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Abstract. We are studying a class of nonlinear nonlocal diffusion problems

associated with a p-Laplace-type operator, where a nonlocal quantity is present
in the diffusion coefficient. We address the issues of existence and uniqueness

for the parabolic setting. Then we study the asymptotic behaviour of the so-

lution for large time. For this purpose we introduce and investigate in details
the associated stationary problem. Moreover, since the solutions of the sta-

tionary problem are also critical points of some energy functional, we make a

classification of its critical points.

1. Introduction

We consider the problem of finding u = u(x, t) weak solution to

(1.1)


ut −∇ · a(‖∇u‖pp)|∇u|p−2∇u = f in Ω× (0, T ),

u = 0 on Γ× (0, T ),

u(·, 0) = u0 in Ω,

where Ω is a bounded open set of Rn, n ≥ 1 with Lipschitz boundary Γ. We assume

(1.2) a is continuous, a(ξ) > 0, ∀ξ ∈ R.

By | · |p we denote the Lp(Ω)-norm, 1 < p < +∞ and we assume

(1.3) f = f(x) ∈W−1,q(Ω) :=
(
W 1,p

0 (Ω
)∗
, u0 ∈W 1,p

0 (Ω) ∩ L2(Ω),
1

p
+

1

q
= 1.

For notions on Sobolev spaces we refer to [5], [15], [16].
During the last decades many mathematicians have been studying problems as-

sociated with the p-Laplace operator, which appears in a variety of physical fields
(see for instance [1], [2]). In particular a lot of attention has been devoted to nonlo-
cal problems. One of the justification of such models lies in the fact that in reality
the measurements are not made pointwise – but through some local average. Some
interesting features of nonlocal problems and more motivation are described in [4],
[5], [7], [8], [10] and in the references therein.

The elliptic problems with our type of nonlocality have been studied in [13], [14]
and the stability issues for a local case were considered in [3]. Furthermore, the
problem (1.1) was examined for p = 2 in [11] and [12].

We now describe the results obtained in this paper. In sections 2 and 3 we study
the existence and uniqueness of a weak solution of problem (1.1). Next in section 4
we investigate the corresponding stationary problem and show that depending on
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the function a it can have from a unique up to a continuum of solutions. In par-
ticular, since stationary solutions are also critical points of some energy functional
(see (2.8)) we prove the existence of its global minimizer.

The main results of this paper are contained in section 5, where we give the
classification of the critical points of the energy functional define by (2.8), assuming
that the function a satisfies just (1.2) and 1 < p < +∞. We also present an
algorithm for finding a global minimizer or global minimizers (it may be not unique)
of the energy (2.8).

Finally in the last section we study the asymptotic behaviour of the solution
of problem (1.1) as time goes to infinity. We prove that the solution of problem
(1.1) converges to a stationary solution, which is a global minimizer of (2.8), in
case of uniqueness of such a stationary point. Moreover, we also present some local
stability result for the case of uniqueness of a global minimizer.

2. Existence

Theorem 2.1. Let the assumptions above hold and assume that there exist two
constants λ,Λ such that

(2.1) 0 < λ ≤ a(ξ) ≤ Λ, ∀ξ ∈ R

and that

(2.2) f ∈ Lq(Ω).

Then, for any T > 0 there exists u solution to

(2.3)



u ∈ Lp(0, T ;W 1,p
0 (Ω)) ∩ C([0, T ];L2(Ω)),

ut ∈ Lq(0, T ;W−1,q(Ω)),

u(·, 0) = u0,

〈ut, v〉+

∫
Ω

a(‖∇u‖pp)|∇u|p−2∇u∇vdx = 〈f, v〉

∀v ∈W 1,p
0 (Ω) in D′(0, T ),

where 〈·, ·〉 denotes the pairing between Lq(Ω) and Lp(Ω), u(t) = u(·, t), D′(0, T ) is
the space of distributions on (0, T ).

Proof . Consider λ1, . . . , λn, . . . a basis in W 1,p
0 (Ω)∩L2(Ω) smooth and that without

loss of generality, we will suppose orthonormal in L2(Ω). If u0 =
∑
i

βiλi consider

un(t) =

n∑
i=1

γi(t)λi
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solution to

(2.4)



∫
Ω

u′nvdx+ a(‖∇un‖pp)
∫

Ω

|∇un|p−2∇un∇vdx = 〈f, v〉

∀v ∈ [λ1, . . . , λn],

un(0) =

n∑
i=1

βiλi,

where [λ1, . . . , λn] is the space spanned by λ1, . . . , λn. Taking v = λj and using
the fact that the λi’s are orthonormal we see that (2.4) is equivalent to the Cauchy
problem

(2.5)



γ′j(t) = −a
(∥∥∥ n∑

i=1

γi(t)∇λi
∥∥∥p
p

)∫
Ω

∣∣∣ n∑
i=1

γi(t)∇λi
∣∣∣p−2 n∑

i=1

γi(t)∇λi∇λjdx

+〈f, λj〉, ∀j = 1, . . . n,

γj(0) = βj , ∀j = 1, . . . n.

Since the right hand side of the first equation above is continuous in γi this Cauchy
problem possesses a solution. Moreover, using the formulation (2.4) and taking
v = un we see that∫

Ω

u′nundx+ a(‖∇un‖pp)
∫

Ω

|∇un|pdx = 〈f, un〉,

which implies using (2.1), Poincaré’s and Young’s inequalities

1

2

d

dt
|un|22 + λ

∫
Ω

|∇un|pdx ≤ C|f |q‖∇un‖p ≤ ε‖∇un‖pp + Cε|f |qq.

Choosing for instance ε =
λ

2
we arrive to

1

2

d

dt
|un|22 +

λ

2

∫
Ω

|∇un|pdx ≤ Cε|f |qq.

After an integration in t this leads to

(2.6)
1

2
|un(t)|22 +

λ

2

∫ t

0

∫
Ω

|∇un|pdxdt ≤ Cε
∫ t

0

|f |qqdt+
1

2
|un(0)|22.

In particular we see that |un(t)|2 remains bounded in time and thus the solution
to (2.4) or (2.5) is global in time (| · |2 is just a norm in [λ1, . . . , λn], where all the
norms are equivalent).

Remark that ‖∇un‖p remains bounded in time uniformly. To see that taking
v = u′n in (2.4) we get

(2.7)

∫
Ω

u′2n dx+ a(‖∇un‖pp)
∫

Ω

|∇un|p−2∇un∇u′ndx = 〈f, u′n〉.

Introducing

(2.8) E(u) =
1

p
A

(∫
Ω

|∇u|pdx
)
− 〈f, u〉
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with

(2.9) A(z) =

∫ z

0

a(s)ds,

we see that (2.7) can be written

(2.10) ∂tE(un) = −
∫

Ω

u′2n dx ≤ 0.

Thus E(un) decreases in time and is bounded from above for every t. The bound
for ‖∇un‖p follows then from the estimate

(2.11) E(un) ≥ λ

p
‖∇un‖pp − C|f |q‖∇un‖p.

From (2.6), (2.11) we deduce that

un is bounded in Lp(0, T ;W 1,p
0 (Ω)) ∩ L∞(0, T ;L2(Ω) ∩W 1,p

0 (Ω)).

Furthermore, from the first equation in (2.4) and Hölder’s inequality we derive easily∫
Ω

u′nvdx ≤ Λ

(∫
Ω

|∇un|(p−1)qdx

) 1
q
(∫

Ω

|∇v|pdx
) 1

p

+ C|f |q
(∫

Ω

|∇v|pdx
) 1

p

,

i.e.
|u′n|−1,q ≤ Λ‖∇un‖p−1

p + C|f |q,
and

u′n is bounded in Lq(0, T ;W−1,q(Ω)) ⊂ Lq(0, T ;W−1,q(Ω) + Lp(Ω))

independently of n, W−1,q(Ω) + Lp(Ω) denotes a dual space to W 1,p
0 (Ω) ∩ Lq(Ω).

We have that
W 1,p

0 (Ω) ⊂ Lp(Ω) ⊂W−1,q(Ω) + Lp(Ω),

where the first embedding is compact (see [15]). Hence by Aubin-Lions lemma the
embedding of

W := {v ∈ Lp(0, T ;W 1,p
0 (Ω)), v′ ∈ Lq(0, T ;W−1,q(Ω))}

in Lp(0, T ;Lp(Ω)) is compact. Thus we can find a subsequence of n such that

un ⇀ u in Lp(0, T ;W 1,p
0 (Ω)),

un → u in Lp(0, T ;Lp(Ω)),

1

a(‖∇un‖pp)
⇀ a∞ in L∞(0, T ) - weak*,

un(T ) ⇀ u(T ) in L2(Ω),

∇ · |∇un|p−2∇un ⇀ χ in Lq(0, T ;W−1,q(Ω)).

In fact,

(2.12) u′n ∈ L2(0, T ;L2(Ω)) = L2(QT ), QT = (0, T )× Ω.

Indeed, integrating (2.10) from 0 to T we derive

(2.13)

∫ T

0

∫
Ω

|u′n|2dx = E(un(0))− E(un(T )).

Using the Young inequality in (2.11) we get

E(u) ≥ λ

p
‖∇u‖pp −

C|f |qq
λ

q
p q
− λ

p
‖∇u‖pp = −1

q

(
C|f |q
λ

1
p

)q
,
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hence E(un) is bounded from below independently of n. Thus from (2.13) we obtain
(2.12).

The fact that u ∈ C([0, T ], L2(Ω)) follows by the standard argument (see [16]).
By rescaling the time in the following way, setting

(2.14) α(t) =

∫ t

0

a(‖∇u(·, s)‖pp)ds,

we reduce solving the problem (1.1) to solving the problem (see [11]):

(2.15)



wt −∇ · |∇w|p−2∇w =
f

a(‖∇w‖pp)
in Ω× (0, α(T )),

w = 0 on Γ× (0, α(T )),

w(·, 0) = u0 in Ω,

where

w(x, α(t)) = u(x, t).

Replacing in (2.14) u by un, we can also write the first equation of (2.4) as

(2.16)

∫
Ω

u′nvdx+

∫
Ω

|∇un|p−2∇un∇vdx =
〈f, v〉

a(‖∇un‖pp)
.

Now passing to the limit in (2.16) one has in the distributional sense in QT

(2.17) ut − χ = a∞f

(therefore ut ∈ Lq(0, T ;W−1,q(Ω))).
Taking v = un in (2.16) we obtain

1

2

d

dt
|un|22 +

∫
Ω

|∇un|pdx =
〈f, un〉

a(‖∇un‖pp)
and by integration on (0, T ) we get

(2.18)

∫
QT

|∇un|pdxdt =

∫ T

0

〈f, un〉
a(‖∇un‖pp)

dt+
|un(0)|22

2
− |un(T )|22

2
.

Since un → u in Lp(QT ),
f

a(‖∇un‖pp)
⇀ a∞f in Lq(QT ) and using the fact that

lim
n→∞

|un(T )|22 ≥ |u(T )|22 from (2.18) we get

(2.19) lim
n→∞

∫
QT

|∇un|pdxdt ≤
∫ T

0

a∞〈f, u〉dt+
|u0|22

2
− |u(T )|22

2
.

Thus from the inequality∫
QT

(|∇un|p−2∇un − |∇v|p−2∇v) · ∇(un − v)dxdt ≥ 0

we derive by taking the lim for any v ∈ Lp(0, T ;W 1,p
0 (Ω))

(2.20)

∫ T

0

a∞〈f, u〉dt+
|u0|22

2
− |u(T )|22

2
+

∫ T

0

〈χ, v〉dt

−
∫
QT

|∇v|p−2∇v · ∇(u− v)dxdt ≥ 0.
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By integrating (2.17) after having multiplied by u we get

1

2

d

dt
|u|22 − 〈χ, u〉 = a∞〈f, u〉

and integrating over (0, T ) we obtain

(2.21) −
∫ T

0

〈χ, u〉dt =

∫ T

0

a∞〈f, u〉dt+
|u0|22

2
− |u(T )|22

2
.

Thus combining (2.20), (2.21) we have∫ T

0

〈−χ+∇ · |∇v|p−2∇v, u− v〉dt ≥ 0 ∀v ∈ Lp(0, T ;W 1,p
0 (Ω)).

Taking v = u− δw, δ > 0, we see∫ T

0

〈−χ+∇ · |∇(u− δw)|p−2∇(u− δw), w〉dt ≥ 0 ∀w ∈ Lp(0, T ;W 1,p
0 (Ω)).

Letting δ → 0 we get easily∫ T

0

〈−χ+∇ · |∇u|p−2∇u,w〉dt = 0 ∀w ∈ Lp(0, T ;W 1,p
0 (Ω))

and the equation (2.17) reads

ut −∇ · |∇u|p−2∇u = a∞f.

Going back to (2.19), (2.21) we derive

lim
n→∞

∫
QT

|∇un|pdxdt ≤
∫
QT

|∇u|pdxdt
(
≤ lim
n→∞

∫
QT

|∇un|pdxdt
)

and ∇un → ∇u in Lp(QT ) strongly. In other words∫ T

0

∫
Ω

|∇(un − u)|pdxdt→ 0.

Up to a subsequence we have∫
Ω

|∇(un − u)|ppdxdt→ 0 a.e. t,

i.e. this implies

‖∇un‖pp → ‖∇u‖pp a.e. t

and then
1

a(‖∇un‖pp)
→ 1

a(‖∇u‖pp)
a.e. t, since the sequence is bounded this con-

vergence take also place in any Lp(0, T ) and a∞ =
1

a(‖∇u‖pp)
, which completes the

proof. �

3. Uniqueness

For the reader convenience we start this section by formulating some auxiliary
lemmas, used throughout the paper.
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Lemma 3.1. (see [6]) Let 1 < p < +∞. There exist positive constants cp, Cp such
that for every ξ, η ∈ Rn

cpNp(ξ, η) ≤ (|ξ|p−2ξ − |η|p−2η) · (ξ − η) ≤ CpNp(ξ, η),

where

Np(ξ, η) = {|ξ|+ |η|}p−2|ξ − η|2,

a dot denotes the Euclidean product in Rn.

Lemma 3.2. Let a, b be non negative numbers. Then

|ap − bp| ≤ p|a− b|{a+ b}p−1.

Proof . We can suppose a > b. Then

ap − bp =

∫ 1

0

d

dt
|b+ t(a− b)|pdt = p

∫ 1

0

|b+ t(a− b)|p−1 b+ t(a− b)
|b+ t(a− b)|

(a− b)dt

≤ p(a− b)
∫ 1

0

|ta+ (1− t)b|p−1dt ≤ p(a− b)
∫ 1

0

{|a|+ |b|}p−1dt

= p|a− b|{a+ b}p−1.

�

Theorem 3.1. If in addition to the assumptions of Theorem 2.1 for some L it
holds that

(3.1) |a(ξ)− a(ξ′)| ≤ L|ξ − ξ′| ∀ξ, ξ′ ∈ R

and

f ∈ L2(Ω),

then the solution to (2.3) is unique.

Proof . Let u1, u2 be two weak solutions to

(3.2)


u ∈ Lp(0, T ;W 1,p

0 (Ω)), ut ∈ Lq(0, T ;W−1,q
0 (Ω)),

ut −∇ · |∇u|p−2∇u =
f

a(‖∇u‖pp)
.

By subtraction we obtain

(u1 − u2)t −∇ ·
(
|∇u1|p−2∇u1 − |∇u2|p−2∇u2

)
=

(
1

a(‖∇u1‖pp)
− 1

a(‖∇u2‖pp)

)
f.

Multiplying by u1 − u2, integrating over Ω and using (2.1), (3.1) we get

(3.3)
1

2

d

dt
|u1 − u2|22 +

∫
Ω

(
|∇u1|p−2∇u1 − |∇u2|p−2∇u2

)
· ∇(u1 − u2)dx

≤ L

λ2

∣∣‖∇u1‖pp − ‖∇u2‖pp
∣∣ ∣∣∣∣∫

Ω

f(u1 − u2)dx

∣∣∣∣
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From Lemma 3.2 and the Hölder inequality we derive

(3.4)
∣∣‖∇u1‖pp − ‖∇u2‖pp

∣∣ =
∣∣∣ ∫

Ω

(|∇u1|p − |∇u2|p)dx
∣∣∣ ≤ ∫

Ω

∣∣∣|∇u1|p − |∇u2|p
∣∣∣dx

≤ p
∫

Ω

(
|∇u1|+ |∇u2|

)p−1|∇(u1 − u2)|dx

= p

∫
Ω

(
|∇u1|+ |∇u2|

) p
2
(
|∇u1|+ |∇u2|

) p
2−1|∇(u1 − u2)|dx

≤ p
(∫

Ω

(
|∇u1|+ |∇u2|

)p
dx

) 1
2
(∫

Ω

(
|∇u1|+ |∇u2|

)p−2|∇(u1 − u2)|2dx
) 1

2

.

From Lemma 3.1 we obtain∫
Ω

(|∇u1|p−2∇u1 − |∇u2|p−2∇u2) · ∇(u1 − u2)dx

≥ cp
∫

Ω

(
|∇u1|+ |∇u2|

)p−2|∇(u1 − u2)|2dx.

Combining (3.3) and the two inequalities above leads to

1

2

d

dt
|u1 − u2|22 + cp

∫
Ω

(
|∇u1|+ |∇u2|

)p−2|∇(u1 − u2)|2dx

≤ Lp

λ2

∣∣∣∣∫
Ω

f(u1 − u2)dx

∣∣∣∣ (∫
Ω

(
|∇u1|+ |∇u2|

)p
dx

) 1
2

×
(∫

Ω

(
|∇u1|+ |∇u2|

)p−2|∇(u1 − u2)|2dx
) 1

2

≤ cp
2

∫
Ω

(
|∇u1|+ |∇u2|

)p−2|∇(u1 − u2)|2dx+ C(t)

∫
Ω

|u1 − u2|2dx.

(In the last inequality above we use Young’s inequality. Note that C ∈ L1(0, T )).
Therefore, we have

1

2

d

dt
|u1 − u2|22 ≤ C(t)

∫
Ω

|u1 − u2|2dx.

The uniqueness follows then from Gronwall’s inequality.
�

Theorem 3.2. Let the assumptions (1.2), (1.3) hold and if in addition the function
a is such that

(3.5) s 7→ a(sp)sp−1 is nondeacreasing,

then the solution to (2.3) is unique.

Proof . Let u1, u2 be two solutions to (2.3), then taking v = u1 − u2 and by
subtraction one has

(3.6)
1

2

d

dt
|u1 − u2|22 +

∫
Ω

(
a(‖∇u1‖pp)|∇u1|p−2∇u1

− a(‖∇u2‖pp)|∇u2|p−2∇u2

)
∇(u1 − u2)dx = 0.
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By expanding the integral term I one gets

I =

∫
Ω

(
a(‖∇u1‖pp)|∇u1|p − a(‖∇u1‖)|∇u1|p−2∇u1∇u2

+ a(‖∇u2‖pp)|∇u2|p − a(‖∇u2‖)|∇u2|p−2∇u2∇u1

)
dx.

Recall that a(‖∇ui‖pp), i = 1, 2 are independent of x and can be pulled out of the
integrals. Using Hölder’s inequality we see∫

Ω

|∇u1|p−2∇u1∇u2dx ≤ ‖∇u2‖p‖∇u1‖p−1
p ,∫

Ω

|∇u2|p−2∇u2∇u1dx ≤ ‖∇u1‖p‖∇u2‖p−1
p .

Then using (3.5) it comes

I ≥ a(‖∇u1‖pp)
(
‖∇u1‖pp − ‖∇u1‖p−1

p ‖∇u2‖p
)

+ a(‖∇u2‖pp)
(
‖∇u2‖pp − ‖∇u2‖p−1

p ‖∇u1‖p
)

=
(
a(‖∇u1‖pp)‖∇u1‖p−1

p − a(‖∇u2‖pp)‖∇u2‖p−1
p

)
(‖∇u1‖p − ‖∇u2‖p) ≥ 0.

Hence, (3.6) implies
d

dt
|u1 − u2|22 ≤ 0,

therefore the result follows.
�

Remark 3.1. Note that (3.5) holds in particular for a nondecreasing.

4. The stationary problem

In this section we consider the associated stationary problem to the problem
(1.1), that is the following problem

(4.1)


−∇ · a(‖∇u‖pp)|∇u|p−2∇u = f in Ω,

u = 0 on Γ.

We will assume here that f ∈W−1,q(Ω). In a weak form u is a weak solution to

(4.2)


u ∈W 1,p

0 (Ω),∫
Ω

a(‖∇u‖pp)|∇u|p−2∇u∇vdx = 〈f, v〉 ∀v ∈W 1,p
0 (Ω).

Here and after 〈·, ·〉 denotes the pairing between W−1,q(Ω) and W 1,p
0 (Ω). In order

to solve the stationary problem we introduce ϕ the solution to

(4.3)


ϕ ∈W 1,p

0 (Ω),∫
Ω

|∇ϕ|p−2∇ϕ∇vdx = 〈f, v〉 ∀v ∈W 1,p
0 (Ω).

It is known that for f ∈W−1,q(Ω) (4.3) admits a unique solution [6].
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Theorem 4.1. Suppose that (1.2) holds, 1 < p < +∞. Then for f ∈ W−1,q(Ω),
the mapping u 7→ ‖∇u‖pp is one-to-one mapping from the set of solutions to (4.2)
onto the set of solutions in R of the equation

(4.4) a(µ)
p

p−1µ = ‖∇ϕ‖pp.

Proof . Let u be a solution to the stationary problem, then

(4.5)

∫
Ω

a(‖∇u‖pp)|∇u|p−2∇u∇vdx = 〈f, v〉

=

∫
Ω

|∇ϕ|p−2∇ϕ∇vdx ∀v ∈W 1,p
0 (Ω),

which implies

(4.6) a(‖∇u‖pp)
1

p−1u = ϕ,

from where follows

(4.7) a(‖∇u‖pp)
p

p−1 ‖∇u‖pp = ‖∇ϕ‖pp.

Hence ‖∇u‖pp is a solution to (4.4).
Let now µ be a solution to (4.4), u denotes the solution to

(4.8)


u ∈W 1,p

0 (Ω),∫
Ω

a(µ)|∇u|p−2∇u∇vdx = 〈f, v〉 ∀v ∈W 1,p
0 (Ω),

then a(µ)
1

p−1u = ϕ. Therefore, we get

a(µ)
p

p−1 ‖∇u‖pp = ‖∇ϕ‖pp = a(µ)
p

p−1µ ⇒ ‖∇u‖pp = µ

and u is a solution to (4.2). Now to show the injectivity we have

‖∇u1‖pp = ‖∇u2‖pp ⇒ a(‖∇u1‖pp) = a(‖∇u2‖pp) ⇒ u1 = u2,

due to the uniqueness of the solution of (4.8).
�

Remark 4.1. The stationary points are determined by the solutions to

(4.9) a(µ) = ‖∇ϕ‖p−1
p µ

1
p−1.

Thus it can happen that there is one solution, several, infinitely many solutions or
no solution (just in case where a is not bounded away from 0). It depends on the
function a, see Figure 4.1. In the case where (3.5) holds the set of stationary points
is an interval which is reduced to a point when a(sp)sp−1 is increasing.

The solutions of the problem (4.2) can be also found as critical points of the
energy E(u), defined by

(4.10) E(u) =
1

p
A

(∫
Ω

|∇u|pdx
)
− 〈f, v〉,

where

(4.11) A(z) =

∫ z

0

a(s)ds
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-
µ

6
y

µ∞

y = ‖∇ϕ‖p−1
p µ

1
p−1

y = a(µ)

(a) Unique solution

-
µ

6
y

µ1 µ2 µ3

y = ‖∇ϕ‖p−1
p µ

1
p−1

y = a(µ)

(b) Several solutions

-
µ

6
y

y = ‖∇ϕ‖p−1
p µ

1
p−1

y = a(µ)

�
�

(c) No solution

-
µ

6
y

y = ‖∇ϕ‖p−1
p µ

1
p−1

y = a(µ)

(d) Infinitely many solu-
tions

Figure 4.1

and

(4.12) E′(u) = −∇ · a(‖∇u‖pp)|∇u|p−2∇u− f.

If u∞ is a critical point of E on W 1,p
0 (Ω) then u∞ is a solution to (4.2). Indeed,

if u∞ is a critical point then for arbitrary v ∈W 1,p
0 (Ω) it holds

d

dδ
E(u∞ + δv)

∣∣∣
δ=0

=

(
a(‖∇(u∞ + δv)‖pp)

∫
Ω

|∇(u∞ + δv)|p−2∇(u∞ + δv)∇v − 〈f, v〉
) ∣∣∣

δ=0
= 0.

Thus

a(‖∇u∞‖pp)
∫

Ω

|∇u∞|p−2∇u∞∇v − 〈f, v〉 = 0, ∀v ∈W 1,p
0 (Ω),

namely u∞ is a solution to (4.2) and a stationary point.

Theorem 4.2. Let (2.1) holds, f ∈W−1,q(Ω), then E(u) admits a global minimizer

on W 1,p
0 (Ω).

Proof . To prove this theorem we will use the direct method of calculus of varia-
tions. We claim that E is coercive and bounded from below. Indeed, Hölder’s and
Poincaré’s inequalities imply

|〈f, u〉| ≤ |f |−1,q‖∇u‖p,
therefore

(4.13) E(u) =
1

p
A(‖∇u‖pp)− 〈f, v〉 ≥

λ

p
‖∇u‖pp − |f |−1,q‖∇u‖p.
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Since p > 1 the coerciveness follows. Now coming back to (4.13) and using Young’s
inequality we obtain

(4.14) E(u) ≥ λ

p
‖∇u‖pp −

(|f |−1,q)
q

λ
q
p q

− λ

p
‖∇u‖pp = −1

q

(
|f |−1,q

λ
1
p

)q
.

Thus E is also bounded from below.
Let un ∈W 1,p

0 (Ω) be a minimizing sequence of E. From (4.13) it follows that un
is bounded in W 1,p

0 (Ω). Hence for some u∞ ∈W 1,p
0 (Ω) we have

un ⇀ u∞ in W 1,p
0 (Ω).

Next we show that E is weakly lower semicontinuous on W 1,p
0 (Ω). In fact, it holds

that

lim
n→∞

‖∇un‖pp ≥ ‖∇u∞‖pp

(the norm is weakly lower semicontinuous). Considering a subsequence unk
such

that

lim
n→∞

‖∇un‖pp = lim
k→∞

‖∇unk
‖pp

and due to the fact that unk
is a minimizing sequence we see

inf
W 1,p

0 (Ω)
E(u) = lim

k
E(unk

) =
1

p

∫ lim ‖∇unk
‖pp

0

a(s)ds− 〈f, u∞〉

≥ 1

p

∫ ‖∇u∞‖pp
0

a(s)ds− 〈f, u∞〉 = E(u∞),

which implies u∞ is a minimizer of E on W 1,p
0 (Ω). Therefore, the result follows.

�
Note that the minimizer might be not unique.

5. Remarks on the stationary points

Suppose first we are in case of Figure 5.2, then we have:

Theorem 5.1. Let u1 be the stationary point corresponding to µ1 such that

(5.1) a(µ) < ‖∇ϕ‖p−1
p µ

1
p−1 ∀µ ∈ (µ, µ1),

(5.2) a(µ) > ‖∇ϕ‖p−1
p µ

1
p−1 ∀µ ∈ (µ1, µ).

Then u1 is a local minimizer for E. More precisely one has:

E(u1) < E(u) ∀u 6= u1, ‖∇u‖pp ∈ (µ, µ).

Proof . Recall that by Theorem 4.1 we have that

(5.3) µ1 = ‖∇u1‖pp, u1 =
ϕ

a(µ1)
1

p−1

.
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-
µ

6
y

µ µ1 µ

y = ‖∇ϕ‖p−1
p µ

1
p−1

y = a(µ)

Figure 5.2

(i) Suppose ‖∇u‖pp > µ1. Then from (2.8), (5.2) we have

(5.4) E(u)− E(u1) =
1

p

∫ ‖∇u‖pp
‖∇u1‖pp

a(s)ds− 〈f, u〉+ 〈f, u1〉

>
1

p
‖∇ϕ‖p−1

p

∫ ‖∇u‖pp
‖∇u1‖pp

s
1
p−1ds− 〈f, u〉+ 〈f, u1〉

= ‖∇ϕ‖p−1
p ‖∇u‖p − ‖∇ϕ‖p−1

p ‖∇u1‖p − 〈f, u〉+ 〈f, u1〉.

From (4.3) and using Hölder’s inequality we see

(5.5) |〈f, u〉| =
∣∣∣∣∫

Ω

|∇ϕ|p−2∇ϕ∇udx
∣∣∣∣

≤
(∫

Ω

|∇u|pdx
) 1

p
(∫

Ω

|∇ϕ|q(p−1)dx

) 1
q

= ‖∇u‖p‖∇ϕ‖p−1
p ,

where q = p
p−1 . Now by (4.4) and (5.3) we obtain

(5.6) 〈f, u1〉 =

∫
Ω

|∇ϕ|p−2∇ϕ∇u1dx

=

∫
Ω

|∇ϕ|p−2∇ϕ ∇ϕ
a(µ1)

1
p−1

dx = ‖∇ϕ‖pp
‖∇u1‖p
‖∇ϕ‖p

= ‖∇ϕ‖p−1
p ‖∇u1‖p.

Hence, combining (5.4) – (5.6) we derive

E(u) > E(u1) for ‖∇u‖pp > µ1.

(ii) Suppose now ‖∇u‖pp < µ1. Then as above we get

E(u)− E(u1) = −1

p

∫ ‖∇u1‖pp

‖∇u‖pp
a(s)ds− 〈f, u〉+ 〈f, u1〉,
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and by (5.1), (5.5), (5.6) we can conclude

(5.7) E(u)− E(u1) > −1

p
‖∇ϕ‖p−1

p

∫ ‖∇u1‖pp

‖∇u‖pp
s

1
p−1ds− 〈f, u〉+ 〈f, u1〉

= −‖∇ϕ‖p−1
p ‖∇u1‖p + ‖∇ϕ‖p−1

p ‖∇u‖p − 〈f, u〉+ 〈f, u1〉 ≥ 0.

Thus we have

E(u) > E(u1) for ‖∇u‖pp ∈ (µ, µ), u 6= u1.

�

Remark 5.1. If u 6= u1 one does not have necessarily ‖∇u‖pp 6= ‖∇u1‖pp = µ1 and
the proof of the theorem is incomplete. But if ‖∇u‖pp = ‖∇u1‖pp one has (see above)
0 ≤ E(u) − E(u1) = 〈f, u − u1〉. If this last quantity is vanishing we will show in
Lemma 5.2 that u = u1.

Remark 5.2. If one assumes

a(µ) ≤ ‖∇ϕ‖p−1
p µ

1
p−1 ∀µ ≤ µ1,

a(µ) ≥ ‖∇ϕ‖p−1
p µ

1
p−1 ∀µ ≥ µ1.

Then one gets only

E(u) ≥ E(u1).

Thus E can posses infinitely many global minimizers (see Figure 4.1d).

Lemma 5.1. Let u2 be the stationary point corresponding to µ2 such that

(5.8) a(µ) > ‖∇ϕ‖p−1
p µ

1
p−1 ∀µ ∈ (µ, µ2),

(5.9) a(µ) < ‖∇ϕ‖p−1
p µ

1
p−1 ∀µ ∈ (µ2, µ)

(see Figure 5.3). Then u2 is a point of local maximum for E in the direction of ϕ,
where ϕ is the solution of the problem (4.3). More precisely one has:

E(u2) > E(u2 + δϕ),

for every δ 6= 0 such that

δ ≥ − 1

a(µ2)
1

p−1

, ‖∇(u2 + δϕ)‖pp ∈ (µ, µ).

Proof . As above by Theorem 4.1 we have that

(5.10) µ2 = ‖∇u2‖pp, u2 =
ϕ

a(µ2)
1

p−1

.
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6
y

µ2

y = ‖∇ϕ‖p−1
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1
p−1

µ

y = a(µ)

µ

Figure 5.3

(i) Let us first assume that ‖∇(u2 + δϕ)‖pp > µ2. Then from (2.8), (4.3), (5.9)
we have

(5.11) E(u2 + δϕ)− E(u2) =
1

p

∫ ‖∇(u2+δϕ)‖pp

‖∇u2‖pp
a(s)ds− δ〈f, ϕ〉

<
1

p
‖∇ϕ‖p−1

p

∫ ‖∇(u2+δϕ)‖pp

‖∇u2‖pp
s

1
p−1ds− δ‖∇ϕ‖pp

= ‖∇ϕ‖p−1
p

(
‖∇(u2 + δϕ)‖p − ‖∇u2‖p

)
− δ‖∇ϕ‖pp

= ‖∇ϕ‖p−1
p

(∣∣∣∣∣ 1

a(µ2)
1

p−1

+ δ

∣∣∣∣∣ ‖∇ϕ‖p − ‖∇ϕ‖p
a(µ2)

1
p−1

)
− δ‖∇ϕ‖pp = 0,

if
1

a(µ2)
1

p−1

+ δ ≥ 0. Thus it holds that

E(u2 + δϕ) < E(u2) for ‖∇(u2 + δϕ)‖pp > µ2.

(ii) Suppose now ‖∇(u2 + δϕ)‖pp < µ2. Then similarly, from (2.8), (4.3), (5.8)
we get

(5.12) E(u2 + δϕ)− E(u2) = −1

p

∫ ‖∇u2‖pp

‖∇(u2+δϕ)‖pp
a(s)ds− δ〈f, ϕ〉

< −‖∇ϕ‖p−1
p

(
‖∇u2‖p − ‖∇(u2 + δϕ)‖p

)
− δ‖∇ϕ‖pp = 0

as in part (i).
Hence,

E(u2 + δϕ) < E(u2) for ‖∇(u2 + δϕ)‖pp < µ2.

�
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Lemma 5.2. Let u be a solution to the problem (4.2). Suppose that (1.2) holds

and that ψ ∈W 1,p
0 (Ω), ψ 6= 0 is such that

(5.13) 〈f, ψ〉 = 0.

Then

(5.14) E(u+ ψ) > E(u),

i.e. u is a point of minimum for E in any direction of the hyperplane defined by
(5.13).

Proof . Let us consider ψ which satisfies (5.13). Then for ‖∇(u + ψ)‖p > ‖∇u‖p
from (2.1) we have

E(u+ ψ)− E(u) =
1

p

∫ ‖∇(u+ψ)‖pp

‖∇u‖pp
a(s)ds > 0.

Hence it remains to prove that ‖∇(u + ψ)‖p > ‖∇u‖p. Due to (5.13) and since
a > 0 we get ∫

Ω

|∇u|p−2∇u∇ψdx = 0.

Then we see

‖∇(u+ ψ)‖pp − ‖∇u‖pp =

∫ 1

0

d

ds

∫
Ω

|∇(u+ sψ)|pdxds

= p

∫ 1

0

∫
Ω

|∇(u+ sψ)|p−2∇(u+ sψ)∇ψdxds

= p

∫ 1

0

∫
Ω

(
|∇(u+ sψ)|p−2∇(u+ sψ)− |∇u|p−2∇u

)
∇ψdxds.

From Lemma 3.1 we have(
|∇(u+ sψ)|p−2∇(u+ sψ)− |∇u|p−2∇u

)
∇(sψ)

≥ cp
(
|∇(u+ sψ)|+ |∇u|

)p−2|∇(sψ)|2.

This shows that ‖∇(u+ ψ)‖p − ‖∇u‖p ≥ 0. If the equality holds then(
|∇(u+ sψ)|+ |∇u|

)p−2|∇ψ|2 = 0 a.e. x ∈ Ω, s ∈ (0, 1).

This implies that for |∇u| = 0 we have |∇ψ| = 0 and for |∇u| 6= 0 as well. Thus
ψ = 0, which contradicts our assumptions. This completes the proof of the theorem.

�

Theorem 5.2. Let f 6≡ 0, (1.2) holds, u2 be a solution to (4.2) such that (5.8),
(5.9) hold (see Figure 5.3, u2 corresponds to µ2). Then u2 is a saddle point for the
energy (2.8).

Proof . The statement of the theorem is a consequence of Lemmas 5.1 and 5.2.
�

Remark 5.3. The same situation occurs if the graph of a is not crossing the graph
of y and touching it (see Figure 5.4).
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Figure 5.4

Theorem 5.3. Let u∗ be a solution of the problem (4.2) corresponding to the solu-
tions µ∗ of the equation (4.4). Let

(5.15) y(s) = ‖∇ϕ‖p−1
p s

1
p−1,

then one has

E(u∗) =
1

p

∫ µ∗

0

(a(s)− y(s))ds.

Proof . From (2.8) one has

E(u∗) =
1

p

∫ ‖∇u∗‖pp
0

a(s)ds− 〈f, u∗〉.

Due to the definition of u∗ (see (5.3)) we get

1

p

∫ µ∗

0

y(s)ds =
1

p
‖∇ϕ‖p−1

p

∫ ‖∇u∗‖pp
0

s
1
p−1ds

= ‖∇ϕ‖p−1
p ‖∇u∗‖p = 〈f, u∗〉.

(see (5.6)). Hence, the result follows.
�

Corollary 5.1. Let u1, u2 be two solutions of the problem (4.2) corresponding to
the solutions µ1 < µ2 of the equation (4.4) respectively. Then one has

(5.16) E(u1)− E(u2) = −1

p

∫ µ2

µ1

(a(s)− y(s))ds =: −1

p
A12

and

A12 > 0 ⇒ E(u1) < E(u2);

A12 < 0 ⇒ E(u2) < E(u1);

A12 = 0 ⇒ E(u1) = E(u2),

Corollary 5.2. Let u1 and u2 be two solutions of the problem (4.2) corresponding
to the solutions µ1 < µ2 of the equation (4.4). If we assume that

(5.17) a(µ) > y(µ) for µ1 < µ < µ2

(5.18) (resp. a(µ) < y(µ), a(µ) = y(µ)) ,
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then

E(u1) < E(u2) (resp. E(u1) > E(u2), E(u1) = E(u2)).

Corollary 5.3. The absolute minimum of E corresponds to a point µ∞ such that∫ µ

µ∞

(a(s)− y(s))ds ≥ 0, ∀µ > µ∞, µ corresponding to a stationary point,

∫ µ∞

µ

(a(s)− y(s))ds ≤ 0, ∀µ < µ∞, µ corresponding to a stationary point.

Therefore, due to Theorem 5.3 and its corollaries we can compare the energy at
any two different stationary points and we can find a global minimizer of the energy
E(u).

Example 5.1. Let ui, i = 1, 2, 3 be solutions of the problem (4.2) corresponding to
the solutions µi, i = 1, 2, 3 of the equation (4.4) such as on Figure 5.5. Then by

-
µ

6
y

µ1 µ2 µ3

y = ‖∇ϕ‖p−1
p µ

1
p−1

y = a(µ)

��
��
��
��
��

|A12|
�
��

@@@@@@

|A23|
�
��

Figure 5.5. Several solutions

Corollary 5.2 we get that

E(u1) < E(u2), E(u3) < E(u2).

It is left to compare the energy at the points u1 and u3. By Corollary 5.1 we see
that

E(u1)− E(u3) = −1

p
A13 = −1

p
(|A12| − |A23|) < 0,

where

(5.19) Aij :=

∫ µj

µi

(a(s)− y(s))ds, i = 1, 2, j = 2, 3.

Hence, u1 is a global minimizer of the energy E(u) defined by (2.8).
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Remark 5.4. We label the solutions to (4.4) as µ1 < µ2 < . . . < µN with the con-
vention that we choose only one point µi in the interval (µ

i
, µi) when the solutions

consist of one interval (µ
i
, µi) (see Figure 5.6). We denote by {u}1, {u}2, . . . {u}N

the sets of solutions of (4.2), corresponding to µ1 < µ2 < . . . < µN solutions of
(4.4). Then due to our convention we see that {u}i can consist of one point or
infinitely many points. By Corollary 5.2 for arbitrary u ∈ {u}i, i ∈ I := {1, . . . , N}

-
µ

6
y

µ1 µ2 µ
i
µiµi

y = ‖∇ϕ‖p−1
p µ

1
p−1

y = a(µ)

µj

Stationary points
��������9
�
�
�
���

Figure 5.6. Infinitely many solutions

it holds that E(u) = Ei, i ∈ I. Therefore in the case when the stationary problem
(4.2) is having infinitely many solutions, the energy (2.8) can have a unique, several
or infinitely many global minimizers.

6. Asymptotic behaviour

We start with a lemma:

Lemma 6.1. Let u be a weak solution to (1.1) and suppose that (2.1) holds. There
exists a sequence tk such that

uk = u(·, tk)→ u∞ in W 1,p
0 (Ω) as tk → +∞,

where u∞ is a stationary point.

Proof . Taking v = ut in (2.3) we obtain

a(||∇u||pp)
∫

Ω

|∇u|p−2∇u∇utdx− 〈f, ut〉 = −|∂tu|22,

∂tE(u) = −|∂tu|22 ≤ 0.

Hence, E(u(t)) ≤ E(u0) and E(u(t)) decreases with the time. Remark that from
(4.13) we have that ||∇u||pp is uniformly bounded in t. Since E is also bounded from
below (see (4.14)), then it follows

(6.1) E(u(t))→ E∞
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(E∞ is some constant). From above we get

E(u(t))− E(u(s)) = −
∫ t

s

|∂tu|22(ξ)dξ,∫ ∞
s

|∂tu|22(ξ)dξ < +∞,

which implies for a sequence tk

∂tu(·, tk)→ 0 in L2(Ω).

From the equation in (2.3) – with uk = u(·, tk) – we obtain

(6.2)

∫
Ω

∂tu(·, tk)ukdx+ a(||∇uk||pp)
∫

Ω

|∇uk|pdx = 〈f, uk〉.

We can show as in (2.6) that

|u(t)|22 ≤ C.
Up to a subsequence it holds that

u(·, tk) = uk ⇀ u∞ in W 1,p
0 (Ω),

uk ⇀ u∞ in L2(Ω),

||∇uk||pp → l∞,

gk = |∇uk|p−2∇uk ⇀ g∞ in (Lq(Ω))n.

Passing to the limit in (6.2) we see

(6.3) a(l∞)l∞ = 〈f, u∞〉.

Next taking v ∈W 1,p
0 (Ω) ∩ L2(Ω) we get∫

Ω

∂tu(·, tk)vdx+ a(||∇uk||pp)
∫

Ω

|∇uk|p−2∇uk∇vdx = 〈f, v〉.

Passing to the limit we derive

(6.4) a(l∞)

∫
Ω

g∞∇vdx = 〈f, v〉.

Since a > 0 combining (6.3), (6.4) we can conclude that

l∞ =

∫
Ω

g∞∇u∞dx.

We claim that uk → u∞ strongly in W 1,p
0 (Ω). Indeed, for p ≥ 2 there exists a

constant Cp > 0 such that

χk =

∫
Ω

(
|∇uk|p−2∇uk − |∇u∞|p−2∇u∞

)
∇(uk − u∞)dx

≥ Cp
∫

Ω

|∇(uk − u∞)|pdx.

Developing

χk =

∫
Ω

|∇uk|pdx−
∫

Ω

gk∇u∞dx−
∫

Ω

|∇u∞|p−2∇u∞∇ukdx+

∫
Ω

|∇u∞|pdx

→ l∞ −
∫

Ω

g∞∇u∞dx−
∫

Ω

|∇u∞|pdx+

∫
Ω

|∇u∞|pdx = 0.
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This implies

l∞ = lim
k
||∇uk||pp = ||∇u∞||pp, g∞ = |∇u∞|p−2∇u∞.

Hence u∞ is a stationary point.
To show that uk → u∞ in W 1,p

0 (Ω) strongly in case 1 < p < 2 it is enough to
notice that by Lemma 3.1 one has

cp

∫
Ω

|∇(uk − u∞)|2
(
|∇uk|+ |∇u∞|

)p−2
dx ≤ χk → 0.

Writing∫
Ω

|∇(uk − u∞)|pdx

=

∫
Ω

|∇(uk − u∞)|p
(
|∇uk|+ |∇u∞|

) (p−2)p
2
(
|∇uk|+ |∇u∞|

) (2−p)p
2 dx

and using Hölder’s inequality with
2

p
,

2

2− p
it comes∫

Ω

|∇(uk − u∞)|pdx

≤
(∫

Ω

|∇(uk − u∞)|2
(
|∇uk|+ |∇u∞|

)p−2
dx

) p
2
(∫

Ω

(
|∇uk|+ |∇u∞|

)p
dx

) 2−p
2

≤ Cχk → 0.

This completes the proof of the lemma.
�

Corollary 6.1. Suppose that E admits a unique global minimizer u∞ (u∞ is also a
solution to the problem (4.2)) and that the initial value u0 of (2.3) satisfies E(u0) <
E(ui) for any stationary point ui 6= u∞. Then

u(·, t)→ u∞ in W 1,p
0 (Ω) as t→ +∞.

Proof . Recall that we have

E(u) ≤ E(u0) < E(ui), ui 6= u∞.

Then by Lemma 6.1 and (6.1) we get

E(u(t))→ E(u∞),

where u∞ is the global minimizer of E and a solution of the problem (4.2). Due to

the fact that u(t) is uniformly bounded in W 1,p
0 (Ω) for some subsequence we have

u(·, tk) ⇀ v∞ in W 1,p
0 (Ω).

Then by the weak lower semicontinuity of E (see the proof of Theorem 4.2) we
obtain

E(u∞) = lim
tk→∞

E(u(tk)) ≥ E(v∞).

Since u∞ is a unique global minimizer of E, then it holds that E(u∞) < E(v∞) for
u∞ 6= v∞, hence u∞ = v∞. This holds for every subsequence and the convergence
is in fact strong (see Lemma 6.1), therefore the result follows.

�
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Remark 6.1. In the case where a(sp)sp−1 is increasing (see (3.5) and Remark 4.1)
the problem has a single stationary point and for any initial data u(·, t) converges
to this stationary point. We refer to [9] for more asymptotic analysis.
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