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Abstract

We give an example of a sequential dynamical system consisting of

intermittent-type maps which exhibits loss of memory with a polynomial

rate of decay. A uniform bound holds for the upper rate of memory loss.

The maps may be chosen in any sequence, and the bound holds for all

compositions.

0 Introduction

The notion of loss of memory for non-equilibrium dynamical systems was intro-

duced in the 2009 paper by Ott, Stenlund and Young [8]; they wrote:

Let ρ0 denote an initial probability density w.r.t. a reference measure m, and

suppose its time evolution is given by ρt. One may ask if these probability distribu-

tions retain memories of their past. We will say a system loses its memory in the

statistical sense if for two initial distributions ρ0 and ρ̂0,
∫
|ρt − ρ̂t|dm → 0.

In [8] the rate of convergence of the two densities was proved to be expo-

nential for certain sequential dynamical systems composed of one-dimensional
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piecewise expanding maps. Coupling was the technique used for the proof. The

same technique was successively applied to time-dependent Sinai billiards with

moving scatterers by Stenlund, Young, and Zhang [12] and it gave again an

exponential rate. A different approach, using the Hilbert projective metric,

allowed Gupta, Ott and Török [5] to obtain exponential loss of memory for

time-dependent multidimensional piecewise expanding maps.

All the previous papers prove an exponential loss of memory in the strong

sense, namely ∫
|ρt − ρ̂t|dm < Ce−αt.

In the invertible setting, Stenlund [11] proves loss of memory in the weak-sense

for random composition of Anosov diffeomorphisms, namely

|
∫
f ◦ Tndµ1 −

∫
f ◦ Tndµ2| < Ce−αt

where f is a Hölder observable, Tn denotes the composition of n maps and

µ1 and µ2 are two probability measures absolutely continuous with respect to

the Riemannian volume whose densities are Hölder. It is easy to see that loss

of memory in the strong sense implies loss of memory in the weak sense, for

densities in the corresponding function spaces and f ∈ L∞
m .

A natural question is: are there examples of time-dependent systems exhibit-

ing loss of memory with a slower rate of decay, say polynomial, especially in the

strong sense? We will construct such an example in this paper as a (modified)

Pomeau-Manneville map:

Tα(x) =

{
x+ 3α

21+αx
1+α, 0 ≤ x ≤ 2/3

3x− 2, 2/3 ≤ x ≤ 1
0 < α < 1. (0.1)

We use this version of the Pomeau-Manneville intermittent map because the

derivative is increasing on [0,1), where it is defined, and this allows us to sim-

plify the exposition. We believe the result remains true for time-dependent

systems comprised of the usual Pomeau-Manneville maps, for instance the ver-

sion studied in [7]. We will refer quite often to [7] in this note. As in [7], we

will identify the unit interval [0, 1] with the circle S1, in such a way the map

becomes continuous.

We will see in a moment how an initial density evolves under composition

with maps which are slight perturbations of (0.1). To this purpose we will define

the perturbations of the usual Pomeau-Manneville map that we will consider.

The perturbation will be defined by considering maps Tβ(x) as above with

0 < β∗ ≤ β ≤ α∗. Note that Tβ = Tα on 2/3 ≤ x ≤ 1. The reference measure

∗The strictly positive lower bound β∗ is necessary to prevent the growth to infinity of the
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will be Lebesgue (m). If β∗ ≤ βk ≤ α is chosen, we denote by Pβk
the Perron-

Frobenius (PF) transfer operator associated to the map Tβk
.

Let us suppose ϕ, ψ are two observables in an appropriate (soon to be

defined) functional space; then the basic quantity that we have to control is∫
|Pβn ◦ · · ·Pβ1(ϕ)− Pβn ◦ · · · ◦ Pβ1(ψ)|dm. (0.2)

Our goal is to show that it decays polynomially fast and independently of the

sequence Pβn ◦ · · · ◦ Pβ1 : we stress that there is no probability vector to weight

the βk. Note that, by the results of [13], one cannot have in general a faster

than polynomial decay, because that is the (sharp) rate when iterating a single

map Tβ , 0 < β < 1.

In order to prove our result, Theorem 1.6, we will follow the strategy used

in [7] to get a polynomial upper bound (up to a logarithmic correction) for the

correlation decay. We introduced there a perturbation of the transfer operator

which was, above all, a technical tool to recover the loss of dilation around the

neutral fixed point by replacing the observable with its conditional expectation

to a small ball around each point. It turns out that the same technique allows

us to control the evolution of two densities under concatenation of maps if we

can control the distortion of this sequence of maps. The control of distortion

will be, by the way, the major difficulty of this paper.

Note that the convergence of the quantity (0.2) implies the decay of the

non-stationary correlations, with respect to m:

|
∫
ψ(x)ϕ ◦ Tβn ◦ · · · ◦ Tβ1(x)dm−

∫
ψ(x)dm

∫
ϕ ◦ Tβn ◦ · · · ◦ Tβ1(x)dm| ≤

||ϕ||∞||Pβn ◦ · · · ◦ Pβ1(ψ)− Pβn ◦ · · · ◦ Pβ1(1(

∫
ψdm))||1

provided ϕ is essentially bounded and 1(
∫
ψdm) remains in the functional space

where the convergence of (0.2) takes place. In particular, this holds for C1 ob-

servables, see Theorem 1.6.

Conze and Raugy [3] call the decorrelation described above decorrelation

for the sequential dynamical system Tβn ◦ · · · ◦ Tβ1 . Estimates on the rate of

decorrelation (and the function space in which decay occurs) are a key ingredient

in the Conze-Raugy theory to establish central limit theorems for the sums∑n−1
k=0 ϕ(Tβk

◦ · · · ◦Tβ1
x), after centering and normalisation. The question could

be formulated in this way: does the ratio∑n−1
k=0 [ϕ ◦ Tβk

◦ · · · ◦ Tβ1(x)−
∫
ϕ ◦ Tβk

◦ · · · ◦ Tβ1dm]

||
∑n−1
k=0 ϕ ◦ Tβk

◦ · · · ◦ Tβ1 ||2
second derivative in (2.7); on the other hand several estimates are true for any 0 < β ≤ α and
we will follow that when no confusion arises.
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converge in distribution to the normal law N (0, 1)?

It would be interesting to establish such a limit theorem for the sequential

dynamical system constructed with our intermittent map (0.1). Besides the

central limit theorem, other interesting questions could be considered for our

sequential dynamical systems, for instance the existence of concentration in-

equalities (see the recent work [1] in the framework of the Conze-Raugy theory),

and the existence of stable laws, especially for perturbations of maps Tα with

α > 1/2, which is the range for which the unperturbed map exhibits stable

laws [4].

We said above that we did not choose the sequence of maps Tβ according to

some probability distribution. A random dynamical system has been considered

in the recent paper [2] for similar perturbations of the usual Pomeau-Manneville

map. To establish a correspondence with our work, let us say that those au-

thors perturbed the map Tα by modifying again the slope, but taking this time

finitely many values 0 < α1 < α2 < · · · < αr ≤ 1, with a finite discrete law.

This random transformation has a unique stationary measure, and the authors

consider annealed correlations on the space of Hölder functions. They prove

in [2] that such annealed correlations decay polynomially at a rate bounded

above by n1−
1

α1 .

As a final remark, we would like to address the question of proving the loss

of memory for intermittent-like maps, but with the sequence given by adding a

varying constant to the original map, considered to act on the unit circle (addi-

tive noise). This problem seems much harder and a possible strategy would be

to consider induction schemes, as it was done recently in [10] to prove stochastic

stability in the strong sense.

NOTATIONS. We will index the perturbed maps and transfer operators

respectively as Tβk
and Pβk

with 0 < β∗ ≤ βk ≤ α, the number β∗ > 0 being

arbitrary. Since we will be interested in concatenations like Pβn ◦Pβn−1 ◦· · ·◦Pβm

we will use equivalently the following notations

Pβn ◦ Pβn−1 ◦ · · · ◦ Pβm = Pn ◦ Pn−1 ◦ · · · ◦ Pm.

We will see that very often the choice of βk will be not important in the construc-

tion of the concatenation; in this case we will adopt the useful notations, where

the exponent of the P ’s is the number of transfer operators in the concatenation:

Pβn ◦ Pβn−1 ◦ · · · ◦ Pβm := Pn−m+1
m

Pnk = Pk+n−1 ◦ Pk+n−2 ◦ · · · ◦ Pk
In the same way, when we concatenate maps we will use the notations Tn◦Tn−1◦
· · · ◦ Tm instead of Tβn ◦ Tβn−1 ◦ · · · ◦ Tβm . We let T

k
denote the concatenation
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of k (possibly) different maps Tl, whenever the sequence of this concatenation

does not matter.

Finally, for any sequences of numbers {an} and {bn}, we will write an ≈ bn
if c1bn ≤ an ≤ c2bn for some constants c2 ≥ c1 > 0. The first derivative will be

denoted as either T ′ or DT and the value of T on the point x as either Tx or

T (x).

1 The cone, the kernel, the decay

Thanks to a general theory by Hu [6], we know that the density f of the ab-

solutely continuous invariant measure of Tα in the neighborhood of 0 satisfies

f(x) ≤ constant x−α, where the value of the constant has an expression in terms

of the derivative of T at 0 and of the value of f in the pre-image of 0 different

from 0. We will construct a cone which is preserved by the transfer operator of

each Tβ , 0 < β ≤ α, and the density of each Tβ will be the only fixed point of a

suitable subset of that cone.

We define the cone of functions

C1 := {f ∈ C0(]0, 1]); f ≥ 0; f decreasing; Xα+1f increasing}

where X(x) = x is the identity function.

Lemma 1.1. The cone C1 is invariant with respect to the operators Pβ , 0 <

β ≤ α < 1.

Proof. Put T−1
β (x) = {y1, y2}, y1 < y2; put also χβ =

3βyβ1
21+β . Then a direct

computation shows that

Xα+1Pβf(x) =
f(y1)y

α+1
1 (1 + χβ)

α+1

1 + (1 + β)χβ
+ f(y2)

(
3y2 − 2

y2

)α+1
yα+1
2

3
.

The result now follows since the maps x→ xα+1f(x), x→ χβ , x→ y1, x→ y2

are increasing. The fact that α ≥ β implies the monotonicity of χ→ (1+χ)α+1

1+(1+β)χ .

We now denote m(f) =
∫ 1

0
f(x)dx and recall that for any 0 < β < 1 we have

m(Pβf) = m(f).

Lemma 1.2. Given 0 < α < 1, the cone

C2 := {f ∈ C1 ∩ L1
m; f(x) ≤ ax−α m(f)}

is preserved by all the operators Pβ , 0 < β ≤ α, provided a is large enough.
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Proof. Let us suppose that
∫ 1

0
fdx = 1; then we look for a constant a for which

Pβf(x) ≤ ax−α. Using the notations in the proof of the previous Lemma and

remembering that xα+1f(x) ≤ f(1) ≤
∫ 1

0
fdx = 1, we get

Pβf(x) =
f(y1)

T ′
β(y1)

+
f(y2)

T ′
β(y2)

≤ ay−α1

T ′
β(y1)

+
y−α−1
2

T ′
β(y2)

=

{(
x

y1

)α
1

T ′
β(y1)

+
1

a

xα

yα+1
2 T ′

β(y2)

}
ax−α,

but(
x

y1

)α
1

T ′
β(y1)

+
1

a

xα

yα+1
2 T ′

β(y2)
≤ (1 + χβ)

α

1 + (1 + β)χβ
+

1

a
(
3

2
yα−β1 χβ(1 + χβ)

α ≤

(1 + χβ)
α

1 + (1 + β)χβ
+

1

a
(
3

2
)αχβ , (∗)

where the last step is justified by the fact that β ≤ α and 0 ≤ χβ ≤ 1/2. By

taking the common denominator one gets

(∗) ≤ 1 + {β + [(α− β) + 2αa−1(β + 2)]}χβ
1 + (1 + β)χβ

.

We get the desired result if (α − β) + 2αa−1(β + 2) ≤ 1, which is satisfied

whenever

a ≥ 2α(2 + α)

1− α
.

Remark 1.3. The preceding two lemmas imply the following properties which

will be used later on.

1. ∀f ∈ C2, infx∈[0,1] f(x) = f(1) ≥ min{a; [α(1+α)aα ]
1

1−α }m(f).

2. For any concatenation Pm1 = Pm◦· · ·◦P1 we have P
m
1 1(x) ≥ min{a; [α(1+α)aα ]

1
1−α }.

See the proof of Lemma 2.4 in [7] for the proof of the first item, the second

follows immediately from the first.

Remark 1.4. Using the previous Lemmas it is also possible to prove the exis-

tence of the density in C2 for the unique a.c.i.m. by using the same argument

as in Lemma 2.3 in [7].

We now take f ∈ C2 and define the averaging operator:

Aεf(x) :=
1

2ε

∫
Bε(x)

fdm
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where Br(x) denotes the ball of radius r centered at the point x ∈ S1, and

define a new perturbed transfer operator by

Pε,m := Pnε
m Aε = Pβm+nε−1 ◦ · · · ◦ PβmAε

where nε will be defined later on. It is very easy to see that

Lemma 1.5.

||Pε,mf − Pnε
m f ||1 ≤ c||f ||1ε1−α

where c is independent of β.

Proof. By linearity and contraction of the operators Pβ we bound the left hand

side of the quantity in the statement of the lemma by
∫
|Aεf − f |dx and this

quantity gives the prescribed bound as in Lemma 3.1 in [7].

It is straightforward to get the following representation for the operator

Pε,m :

Pε,mf(x) =
∫ 1

0

Kε,m(x, z)f(z)dz

where

Kε,m(x, z) :=
1

2ε
Pnε
m 1Bε(z)(x).

We now observe that standard computations (see for instance Lemma 3.2 in

[7]), allows us to show that the preimages an := T−n
α,1 1 verify an ≈ 1

n
1
α
; here T−1

α,1

denotes the left pre-image of T−1
α , a notation which we will also use later on.

Those points are the boundaries of a countable Markov partition and they will

play a central role in the following computations; notice that the factors c1, c2
in the bounds c1

1

n
1
α

≤ an ≤ c2
1

n
1
α

depend on α (and therefore on β), but we

will only use the an associated to the exponent α; in particular we will denote

by cα the constant c2 associated to Tα; the dependance on α, although implicit,

will not play any role in the following.

We will prove in the next section the following important fact.

• Property (P). There exists γ > 0 such that for all ε > 0, x, z ∈ [0, 1] and

for any sequence βm, · · · , βm+nε−1, if nε = [ 3cα2εα ] then

Kε,m(x, z) ≥ γ.

We now show how the positivity of the kernel implies the main result of this

paper.
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Theorem 1.6. Suppose ψ, ϕ are in C2 for some a with equal expectation
∫
ϕdm =∫

ψdm. Then for any 0 < β∗ ≤ α < 1 and for any sequence Tβ1 , · · · , Tβn , n > 1,

of maps of Pomeau-Manneville type (0.1) with β∗ ≤ βk ≤ α, k ∈ [1, n], we have∫
|Pβn ◦ · · · ◦Pβ1(ϕ)−Pβn ◦ · · · ◦Pβ1(ψ)|dm ≤ Cα(||ϕ||1+ ||ψ||1)n−

1
α+1(log n)

1
α ,

where the constant Cα depends only on the map Tα, and || · ||1 denotes the L1
m

norm.

A similar rate of decay holds for C1 observables ϕ and ψ on S1; in this case

the rate of decay has an upper bound given by

Cα F(||ϕ||C1 + ||ψ||C1)n−
1
α+1(log n)

1
α

where the function F : R → R is affine.

Remark 1.7. One can ask what happens if we relax the assumption that all

βn must lie in an interval [β⋆, α] with 0 < β⋆ < α < 1. For instance, if the

sequence βn satisfies βn < 1 and βn → 1, does the quantity ∥Pn1 ϕ − Pn1 ψ∥1
go to 0 for all ϕ, ψ in C1 with

∫
ϕ =

∫
ψ? Similarly, what can we say when

βn → 0? It follows from our main result that the decay rate of ∥Pn1 ϕ−Pn1 ψ∥1 is

superpolynomial, but can we get more precise estimates for particular sequences

βn, like βn = n−θ or βn = e−cn
θ

, θ > 0? We can also ask whether there is, in

the case where βn ∈ [β⋆, α] covered by our result, an elementary proof for the

decay of ∥Pn1 ϕ− Pn1 ψ∥1.

Proof of Theorem 1.6. We begin to prove the first part of the theorem for C2
observables. We let nε = [ 3cα2εα ] and write n = knε +m. We add and subtract

to the difference in the integral a term composed by the product of the first m

usual PF operators and the product of k averaged operator Pε, each composed

by nε random PF operators; precisely we use the notation introduced above to

get:

(LM) :=

∫
|Pβn ◦ · · · ◦ Pβ1(ϕ)− Pβn ◦ · · · ◦ Pβ1(ψ)|dm =∫

|Pn1 (ϕ)− Pε,m+1+(k−1)nε
◦ · · · ◦ Pε,m+1P

m
1 (ϕ)

+Pε,m+1+(k−1)nε
◦ · · · ◦ Pε,m+1P

m
1 (ϕ)

−Pε,m+1+(k−1)nε
◦ · · · ◦ Pε,m+1P

m
1 (ψ)

+Pε,m+1+(k−1)nε
◦ · · · ◦ Pε,m+1P

m
1 (ψ)− Pn1 (ψ)|dm.

Thus

(LM) ≤ ||Pn1 (ϕ)− Pε,m+1+(k−1)nε
◦ · · · ◦ Pε,m+1P

m
1 (ϕ)||1+

||Pn1 (ψ)− Pε,m+1+(k−1)nε
◦ · · · ◦ Pε,m+1P

m
1 (ψ)||1+

||Pε,m+1+(k−1)nε
◦ · · · ◦ Pε,m+1P

m
1 (ϕ− ψ)||1.
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We now treat the first term I in ϕ on the right hand side ( the terms in ψ

being equivalent), and we consider the last term III after that. We thus have:

I = ||Pnε

m+1+(k−1)nε
· · ·Pnε

m+1P
m
1 (ϕ)− Pε,m+1+(k−1)nε

◦ · · · ◦ Pε,m+1P
m
1 (ϕ)||1.

To simplify the notations we put
R1 := Pε,m+1,
...

Rk := Pε,m+1+(k−1)nε
,

and 
Q1 := Pnε

m+1,
...

Qk := Pnε

m+1+(k−1)nε
,

which reduce the above inequality to

I = ||(Qk · · ·Q1 − Rk · · ·R1)P
m
1 (ϕ)||1.

By induction we can easily see that

Qk · · ·Q1 − Rk · · ·R1 =
k∑
j=1

k−j−1∏
l=0

Rk−l(Rj −Qj)
j−1∏
l=0

Qj−l−1

with R−1 = 1 and Q0 = 1; by setting ϕm := Pm1 (ϕ) and ϕ̃m = Pm1 (ϕ− ψ), we

have therefore to bound by the quantity

k∑
j=1

||
k−j−1∏
l=0

Rk−l(Rj −Qj)
j−1∏
l=0

Qj−l−1ϕm||1.

We now observe that Qj−l−1ϕm ∈ C2; moreover ||Rmg||1 ≤ ||g||1 ∀g ∈ C2, 1 ≤
m ≤ k. Then we finally get, by invoking also Lemma 1.5,

I ≤ ||Qk · · ·Q1ϕm − Rk · · ·R1ϕm||1 ≤

k∑
j=1

c||ϕm||1ε1−α ≤ ck||ϕ||1ε1−α.

We now look at the third term III which could be written as, by using the sim-

plified notations introduced above: III = ||Rk · · ·R1ϕ̃m||1. By using Property

(P) and by applying the same arguments as in the footnote 6 in [7], one gets

||Rk · · ·R1ϕ̃m||1 ≤ e−γk||ϕ− ψ||1.
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In conclusion we get

(LM) ≤ ckε1−α(||ϕ||1 + ||ψ||1) + e−γk(||ϕ||1 + ||ψ||1) ≤

c
n

nε
ε1−α + eγ e−γ

n
nε (||ϕ||1 + ||ψ||1) ≤ Cα (||ϕ||1 + ||ψ||1)n1−

1
α (log n)

1
α

having chosen ε = n−
1
α

(
log n(

1
α−1)

3αcαα
γ2α

) 1
α

.

In order to prove the second part of the theorem for C1 observables, we invoke

the same argument as at the end of the proof of Theorem 4.1 in [7]. We notice in

fact that if ψ ∈ C1 then we can choose λ, ν ∈ R such that ψλ,ν(x) = ψ+λx+ν ∈
C2, the dependance of the parameters with respect to the C1 norm being affine.

For instance λ and ν could be chosen in such a way to verify the following

constraints: 0 > λ > −||ψ′||∞; ν > max{ (1+α)||ψ||∞+||ψ′||∞−λ(2+α)
1+α , 1+aa−1 ||ψ||∞−

aλ
2 }.

2 Distortion: proof of Property (P)

The main technical problem is now to check the positivity of the kernel; we will

follow closely the strategy of the proof of Proposition 3.3 in [7]. We recall that

2ε Kε,m(x, · ) = Pnε
m 1J(x)

where J = Bε(·) is an interval which we will take later on as a ball of radius ε.

By iterating we get (we denote with T−1
l,k , k = 1, 2, the two inverse branches

of Tl):

2ε Kε,m =
∑
lnε

· · ·
∑
l1

1J(T
−1
1,l1

· · ·T−1
nε,lnε

x)

|T ′
1(T

−1
1,l1

· · ·T−1
nε,lnε

x)T ′
2(T

−1
2,l2

· · ·T−1
nε,lnε

x) · · ·T ′
nε
(T−1
nε,lnε

x)|
=

∑
lnε

· · ·
∑
l1

1J(xnε)

|T ′
1(xnε)T

′
2(T1xnε) · · ·T ′

nε
(Tnε−1 · · ·T1xnε)|

where xnε = T−1
1,l1

· · ·T−1
nε,lnε

x ranges over all points in the preimage of x ∈
Tnε ◦ · · · ◦ T1J. The quantity on the right hand side is bounded from below by

2ε Kε,m ≥ 1Tnε◦···◦T1(J)(x) inf
z∈J

1

|T ′
1(z)T

′
2(T1z) · · ·T ′

nε
(Tnε−1 · · ·T1z)|

.

We also notice that for 0 ≤ x ≤ 2/3, Tαx ≤ Tβx; moreover we observe that, as a

function of α, the first derivative of Tα is decreasing in some interval near zero.

In fact, if we differentiate T ′
α w.r.t. α and we impose that such a derivative be

negative, we obtain the condition that log(3/2)(α + 1) + 1 + (α + 1) log x < 0,
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which is satisfied if we restrict to values of x for which x < 2
3e

− 1
α+1 . We put ad

the pre-image of T−d
α,11 closest to 2

3e
− 1

α+1 on the left.

Let us now take the number δ = max{ad, ad−1 − ad}. Any interval J of

length larger or equal to δ will cover all of the circle in a few steps or it will

cross the point 2/3. In the latter case, call J ′ the image of J with |J ′| > |J |,
where | · | denotes the length. We denote by J ′

r, J
′
l the portion of J ′ respectively

on the right and on the left side of the point 2/3 respectively. If |J ′
r| > ad,2−2/3,

where ad,2 := T−1
α,1ad (notice that the right branches are the same for all β ≤ α),

then in a finite number of steps (uniform in β), the image of J ′
r,, and therefore

of J, will cover all the circle. Otherwise we have to wait again a finite number of

steps, still independent of β, for which the image of J ′
l will have a length larger

than 1/3 and therefore its successive image will cover all the circle. We have

thus shown that having fixed an interval J of length ≥ δ, we can find a uniform

n0 (for the choice of the maps Tβ , β > 0), for which 1Tn0
◦···◦T1J(x) = 1,∀x ∈ S1.

Since the inverse of the derivative of all the Tβ are bounded from below by 1/3,

we could conclude that for any interval of length at least δ, there are constants

n0 and c0 such that (Pn0 ◦ · · · ◦P11)(x) ≥ c0 and therefore we have the same for

any power n ≥ n0 thanks to item 2 of Lemma 1.3. We have therefore to control

the ratio

inf
z∈J

1

|T ′
1(z)T

′
2(T1z) · · ·T ′

m(Tm−1 · · ·T1z)|
wherem is now the time needed for the interval J to became an interval of length

δ. We proceed as in the proof of Proposition 3.3 in [7]; we call Id = (0, ad] the

intermittent region and Hd the complementary set, the hyperbolic region.

Case J ⊂ Id.

We first compute such a distortion estimate when the interval J is in the

intermittent region Id. Let us call ∆k := (ak+1, ak−1) the union of two adjacent

elements of the Markov partition associated to Tα. We suppose now that J

contains at most one ak for k > 4, so that J ⊂ ∆k. We will establish a one-

to-one correspondence between the Tβ concatenations of J and the Tα iterates

of ∆k. Since Tαx ≤ Tβx whenever x ≤ 2/3, we have, provided we stay in the

intermittent region:
T1J ∩∆k+1 = ∅,
T2 ◦ T1J ∩∆k = ∅,
...

Tl ◦ Tl−1 ◦ · · · ◦ T1J ∩∆k−l+2 = ∅.

We now follow the itinerary of J for m times in the intermittent region; notice

that if a, b are two points in J :

D(Tm ◦ · · · ◦ T1)(a)
D(Tm ◦ · · · ◦ T1)(b)

≤
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exp

m−1∑
j=0

T ′′
m−j(ξm−j)|Tm−j−1 ◦ · · · ◦ T1a− Tm−j−1 ◦ · · · ◦ T1b| (2.3)

where ξm−j ∈ Tm−j−1 ◦· · ·◦T1J ⊂ Tm−j−1 ◦· · ·◦T1∆k. Going to the last iterate

and coming back we have (we set for simplicity |∆|m = |Tm−1 ◦ · · · ◦ T1J |):

(2.3) ≤ exp
m−1∑
j=0

T ′′
m−j(ξm−j)|∆|m

D(Tm−1 ◦ · · · ◦ Tm−j)(ηm,j)
(2.4)

where ηm,j belongs to (Tm−1 ◦ · · · ◦T1J). Now we observe that the set Tm−j−1 ◦
· · · ◦T1J , which is the m− j−1 random concatenation of J , is disjoint from the

m − j − 1 deterministic iterate of TαJ, which is the interval ∆k−(m−j−1)+2 =

Tm−j−1
α ∆k = (ak+(m−j−1)+3, ak+(m−j−1)+1). Since the second derivatives and

the first derivatives are respectively decreasing and increasing w.r.t. the variable

x ∈ (0, 2/3), and by change of variable l = k −m− j, we have

(2.3) ≤ exp

k−m∑
l=k−1

T ′′
l (al+2)|∆|m

DTl−1(al+2) · · ·DT1(ak−m)
.

By monotonicity of the first derivative of T with respect to the parameter α,

we could substitute all the derivative of Tβ in the denominator of the previous

inequality with T ′
α computed in the same points. This plus the useful bound,

for this kind of maps: T ′
α(al+1) ≥ |al−al+1|

|al+1−al+2| , give us under iteration

T ′
α(al+2)T

′
α(al+1) · · ·T ′

α(ak−m) ≥ c3|al+2 − al+3|−1 (2.5)

where c3 = |ad − ad−1|. By substituting into (2.3) we get

(2.3) ≤ exp{
k−m∑
l=k−1

c3
T ′′
l (al+2)|∆|m

|al+2 − al+3|−1
}.

Since |al+2 − al+3|−1 ≈ l
1
α+1 and T ′′

β (al) ≈ l−
β−1
α we have that the series above

is summable with sums c4, so that

D(Tm ◦ · · · ◦ T1)(a)
D(Tm ◦ · · · ◦ T1)(b)

≤ exp{c5|Tm−1 ◦ · · · ◦ T1J |} (2.6)

with c5 = c4c3.

Case J ⊂ Hd.

We now take J ⊂ Hd and follow its orbit until it enters the intermittent

region. Since we are going to use distortion arguments and the mean value

theorem, we should take care of the situation when J or one of its iterates

crosses the point 2/3 where the maps are not anymore differentiable. Let us call

J̃ the iterate Tk ◦· · ·◦T1J (possibly with k = 0 which reduces to consider simply

J), which crosses the point 2/3. If the right portion of J̃ , call it J̃r, has length
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|J̃r| > ad,2 − 2/3, then, by the previous argument above, a few more iterates of

J̃r, and therefore of J , will cover the entire circle.

The other case, |J̃r| ≤ ad,2 − 2/3, will be treated later; actually it splits into

two subcases. As we will see, in one of these two cases, which we will call the

easy one, we could apply the same argument as below, so that we could restrict

ourselves to use the mean value theorem until the image of J meets the point

2/3; suppose it happens for n1 steps. By calling a, b two points in J we have by

standard estimates:
D(Tn1 ◦ · · · ◦ T1)(a)
D(Tn1 ◦ · · · ◦ T1)(b)

≤

exp

n1−1∑
l=0

supξ T
′′
n1−lξ

infξ T ′
n1−lξ

|Tn1−l−1 ◦ · · · ◦ T1a− Tn1−l−1 ◦ · · · ◦ T1b|. (2.7)

Since 0 < β∗ ≤ β ≤ α, the ratio
supξ T

′′
β ξ

infξ T ′
βξ

and the quantity [T ′
β(x)]

−1 will be

uniformly bounded, in β and for x ∈ Hd, respectively by a positive constants D

and 0 < r < 1. This immediately implies that

D(Tn1 ◦ · · · ◦ T1)(a)
D(Tn1 ◦ · · · ◦ T1)(b)

≤ exp { c2|Tn1−1 ◦ · · · ◦ T1J |}

where c2 = D
1−r and finally

inf
z∈J

1

|T ′
1(z) · · ·T ′

n1
(Tn1−1 · · ·T1z)|

≥ |J |
|Tn1 ◦ · · · ◦ T1J |

exp {−c2|Tn−1 ◦ · · · ◦ T1J |} .

(2.8)

We now procced as in the last part of the proof of Proposition 3.3 in [7].

We shall first consider two cases not covered by the previous analysis. The

first happens when some iterate of J , call it J̃ , crosses the point 2/3 and the

initial interval J was in the hyperbolic region. This was treated above. We

were left with the situation when the right part of J̃ , J̃r (we will similarly call

J̃l the left part), had length smaller that ad,2 − 2/3. Suppose first that J̃l is a

larger portion of J̃ , for instance the length of J̃l is larger than 1/3 of the length

of J̃ . Then by loosing just a factor 1/3 we could continue the iteration by

only considering the orbit of J̃l. This is equivalent to consider the iterates of an

interval of length 1/3|J | with the right hand point placed at the fixed point 1 and

moving in the hyperbolic region: this is the easy case anticipated above since it

completely fits with the distortion computations in the hyperbolic region. We

then consider the case whenever J̃r has length larger than 1/3 of the length of

J̃ . We first notice that this situation is equivalent to the orbit of an interval of

the same length as J̃r with the left hand point placed again at the fixed point

0. We now treat this case together with the more general situation of some

iterates of J , call it again J̃ , which falls in the intermittent region and crosses

at least two boundary points ak. Notice first that since the first derivative of

Tα(x) is a decreasing function of α (provided we remain in the region (0, ad)),
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and an increasing function of x, whenever T k−dα (ak+1, ak) = (ad+1, ad), then

|Tβk−d
◦ · · · ◦ Tβ1(ak+1, ak)| ≥ δ. We therefore cut J̃ into pieces ∆k− , · · · ,∆k+ ,

such that each of them contains two boundary points and the union of them is of

size larger than |J̃ |/3. For these intervals ∆k, the distortion in the intermittent

region described above gives, for any choice of the composed transfer operators:

Pk−d ◦ · · · ◦ P11∆k
≥ 1∆1,··· ,k−d

e−c5 |∆k|

where ∆1,··· ,k−d is the Tk−d · · ·◦T1 image of J̃ , of length larger than δ. By taking

now l = n0 + k+ − d we have

Pl ◦ · · · ◦ P11J̃ ≥
k+∑

k=k−

Pl+d−k ◦ · · · ◦ Pk−d+1 ◦ Pk−d · · · ◦ P11∆k
≥

k+∑
k=k−

c0e
−c5 |∆k| ≥ c0e

−c5 |J̃ |
3
.

Putting it together.

We have now a complete control of the distortion in both the intermittent

and the chaotic regions: we call I and II the situations when the random iterates

of the interval J stay respectively in the hyperbolic region by spending there a

time nj , j ≥ 1, and in the intermittent region by spending a time mj , j ≥ 1 and

covering each time at most one boundary point of the ak. We call III the third

situation described above where the iterate of J covers more than one boundary

point ak: note that whenever the iterate of J follows in this situation, it will

surely grows more than δ before leaving the intermittent region. We therefore

get after t = n1 +m1 + ...+ np+ l iterations, where l = n0 if the third case III

never occurs and l = n0 if III happens:

Pt ◦ · · · ◦ P11J̃ ≥

P lnp+mp−1+np−1+np−2+mp−2···n1+m1+1 ◦ P
np

mp−1+np−1+np−2+mp−2···n1+m1+1

◦Pmp−1
np−1+np−2+mp−2···n1+m1+1 ◦ · · · ◦ P

n2
n1+m1+1 ◦ P

m1
n1+1 ◦ P

n1
1 1J̃ ≥

|J |c0
3
exp{−c5 − c2|T

np+···+m1+n1
J | − · · · − c5|T

m1+n1
J | − c2 − |Tn1

J |} ≥

|J |c0
3
exp{−(c5 + c2)(1 + rnp + rnp+np−1 + · · ·+ rnp+np−1+···+n2)} ≥

|J |c0
3
exp{−(c5 + c2)r

1− r
} := γ|J |.

Since the first derivatives of all the Tβ is strictly increasing on the circle, the

supremum over all possible values of t = n1 + m1 + ... + np + l associated to

intervals J of size 2ε, will be attained when case III will happen at the be-

ginning with J located around 0, and in this case we should consider one third
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of the length of such an interval (see above), which means we should consider

the iterates of the interval (0, 2ε/3). This implies ad+t ≤ 2ε/3 which in turn

provides the value for nε = nε = [ 3cα2εα ].
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