0.7383 0.2609 0.2602 0.2613

0.7376 0.7393 0.7388 0.7385 0.7387
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Table 28: A 16-run IMSPE-optimal design in [0, 1]5 for prior I.5. This design was constructed
using Ndes = 320 = 4 × n × d designs (particles) and Nits = 640 = 2 × Ndes iterations for
PSO. The IMSPE� value of this design is 0.3752.

x1 x2 x3 x4 x5

0.2680 0.7327 0.7328 0.7466 0.2673

0.7568 0.2435 0.7149 0.7563 0.2857

0.2673 0.7327 0.7320 0.2671 0.7467

0.2842 0.7162 0.2432 0.7571 0.7567

0.7566 0.2422 0.2435 0.2841 0.2844

0.7572 0.7147 0.2430 0.2852 0.7579

0.7562 0.2440 0.7164 0.2842 0.7563

0.7561 0.7155 0.7163 0.7561 0.7564

0.2677 0.2535 0.7328 0.2673 0.2674

0.2838 0.2431 0.2435 0.7569 0.2832

0.2692 0.7320 0.2526 0.2681 0.2680

0.7570 0.7153 0.2432 0.7579 0.2847

0.7475 0.7329 0.7319 0.2675 0.2672

0.4880 0.5124 0.5124 0.4875 0.4876

0.2849 0.2428 0.2431 0.2844 0.7568

0.2837 0.2440 0.7150 0.7561 0.7563
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Table 29: A 16-run IMSPE-optimal design in [0, 1]5 for prior I.75. This design was constructed
using Ndes = 320 = 4 × n × d designs (particles) and Nits = 640 = 2 × Ndes iterations for
PSO. The IMSPE� value of this design is 0.1038.

x1 x2 x3 x4 x5

0.5055 0.4920 0.4952 0.4926 0.4964

0.2581 0.2520 0.7499 0.7407 0.2541

0.7016 0.7677 0.2550 0.2952 0.2553

0.2582 0.7392 0.7520 0.2534 0.2534

0.6882 0.7734 0.7515 0.3111 0.7520

0.2592 0.7405 0.2554 0.2522 0.7510

0.2355 0.2970 0.2545 0.2968 0.2543

0.7416 0.2578 0.2794 0.2584 0.7396

0.2257 0.3075 0.7503 0.3114 0.7510

0.2296 0.7709 0.4681 0.7720 0.4669

0.7469 0.7406 0.2526 0.7418 0.7509

0.7038 0.2954 0.2556 0.7660 0.2540

0.7423 0.2577 0.7390 0.2581 0.2778

0.7490 0.7396 0.7508 0.7409 0.2518

0.6903 0.3114 0.7505 0.7738 0.7507

0.2591 0.2536 0.2533 0.7401 0.7510
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Table 30: A 16-run W-IMSPE-optimal design in [0, 1]5 for prior W.25
W
. This design was

constructed using Ndes = 320 = 4 × n × d designs (particles) and Nits = 640 = 2 × Ndes

iterations for PSO. The first 90% of the iterations were based on 211 Sobol´ draws, and the
final iterations were based on 217 Sobol´ draws. The W-IMSPE value of this design is 0.9352.

x1 x2 x3 x4 x5

0.7183 0.7173 0.7495 0.7497 0.7497

0.5050 0.5047 0.4951 0.4954 0.4950

0.7350 0.2588 0.2646 0.2646 0.2649

0.2501 0.7164 0.7504 0.7502 0.2836

0.2501 0.2504 0.2829 0.7497 0.2821

0.2587 0.7357 0.2652 0.2651 0.2644

0.2502 0.2506 0.7497 0.2823 0.2816

0.7352 0.7353 0.7412 0.2647 0.2649

0.2491 0.2509 0.2825 0.2824 0.7495

0.7184 0.2505 0.7495 0.7492 0.2821

0.2502 0.7183 0.7498 0.2828 0.7498

0.7168 0.2501 0.7495 0.2822 0.7500

0.7350 0.7348 0.2644 0.2646 0.7415

0.7354 0.7353 0.2649 0.7412 0.2646

0.7172 0.2503 0.2820 0.7495 0.7496

0.2504 0.7184 0.2820 0.7498 0.7494
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Table 31: A 16-run W-IMSPE-optimal design in [0, 1]5 for prior W.25
N
. This design was

constructed using Ndes = 320 = 4 × n × d designs (particles) and Nits = 640 = 2 × Ndes

iterations for PSO. The first 90% of the iterations were based on 211 Sobol´ draws, and the
final iterations were based on 217 Sobol´ draws. The W-IMSPE value of this design is 4.4717.

x1 x2 x3 x4 x5

0.7159 0.7158 0.7468 0.7468 0.7468

0.5063 0.5064 0.4937 0.4937 0.4936

0.7325 0.2614 0.2675 0.2674 0.2676

0.2532 0.7156 0.7469 0.7468 0.2844

0.2532 0.2530 0.2845 0.7469 0.2844

0.2613 0.7324 0.2675 0.2677 0.2676

0.2533 0.2532 0.7468 0.2840 0.2841

0.7324 0.7326 0.7386 0.2675 0.2675

0.2532 0.2532 0.2843 0.2843 0.7468

0.7160 0.2533 0.7467 0.7467 0.2840

0.2533 0.7159 0.7468 0.2840 0.7467

0.7160 0.2533 0.7467 0.2840 0.7466

0.7324 0.7324 0.2675 0.2675 0.7386

0.7324 0.7325 0.2676 0.7388 0.2676

0.7157 0.2532 0.2843 0.7468 0.7468

0.2531 0.7156 0.2845 0.7469 0.7470
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Table 32: A 16-run W-IMSPE-optimal design in [0, 1]5 for prior W.5
N
. This design was

constructed using Ndes = 320 = 4 × n × d designs (particles) and Nits = 640 = 2 × Ndes

iterations for PSO. The first 90% of the iterations were based on 211 Sobol´ draws, and the
final iterations were based on 217 Sobol´ draws. The W-IMSPE value of this design is 2.2396.

x1 x2 x3 x4 x5

0.7167 0.7168 0.7576 0.7578 0.7575

0.5115 0.5115 0.4885 0.4885 0.4885

0.7339 0.2524 0.2661 0.2660 0.2662

0.2421 0.7160 0.7577 0.7579 0.2838

0.2424 0.2422 0.2831 0.7578 0.2838

0.2522 0.7336 0.2663 0.2662 0.2662

0.2423 0.2421 0.7576 0.2836 0.2836

0.7334 0.7337 0.7479 0.2662 0.2662

0.2427 0.2425 0.2829 0.2831 0.7579

0.7171 0.2425 0.7574 0.7576 0.2828

0.2422 0.7165 0.7576 0.2834 0.7578

0.7166 0.2423 0.7579 0.2837 0.7577

0.7341 0.7339 0.2664 0.2659 0.7476

0.7337 0.7340 0.2662 0.7475 0.2659

0.7173 0.2427 0.2829 0.7576 0.7575

0.2426 0.7170 0.2828 0.7575 0.7578
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Table 33: A 16-run W-IMSPE-optimal design in [0, 1]5 for prior WU . This design was
constructed using Ndes = 320 = 4 × n × d designs (particles) and Nits = 640 = 2 × Ndes

iterations for PSO. The first 90% of the iterations were based on 211 Sobol´ draws, and the
final iterations were based on 217 Sobol´ draws. The W-IMSPE value of this design is 0.4580.

x1 x2 x3 x4 x5

0.3422 0.7876 0.8260 0.7925 0.1737

0.6367 0.2539 0.7422 0.8179 0.8376

0.8243 0.8339 0.7720 0.4996 0.5142

0.7476 0.1956 0.7842 0.1918 0.2159

0.4103 0.3286 0.3671 0.4739 0.1484

0.8023 0.1751 0.1811 0.5489 0.5358

0.8111 0.5590 0.4521 0.1766 0.8159

0.8295 0.5041 0.4777 0.8280 0.2246

0.1658 0.1457 0.7007 0.6668 0.4242

0.6174 0.8149 0.1631 0.2525 0.2399

0.1640 0.6638 0.5880 0.1474 0.3224

0.5946 0.7784 0.2325 0.7786 0.7587

0.4215 0.4747 0.8545 0.3355 0.6512

0.1913 0.8170 0.5428 0.5152 0.8360

0.2602 0.2083 0.2240 0.2078 0.7781

0.1897 0.5050 0.1664 0.8190 0.4516
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Table 34: A 16-run IMSPE-optimal design in [0, 1]5 for prior IM . This design was constructed
using Ndes = 320 = 4 × n × d designs (particles) and Nits = 640 = 2 × Ndes iterations for
PSO. The IMSPE� value of this design is 0.4259.

x1 x2 x3 x4 x5

0.5041 0.4243 0.1861 0.1857 0.1858

0.4913 0.6760 0.5004 0.1426 0.4999

0.7783 0.2954 0.5008 0.5009 0.5000

0.4911 0.6752 0.4994 0.5008 0.8576

0.5039 0.4245 0.8141 0.1859 0.8139

0.4905 0.6769 0.1435 0.4997 0.4997

0.4908 0.6746 0.4999 0.8574 0.5005

0.2456 0.2688 0.4990 0.5003 0.4999

0.5041 0.4247 0.8142 0.8142 0.1864

0.5041 0.4245 0.1857 0.1862 0.8142

0.4904 0.6762 0.5003 0.5001 0.1432

0.5037 0.4241 0.1853 0.8142 0.8136

0.5040 0.4245 0.1860 0.8138 0.1855

0.5041 0.4247 0.8142 0.8140 0.8142

0.4851 0.6766 0.8564 0.5002 0.5000

0.5039 0.4247 0.8144 0.1860 0.1858
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B Empirical MSPE Tables

Table 35: The 75th percentile of the 40 EMSPE values for the 10 designs and the 7 test-beds
studied when (n, d) = (10, 2).

ytest(·) Test-bed Correlation Setting

Deterministically Stochastically Mixed

Common Common Activity

Design TDC

.25 TDC

.5 TDC

.75 TSC

.25 TSC

.5 TSC

.75 TM

IMSPE-
optimal

I.25 2.3962 0.5381 0.0861 2.1022 1.0055 0.0846 0.0951

I.5 2.3050 0.6251 0.0412 2.2177 0.6173 0.0549 0.1203

I.75 2.6371 0.6957 0.0431 1.9086 0.5479 0.0407 0.0724

IM 2.4852 0.6866 0.0443 2.1208 0.6276 0.0509 0.0650

Space-
Filling

MmLHD 3.0648 1.0474 0.1214 2.8343 1.0456 0.1000 0.0929

mARDLHD 2.9056 0.7807 0.0590 2.1682 0.6564 0.0704 0.1696

W-
IMSPE-
optimal

W.25
W

2.0434 0.8036 0.0459 1.9281 0.5358 0.0390 0.0910

W.25
N

2.1269 0.5418 0.0786 2.1215 0.6901 0.0621 0.2219

W.5
N

1.9084 0.4887 0.0442 2.1094 0.6190 0.0588 0.1272

WU 2.1461 0.5707 0.0492 2.1289 0.6478 0.0518 0.1199

Table 36: The 75th percentile of the 40 EMSPE values for the 10 designs and the 7 test-beds
studied when (n, d) = (15, 3).

ytest(·) Test-bed Correlation Setting

Deterministically Stochastically Mixed

Common Common Activity

Design TDC

.25 TDC

.5 TDC

.75 TSC

.25 TSC

.5 TSC

.75 TM

IMSPE-
optimal

I.25 10.1672 10.1397 5.2803 12.4026 11.6966 6.0658 15.4568

I.5 9.6092 9.8692 5.2531 10.8580 11.3925 6.1101 13.8715

I.75 9.0840 9.3440 5.2540 11.6745 11.5631 6.1290 14.3699

IM 9.2493 9.9597 5.3649 11.1252 12.2797 6.0222 14.3430

Space-
Filling

MmLHD 11.3772 9.7760 5.3131 12.3688 11.4299 5.7776 17.1289

mARDLHD 10.3812 9.9489 5.6256 13.3217 12.5663 5.1735 14.7193

W-
IMSPE-
optimal

W.25
W

9.0945 9.6982 5.1102 11.4046 10.9751 6.0931 14.6611

W.25
N

10.0184 10.3119 5.5750 12.1545 13.2955 5.9280 15.3386

W.5
N

9.6479 9.8574 5.2616 10.8857 11.3761 6.1153 13.9513

WU 10.4110 9.8446 5.8186 12.9295 14.1332 5.8886 15.1565
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Table 37: The 75th percentile of the 40 EMSPE values for the 10 designs and the 7 test-beds
studied when (n, d) = (16, 5).

ytest(·) Test-bed Correlation Setting

Deterministically Stochastically Mixed

Common Common Activity

Design TDC

.25 TDC

.5 TDC

.75 TSC

.25 TSC

.5 TSC

.75 TM

IMSPE-
optimal

I.25 9.9936 8.8786 4.2444 9.1297 8.5275 5.6790 10.2960

I.5 10.1695 8.6785 4.8758 10.1265 9.8518 5.9282 12.1609

I.75 9.6072 9.2665 4.1770 10.0072 9.8715 5.8765 10.6089

IM 10.6767 10.7250 4.3979 10.9395 10.0888 7.2397 11.1006

Space-
Filling

MmLHD 12.8333 9.9305 5.3857 12.8132 11.2207 5.8510 13.1504

mARDLHD 13.7438 11.8078 4.4500 13.7231 11.1600 5.8705 13.2309

W-
IMSPE-
optimal

W.25
W

9.8386 9.2206 4.3338 9.7061 9.8746 6.4234 11.9875

W.25
N

10.0710 9.2415 4.3940 9.6548 9.3707 6.2171 11.1714

W.5
N

9.6378 9.0647 4.4087 9.4531 9.3876 5.4871 12.0629

WU 12.8968 10.4735 5.1856 14.5866 11.0020 5.9825 13.2036

C Design Construction Times

The IMSPE- and W-IMSPE-optimal designs used in the simulation study of Section 6 were

constructed on various compute machines. Computation times for each of the designs having

(n, d) ∈ {(10, 2), (15, 3), (30, 3)} are listed in Tables 38–40, respectively. For the set of 16× 5

designs, Designs I.25, I.5, I.75 and IM (all IMSPE-optimal designs) were computed using a

Dual Quad Core Xeon E5430 with 2.66 GHz processor speed and 32GB RAM, and took an

average of 491.9 seconds to compute. The time needed to compute the W-IMSPE-optimal

designs was not recorded.

Table 38: Computation details for the set of 10× 2 designs. The average construction time
in seconds is given for designs of the same type that used similar machines.

design time compute machine

label (s) (# cores used for MATLAB worker pool)

I.25, I.5, I.75, IM 22 2x Quad Core Xeon E5430, 2.66 GHz, 32 GB

W.25
N
, W.5

N
, W.25

W
* 7,217

4x Eight Core Xeon E7-4830, 2.13GHz, 128 GB (12) or

694 Node Xeon X5650, 2.67GHz, 48 GB/node (12, one node)

WU 7,861 2x Quad Core Xeon E5430, 2.66 GHz, 32 GB (3)

*Design W.25
W

took a similar time to W.25
N

and W.5
N
, but the precise time was not recorded.
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Table 39: Computation details for the set of 15× 3 designs. The average construction time
in seconds is given for designs of the same type that used similar machines.

design time compute machine

label (s) (# cores used for MATLAB worker pool)

I.25, I.5, I.75, IM 116 2x Quad Core Xeon E5430, 2.66 GHz, 32 GB

W.25
W

and W.25
N

185,986 2x Eight Core Xeon E5-2680, 2.7 GHz, 384 GB (3)

W.5
N

203,566 2x Quad Core Xeon E5430, 2.66 GHz, 32 GB (3)

WU 209,442 2x Six Core Xeon X5650, 2.66 GHz, 48 GB (3)

Table 40: Computation details for the set of 30× 3 designs. The average construction time
in seconds is given for designs of the same type that used similar machines.

design time compute machine

label (s) (# cores used for MATLAB worker pool)

I.25, I.5, I.75, IM 848.4 2x Quad Core Xeon E5430, 2.66 GHz, 32 GB

W.25
W

1,861,417 2x Quad Core Xeon E5430, 2.66 GHz, 32 GB (3)

W.25
N

and W.5
N

1,326,097 2x Eight Core Xeon E5-2680, 2.7 GHz, 384 GB (3)

D Space-filling Designs

The space-filling designs used in Section 6 were obtained from a website (van Dam et al.

2013) and are given in this appendix.
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Table 41: The 10-run MmLHD in [0, 1]2 obtained from a website containing space-filling
designs (van Dam et al. 2013).

x1 x2

0.0000 0.2222

0.1111 0.5556

0.2222 0.8889

0.3333 0.1111

0.4444 0.4444

0.5556 0.7778

0.6667 0.0000

0.7778 0.3333

0.8889 0.6667

1.0000 1.0000

Table 42: The 10-run mARDLHD in [0, 1]2 obtained from a website containing space-filling
designs (van Dam et al. 2013).

x1 x2

0.0000 0.3333

0.1111 0.7778

0.2222 0.0000

0.3333 0.4444

0.4444 0.8889

0.5556 0.1111

0.6667 0.5556

0.7778 1.0000

0.8889 0.2222

1.0000 0.6667
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Table 43: The 15-run MmLHD in [0, 1]3 obtained from a website containing space-filling
designs (van Dam et al. 2013).

x1 x2 x3

0.0000 0.3571 0.4286

0.0714 0.8571 0.2857

0.1429 0.2857 0.9286

0.2143 0.7857 0.7857

0.2857 0.0714 0.1429

0.3571 0.5714 0.0000

0.4286 0.0000 0.6429

0.5000 0.5000 0.5000

0.5714 1.0000 0.3571

0.6429 0.4286 1.0000

0.7143 0.9286 0.8571

0.7857 0.2143 0.2143

0.8571 0.7143 0.0714

0.9286 0.1429 0.7143

1.0000 0.6429 0.5714
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Table 44: The 15-run mARDLHD in [0, 1]3 obtained from a website containing space-filling
designs (van Dam et al. 2013).

x1 x2 x3

0.0000 0.3571 0.5714

0.0714 0.8571 0.7143

0.1429 0.7857 0.2143

0.2143 0.2857 0.0714

0.2857 0.2143 0.9286

0.3571 0.0000 0.4286

0.4286 0.7143 1.0000

0.5000 0.5000 0.5000

0.5714 0.9286 0.1429

0.6429 1.0000 0.6429

0.7143 0.4286 0.0000

0.7857 0.1429 0.7857

0.8571 0.0714 0.2857

0.9286 0.5714 0.8571

1.0000 0.6429 0.3571
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Table 45: The 30-run MmLHD in [0, 1]3 obtained from a website containing space-filling
designs (van Dam et al. 2013).

x1 x2 x3

0.0000 0.1724 0.5172

0.0345 0.4483 0.1724

0.0690 0.6207 0.7586

0.1034 0.7586 0.4138

0.1379 0.8966 0.0690

0.1724 0.0690 0.2069

0.2069 0.2759 0.8276

0.2414 0.9655 0.7241

0.2759 0.4138 0.4483

0.3103 0.0000 0.6207

0.3448 0.3103 0.0000

0.3793 0.6897 0.9310

0.4138 0.6552 0.1379

0.4483 0.7241 0.5517

0.4828 1.0000 0.3103

0.5172 0.1379 0.9655

0.5517 0.3793 0.6897

0.5862 0.1034 0.2414

0.6207 0.9310 0.7931

0.6552 0.4828 0.3448

0.6897 0.0345 0.5862

0.7241 0.5517 1.0000

0.7586 0.7931 0.1034

0.7931 0.3448 0.0345

0.8276 0.8621 0.4828

0.8621 0.2069 0.8621

0.8966 0.5172 0.6552

0.9310 0.2414 0.3793

0.9655 0.8276 0.8966

1.0000 0.5862 0.2759
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Table 46: The 30-run mARDLHD in [0, 1]3 obtained from a website containing space-filling
designs (van Dam et al. 2013).

x1 x2 x3

0.0000 0.3103 0.6897

0.0345 0.6552 0.4483

0.0690 0.2069 0.2414

0.1034 0.6897 0.8276

0.1379 0.5517 0.1034

0.1724 0.8966 0.2069

0.2069 0.9655 0.6207

0.2414 0.0690 0.7241

0.2759 0.3793 0.9655

0.3103 0.3448 0.4828

0.3448 0.0000 0.3448

0.3793 0.2759 0.0345

0.4138 0.7931 0.9310

0.4483 0.7241 0.0000

0.4828 0.7586 0.5862

0.5172 1.0000 0.3103

0.5517 0.1379 0.8966

0.5862 0.5172 0.2759

0.6207 0.4483 0.6552

0.6552 0.0345 0.5517

0.6897 0.1034 0.1724

0.7241 0.4828 1.0000

0.7586 0.8621 0.8621

0.7931 0.8276 0.1379

0.8276 0.9310 0.5172

0.8621 0.4138 0.0690

0.8966 0.1724 0.7931

0.9310 0.2414 0.4138

0.9655 0.6207 0.3793

1.0000 0.5862 0.7586
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Table 47: The 16-run MmLHD in [0, 1]5 obtained from a website containing space-filling
designs (van Dam et al. 2013).

x1 x2 x3 x4 x5

0.0000 0.5333 0.5333 0.2000 0.1333

0.0667 0.3333 0.6000 1.0000 0.4000

0.1333 0.2667 0.6667 0.3333 0.9333

0.2000 1.0000 0.7333 0.6000 0.6667

0.2667 0.0667 0.0000 0.4667 0.4667

0.3333 0.8667 0.0667 0.7333 0.2000

0.4000 0.8000 0.1333 0.0667 0.7333

0.4667 0.6000 0.2000 0.8667 1.0000

0.5333 0.0000 0.8667 0.4000 0.2667

0.6000 0.6667 0.9333 0.0000 0.5333

0.6667 0.7333 0.8000 0.6667 0.0000

0.7333 0.4667 1.0000 0.8000 0.8000

0.8000 0.4000 0.2667 0.1333 0.0667

0.8667 0.2000 0.3333 0.9333 0.3333

0.9333 0.1333 0.4667 0.2667 0.8667

1.0000 0.9333 0.4000 0.5333 0.6000
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Table 48: The 16-run mARDLHD in [0, 1]5 obtained from a website containing space-filling
designs (van Dam et al. 2013).

x1 x2 x3 x4 x5

0.0000 0.6667 0.6000 0.8000 0.2000

0.0667 0.5333 0.3333 0.0000 0.3333

0.1333 0.0667 0.2000 0.6667 0.6000

0.2000 0.1333 1.0000 0.4000 0.4667

0.2667 0.8667 0.0667 0.5333 0.8667

0.3333 0.9333 0.8667 0.3333 0.8000

0.4000 0.4667 0.7333 1.0000 0.9333

0.4667 0.2667 0.4667 0.1333 1.0000

0.5333 0.6000 0.0000 0.6000 0.0667

0.6000 0.7333 0.8000 0.2667 0.0000

0.6667 0.2000 0.6667 0.9333 0.1333

0.7333 0.0000 0.4000 0.2000 0.2667

0.8000 1.0000 0.5333 0.8667 0.4000

0.8667 0.8000 0.2667 0.0667 0.5333

0.9333 0.3333 0.1333 0.7333 0.7333

1.0000 0.4000 0.9333 0.4667 0.6667
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