NONLOCAL p-LAPLACE EQUATIONS DEPENDING ON THE L^{p} NORM OF THE GRADIENT

MICHEL CHIPOT AND TETIANA SAVITSKA

Abstract

We are studying a class of nonlinear nonlocal diffusion problems associated with a p-Laplace-type operator, where a nonlocal quantity is present in the diffusion coefficient. We address the issues of existence and uniqueness for the parabolic setting. Then we study the asymptotic behaviour of the solution for large time. For this purpose we introduce and investigate in details the associated stationary problem. Moreover, since the solutions of the stationary problem are also critical points of some energy functional, we make a classification of its critical points.

1. Introduction

We consider the problem of finding $u=u(x, t)$ weak solution to

$$
\begin{cases}u_{t}-\nabla \cdot a\left(\|\nabla u\|_{p}^{p}\right)|\nabla u|^{p-2} \nabla u=f & \text { in } \Omega \times(0, T), \tag{1.1}\\ u=0 & \text { on } \Gamma \times(0, T), \\ u(\cdot, 0)=u_{0} & \text { in } \Omega\end{cases}
$$

where Ω is a bounded open set of $\mathbb{R}^{n}, n \geq 1$ with Lipschitz boundary Γ. We assume

$$
\begin{equation*}
a \text { is continuous, } a(\xi)>0, \forall \xi \in \mathbb{R} \text {. } \tag{1.2}
\end{equation*}
$$

By $|\cdot|_{p}$ we denote the $L^{p}(\Omega)$-norm, $1<p<+\infty$ and we assume

$$
\begin{equation*}
f=f(x) \in W^{-1, q}(\Omega):=\left(W_{0}^{1, p}(\Omega)^{*}, u_{0} \in W_{0}^{1, p}(\Omega) \cap L^{2}(\Omega), \frac{1}{p}+\frac{1}{q}=1\right. \tag{1.3}
\end{equation*}
$$

For notions on Sobolev spaces we refer to [5], [15], [16].
During the last decades many mathematicians have been studying problems associated with the p-Laplace operator, which appears in a variety of physical fields (see for instance [1], [2]). In particular a lot of attention has been devoted to nonlocal problems. One of the justification of such models lies in the fact that in reality the measurements are not made pointwise - but through some local average. Some interesting features of nonlocal problems and more motivation are described in [4], [5], [7], [8], [10] and in the references therein.

The elliptic problems with our type of nonlocality have been studied in [13], [14] and the stability issues for a local case were considered in [3]. Furthermore, the problem (1.1) was examined for $p=2$ in [11] and [12].

We now describe the results obtained in this paper. In sections 2 and 3 we study the existence and uniqueness of a weak solution of problem (1.1). Next in section 4 we investigate the corresponding stationary problem and show that depending on
the function a it can have from a unique up to a continuum of solutions. In particular, since stationary solutions are also critical points of some energy functional (see (2.8)) we prove the existence of its global minimizer.

The main results of this paper are contained in section 5 , where we give the classification of the critical points of the energy functional define by (2.8), assuming that the function a satisfies just (1.2) and $1<p<+\infty$. We also present an algorithm for finding a global minimizer or global minimizers (it may be not unique) of the energy (2.8).

Finally in the last section we study the asymptotic behaviour of the solution of problem (1.1) as time goes to infinity. We prove that the solution of problem (1.1) converges to a stationary solution, which is a global minimizer of (2.8), in case of uniqueness of such a stationary point. Moreover, we also present some local stability result for the case of uniqueness of a global minimizer.

2. Existence

Theorem 2.1. Let the assumptions above hold and assume that there exist two constants λ, Λ such that

$$
\begin{equation*}
0<\lambda \leq a(\xi) \leq \Lambda, \quad \forall \xi \in \mathbb{R} \tag{2.1}
\end{equation*}
$$

and that

$$
\begin{equation*}
f \in L^{q}(\Omega) \tag{2.2}
\end{equation*}
$$

Then, for any $T>0$ there exists u solution to

$$
\left\{\begin{array}{l}
u \in L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right) \cap C\left([0, T] ; L^{2}(\Omega)\right) \tag{2.3}\\
u_{t} \in L^{q}\left(0, T ; W^{-1, q}(\Omega)\right), \\
u(\cdot, 0)=u_{0} \\
\left\langle u_{t}, v\right\rangle+\int_{\Omega} a\left(\|\nabla u\|_{p}^{p}\right)|\nabla u|^{p-2} \nabla u \nabla v d x=\langle f, v\rangle \\
\forall v \in W_{0}^{1, p}(\Omega) \text { in } \mathcal{D}^{\prime}(0, T)
\end{array}\right.
$$

where $\langle\cdot, \cdot\rangle$ denotes the pairing between $L^{q}(\Omega)$ and $L^{p}(\Omega), u(t)=u(\cdot, t), \mathcal{D}^{\prime}(0, T)$ is the space of distributions on $(0, T)$.

Proof. Consider $\lambda_{1}, \ldots, \lambda_{n}, \ldots$ a basis in $W_{0}^{1, p}(\Omega) \cap L^{2}(\Omega)$ smooth and that without loss of generality, we will suppose orthonormal in $L^{2}(\Omega)$. If $u_{0}=\sum_{i} \beta_{i} \lambda_{i}$ consider

$$
u_{n}(t)=\sum_{i=1}^{n} \gamma_{i}(t) \lambda_{i}
$$

solution to

$$
\left\{\begin{array}{l}
\int_{\Omega} u_{n}^{\prime} v d x+a\left(\left\|\nabla u_{n}\right\|_{p}^{p}\right) \int_{\Omega}\left|\nabla u_{n}\right|^{p-2} \nabla u_{n} \nabla v d x=\langle f, v\rangle \tag{2.4}\\
\forall v \in\left[\lambda_{1}, \ldots, \lambda_{n}\right] \\
u_{n}(0)=\sum_{i=1}^{n} \beta_{i} \lambda_{i}
\end{array}\right.
$$

where $\left[\lambda_{1}, \ldots, \lambda_{n}\right]$ is the space spanned by $\lambda_{1}, \ldots, \lambda_{n}$. Taking $v=\lambda_{j}$ and using the fact that the λ_{i} 's are orthonormal we see that (2.4) is equivalent to the Cauchy problem

$$
\left\{\begin{array}{l}
\gamma_{j}^{\prime}(t)=-a\left(\left\|\sum_{i=1}^{n} \gamma_{i}(t) \nabla \lambda_{i}\right\|_{p}^{p}\right) \int_{\Omega}\left|\sum_{i=1}^{n} \gamma_{i}(t) \nabla \lambda_{i}\right|^{p-2} \sum_{i=1}^{n} \gamma_{i}(t) \nabla \lambda_{i} \nabla \lambda_{j} d x \tag{2.5}\\
\\
+\left\langle f, \lambda_{j}\right\rangle, \quad \forall j=1, \ldots n \\
\gamma_{j}(0)=\beta_{j}, \quad \forall j=1, \ldots n
\end{array}\right.
$$

Since the right hand side of the first equation above is continuous in γ_{i} this Cauchy problem possesses a solution. Moreover, using the formulation (2.4) and taking $v=u_{n}$ we see that

$$
\int_{\Omega} u_{n}^{\prime} u_{n} d x+a\left(\left\|\nabla u_{n}\right\|_{p}^{p}\right) \int_{\Omega}\left|\nabla u_{n}\right|^{p} d x=\left\langle f, u_{n}\right\rangle
$$

which implies using (2.1), Poincaré's and Young's inequalities

$$
\frac{1}{2} \frac{d}{d t}\left|u_{n}\right|_{2}^{2}+\lambda \int_{\Omega}\left|\nabla u_{n}\right|^{p} d x \leq C|f|_{q}\left\|\nabla u_{n}\right\|_{p} \leq \varepsilon\left\|\nabla u_{n}\right\|_{p}^{p}+C_{\varepsilon}|f|_{q}^{q}
$$

Choosing for instance $\varepsilon=\frac{\lambda}{2}$ we arrive to

$$
\frac{1}{2} \frac{d}{d t}\left|u_{n}\right|_{2}^{2}+\frac{\lambda}{2} \int_{\Omega}\left|\nabla u_{n}\right|^{p} d x \leq C_{\varepsilon}|f|_{q}^{q}
$$

After an integration in t this leads to

$$
\begin{equation*}
\frac{1}{2}\left|u_{n}(t)\right|_{2}^{2}+\frac{\lambda}{2} \int_{0}^{t} \int_{\Omega}\left|\nabla u_{n}\right|^{p} d x d t \leq C_{\varepsilon} \int_{0}^{t}|f|_{q}^{q} d t+\frac{1}{2}\left|u_{n}(0)\right|_{2}^{2} \tag{2.6}
\end{equation*}
$$

In particular we see that $\left|u_{n}(t)\right|_{2}$ remains bounded in time and thus the solution to (2.4) or (2.5) is global in time $\left(|\cdot|_{2}\right.$ is just a norm in $\left[\lambda_{1}, \ldots, \lambda_{n}\right]$, where all the norms are equivalent).

Remark that $\left\|\nabla u_{n}\right\|_{p}$ remains bounded in time uniformly. To see that taking $v=u_{n}^{\prime}$ in (2.4) we get

$$
\begin{equation*}
\int_{\Omega} u_{n}^{\prime 2} d x+a\left(\left\|\nabla u_{n}\right\|_{p}^{p}\right) \int_{\Omega}\left|\nabla u_{n}\right|^{p-2} \nabla u_{n} \nabla u_{n}^{\prime} d x=\left\langle f, u_{n}^{\prime}\right\rangle . \tag{2.7}
\end{equation*}
$$

Introducing

$$
\begin{equation*}
E(u)=\frac{1}{p} A\left(\int_{\Omega}|\nabla u|^{p} d x\right)-\langle f, u\rangle \tag{2.8}
\end{equation*}
$$

with

$$
\begin{equation*}
A(z)=\int_{0}^{z} a(s) d s \tag{2.9}
\end{equation*}
$$

we see that (2.7) can be written

$$
\begin{equation*}
\partial_{t} E\left(u_{n}\right)=-\int_{\Omega} u_{n}^{\prime 2} d x \leq 0 \tag{2.10}
\end{equation*}
$$

Thus $E\left(u_{n}\right)$ decreases in time and is bounded from above for every t. The bound for $\left\|\nabla u_{n}\right\|_{p}$ follows then from the estimate

$$
\begin{equation*}
E\left(u_{n}\right) \geq \frac{\lambda}{p}\left\|\nabla u_{n}\right\|_{p}^{p}-C|f|_{q}\left\|\nabla u_{n}\right\|_{p} \tag{2.11}
\end{equation*}
$$

From (2.6), (2.11) we deduce that

$$
u_{n} \text { is bounded in } L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right) \cap L^{\infty}\left(0, T ; L^{2}(\Omega) \cap W_{0}^{1, p}(\Omega)\right) .
$$

Furthermore, from the first equation in (2.4) and Hölder's inequality we derive easily

$$
\int_{\Omega} u_{n}^{\prime} v d x \leq \Lambda\left(\int_{\Omega}\left|\nabla u_{n}\right|^{(p-1) q} d x\right)^{\frac{1}{q}}\left(\int_{\Omega}|\nabla v|^{p} d x\right)^{\frac{1}{p}}+C|f|_{q}\left(\int_{\Omega}|\nabla v|^{p} d x\right)^{\frac{1}{p}}
$$

i.e.

$$
\left|u_{n}^{\prime}\right|_{-1, q} \leq \Lambda\left\|\nabla u_{n}\right\|_{p}^{p-1}+C|f|_{q}
$$

and

$$
u_{n}^{\prime} \text { is bounded in } L^{q}\left(0, T ; W^{-1, q}(\Omega)\right) \subset L^{q}\left(0, T ; W^{-1, q}(\Omega)+L^{p}(\Omega)\right)
$$

independently of $n, W^{-1, q}(\Omega)+L^{p}(\Omega)$ denotes a dual space to $W_{0}^{1, p}(\Omega) \cap L^{q}(\Omega)$. We have that

$$
W_{0}^{1, p}(\Omega) \subset L^{p}(\Omega) \subset W^{-1, q}(\Omega)+L^{p}(\Omega)
$$

where the first embedding is compact (see [15]). Hence by Aubin-Lions lemma the embedding of

$$
W:=\left\{v \in L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right), v^{\prime} \in L^{q}\left(0, T ; W^{-1, q}(\Omega)\right)\right\}
$$

in $L^{p}\left(0, T ; L^{p}(\Omega)\right)$ is compact. Thus we can find a subsequence of n such that

$$
\begin{gathered}
u_{n} \rightharpoonup u \text { in } L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right), \\
u_{n} \rightarrow u \text { in } L^{p}\left(0, T ; L^{p}(\Omega)\right), \\
\frac{1}{a\left(\left\|\nabla u_{n}\right\|_{p}^{p}\right)} \rightharpoonup a_{\infty} \text { in } L^{\infty}(0, T)-\text { weak }^{*} \\
u_{n}(T) \rightharpoonup u(T) \text { in } L^{2}(\Omega), \\
\nabla \cdot\left|\nabla u_{n}\right|^{p-2} \nabla u_{n} \rightharpoonup \chi \text { in } L^{q}\left(0, T ; W^{-1, q}(\Omega)\right) .
\end{gathered}
$$

In fact,

$$
\begin{equation*}
u_{n}^{\prime} \in L^{2}\left(0, T ; L^{2}(\Omega)\right)=L^{2}\left(Q_{T}\right), \quad Q_{T}=(0, T) \times \Omega \tag{2.12}
\end{equation*}
$$

Indeed, integrating (2.10) from 0 to T we derive

$$
\begin{equation*}
\int_{0}^{T} \int_{\Omega}\left|u_{n}^{\prime}\right|^{2} d x=E\left(u_{n}(0)\right)-E\left(u_{n}(T)\right) \tag{2.13}
\end{equation*}
$$

Using the Young inequality in (2.11) we get

$$
E(u) \geq \frac{\lambda}{p}\|\nabla u\|_{p}^{p}-\frac{C|f|_{q}^{q}}{\lambda^{\frac{q}{p}} q}-\frac{\lambda}{p}\|\nabla u\|_{p}^{p}=-\frac{1}{q}\left(\frac{C|f|_{q}}{\lambda^{\frac{1}{p}}}\right)^{q}
$$

hence $E\left(u_{n}\right)$ is bounded from below independently of n. Thus from (2.13) we obtain (2.12).

The fact that $u \in C\left([0, T], L^{2}(\Omega)\right)$ follows by the standard argument (see [16]).
By rescaling the time in the following way, setting

$$
\begin{equation*}
\alpha(t)=\int_{0}^{t} a\left(\|\nabla u(\cdot, s)\|_{p}^{p}\right) d s \tag{2.14}
\end{equation*}
$$

we reduce solving the problem (1.1) to solving the problem (see [11]):

$$
\begin{cases}w_{t}-\nabla \cdot|\nabla w|^{p-2} \nabla w=\frac{f}{a\left(\|\nabla w\|_{p}^{p}\right)} & \text { in } \Omega \times(0, \alpha(T)) \tag{2.15}\\ w=0 & \text { on } \Gamma \times(0, \alpha(T)) \\ w(\cdot, 0)=u_{0} & \text { in } \Omega,\end{cases}
$$

where

$$
w(x, \alpha(t))=u(x, t)
$$

Replacing in (2.14) u by u_{n}, we can also write the first equation of (2.4) as

$$
\begin{equation*}
\int_{\Omega} u_{n}^{\prime} v d x+\int_{\Omega}\left|\nabla u_{n}\right|^{p-2} \nabla u_{n} \nabla v d x=\frac{\langle f, v\rangle}{a\left(\left\|\nabla u_{n}\right\|_{p}^{p}\right)} \tag{2.16}
\end{equation*}
$$

Now passing to the limit in (2.16) one has in the distributional sense in Q_{T}

$$
\begin{equation*}
u_{t}-\chi=a_{\infty} f \tag{2.17}
\end{equation*}
$$

(therefore $u_{t} \in L^{q}\left(0, T ; W^{-1, q}(\Omega)\right)$).
Taking $v=u_{n}$ in (2.16) we obtain

$$
\frac{1}{2} \frac{d}{d t}\left|u_{n}\right|_{2}^{2}+\int_{\Omega}\left|\nabla u_{n}\right|^{p} d x=\frac{\left\langle f, u_{n}\right\rangle}{a\left(\left\|\nabla u_{n}\right\|_{p}^{p}\right)}
$$

and by integration on $(0, T)$ we get

$$
\begin{equation*}
\int_{Q_{T}}\left|\nabla u_{n}\right|^{p} d x d t=\int_{0}^{T} \frac{\left\langle f, u_{n}\right\rangle}{a\left(\left\|\nabla u_{n}\right\|_{p}^{p}\right)} d t+\frac{\left|u_{n}(0)\right|_{2}^{2}}{2}-\frac{\left|u_{n}(T)\right|_{2}^{2}}{2} \tag{2.18}
\end{equation*}
$$

Since $u_{n} \rightarrow u$ in $L^{p}\left(Q_{T}\right), \frac{f}{a\left(\left\|\nabla u_{n}\right\|_{p}^{p}\right)} \rightharpoonup a_{\infty} f$ in $L^{q}\left(Q_{T}\right)$ and using the fact that $\varliminf_{n \rightarrow \infty}\left|u_{n}(T)\right|_{2}^{2} \geq|u(T)|_{2}^{2}$ from (2.18) we get

$$
\begin{equation*}
\varlimsup_{n \rightarrow \infty} \int_{Q_{T}}\left|\nabla u_{n}\right|^{p} d x d t \leq \int_{0}^{T} a_{\infty}\langle f, u\rangle d t+\frac{\left|u_{0}\right|_{2}^{2}}{2}-\frac{|u(T)|_{2}^{2}}{2} \tag{2.19}
\end{equation*}
$$

Thus from the inequality

$$
\int_{Q_{T}}\left(\left|\nabla u_{n}\right|^{p-2} \nabla u_{n}-|\nabla v|^{p-2} \nabla v\right) \cdot \nabla\left(u_{n}-v\right) d x d t \geq 0
$$

we derive by taking the \varlimsup for any $v \in L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right)$

$$
\begin{align*}
\int_{0}^{T} a_{\infty}\langle f, u\rangle d t+\frac{\left|u_{0}\right|_{2}^{2}}{2}-\frac{|u(T)|_{2}^{2}}{2} & +\int_{0}^{T}\langle\chi, v\rangle d t \tag{2.20}\\
& -\int_{Q_{T}}|\nabla v|^{p-2} \nabla v \cdot \nabla(u-v) d x d t \geq 0
\end{align*}
$$

By integrating (2.17) after having multiplied by u we get

$$
\frac{1}{2} \frac{d}{d t}|u|_{2}^{2}-\langle\chi, u\rangle=a_{\infty}\langle f, u\rangle
$$

and integrating over $(0, T)$ we obtain

$$
\begin{equation*}
-\int_{0}^{T}\langle\chi, u\rangle d t=\int_{0}^{T} a_{\infty}\langle f, u\rangle d t+\frac{\left|u_{0}\right|_{2}^{2}}{2}-\frac{|u(T)|_{2}^{2}}{2} \tag{2.21}
\end{equation*}
$$

Thus combining (2.20), (2.21) we have

$$
\left.\left.\int_{0}^{T}\langle-\chi+\nabla \cdot| \nabla v\right|^{p-2} \nabla v, u-v\right\rangle d t \geq 0 \quad \forall v \in L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right)
$$

Taking $v=u-\delta w, \delta>0$, we see

$$
\left.\left.\int_{0}^{T}\langle-\chi+\nabla \cdot| \nabla(u-\delta w)\right|^{p-2} \nabla(u-\delta w), w\right\rangle d t \geq 0 \forall w \in L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right)
$$

Letting $\delta \rightarrow 0$ we get easily

$$
\left.\left.\int_{0}^{T}\langle-\chi+\nabla \cdot| \nabla u\right|^{p-2} \nabla u, w\right\rangle d t=0 \quad \forall w \in L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right)
$$

and the equation (2.17) reads

$$
u_{t}-\nabla \cdot|\nabla u|^{p-2} \nabla u=a_{\infty} f
$$

Going back to (2.19), (2.21) we derive

$$
\varlimsup_{n \rightarrow \infty} \int_{Q_{T}}\left|\nabla u_{n}\right|^{p} d x d t \leq \int_{Q_{T}}|\nabla u|^{p} d x d t\left(\leq \underline{\lim }_{n \rightarrow \infty} \int_{Q_{T}}\left|\nabla u_{n}\right|^{p} d x d t\right)
$$

and $\nabla u_{n} \rightarrow \nabla u$ in $L^{p}\left(Q_{T}\right)$ strongly. In other words

$$
\int_{0}^{T} \int_{\Omega}\left|\nabla\left(u_{n}-u\right)\right|^{p} d x d t \rightarrow 0
$$

Up to a subsequence we have

$$
\int_{\Omega}\left|\nabla\left(u_{n}-u\right)\right|_{p}^{p} d x d t \rightarrow 0 \text { a.e. } t
$$

i.e. this implies

$$
\left\|\nabla u_{n}\right\|_{p}^{p} \rightarrow\|\nabla u\|_{p}^{p} \quad \text { a.e. } t
$$

and then $\frac{1}{a\left(\left\|\nabla u_{n}\right\|_{p}^{p}\right)} \rightarrow \frac{1}{a\left(\|\nabla u\|_{p}^{p}\right)}$ a.e. t, since the sequence is bounded this convergence take also place in any $L^{p}(0, T)$ and $a_{\infty}=\frac{1}{a\left(\|\nabla u\|_{p}^{p}\right)}$, which completes the proof.

3. Uniqueness

For the reader convenience we start this section by formulating some auxiliary lemmas, used throughout the paper.

Lemma 3.1. (see [6]) Let $1<p<+\infty$. There exist positive constants c_{p}, C_{p} such that for every $\xi, \eta \in \mathbb{R}^{n}$

$$
c_{p} N_{p}(\xi, \eta) \leq\left(|\xi|^{p-2} \xi-|\eta|^{p-2} \eta\right) \cdot(\xi-\eta) \leq C_{p} N_{p}(\xi, \eta)
$$

where

$$
N_{p}(\xi, \eta)=\{|\xi|+|\eta|\}^{p-2}|\xi-\eta|^{2}
$$

a dot denotes the Euclidean product in R^{n}.
Lemma 3.2. Let a, b be non negative numbers. Then

$$
\left|a^{p}-b^{p}\right| \leq p|a-b|\{a+b\}^{p-1}
$$

Proof. We can suppose $a>b$. Then

$$
\begin{array}{r}
a^{p}-b^{p}=\int_{0}^{1} \frac{d}{d t}|b+t(a-b)|^{p} d t=p \int_{0}^{1}|b+t(a-b)|^{p-1} \frac{b+t(a-b)}{|b+t(a-b)|}(a-b) d t \\
\leq p(a-b) \int_{0}^{1}|t a+(1-t) b|^{p-1} d t \leq p(a-b) \int_{0}^{1}\{|a|+|b|\}^{p-1} d t \\
\quad=p|a-b|\{a+b\}^{p-1}
\end{array}
$$

Theorem 3.1. If in addition to the assumptions of Theorem 2.1 for some L it holds that

$$
\begin{equation*}
\left|a(\xi)-a\left(\xi^{\prime}\right)\right| \leq L\left|\xi-\xi^{\prime}\right| \quad \forall \xi, \xi^{\prime} \in \mathbb{R} \tag{3.1}
\end{equation*}
$$

and

$$
f \in L^{2}(\Omega)
$$

then the solution to (2.3) is unique.
Proof. Let u_{1}, u_{2} be two weak solutions to

$$
\left\{\begin{array}{l}
u \in L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right), \quad u_{t} \in L^{q}\left(0, T ; W_{0}^{-1, q}(\Omega)\right), \tag{3.2}\\
u_{t}-\nabla \cdot|\nabla u|^{p-2} \nabla u=\frac{f}{a\left(\|\nabla u\|_{p}^{p}\right)}
\end{array}\right.
$$

By subtraction we obtain

$$
\left(u_{1}-u_{2}\right)_{t}-\nabla \cdot\left(\left|\nabla u_{1}\right|^{p-2} \nabla u_{1}-\left|\nabla u_{2}\right|^{p-2} \nabla u_{2}\right)=\left(\frac{1}{a\left(\left\|\nabla u_{1}\right\|_{p}^{p}\right)}-\frac{1}{a\left(\left\|\nabla u_{2}\right\|_{p}^{p}\right)}\right) f
$$

Multiplying by $u_{1}-u_{2}$, integrating over Ω and using (2.1), (3.1) we get

$$
\begin{align*}
\frac{1}{2} \frac{d}{d t}\left|u_{1}-u_{2}\right|_{2}^{2}+\int_{\Omega}\left(\left|\nabla u_{1}\right|^{p-2} \nabla\right. & \left.\nabla u_{1}-\left|\nabla u_{2}\right|^{p-2} \nabla u_{2}\right) \cdot \nabla\left(u_{1}-u_{2}\right) d x \tag{3.3}\\
& \left.\leq \frac{L}{\lambda^{2}}| | \nabla u_{1}\left\|_{p}^{p}-\right\| \nabla u_{2} \|_{p}^{p}| | \int_{\Omega} f\left(u_{1}-u_{2}\right) d x \right\rvert\,
\end{align*}
$$

From Lemma 3.2 and the Hölder inequality we derive

$$
\begin{gather*}
\left.\left|\left|\left|\nabla u_{1}\left\|_{p}^{p}-\right\| \nabla u_{2} \|_{p}^{p}\right|=\left|\int_{\Omega}\left(\left|\nabla u_{1}\right|^{p}-\left|\nabla u_{2}\right|^{p}\right) d x\right| \leq \int_{\Omega}\right|\right| \nabla u_{1}\right|^{p}-\left|\nabla u_{2}\right|^{p} \mid d x \tag{3.4}\\
\leq p \int_{\Omega}\left(\left|\nabla u_{1}\right|+\left|\nabla u_{2}\right|\right)^{p-1}\left|\nabla\left(u_{1}-u_{2}\right)\right| d x \\
=p \int_{\Omega}\left(\left|\nabla u_{1}\right|+\left|\nabla u_{2}\right|\right)^{\frac{p}{2}}\left(\left|\nabla u_{1}\right|+\left|\nabla u_{2}\right|\right)^{\frac{p}{2}-1}\left|\nabla\left(u_{1}-u_{2}\right)\right| d x \\
\leq p\left(\int_{\Omega}\left(\left|\nabla u_{1}\right|+\left|\nabla u_{2}\right|\right)^{p} d x\right)^{\frac{1}{2}}\left(\int_{\Omega}\left(\left|\nabla u_{1}\right|+\left|\nabla u_{2}\right|\right)^{p-2}\left|\nabla\left(u_{1}-u_{2}\right)\right|^{2} d x\right)^{\frac{1}{2}}
\end{gather*}
$$

From Lemma 3.1 we obtain

$$
\begin{aligned}
\int_{\Omega}\left(\left|\nabla u_{1}\right|^{p-2} \nabla u_{1}-\left|\nabla u_{2}\right|^{p-2} \nabla u_{2}\right) & \cdot \nabla\left(u_{1}-u_{2}\right) d x \\
& \geq c_{p} \int_{\Omega}\left(\left|\nabla u_{1}\right|+\left|\nabla u_{2}\right|\right)^{p-2}\left|\nabla\left(u_{1}-u_{2}\right)\right|^{2} d x
\end{aligned}
$$

Combining (3.3) and the two inequalities above leads to

$$
\begin{aligned}
\frac{1}{2} \frac{d}{d t}\left|u_{1}-u_{2}\right|_{2}^{2} & +c_{p} \int_{\Omega}\left(\left|\nabla u_{1}\right|+\left|\nabla u_{2}\right|\right)^{p-2}\left|\nabla\left(u_{1}-u_{2}\right)\right|^{2} d x \\
\leq & \frac{L p}{\lambda^{2}}\left|\int_{\Omega} f\left(u_{1}-u_{2}\right) d x\right|\left(\int_{\Omega}\left(\left|\nabla u_{1}\right|+\left|\nabla u_{2}\right|\right)^{p} d x\right)^{\frac{1}{2}} \\
& \times\left(\int_{\Omega}\left(\left|\nabla u_{1}\right|+\left|\nabla u_{2}\right|\right)^{p-2}\left|\nabla\left(u_{1}-u_{2}\right)\right|^{2} d x\right)^{\frac{1}{2}} \\
\leq & \frac{c_{p}}{2} \int_{\Omega}\left(\left|\nabla u_{1}\right|+\left|\nabla u_{2}\right|\right)^{p-2}\left|\nabla\left(u_{1}-u_{2}\right)\right|^{2} d x+C(t) \int_{\Omega}\left|u_{1}-u_{2}\right|^{2} d x
\end{aligned}
$$

(In the last inequality above we use Young's inequality. Note that $C \in L^{1}(0, T)$). Therefore, we have

$$
\frac{1}{2} \frac{d}{d t}\left|u_{1}-u_{2}\right|_{2}^{2} \leq C(t) \int_{\Omega}\left|u_{1}-u_{2}\right|^{2} d x
$$

The uniqueness follows then from Gronwall's inequality.

Theorem 3.2. Let the assumptions (1.2), (1.3) hold and if in addition the function a is such that

$$
\begin{equation*}
s \mapsto a\left(s^{p}\right) s^{p-1} \text { is nondeacreasing, } \tag{3.5}
\end{equation*}
$$

then the solution to (2.3) is unique.
Proof. Let u_{1}, u_{2} be two solutions to (2.3), then taking $v=u_{1}-u_{2}$ and by subtraction one has

$$
\begin{align*}
& \frac{1}{2} \frac{d}{d t}\left|u_{1}-u_{2}\right|_{2}^{2}+\int_{\Omega}\left(a\left(\left\|\nabla u_{1}\right\|_{p}^{p}\right)\left|\nabla u_{1}\right|^{p-2} \nabla u_{1}\right. \tag{3.6}\\
&\left.-a\left(\left\|\nabla u_{2}\right\|_{p}^{p}\right)\left|\nabla u_{2}\right|^{p-2} \nabla u_{2}\right) \nabla\left(u_{1}-u_{2}\right) d x=0
\end{align*}
$$

By expanding the integral term I one gets

$$
\begin{aligned}
& I=\int_{\Omega}\left(a\left(\left\|\nabla u_{1}\right\|_{p}^{p}\right)\left|\nabla u_{1}\right|^{p}-a\left(\left\|\nabla u_{1}\right\|\right)\left|\nabla u_{1}\right|^{p-2} \nabla u_{1} \nabla u_{2}\right. \\
& \\
& \left.\quad+a\left(\left\|\nabla u_{2}\right\|_{p}^{p}\right)\left|\nabla u_{2}\right|^{p}-a\left(\left\|\nabla u_{2}\right\|\right)\left|\nabla u_{2}\right|^{p-2} \nabla u_{2} \nabla u_{1}\right) d x
\end{aligned}
$$

Recall that $a\left(\left\|\nabla u_{i}\right\|_{p}^{p}\right), i=1,2$ are independent of x and can be pulled out of the integrals. Using Hölder's inequality we see

$$
\begin{aligned}
& \int_{\Omega}\left|\nabla u_{1}\right|^{p-2} \nabla u_{1} \nabla u_{2} d x \leq\left\|\nabla u_{2}\right\|_{p}\left\|\nabla u_{1}\right\|_{p}^{p-1} \\
& \int_{\Omega}\left|\nabla u_{2}\right|^{p-2} \nabla u_{2} \nabla u_{1} d x \leq\left\|\nabla u_{1}\right\|_{p}\left\|\nabla u_{2}\right\|_{p}^{p-1}
\end{aligned}
$$

Then using (3.5) it comes

$$
\begin{aligned}
& I \geq a\left(\left\|\nabla u_{1}\right\|_{p}^{p}\right)\left(\left\|\nabla u_{1}\right\|_{p}^{p}-\left\|\nabla u_{1}\right\|_{p}^{p-1}\left\|\nabla u_{2}\right\|_{p}\right) \\
& \quad+a\left(\left\|\nabla u_{2}\right\|_{p}^{p}\right)\left(\left\|\nabla u_{2}\right\|_{p}^{p}-\left\|\nabla u_{2}\right\|_{p}^{p-1}\left\|\nabla u_{1}\right\|_{p}\right) \\
& \quad=\left(a\left(\left\|\nabla u_{1}\right\|_{p}^{p}\right)\left\|\nabla u_{1}\right\|_{p}^{p-1}-a\left(\left\|\nabla u_{2}\right\|_{p}^{p}\right)\left\|\nabla u_{2}\right\|_{p}^{p-1}\right)\left(\left\|\nabla u_{1}\right\|_{p}-\left\|\nabla u_{2}\right\|_{p}\right) \geq 0
\end{aligned}
$$

Hence, (3.6) implies

$$
\frac{d}{d t}\left|u_{1}-u_{2}\right|_{2}^{2} \leq 0
$$

therefore the result follows.

Remark 3.1. Note that (3.5) holds in particular for a nondecreasing.

4. The stationary problem

In this section we consider the associated stationary problem to the problem (1.1), that is the following problem

$$
\begin{cases}-\nabla \cdot a\left(\|\nabla u\|_{p}^{p}\right)|\nabla u|^{p-2} \nabla u=f & \text { in } \Omega \tag{4.1}\\ u=0 & \text { on } \Gamma .\end{cases}
$$

We will assume here that $f \in W^{-1, q}(\Omega)$. In a weak form u is a weak solution to

$$
\left\{\begin{array}{l}
u \in W_{0}^{1, p}(\Omega) \tag{4.2}\\
\int_{\Omega} a\left(\|\nabla u\|_{p}^{p}\right)|\nabla u|^{p-2} \nabla u \nabla v d x=\langle f, v\rangle \quad \forall v \in W_{0}^{1, p}(\Omega)
\end{array}\right.
$$

Here and after $\langle\cdot, \cdot\rangle$ denotes the pairing between $W^{-1, q}(\Omega)$ and $W_{0}^{1, p}(\Omega)$. In order to solve the stationary problem we introduce φ the solution to

$$
\left\{\begin{array}{l}
\varphi \in W_{0}^{1, p}(\Omega) \tag{4.3}\\
\int_{\Omega}|\nabla \varphi|^{p-2} \nabla \varphi \nabla v d x=\langle f, v\rangle \quad \forall v \in W_{0}^{1, p}(\Omega)
\end{array}\right.
$$

It is known that for $f \in W^{-1, q}(\Omega)(4.3)$ admits a unique solution [6].

Theorem 4.1. Suppose that (1.2) holds, $1<p<+\infty$. Then for $f \in W^{-1, q}(\Omega)$, the mapping $u \mapsto\|\nabla u\|_{p}^{p}$ is one-to-one mapping from the set of solutions to (4.2) onto the set of solutions in \mathbb{R} of the equation

$$
\begin{equation*}
a(\mu)^{\frac{p}{p-1}} \mu=\|\nabla \varphi\|_{p}^{p} . \tag{4.4}
\end{equation*}
$$

Proof. Let u be a solution to the stationary problem, then

$$
\begin{align*}
\int_{\Omega} a\left(\|\nabla u\|_{p}^{p}\right)|\nabla u|^{p-2} \nabla u \nabla v d x=\langle f & , v\rangle \tag{4.5}\\
& =\int_{\Omega}|\nabla \varphi|^{p-2} \nabla \varphi \nabla v d x \quad \forall v \in W_{0}^{1, p}(\Omega)
\end{align*}
$$

which implies

$$
\begin{equation*}
a\left(\|\nabla u\|_{p}^{p}\right)^{\frac{1}{p-1}} u=\varphi \tag{4.6}
\end{equation*}
$$

from where follows

$$
\begin{equation*}
a\left(\|\nabla u\|_{p}^{p}\right)^{\frac{p}{p-1}}\|\nabla u\|_{p}^{p}=\|\nabla \varphi\|_{p}^{p} \tag{4.7}
\end{equation*}
$$

Hence $\|\nabla u\|_{p}^{p}$ is a solution to (4.4).
Let now μ be a solution to (4.4), u denotes the solution to

$$
\left\{\begin{array}{l}
u \in W_{0}^{1, p}(\Omega) \tag{4.8}\\
\int_{\Omega} a(\mu)|\nabla u|^{p-2} \nabla u \nabla v d x=\langle f, v\rangle \quad \forall v \in W_{0}^{1, p}(\Omega)
\end{array}\right.
$$

then $a(\mu)^{\frac{1}{p-1}} u=\varphi$. Therefore, we get

$$
a(\mu)^{\frac{p}{p-1}}\|\nabla u\|_{p}^{p}=\|\nabla \varphi\|_{p}^{p}=a(\mu)^{\frac{p}{p-1}} \mu \Rightarrow\|\nabla u\|_{p}^{p}=\mu
$$

and u is a solution to (4.2). Now to show the injectivity we have

$$
\left\|\nabla u_{1}\right\|_{p}^{p}=\left\|\nabla u_{2}\right\|_{p}^{p} \Rightarrow a\left(\left\|\nabla u_{1}\right\|_{p}^{p}\right)=a\left(\left\|\nabla u_{2}\right\|_{p}^{p}\right) \Rightarrow u_{1}=u_{2}
$$

due to the uniqueness of the solution of (4.8).

Remark 4.1. The stationary points are determined by the solutions to

$$
\begin{equation*}
a(\mu)=\|\nabla \varphi\|_{p}^{p-1} \mu^{\frac{1}{p}-1} \tag{4.9}
\end{equation*}
$$

Thus it can happen that there is one solution, several, infinitely many solutions or no solution (just in case where a is not bounded away from 0). It depends on the function a, see Figure 4.1. In the case where (3.5) holds the set of stationary points is an interval which is reduced to a point when $a\left(s^{p}\right) s^{p-1}$ is increasing.

The solutions of the problem (4.2) can be also found as critical points of the energy $E(u)$, defined by

$$
\begin{equation*}
E(u)=\frac{1}{p} A\left(\int_{\Omega}|\nabla u|^{p} d x\right)-\langle f, v\rangle \tag{4.10}
\end{equation*}
$$

where

$$
\begin{equation*}
A(z)=\int_{0}^{z} a(s) d s \tag{4.11}
\end{equation*}
$$

(a) Unique solution

(c) No solution

(b) Several solutions

(d) Infinitely many solutions

Figure 4.1
and

$$
\begin{equation*}
E^{\prime}(u)=-\nabla \cdot a\left(\|\nabla u\|_{p}^{p}\right)|\nabla u|^{p-2} \nabla u-f . \tag{4.12}
\end{equation*}
$$

If u_{∞} is a critical point of E on $W_{0}^{1, p}(\Omega)$ then u_{∞} is a solution to (4.2). Indeed, if u_{∞} is a critical point then for arbitrary $v \in W_{0}^{1, p}(\Omega)$ it holds

$$
\begin{aligned}
& \left.\frac{d}{d \delta} E\left(u_{\infty}+\delta v\right)\right|_{\delta=0} \\
& \quad=\left.\left(a\left(\left\|\nabla\left(u_{\infty}+\delta v\right)\right\|_{p}^{p}\right) \int_{\Omega}\left|\nabla\left(u_{\infty}+\delta v\right)\right|^{p-2} \nabla\left(u_{\infty}+\delta v\right) \nabla v-\langle f, v\rangle\right)\right|_{\delta=0}=0
\end{aligned}
$$

Thus

$$
a\left(\left\|\nabla u_{\infty}\right\|_{p}^{p}\right) \int_{\Omega}\left|\nabla u_{\infty}\right|^{p-2} \nabla u_{\infty} \nabla v-\langle f, v\rangle=0, \quad \forall v \in W_{0}^{1, p}(\Omega)
$$

namely u_{∞} is a solution to (4.2) and a stationary point.
Theorem 4.2. Let (2.1) holds, $f \in W^{-1, q}(\Omega)$, then $E(u)$ admits a global minimizer on $W_{0}^{1, p}(\Omega)$.

Proof. To prove this theorem we will use the direct method of calculus of variations. We claim that E is coercive and bounded from below. Indeed, Hölder's and Poincaré's inequalities imply

$$
|\langle f, u\rangle| \leq|f|_{-1, q}\|\nabla u\|_{p}
$$

therefore

$$
\begin{equation*}
E(u)=\frac{1}{p} A\left(\|\nabla u\|_{p}^{p}\right)-\langle f, v\rangle \geq \frac{\lambda}{p}\|\nabla u\|_{p}^{p}-|f|_{-1, q}\|\nabla u\|_{p} \tag{4.13}
\end{equation*}
$$

Since $p>1$ the coerciveness follows. Now coming back to (4.13) and using Young's inequality we obtain

$$
\begin{equation*}
E(u) \geq \frac{\lambda}{p}\|\nabla u\|_{p}^{p}-\frac{\left(|f|_{-1, q}\right)^{q}}{\lambda^{\frac{q}{p}} q}-\frac{\lambda}{p}\|\nabla u\|_{p}^{p}=-\frac{1}{q}\left(\frac{|f|_{-1, q}}{\lambda^{\frac{1}{p}}}\right)^{q} \tag{4.14}
\end{equation*}
$$

Thus E is also bounded from below.
Let $u_{n} \in W_{0}^{1, p}(\Omega)$ be a minimizing sequence of E. From (4.13) it follows that u_{n} is bounded in $W_{0}^{1, p}(\Omega)$. Hence for some $u_{\infty} \in W_{0}^{1, p}(\Omega)$ we have

$$
u_{n} \rightharpoonup u_{\infty} \text { in } W_{0}^{1, p}(\Omega)
$$

Next we show that E is weakly lower semicontinuous on $W_{0}^{1, p}(\Omega)$. In fact, it holds that

$$
\underline{\underline{\lim }}\left\|\nabla u_{n}\right\|_{p}^{p} \geq\left\|\nabla u_{\infty}\right\|_{p}^{p}
$$

(the norm is weakly lower semicontinuous). Considering a subsequence $u_{n_{k}}$ such that

$$
\underline{\lim _{n \rightarrow \infty}}\left\|\nabla u_{n}\right\|_{p}^{p}=\lim _{k \rightarrow \infty}\left\|\nabla u_{n_{k}}\right\|_{p}^{p}
$$

and due to the fact that $u_{n_{k}}$ is a minimizing sequence we see

$$
\begin{aligned}
& \inf _{W_{0}^{1, p}(\Omega)} E(u)=\lim _{k} E\left(u_{n_{k}}\right)=\frac{1}{p} \int_{0}^{\lim \left\|\nabla u_{n_{k}}\right\|_{p}^{p}} a(s) d s-\left\langle f, u_{\infty}\right\rangle \\
& \geq \frac{1}{p} \int_{0}^{\left\|\nabla u_{\infty}\right\|_{p}^{p}} a(s) d s-\left\langle f, u_{\infty}\right\rangle=E\left(u_{\infty}\right)
\end{aligned}
$$

which implies u_{∞} is a minimizer of E on $W_{0}^{1, p}(\Omega)$. Therefore, the result follows.
Note that the minimizer might be not unique.

5. Remarks on the stationary points

Suppose first we are in case of Figure 5.2, then we have:
Theorem 5.1. Let u_{1} be the stationary point corresponding to μ_{1} such that

$$
\begin{array}{ll}
a(\mu)<\|\nabla \varphi\|_{p}^{p-1} \mu^{\frac{1}{p}-1} & \forall \mu \in\left(\underline{\mu}, \mu_{1}\right), \\
a(\mu)>\|\nabla \varphi\|_{p}^{p-1} \mu^{\frac{1}{p}-1} & \forall \mu \in\left(\mu_{1}, \bar{\mu}\right) . \tag{5.2}
\end{array}
$$

Then u_{1} is a local minimizer for E. More precisely one has:

$$
E\left(u_{1}\right)<E(u) \quad \forall u \neq u_{1},\|\nabla u\|_{p}^{p} \in(\underline{\mu}, \bar{\mu})
$$

Proof. Recall that by Theorem 4.1 we have that

$$
\begin{equation*}
\mu_{1}=\left\|\nabla u_{1}\right\|_{p}^{p}, \quad u_{1}=\frac{\varphi}{a\left(\mu_{1}\right)^{\frac{1}{p-1}}} \tag{5.3}
\end{equation*}
$$

Figure 5.2
(i) Suppose $\|\nabla u\|_{p}^{p}>\mu_{1}$. Then from (2.8), (5.2) we have

$$
\begin{align*}
& E(u)-E\left(u_{1}\right)=\frac{1}{p} \int_{\left\|\nabla u_{1}\right\|_{p}^{p}}^{\|\nabla u\|_{p}^{p}} a(s) d s-\langle f, u\rangle+\left\langle f, u_{1}\right\rangle \tag{5.4}\\
& >\frac{1}{p}\|\nabla \varphi\|_{p}^{p-1} \int_{\left\|\nabla u_{1}\right\|_{p}^{p}}^{\|\nabla u\|_{p}^{p}} s^{\frac{1}{p}-1} d s-\langle f, u\rangle+\left\langle f, u_{1}\right\rangle \\
& \quad=\|\nabla \varphi\|_{p}^{p-1}\|\nabla u\|_{p}-\|\nabla \varphi\|_{p}^{p-1}\left\|\nabla u_{1}\right\|_{p}-\langle f, u\rangle+\left\langle f, u_{1}\right\rangle
\end{align*}
$$

From (4.3) and using Hölder's inequality we see

$$
\begin{align*}
& |\langle f, u\rangle|=\left.\left|\int_{\Omega}\right| \nabla \varphi\right|^{p-2} \nabla \varphi \nabla u d x \mid \tag{5.5}\\
& \quad \leq\left(\int_{\Omega}|\nabla u|^{p} d x\right)^{\frac{1}{p}}\left(\int_{\Omega}|\nabla \varphi|^{q(p-1)} d x\right)^{\frac{1}{q}}=\|\nabla u\|_{p}\|\nabla \varphi\|_{p}^{p-1}
\end{align*}
$$

where $q=\frac{p}{p-1}$. Now by (4.4) and (5.3) we obtain

$$
\begin{align*}
\left\langle f, u_{1}\right\rangle & =\int_{\Omega}|\nabla \varphi|^{p-2} \nabla \varphi \nabla u_{1} d x \tag{5.6}\\
& =\int_{\Omega}|\nabla \varphi|^{p-2} \nabla \varphi \frac{\nabla \varphi}{a\left(\mu_{1}\right)^{\frac{1}{p-1}}} d x=\|\nabla \varphi\|_{p}^{p} \frac{\left\|\nabla u_{1}\right\|_{p}}{\|\nabla \varphi\|_{p}}=\|\nabla \varphi\|_{p}^{p-1}\left\|\nabla u_{1}\right\|_{p}
\end{align*}
$$

Hence, combining (5.4) - (5.6) we derive

$$
E(u)>E\left(u_{1}\right) \text { for }\|\nabla u\|_{p}^{p}>\mu_{1}
$$

(ii) Suppose now $\|\nabla u\|_{p}^{p}<\mu_{1}$. Then as above we get

$$
E(u)-E\left(u_{1}\right)=-\frac{1}{p} \int_{\|\nabla u\|_{p}^{p}}^{\left\|\nabla u_{1}\right\|_{p}^{p}} a(s) d s-\langle f, u\rangle+\left\langle f, u_{1}\right\rangle,
$$

and by (5.1), (5.5), (5.6) we can conclude

$$
\begin{align*}
E(u)-E\left(u_{1}\right) & >-\frac{1}{p}\|\nabla \varphi\|_{p}^{p-1} \int_{\|\nabla u\|_{p}^{p}}^{\left\|\nabla u_{1}\right\|_{p}^{p}} s^{\frac{1}{p}-1} d s-\langle f, u\rangle+\left\langle f, u_{1}\right\rangle \tag{5.7}\\
& =-\|\nabla \varphi\|_{p}^{p-1}\left\|\nabla u_{1}\right\|_{p}+\|\nabla \varphi\|_{p}^{p-1}\|\nabla u\|_{p}-\langle f, u\rangle+\left\langle f, u_{1}\right\rangle \geq 0
\end{align*}
$$

Thus we have

$$
E(u)>E\left(u_{1}\right) \text { for }\|\nabla u\|_{p}^{p} \in(\underline{\mu}, \bar{\mu}), u \neq u_{1}
$$

Remark 5.1. If $u \neq u_{1}$ one does not have necessarily $\|\nabla u\|_{p}^{p} \neq\left\|\nabla u_{1}\right\|_{p}^{p}=\mu_{1}$ and the proof of the theorem is incomplete. But if $\|\nabla u\|_{p}^{p}=\left\|\nabla u_{1}\right\|_{p}^{p}$ one has (see above) $0 \leq E(u)-E\left(u_{1}\right)=\left\langle f, u-u_{1}\right\rangle$. If this last quantity is vanishing we will show in Lemma 5.2 that $u=u_{1}$.

Remark 5.2. If one assumes

$$
\begin{array}{ll}
a(\mu) \leq\|\nabla \varphi\|_{p}^{p-1} \mu^{\frac{1}{p}-1} & \forall \mu \leq \mu_{1} \\
a(\mu) \geq\|\nabla \varphi\|_{p}^{p-1} \mu^{\frac{1}{p}-1} & \forall \mu \geq \mu_{1}
\end{array}
$$

Then one gets only

$$
E(u) \geq E\left(u_{1}\right)
$$

Thus E can posses infinitely many global minimizers (see Figure 4.1d).
Lemma 5.1. Let u_{2} be the stationary point corresponding to μ_{2} such that

$$
\begin{array}{ll}
a(\mu)>\|\nabla \varphi\|_{p}^{p-1} \mu^{\frac{1}{p}-1} & \forall \mu \in\left(\underline{\mu}, \mu_{2}\right), \\
a(\mu)<\|\nabla \varphi\|_{p}^{p-1} \mu^{\frac{1}{p}-1} & \forall \mu \in\left(\mu_{2}, \bar{\mu}\right) \tag{5.9}
\end{array}
$$

(see Figure 5.3). Then u_{2} is a point of local maximum for E in the direction of φ, where φ is the solution of the problem (4.3). More precisely one has:

$$
E\left(u_{2}\right)>E\left(u_{2}+\delta \varphi\right)
$$

for every $\delta \neq 0$ such that

$$
\delta \geq-\frac{1}{a\left(\mu_{2}\right)^{\frac{1}{p-1}}},\left\|\nabla\left(u_{2}+\delta \varphi\right)\right\|_{p}^{p} \in(\underline{\mu}, \bar{\mu})
$$

Proof. As above by Theorem 4.1 we have that

$$
\begin{equation*}
\mu_{2}=\left\|\nabla u_{2}\right\|_{p}^{p}, \quad u_{2}=\frac{\varphi}{a\left(\mu_{2}\right)^{\frac{1}{p-1}}} \tag{5.10}
\end{equation*}
$$

Figure 5.3
(i) Let us first assume that $\left\|\nabla\left(u_{2}+\delta \varphi\right)\right\|_{p}^{p}>\mu_{2}$. Then from (2.8), (4.3), (5.9) we have

$$
\begin{align*}
E\left(u_{2}+\right. & \delta \varphi)-E\left(u_{2}\right)=\frac{1}{p} \int_{\left\|\nabla u_{2}\right\|_{p}^{p}}^{\left\|\nabla\left(u_{2}+\delta \varphi\right)\right\|_{p}^{p}} a(s) d s-\delta\langle f, \varphi\rangle \tag{5.11}\\
& <\frac{1}{p}\|\nabla \varphi\|_{p}^{p-1} \int_{\left\|\nabla u_{2}\right\|_{p}^{p}}^{\left\|\nabla\left(u_{2}+\delta \varphi\right)\right\|_{p}^{p}} s^{\frac{1}{p}-1} d s-\delta\|\nabla \varphi\|_{p}^{p} \\
= & \|\nabla \varphi\|_{p}^{p-1}\left(\left\|\nabla\left(u_{2}+\delta \varphi\right)\right\|_{p}-\left\|\nabla u_{2}\right\|_{p}\right)-\delta\|\nabla \varphi\|_{p}^{p} \\
= & \|\nabla \varphi\|_{p}^{p-1}\left(\left|\frac{1}{a\left(\mu_{2}\right)^{\frac{1}{p-1}}}+\delta\right|\|\nabla \varphi\|_{p}-\frac{\|\nabla \varphi\|_{p}}{a\left(\mu_{2}\right)^{\frac{1}{p-1}}}\right)-\delta\|\nabla \varphi\|_{p}^{p}=0,
\end{align*}
$$

if $\frac{1}{a\left(\mu_{2}\right)^{\frac{1}{p-1}}}+\delta \geq 0$. Thus it holds that

$$
E\left(u_{2}+\delta \varphi\right)<E\left(u_{2}\right) \text { for }\left\|\nabla\left(u_{2}+\delta \varphi\right)\right\|_{p}^{p}>\mu_{2} .
$$

(ii) Suppose now $\left\|\nabla\left(u_{2}+\delta \varphi\right)\right\|_{p}^{p}<\mu_{2}$. Then similarly, from (2.8), (4.3), (5.8) we get

$$
\left.\left.\begin{array}{rl}
E\left(u_{2}+\delta \varphi\right)-E & \left(u_{2}\right) \tag{5.12}
\end{array}\right)-\frac{1}{p} \int_{\left\|\nabla\left(u_{2}+\delta \varphi\right)\right\|_{p}^{p}}^{\left\|\nabla u_{2}\right\|_{p}^{p}} a(s) d s-\delta\langle f, \varphi\rangle\right)
$$

as in part (i).
Hence,

$$
E\left(u_{2}+\delta \varphi\right)<E\left(u_{2}\right) \text { for }\left\|\nabla\left(u_{2}+\delta \varphi\right)\right\|_{p}^{p}<\mu_{2} .
$$

Lemma 5.2. Let u be a solution to the problem (4.2). Suppose that (1.2) holds and that $\psi \in W_{0}^{1, p}(\Omega), \psi \neq 0$ is such that

$$
\begin{equation*}
\langle f, \psi\rangle=0 \tag{5.13}
\end{equation*}
$$

Then

$$
\begin{equation*}
E(u+\psi)>E(u) \tag{5.14}
\end{equation*}
$$

i.e. u is a point of minimum for E in any direction of the hyperplane defined by (5.13).

Proof. Let us consider ψ which satisfies (5.13). Then for $\|\nabla(u+\psi)\|_{p}>\|\nabla u\|_{p}$ from (2.1) we have

$$
E(u+\psi)-E(u)=\frac{1}{p} \int_{\|\nabla u\|_{p}^{p}}^{\|\nabla(u+\psi)\|_{p}^{p}} a(s) d s>0
$$

Hence it remains to prove that $\|\nabla(u+\psi)\|_{p}>\|\nabla u\|_{p}$. Due to (5.13) and since $a>0$ we get

$$
\int_{\Omega}|\nabla u|^{p-2} \nabla u \nabla \psi d x=0
$$

Then we see

$$
\begin{aligned}
&\|\nabla(u+\psi)\|_{p}^{p}-\|\nabla u\|_{p}^{p}=\int_{0}^{1} \frac{d}{d s} \int_{\Omega}|\nabla(u+s \psi)|^{p} d x d s \\
&=p \int_{0}^{1} \int_{\Omega}|\nabla(u+s \psi)|^{p-2} \nabla(u+s \psi) \nabla \psi d x d s \\
&=p \int_{0}^{1} \int_{\Omega}\left(|\nabla(u+s \psi)|^{p-2} \nabla(u+s \psi)-|\nabla u|^{p-2} \nabla u\right) \nabla \psi d x d s
\end{aligned}
$$

From Lemma 3.1 we have

$$
\begin{aligned}
\left(|\nabla(u+s \psi)|^{p-2} \nabla(u+s \psi)-|\nabla u|^{p-2} \nabla u\right) & \nabla(s \psi) \\
& \geq c_{p}(|\nabla(u+s \psi)|+|\nabla u|)^{p-2}|\nabla(s \psi)|^{2}
\end{aligned}
$$

This shows that $\|\nabla(u+\psi)\|_{p}-\|\nabla u\|_{p} \geq 0$. If the equality holds then

$$
(|\nabla(u+s \psi)|+|\nabla u|)^{p-2}|\nabla \psi|^{2}=0 \text { a.e. } x \in \Omega, s \in(0,1) .
$$

This implies that for $|\nabla u|=0$ we have $|\nabla \psi|=0$ and for $|\nabla u| \neq 0$ as well. Thus $\psi=0$, which contradicts our assumptions. This completes the proof of the theorem.

Theorem 5.2. Let $f \not \equiv 0$, (1.2) holds, u_{2} be a solution to (4.2) such that (5.8), (5.9) hold (see Figure 5.3, u_{2} corresponds to μ_{2}). Then u_{2} is a saddle point for the energy (2.8).
Proof. The statement of the theorem is a consequence of Lemmas 5.1 and 5.2.

Remark 5.3. The same situation occurs if the graph of a is not crossing the graph of y and touching it (see Figure 5.4).

Figure 5.4

Theorem 5.3. Let u^{*} be a solution of the problem (4.2) corresponding to the solutions μ^{*} of the equation (4.4). Let

$$
\begin{equation*}
y(s)=\|\nabla \varphi\|_{p}^{p-1} s^{\frac{1}{p}-1} \tag{5.15}
\end{equation*}
$$

then one has

$$
E\left(u^{*}\right)=\frac{1}{p} \int_{0}^{\mu^{*}}(a(s)-y(s)) d s
$$

Proof. From (2.8) one has

$$
E\left(u^{*}\right)=\frac{1}{p} \int_{0}^{\left\|\nabla u^{*}\right\|_{p}^{p}} a(s) d s-\left\langle f, u^{*}\right\rangle
$$

Due to the definition of u^{*} (see (5.3)) we get

$$
\frac{1}{p} \int_{0}^{\mu^{*}} y(s) d s=\frac{1}{p}\|\nabla \varphi\|_{p}^{p-1} \int_{0}^{\left\|\nabla u^{*}\right\|_{p}^{p}} s^{\frac{1}{p}-1} d s
$$

$$
=\|\nabla \varphi\|_{p}^{p-1}\left\|\nabla u^{*}\right\|_{p}=\left\langle f, u^{*}\right\rangle
$$

(see (5.6)). Hence, the result follows.

Corollary 5.1. Let u_{1}, u_{2} be two solutions of the problem (4.2) corresponding to the solutions $\mu_{1}<\mu_{2}$ of the equation (4.4) respectively. Then one has

$$
\begin{equation*}
E\left(u_{1}\right)-E\left(u_{2}\right)=-\frac{1}{p} \int_{\mu_{1}}^{\mu_{2}}(a(s)-y(s)) d s=:-\frac{1}{p} A_{12} \tag{5.16}
\end{equation*}
$$

and

$$
\begin{aligned}
& A_{12}>0 \Rightarrow E\left(u_{1}\right)<E\left(u_{2}\right) \\
& A_{12}<0 \Rightarrow E\left(u_{2}\right)<E\left(u_{1}\right) \\
& A_{12}=0 \Rightarrow E\left(u_{1}\right)=E\left(u_{2}\right),
\end{aligned}
$$

Corollary 5.2. Let u_{1} and u_{2} be two solutions of the problem (4.2) corresponding to the solutions $\mu_{1}<\mu_{2}$ of the equation (4.4). If we assume that

$$
\begin{gather*}
a(\mu)>y(\mu) \quad \text { for } \quad \mu_{1}<\mu<\mu_{2} \tag{5.17}\\
(\text { resp. } \quad a(\mu)<y(\mu), \quad a(\mu)=y(\mu)) \tag{5.18}
\end{gather*}
$$

then

$$
E\left(u_{1}\right)<E\left(u_{2}\right) \quad\left(\text { resp. } E\left(u_{1}\right)>E\left(u_{2}\right), E\left(u_{1}\right)=E\left(u_{2}\right)\right) .
$$

Corollary 5.3. The absolute minimum of E corresponds to a point μ_{∞} such that

$$
\begin{aligned}
& \int_{\mu_{\infty}}^{\mu}(a(s)-y(s)) d s \geq 0, \quad \forall \mu>\mu_{\infty}, \quad \mu \text { corresponding to a stationary point, } \\
& \int_{\mu}^{\mu_{\infty}}(a(s)-y(s)) d s \leq 0, \quad \forall \mu<\mu_{\infty}, \quad \mu \text { corresponding to a stationary point. }
\end{aligned}
$$

Therefore, due to Theorem 5.3 and its corollaries we can compare the energy at any two different stationary points and we can find a global minimizer of the energy $E(u)$.

Example 5.1. Let $u_{i}, i=1,2,3$ be solutions of the problem (4.2) corresponding to the solutions $\mu_{i}, i=1,2,3$ of the equation (4.4) such as on Figure 5.5. Then by

Figure 5.5. Several solutions

Corollary 5.2 we get that

$$
E\left(u_{1}\right)<E\left(u_{2}\right), \quad E\left(u_{3}\right)<E\left(u_{2}\right) .
$$

It is left to compare the energy at the points u_{1} and u_{3}. By Corollary 5.1 we see that

$$
E\left(u_{1}\right)-E\left(u_{3}\right)=-\frac{1}{p} A_{13}=-\frac{1}{p}\left(\left|A_{12}\right|-\left|A_{23}\right|\right)<0,
$$

where

$$
\begin{equation*}
A_{i j}:=\int_{\mu_{i}}^{\mu_{j}}(a(s)-y(s)) d s, \quad i=1,2, j=2,3 . \tag{5.19}
\end{equation*}
$$

Hence, u_{1} is a global minimizer of the energy $E(u)$ defined by (2.8).

Remark 5.4. We label the solutions to (4.4) as $\mu_{1}<\mu_{2}<\ldots<\mu_{N}$ with the convention that we choose only one point μ_{i} in the interval $\left(\underline{\mu}_{i}, \bar{\mu}_{i}\right)$ when the solutions consist of one interval $\left(\underline{\mu}_{i}, \bar{\mu}_{i}\right)$ (see Figure 5.6). We denote by $\{u\}_{1},\{u\}_{2}, \ldots\{u\}_{N}$ the sets of solutions of (4.2), corresponding to $\mu_{1}<\mu_{2}<\ldots<\mu_{N}$ solutions of (4.4). Then due to our convention we see that $\{u\}_{i}$ can consist of one point or infinitely many points. By Corollary 5.2 for arbitrary $u \in\{u\}_{i}, i \in I:=\{1, \ldots, N\}$

Figure 5.6. Infinitely many solutions
it holds that $E(u)=E_{i}, i \in I$. Therefore in the case when the stationary problem (4.2) is having infinitely many solutions, the energy (2.8) can have a unique, several or infinitely many global minimizers.

6. Asymptotic Behaviour

We start with a lemma:
Lemma 6.1. Let u be a weak solution to (1.1) and suppose that (2.1) holds. There exists a sequence t_{k} such that

$$
u_{k}=u\left(\cdot, t_{k}\right) \rightarrow u_{\infty} \text { in } W_{0}^{1, p}(\Omega) \text { as } t_{k} \rightarrow+\infty
$$

where u_{∞} is a stationary point.
Proof. Taking $v=u_{t}$ in (2.3) we obtain

$$
\begin{gathered}
a\left(\left||\nabla u|_{p}^{p}\right) \int_{\Omega}|\nabla u|^{p-2} \nabla u \nabla u_{t} d x-\left\langle f, u_{t}\right\rangle=-\left|\partial_{t} u\right|_{2}^{2}\right. \\
\partial_{t} E(u)=-\left|\partial_{t} u\right|_{2}^{2} \leq 0
\end{gathered}
$$

Hence, $E(u(t)) \leq E\left(u_{0}\right)$ and $E(u(t))$ decreases with the time. Remark that from (4.13) we have that $\|\nabla u\|_{p}^{p}$ is uniformly bounded in t. Since E is also bounded from below (see (4.14)), then it follows

$$
\begin{equation*}
E(u(t)) \rightarrow E_{\infty} \tag{6.1}
\end{equation*}
$$

(E_{∞} is some constant). From above we get

$$
\begin{gathered}
E(u(t))-E(u(s))=-\int_{s}^{t}\left|\partial_{t} u\right|_{2}^{2}(\xi) d \xi \\
\int_{s}^{\infty}\left|\partial_{t} u\right|_{2}^{2}(\xi) d \xi<+\infty
\end{gathered}
$$

which implies for a sequence t_{k}

$$
\partial_{t} u\left(\cdot, t_{k}\right) \rightarrow 0 \text { in } L^{2}(\Omega) .
$$

From the equation in (2.3) - with $u_{k}=u\left(\cdot, t_{k}\right)$ - we obtain

$$
\begin{equation*}
\int_{\Omega} \partial_{t} u\left(\cdot, t_{k}\right) u_{k} d x+a\left(\left\|\nabla u_{k}\right\|_{p}^{p}\right) \int_{\Omega}\left|\nabla u_{k}\right|^{p} d x=\left\langle f, u_{k}\right\rangle \tag{6.2}
\end{equation*}
$$

We can show as in (2.6) that

$$
|u(t)|_{2}^{2} \leq C
$$

Up to a subsequence it holds that

$$
\begin{gathered}
u\left(\cdot, t_{k}\right)=u_{k} \rightharpoonup u_{\infty} \text { in } W_{0}^{1, p}(\Omega), \\
u_{k} \rightharpoonup u_{\infty} \text { in } L^{2}(\Omega), \\
\left\|\nabla u_{k}\right\|_{p}^{p} \rightarrow l_{\infty} \\
g_{k}=\left|\nabla u_{k}\right|^{p-2} \nabla u_{k} \rightharpoonup g_{\infty} \text { in }\left(L^{q}(\Omega)\right)^{n} .
\end{gathered}
$$

Passing to the limit in (6.2) we see

$$
\begin{equation*}
a\left(l_{\infty}\right) l_{\infty}=\left\langle f, u_{\infty}\right\rangle \tag{6.3}
\end{equation*}
$$

Next taking $v \in W_{0}^{1, p}(\Omega) \cap L^{2}(\Omega)$ we get

$$
\int_{\Omega} \partial_{t} u\left(\cdot, t_{k}\right) v d x+a\left(\left\|\nabla u_{k}\right\|_{p}^{p}\right) \int_{\Omega}\left|\nabla u_{k}\right|^{p-2} \nabla u_{k} \nabla v d x=\langle f, v\rangle
$$

Passing to the limit we derive

$$
\begin{equation*}
a\left(l_{\infty}\right) \int_{\Omega} g_{\infty} \nabla v d x=\langle f, v\rangle \tag{6.4}
\end{equation*}
$$

Since $a>0$ combining (6.3), (6.4) we can conclude that

$$
l_{\infty}=\int_{\Omega} g_{\infty} \nabla u_{\infty} d x
$$

We claim that $u_{k} \rightarrow u_{\infty}$ strongly in $W_{0}^{1, p}(\Omega)$. Indeed, for $p \geq 2$ there exists a constant $C_{p}>0$ such that

$$
\begin{aligned}
\chi_{k}=\int_{\Omega}\left(\left|\nabla u_{k}\right|^{p-2} \nabla u_{k}-\left|\nabla u_{\infty}\right|^{p-2} \nabla u_{\infty}\right) \nabla\left(u_{k}-u_{\infty}\right) d x & \\
& \geq C_{p} \int_{\Omega}\left|\nabla\left(u_{k}-u_{\infty}\right)\right|^{p} d x
\end{aligned}
$$

Developing

$$
\begin{aligned}
\chi_{k}=\int_{\Omega}\left|\nabla u_{k}\right|^{p} d x & -\int_{\Omega} g_{k} \nabla u_{\infty} d x-\int_{\Omega}\left|\nabla u_{\infty}\right|^{p-2} \nabla u_{\infty} \nabla u_{k} d x+\int_{\Omega}\left|\nabla u_{\infty}\right|^{p} d x \\
& \rightarrow l_{\infty}-\int_{\Omega} g_{\infty} \nabla u_{\infty} d x-\int_{\Omega}\left|\nabla u_{\infty}\right|^{p} d x+\int_{\Omega}\left|\nabla u_{\infty}\right|^{p} d x=0
\end{aligned}
$$

This implies

$$
l_{\infty}=\lim _{k}\left\|\nabla u_{k}\right\|_{p}^{p}=\left\|\nabla u_{\infty}\right\|_{p}^{p}, g_{\infty}=\left|\nabla u_{\infty}\right|^{p-2} \nabla u_{\infty}
$$

Hence u_{∞} is a stationary point.
To show that $u_{k} \rightarrow u_{\infty}$ in $W_{0}^{1, p}(\Omega)$ strongly in case $1<p<2$ it is enough to notice that by Lemma 3.1 one has

$$
c_{p} \int_{\Omega}\left|\nabla\left(u_{k}-u_{\infty}\right)\right|^{2}\left(\left|\nabla u_{k}\right|+\left|\nabla u_{\infty}\right|\right)^{p-2} d x \leq \chi_{k} \rightarrow 0
$$

Writing

$$
\begin{aligned}
\int_{\Omega} \mid \nabla\left(u_{k}\right. & \left.-u_{\infty}\right)\left.\right|^{p} d x \\
& =\int_{\Omega}\left|\nabla\left(u_{k}-u_{\infty}\right)\right|^{p}\left(\left|\nabla u_{k}\right|+\left|\nabla u_{\infty}\right|\right)^{\frac{(p-2) p}{2}}\left(\left|\nabla u_{k}\right|+\left|\nabla u_{\infty}\right|\right)^{\frac{(2-p) p}{2}} d x
\end{aligned}
$$

and using Hölder's inequality with $\frac{2}{p}, \frac{2}{2-p}$ it comes

$$
\begin{aligned}
& \int_{\Omega}\left|\nabla\left(u_{k}-u_{\infty}\right)\right|^{p} d x \\
& \leq\left(\int_{\Omega}\left|\nabla\left(u_{k}-u_{\infty}\right)\right|^{2}\left(\left|\nabla u_{k}\right|+\left|\nabla u_{\infty}\right|\right)^{p-2} d x\right)^{\frac{p}{2}}\left(\int_{\Omega}\left(\left|\nabla u_{k}\right|+\left|\nabla u_{\infty}\right|\right)^{p} d x\right)^{\frac{2-p}{2}} \\
& \leq C \chi_{k} \rightarrow 0
\end{aligned}
$$

This completes the proof of the lemma.

Corollary 6.1. Suppose that E admits a unique global minimizer $u_{\infty}\left(u_{\infty}\right.$ is also a solution to the problem (4.2)) and that the initial value u_{0} of (2.3) satisfies $E\left(u_{0}\right)<$ $E\left(u_{i}\right)$ for any stationary point $u_{i} \neq u_{\infty}$. Then

$$
u(\cdot, t) \rightarrow u_{\infty} \text { in } W_{0}^{1, p}(\Omega) \text { as } t \rightarrow+\infty
$$

Proof. Recall that we have

$$
E(u) \leq E\left(u_{0}\right)<E\left(u_{i}\right), u_{i} \neq u_{\infty}
$$

Then by Lemma 6.1 and (6.1) we get

$$
E(u(t)) \rightarrow E\left(u_{\infty}\right)
$$

where u_{∞} is the global minimizer of E and a solution of the problem (4.2). Due to the fact that $u(t)$ is uniformly bounded in $W_{0}^{1, p}(\Omega)$ for some subsequence we have

$$
u\left(\cdot, t_{k}\right) \rightharpoonup v_{\infty} \text { in } W_{0}^{1, p}(\Omega)
$$

Then by the weak lower semicontinuity of E (see the proof of Theorem 4.2) we obtain

$$
E\left(u_{\infty}\right)=\lim _{t_{k} \rightarrow \infty} E\left(u\left(t_{k}\right)\right) \geq E\left(v_{\infty}\right)
$$

Since u_{∞} is a unique global minimizer of E, then it holds that $E\left(u_{\infty}\right)<E\left(v_{\infty}\right)$ for $u_{\infty} \neq v_{\infty}$, hence $u_{\infty}=v_{\infty}$. This holds for every subsequence and the convergence is in fact strong (see Lemma 6.1), therefore the result follows.

Remark 6.1. In the case where $a\left(s^{p}\right) s^{p-1}$ is increasing (see (3.5) and Remark 4.1) the problem has a single stationary point and for any initial data $u(\cdot, t)$ converges to this stationary point. We refer to [9] for more asymptotic analysis.

Acknowledgements: The research leading to these results has received funding from Lithuanian-Swiss cooperation programme to reduce economic and social disparities within the enlarged European Union under project agreement No CH3 -SMM-01/0. The research of the first author was supported also by the Swiss National Science Foundation under the contracts \# 200021-129807/1 and 200021146620. The research of the second author was supported by the European Initial Training Network FIRST under the grant agreement \# PITN-GA-2009-238702. Finally the paper was completed during a visit of the first author at the Newton Institute in Cambridge. The nice atmosphere of the institute is greatly acknowledged.

References

[1] I. Andrei, Existence theorems for some classes of boundary value problems involving the $p(x)$-Laplacian. Nonlinear Anal. Model. Control 13, 2008. - no. 2, P. 145-158.
[2] S. Antontsev, S. Shmarev, Anisotropic parabolic equations with variable nonlinearity. Publ. Mat., 53, 2009. - P. 355-399.
[3] X. Cabré, M. Sanchón, Semi-stable and extremal solutions of reaction equations involving the p-Laplacian. Commun. Pure Appl. Anal. 6, 2007. - no. 1, P. 43-67.
[4] N.-H. Chang, M. Chipot, Nonlinear nonlocal evolution problems. RACSAM Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. 97, 2003. - no. 3, P. 423-445.
[5] M. Chipot, Elements of Nonlinear Analysis, Birkhäuser Advanced Text, 2000.
[6] M. Chipot, Elliptic Equations: An Introductory Course, Birkhäuser Advanced Text, 2009.
[7] M. Chipot, B. Lovat, On the asymptotic behaviour of some nonlocal problems. Positivity 3, 1999. - no. 1, P. 6581.
[8] M. Chipot, L. Molinet, Asymptotic behaviour of some nonlocal diffusion problems. Appl. Anal. 80, 2001. - no. 3-4, P. 279-315.
[9] M. Chipot, T Savitska, in preparation.
[10] M. Chipot, M. Siegwart, On the asymptotic behaviour of some nonlocal mixed boundary value problems. Nonlinear analysis and applications: to V. Lakshmikantham on his 80th birthday. Vol. 1, 2, 431-449, Kluwer Acad. Publ., Dordrecht, 2003.
[11] M. Chipot, V. Valente, G.Vergara Caffarelli, Remarks on a Nonlocal Problem Involving the Dirichlet Energy Bend. Sem. Mat. Univ. Padova 110, 2003. - P. 199-220.
[12] M. Chipot, S. Zheng, Asymptotic behaviour of solutions to nonlinear parabolic equations with nonlocal terms. Asymptot. Anal. 45, 2005 - no. 3-4, P. 301-312.
[13] Francisco Julio S. A. Corrêa, Rúbia G. Nascimento, Existence of solutions to nonlocal elliptic equations with discontinuous terms. (English summary) Electron. J. Differential Equations, 2012. - No. 26, 14 pp.
[14] Francisco Julio S. A. Corrêa, Rúbia G. Nascimento, On the existence of solutions of a nonlocal elliptic equation with a p-Kirchhoff-type term. (English summary) Int. J. Math. Math. Sci., 2008. - Art. ID 364085, 25 pp.
[15] L.C. Evans, Partial differential equations. Graduate Studies in Mathematics 19, AMS, 1998.
[16] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod-Gauthier-Villars, Paris, 1969.

Institute of Mathematics, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland

E-mail address: m.m.chipot@math.uzh.ch
E-mail address: tetiana.savitska@math.uzh.ch

